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(2) SCIENTIFIC PROGRESS DURING REPORTING PERIOD

During this period we successfully executed all elements of our original statement of
work. The work at Boston University has been carried out in collaboration with Dr. T.
Bahder at AMRDEC in Huntsville, Alabama.

Our research program during this period has concentrated on investigating novel
scientific and technological solutions for ultra-sensitive quantum-optical registration and
sensing of phase shifts induced by external fields. The use of several types of
nonclassical states of light and development of novel ultra-sensitive interferometric phase
measurement configurations has been at the center of our research effort.

The major technical findings have been reported in several leading refereed journal
papers and presented at several technical meetings.

The following results have been obtained during the period of performance:

1) We performed theoretical investigation of the limitations that a single-mode
assumption carries when using Fock-state and NOON-state light in practical quantum
interferometry. Optical dispersion is a significant contributor to a wave packet
modulation in existing materials demonstrating good phase shifting capability in response
to the action of an external field. This degrades the quality of observed interference
pattern and the accuracy of phase evaluation.

We considered Mach-Zehnder and Hong-Ou-Mandel interferometers with nonclassical
states of light as input, and studied the effect that dispersion inside the interferometer has
on the sensitivity of phase measurements. We examined in detail a number of different
one- and two-photon input states, including Fock, dual Fock, N00N states, and photon
pairs from parametric down conversion.  We computed the probabilities of the possible
measurement outcomes as a function of the phase shift introduced between the arms of
the interferometer, and then computed the Shannon mutual information between the
phase shift value and the measurement outcomes. This provides a means of quantitatively
comparing the utility of various input states and various interferometric arrangements for
determining phase in the presence of dispersion. In addition, we considered a simplified
model of parametric down conversion for which probabilities can be explicitly computed
analytically, and which serves as a limiting case of the more realistic down conversion
model.

The results obtained in this work have been summarized in a Physical Review A
publication:

• D. S. Simon, A. V. Sergienko, and T. B. Bahder, ‘’Dispersion and Fidelity in
Quantum Interferometry’’, Physical Review A v. 78, 053829 (2008).



2) We continued our quest to discover alternative quantum techniques for ultra-precise
phase-shift measurement. A key component of this effort involved studying methods for
controlling the dispersive effects that can degrade the sensor’s effectiveness. We
proposed a novel design for a phase-sensitive quantum interferometer that demonstrates
an odd-order dispersion cancellation effect based on frequency-anticorrelated entangled
photons. We used this special interferometer to demonstrate observation of both odd-
order and even-order dispersion cancellation effects in one single experiment for the first
time. In addition to demonstrating a peculiar quantum effect, this result carries strong
promise for significantly enhancing resolution when evaluating phase shifts in dispersive
optical materials.

These results provided the basis for a research paper recently published in Physical
Review Letters:

• Olga Minaeva, Cristian Bonato, Bahaa E. A. Saleh, David S. Simon, and
Alexander V. Sergienko, “Odd- and Even-Order Dispersion Cancellation in
Quantum Interferometry”, Physical Review Letters, v. 102, 100504 (2009).

Work is currently underway for the experimental investigation of this idea and its
application to quantum phase sensing.

3) During the course of our detailed studies of quantum interference and phase sensitivity
we were able to demonstrate a link between frequency dispersion and its spatial
counterpart, aberration. We developed a theoretical framework for the effect and by
means of quantum interferometry we produced the first experimental demonstration of
even-order aberration cancellation. The effect is a spatial counterpart of spectral group
velocity dispersion cancellation, which is associated with spectral entanglement. It is
manifested in temporal interferometry by virtue of the multi-parameter spatial-spectral
entanglement. Spatially-entangled photons generated by spontaneous parametric down
conversion were subjected to spatial aberration introduced by a deformable adaptive
mirror that modulates the wavefront. We showed that only odd-order spatial aberrations
affect the quality of quantum interference.

Two manuscripts summarizing these findings have been published in Physical Review
Letters and Physical Review A:

• Cristian Bonato, David S. Simon, Paolo Villoresi, and Alexander V. Sergienko,
''Multiparameter Entangled-State Engineering Using Adaptive Optics'', Physical
Review A v. 79, 062304 (2009)

• Cristian Bonato, Alexander V. Sergienko, Bahaa E. A. Saleh, Stefano Bonora, and
Paolo Villoresi, “Even-Order Aberration Cancellation in Quantum
Interferometry’’, Physical Review Letters, v. 101, 233603 (2008).

4) While investigating the physics of dispersion cancellation effects we have formulated
specific conditions enabling total spatial dispersion cancellation to all orders. The
following manuscript has been submitted for publication:



• D. S. Simon and A. V. Sergienko “Spatial-Dispersion Cancellation in Quantum
Interferometry”, submitted to Physical Review A (2009)

As a final step in our research efforts on this project we’ve extended the notion of spatial
dispersion (aberration) cancellation to the case of “ghost imaging”. This novel imaging
configuration has been proposed and theoretically analyzed in a recent manuscript  (D. S.
Simon and A. V. Sergienko “Ghost Imaging with Aberration-Cancellation”) and could
open the way for enhanced-quality aberration-free imaging. The paper been submitted for
publication in Physical Review Letters.

Conclusion:

We have successfully completed the original research program. A new research effect
“Ghost Imaging with Aberration-Cancellation” has been discovered in the process,
leading to the promise of significant enhancements in the fields of optical imaging and
microscopy, as well as potential improvements to phase-sensitive optical sensors.

Our research has led to five research papers published in leading refereed physics
journals, with one additional manuscript recently submitted for publication. Nine
conference presentations have been given, including two Invited Talks. Four Invited
Lectures have also been given at leading US and European research institutions, and
several graduate and undergraduate students have been trained.
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Multiparameter entangled-state engineering using adaptive optics

Cristian Bonato,1,2 David Simon,1 Paolo Villoresi,2 and Alexander V. Sergienko1,3

1Department of Electrical and Computer Engineering, Boston University, Boston, Massachusetts 02215, USA
2Department of Information Engineering, CNR-INFM LUXOR, University of Padova, 35131 Padova, Italy

3Department of Physics, Boston University, Boston, Massachusetts, USA
�Received 5 April 2009; published 5 June 2009�

We investigate how quantum coincidence interferometry is affected by a controllable manipulation of trans-
verse wave vectors in type-II parametric down-conversion using adaptive optics techniques. In particular, we
discuss the possibility of spatial walk-off compensation in quantum interferometry and an effect of even-order
spatial aberration cancellation.

DOI: 10.1103/PhysRevA.79.062304 PACS number�s�: 03.67.Bg, 42.50.St, 42.50.Dv, 42.30.Kq

I. INTRODUCTION

Quantum entanglement �1� is a valuable resource in many
areas of quantum optics and quantum information process-
ing. One of the most widespread techniques for generating
entangled optical states is spontaneous parametric down-
conversion �SPDC� �2–5�. SPDC is a second-order nonlinear
optical process in which a pump photon is split into a pair of
new photons with conservation of energy and momentum.
The phase-matching relation establishes conditions to have
efficient energy conversion between the pump and the down-
converted waves, called signal and idler. This condition also
sets a specific relation between the frequency and the emis-
sion angle of down-converted radiation. In other words, the
quantum state emitted in the SPDC process cannot be factor-
ized into separate frequency and wave-vector components.
This leads to several interesting effects where the manipula-
tion of a spatial variable affects the shape of the polarization-
temporal interference pattern. For example, the dependence
of polarization-temporal interference on the selection of col-
lected wave vectors was studied in detail in �6�.

Here we engineer the quantum state in the space of trans-
verse momentum and we study how this spatial modulation
is transferred to the polarization-spectral domain by means
of quantum interferometry. We will focus on type-II SPDC
using birefringent phase matching since the correlations be-
tween wave vectors and spectrum are stronger than those
employing other phase-matching conditions.

Our aim is twofold. From one point of view, we study the
effect of spatial modulations on temporal quantum interfer-
ence. This could be useful, for example, in quantum optical
coherence tomography �QOCT� �7,8�. When focusing light
on a sample with nonplanar surface, the photons will acquire
a spatial phase distribution in the far field, which may per-
turb the shape of the interference dip. Our results will pro-
vide a tool to understand this effect.

From a second point of view, we would like to study and
characterize spatial modulation as a tool for quantum state
engineering. This may find application in the field of quan-
tum information processing, where it is important to gain a
high degree of control over the production of quantum en-
tangled states entangled in one or more degrees of freedom
�hyperentanglement�.

We start by introducing a theoretical model of a type-II
quantum interferometer, comprising the polarization, spec-

tral, and spatial degrees of freedom �Sec. II�. A modulation in
the wave-vector space is provided by an adaptive optical
setup and equations for the polarization-temporal interfer-
ence pattern in the coincidence rate are derived. In Sec. III,
we introduce a numerical approach for practical evaluation
of the results of the theoretical model, discussing a few ex-
amples for general spatial aberrations.

In Sec. IV we will highlight and discuss theoretically two
interesting special cases. The first one is the possibility of
restoring high visibility in type-II quantum interference with
large collection apertures. In some situations, to collect a
higher photon flux or a broader photon bandwidth, it can be
useful to enlarge the collection apertures of the optical sys-
tem. But when dealing with type-II SPDC in birefringent
crystals, for large collection apertures the effect of spatial
walkoff introduces distinguishability between the photons,
leading to a reduced visibility of temporal and polarization
quantum interference. We will show that high visibility can
be restored with a linear phase shift along the vertical axis.

The second effect is the spatial counterpart of spectral
dispersion cancellation �9,10�. In the limit of large detection
apertures, the correlations between the photons’ momenta
will cancel out the effects of even-order aberrations, exactly
as in the limit of slow detectors the frequency correlations
cancel out the even-order terms of spectral dispersion. The
experimental demonstration of this effect has been reported
recently �11�.

As we proceed from the general case of Secs. II and III
into the specific examples of Sec. IV, we will gradually see
that optical aberration is a subject with two very different
faces. On one hand, aberrations in optical components are
normally seen as undesirable, since they lead to distortions in
imaging. We will see that these unwanted spatial modula-
tions may to some extent be canceled. On the other hand, we
will find that such spatial modulations may also be turned
into a useful tool: by deliberately introducing spatial modu-
lations �in effect, purposely adding aberrations in a con-
trolled manner�, we can produce useful effects such as the
restoration of visibility mentioned above. The examples we
provide in Sec. IV will illustrate these two aspects and will
show that both can benefit from more detailed study of the
interplay between spatial modulations and spectral correla-
tions.

PHYSICAL REVIEW A 79, 062304 �2009�
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II. THEORETICAL MODEL

Consider the scheme in Fig. 1. A laser beam pumps a ��2�

nonlinear material phase matched for type-II parametric
down-conversion, creating a pair of entangled photons. Each
of the generated photons passes through a Fourier-transform
system, and then enters a modulation system which trans-
forms transverse wave vectors for the horizontally �H� polar-
ized photon according to the transfer function G1�q1� and for
the vertically �V� polarized photon according to G2�q2�. Af-
ter being modulated in q space, the photons enter a type-II
interferometer. A nonpolarizing beam splitter �BS� creates
polarization entanglement from the polarization-correlated
pair emitted by the source. The beams at the output ports of
the beam splitter are directed toward two single-photon de-
tectors. Two polarizers at 45° before the BS restore indistin-
guishability in the polarization degree of freedom. An adjust-
able delay line � is scanned and the coincidence rate R���
between the detection events of the two detectors is recorded.
An aperture is placed before the beam splitter to select an
appropriate collection angle.

A. Notation

Consider a monochromatic plane wave of complex ampli-
tude E�r�=E0e

−ik·r, with r= �x ,y ,z�. For a given wavelength
�, corresponding to a frequency �, the wave vector can be
split into a transverse component q= �qx ,qy� and a longitudi-
nal component ��q ;��:

k = �q,��q;��� . �1�

The wave number is

k��� =
n����

c
. �2�

The longitudinal component of the wave vector is

��q,�� = �k2��� − �q�2. �3�

Therefore the electric field at the position r and time t can be
written as

E�r;t� =� dq� d�Ẽ�q,��e−iq·�e−i��q;��zei�t, �4�

where �= �x ,y�.

In paraxial approximation �q�2�k2���, so that

��q,�� � k��� −
�q�2

2k���
. �5�

For a quasimonochromatic wave packet centered around the
frequency �0, one can write �=�0+�, with ���0. This
expression can be approximated by

��q,�� � k0 +
�

u0
−

�q�2

2k0
, �6�

where k0=k��0� and u0= �� dk���
d� ��=�0

�−1 is the group velocity
for the propagation of the wave packet through the material.

B. State generation

Using first-order time-dependent perturbation theory, the
two-photon state at the output of the nonlinear crystal can be
calculated as

�		 
 −
i



� dtHI�t��0	 , �7�

where the interaction Hamiltonian is

HI�t� =
1

V
� dr��2��r�Ep

�+��r,t�Es
�−��r,t�Ei

�−��r,t� . �8�

The strong, undepleted pump beam can be treated classically.
Assuming a monochromatic plane wave propagating along
the z direction,

Ep�r,t� = Epe
i�kpz−�pt�. �9�

The signal and idler photons are described by the following
quantum field operators:

Êj
�−��r,t� =� dq j� d� je

i���qj,�j�z+qj·�−�jt�â�q j,� j� , �10�

where j=e ,o.
The biphoton quantum state at the output plane of the

nonlinear crystal is �12�

�		 =� dq� d��̃�q,��âo
†�q,�0 + ��âe

†�− q,�0 − ���0	 .

�11�

Two photons are emitted from the nonlinear crystal, one
horizontally polarized �ordinary photon� and the other verti-
cally polarized �extraordinary photon�, with anticorrelated
frequencies and emission directions.

In the case of a single bulk crystal of thickness L and
constant nonlinearity �o, the probability amplitude for having
the signal photon in the mode �q ,�0+�� and the idler in the
mode �−q ,�0−�� is

�̃�q,�� = sinc�L
�q,��
2

�ei�
�q,��L/2�. �12�

For type-II collinear degenerate phase matching, the phase-
mismatch function 
�q ,�� can be approximated to be

FIG. 1. �Color online� Scheme of the proposed setup. Horizon-
tally polarized photons from type-II SPDC are assigned a phase
dependent on the photon transverse momentum �o�qo�, while the
vertically polarized ones are assigned a phase �e�qe�. The modu-
lated photons enter a type-II quantum interferometer, which records
the coincidence count rate as a function of the delay � between the
photons given by an appropriate delay line.
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�q,�� = − �D + Mê2 · q +
2�q�2

kp
, �13�

where D is the difference between the inverse of the group
velocities of the ordinary and extraordinary photons inside
the birefringent crystal and the quadratic term in q is due to
diffraction in paraxial approximation. The remaining term is
the first-order approximation for the spatial walkoff.

C. Propagation

Consider a photon described by the operator âj�q ,�� �po-
larization j=e ,o, frequency �, and transverse momentum q�.
Its propagation through an optical system to a point xk on the
output plane is described by the optical transfer function
Hj�xk ,q ;��. In our setup, the field at the detector will be a
superposition of contributions from the ordinary and extraor-
dinary photons. The quantized electric fields at the detector
planes are

ÊA
�+��xA,tA� =� dq� d�ei�tA�He�xA,q;��âe�q,��

+ Ho�xA,q;��âo�q,��� ,

ÊB
�+��xB,tB� =� dq� d�ei�tB�He�xB,q;��âe�q,��

+ Ho�xB,q;��âo�q,��� . �14�

The probability amplitude for detecting a photon pair at the
detector planes, with space-time coordinates �xA , tA� and
�xB , tB�, is

A�xA,xB;tA,tB� = 
0�ÊA
�+��xA,tA�ÊB

�+��xB,tB��		 . �15�

For the biphoton probability amplitude we get

A�xA,xB;tA,tB� =� dqodqed�od�e��qo,qe;�o,�e�

��He�xA,qe;�e�Ho�xB,qo;�o�e−i��etA+�otB�

+ Ho�xA,qo;�o�He�xB,qe;�e�e−i��otA+�etB�� .

�16�

This probability amplitude represents the superposition of
two possible events leading to a coincidence count in the
detectors:

�1� the V polarized photon with momentum qe and fre-
quency �e going through the lower branch to arrive at posi-
tion xA in detector A, while the H polarized photon with
momentum qo and frequency �o goes through the upper
branch to arrive at position xB in detector B; and

�2� the V polarized photon with momentum qe and fre-
quency �e going through the lower branch to arrive at posi-
tion xB in detector B, while the H polarized photon with
momentum qo and frequency �o goes through the upper
branch to arrive at position xA in detector A.

Since the superposition is coherent, there are quantum-
interference effects between the two probability amplitudes.

1. State engineering section

In the state engineering section, each of the two branches
consists of a pair of achromatic Fourier-transform systems
coupled by a spatial light modulator or a deformable mirror.
Each Fourier-transform system consists of a single lens of
focal length f , separated from the optical elements before
and after it by a distance f . The first Fourier system maps
each incident transverse wave vector q on the plane �in to a
point x�q� on the Fourier plane �F:

x�q� =
f

k0
q, k0 =

�0

c
, �17�

where f is the focal length of the Fourier-transform system.
Since we assume that the system is achromatic for a certain
bandwidth around a central frequency �0, the position x�q�
depends only on q and not on �.

The spatial modulator assigns a different amplitude and
phase to the light incident on each point, as described by the
function G�x�= t�x�ei��x�. Each point is then mapped back to
a wave vector on the plane �out by the second achromatic
Fourier-transform system.

Using the formalism of Fourier optics �13�, the transfer
function between the planes �in and �out can be calculated
to be

h1�x1,x3� =� dxG�x�e−i�k0/f�x·�x1+x3�. �18�

The corresponding momentum-transfer function is

H1�q1,q3� = G� f

k0
q1���q1 − q3� . �19�

2. Interferometer

After the plane �out the two photons enter a type-II quan-
tum interferometer. Each propagates in free space to a bire-
fringent delay line and a detection aperture p�x� to be finally
focused to the detection planes by means of lenses of focal
length f0. Following the derivation in �6� the transfer func-
tion is

H2�xi,q;�� =� h�x1,xi;��eiq·x1dx1

= ei��/c��d1+d2+f0� exp�− i
��xi�2

2cf0
�d2

f0
− 1��

�e−i�cd1/2���q�2P̃� �

cf0
xi − q� , �20�

where P̃�q� is the Fourier transform of �p�x��2.
A combination of the two different stages is described by

the transfer function

H��xj,q�;��� = G�� f

k0
q��H2�xj,q�;�� , �21�

where the two functions G1�q� and G2�q� are the
momentum-transfer functions which describe the modulation
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imparted, respectively, on the ordinary and the extraordinary
photons.

D. Detection

Since the single-photon detectors used in quantum optics
experiments are slow with respect to the temporal coherence
of the photons and their area is larger than the spot onto
which the photons are focused by the collection lens, we
integrate over the spatial and temporal coordinates. There-
fore the coincidence count rate expressed in terms of the
biphoton probability amplitude is

R��� =� dxA� dxB� dtA� dtB�A�xA,xB;tA,tB��2. �22�

Following the derivation described in Appendix A, one
gets

R��� = R0�1 − ��1 −
2�

DL
�WM���� , �23�

where ��x� is the triangular function

��x� = �1 − �x� , �x� � 1

0, �x� � 1.
� �24�

Therefore, the coincidence count rate R��� is given by the
summation of a background level R0 and an interference pat-
tern given by the triangular dip ��1− 2�

DL � that one gets when
working with narrow apertures, modulated by the function
WM��� which depends on the details of the adaptive optical
system.

The expressions for R0 and WM��� are

R0 =� dq� dq� sinc�MLê2 · �q − q���

�G1
�� f

k0
q�G1� f

k0
q��G2

��−
f

k0
q�

�G2�−
f

k0
q��e−i�ML/2�ê2·�q−q��ei�2d1/kp���q�2−�q��2�

�P̃A�q − q��P̃B�− q + q�� �25�

and

WM��� =
1

R0
� dq� dq� sinc�MLê2 · �q + q���

��1 −
2�

DL
��G1

�� f

k0
q�G1� f

k0
q��G2

��−
f

k0
q�

�G2�−
f

k0
q��e−i�M/D��ê2·�q−q��ei�2d1/kp���q�2−�q��2�

�P̃A�q + q��P̃B�− �q + q��� . �26�

In the following we will assume there is spatial modula-
tion only on one of the photons; therefore we set G2�q��1.

III. NUMERICAL SOLUTIONS FOR A GENERAL
PHASE SHIFT

Numerically solving for the quantities in Eqs. �25� and
�26� in the case of a general aberration may be computation-
ally demanding. Here, we propose an approximation, valid in
the case where the function G�x� changes smoothly over the
mirror surface, as it is the case in experimentally relevant
situations. This model is also interesting from the practical
point of view, since in many cases adaptive optical systems
are implemented using spatial light modulators or segmented
deformable mirrors, where the modulation surface is parti-
tioned into small pixels.

Suppose we partition the Fourier plane �F into small
squares �pixels� of side d �Fig. 2�. Let us define the rectan-
gular function

��x� = �0 if �x� �
1
2

1 if �x� �
1
2 .
� �27�

The pixel �l ,m� is identified by

�l,m�x,y� = �� x

d
+ l��� y

d
+ m� , �28�

selecting the area

�l − 1
2�d � x � �l + 1

2�d ,

FIG. 2. �Color online� Example of the numerical approach
adopted to evaluate Eqs. �25� and �26�. The spatial modulation sur-
face is discretized in sufficiently small squares over which the phase
is averaged.
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�m − 1
2�d � y � �m + 1

2�d . �29�

We approximate the value of the phase in each square by
the mean value of the actual phase within the square:

�lm =
1

d2� dxdy��x,y��� x

d
+ l��� y

d
+ m� . �30�

That is,

ei��x,y� � �
l,m

ei�l,m���x/d�+l����y/d�+m�. �31�

In this case �see Appendix B for a justification�

�
l,m

ei�l,m���x/d�+l����y/d�+m� = �
l,m

ei�l,m�� x

d
+ l��� y

d
+ m� .

�32�

Substituting this expression into Eq. �23� and collecting the
integrations, one finds

R��� � �
l,m

�
�,�

e−i�lm−��,��l�Im���� , �33�

where

�l� =� dqx� dQx�� f

kd
qx − l��� f

kd
Qx − ��ej�2d1/kp��qx

2−Qx
2�P�qx+Qx�P�−�qx+Qx�� �34�

and

Im,���� =� dqy� dQy�� f

kd
qy − m��� f

kd
Qy − ��ej�2d1/kp��qy

2−Qy
2�e−j�M/D���qy−Qy�

�Sinc�ML�qy + Qy���1 −
2�

DL
��P�qy + Qy�P�− �qy + Qy�� . �35�

Performing the integrations one gets

�l� =� dxP̃�x��� fx

kd
− �l + ���sinc�2dd1

f
x�� fx

kd
− �l + ����ei�dd1/f��l−��x �36�

and

Im���� =� dxP̃�x��� fx

kd
− �m + ���sinc�MLx��1 −

2�

DL
��

�sinc�2kd

f
�2d1

kp
x −

M

D
���� fx

kd
− �m + ����ei�kd/f���2d1/kp�x−�M/D����m−��. �37�

A similar expression can be found for the background coincidence rate:

R0 � �
l,m

�
�,�

e−i��lm−��,��Rl�
�x�Rm�

�y� , �38�

where

Rl�
�x� =� dxP̃�x��� fx

kd
− �l − ���sinc�2dd1

f
x�� fx

kd
− �l − ����ei�dd1/f��l+��x �39�

and

Rm�
�y� =� dxP̃�x��� fx

kd
− �m − ���sinc�MLx�sinc�2dd1

f
x�� fx

kd
− �m − ����ei��dd1/f��m+��−ML/2�x. �40�

The advantage of our numerical approach is that one can
calculate and tabulate the functions Rl�

�x�, Rm�
�y� , �l�, and Im����

for a given configuration, determined by the focal length f ,
the shape of the detection apertures, the width of the deform-
able optics, and the distance between the crystal and the

detectors. Then, to calculate the shape of the interference
pattern for a certain phase distribution on the adaptive optics,
one just needs to change the coefficient of a linear combina-
tion of the tabulated functions. This can be a helpful tool for
studying the effect of specific aberrations on the temporal
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interference or to engineer the shape of the Hong-Ou-Mandel
�HOM� dip.

Some examples of how the temporal quantum-
interference dip is modulated by a generic spatial phase shift
are reported in Fig. 3, for coma �upper plot� and a superpo-
sition of several different aberrations �lower plot�. The inter-
ference visibility clearly degrades in presence of wave-front
aberrations.

IV. PARTICULAR CASES

In this section we will discuss the quantum-interference
pattern, described by Eq. �23�, for a few simple cases. First
we will consider the case when no spatial modulation is as-
signed to the photons and Eq. �23� will reduce to the results
already described in the literature for quantum interferometry
with multiparametric entangled states from type-II down-
conversion �6�. Then we will examine the effect of a linear
phase, describing its implications for the compensation of the
spatial walkoff between the two photons. Finally we will
describe what happens in the approximation of sufficiently
large detection apertures, introducing the effect of even-order
aberration cancellation.

A. No phase modulation

Applying no phase modulation, our equations reduce to
the ones derived in �6�. Particularly we find

R0 = P̃A�0�P̃B�0� �41�

and

WG��� = Sinc�M2Lkp

2d1D
���1 −

2�

DL
��P̃A

�� Mkp

2d1D
�ê2�P̃B�−

Mkp

2d1D
�ê2� . �42�

The shape of the interference pattern is essentially given by
the product of the triangular function by the Fourier trans-
form of the aperture function, centered at �=0. For physi-
cally relevant parameters the sinc function is almost flat in
the region where the triangular function is not zero.

To get an analytic result one may assume Gaussian detec-
tion apertures of radius RG centered along the system’s opti-
cal axis:

p�x� = e−�x�2/2RG
2

. �43�

In this case the solution is quite simple:

R��� = R0�1 − ��1 −
2�

DL
�e−�2/2�1

2� , �44�

with

�1 =
2d1D

kpMRG
. �45�

Typically, sharp circular apertures are used in experi-

ments. In this case, the function P̃�q� is described in terms of
the Bessel function J1�x�. For a circular aperture of radius R,

P̃�q� =
J1�2R�q��

R�q�
. �46�

However the Gaussian approximation is still a good one if
the width RG of the Gaussian is taken to roughly fit the
Bessel function �of width R�: in our case we take RG
=R / �2�2�.

Therefore Eq. �44� is still approximately valid in the case
of sharp circular apertures, just taking

�1 =
4�2d1D

kpMRB
. �47�

Mathematically, in Eq. �44� the interference pattern is
given by the multiplication of a triangular function centered
at �=DL /2 by a Gaussian function centered at �=0. The
width of the Gaussian function �1 decreases with increasing
radius of the aperture RB. Therefore, in the small-aperture
approximation, the width of the Gaussian is so large that it is
approximately constant between �=0 and �=DL /2, giving
the typical triangular dip found in quantum-interference ex-
periments. On the other hand, increasing the aperture size,
the width of the Gaussian function decreases, reducing the
dip visibility �see Fig. 4�. Physically, this can be explained
by the fact that by increasing the aperture size we let more
wave vectors into the system, and so the spatial walkoff in
type-II interferometry introduces distinguishability, reducing

FIG. 3. �Color online� Examples of the shape of the polarization
quantum-interference dip with two different spatial phase modula-
tions �in black the unperturbed dip, in red the modulated one�. In
the upper figure the effect of a small amount of coma along the
vertical axis is shown. In the lower figure a more complicated su-
perposition of aberrations affects dramatically the shape of the dip.

BONATO et al. PHYSICAL REVIEW A 79, 062304 �2009�

062304-6



the interference visibility. Enlarging the aperture sizes is of-
ten useful in practice, for example, to get a higher photon
flux. Moreover, since in the SPDC process different fre-
quency bands are emitted at different angles, it may be nec-
essary to open the detection aperture in applications where a
broader bandwidth is needed. This is clearly a problem when
using type-II phase matching in birefringent crystals, since
the visibility of temporal and polarization interference gets
drastically reduced.

B. Linear phase shift

Suppose now we introduce a linear phase function with
the spatial light modulator, along the direction s1,

��x� = s1 · x , �48�

we get

WM��� = Sinc�M2Lkp

2d1D
���1 −

2�

DL
��P̃A

�� Mkp

2d1D
�ê2 + 2fs1�P̃B�−

Mkp

2d1D
�ê2 − 2fs1� .

�49�

If we compare Eq. �49� with Eq. �44� we can see that the
structure is the same. We again have a triangular function
centered at �=DL /2, along with two aperture functions. But
this time, instead of being centered at �=0, the aperture func-
tions can be shifted at will along the � axis. Suppose we now
apply a tilt along the y axis �s1x=0�. The modulation function
is then shifted to

�center =
fD

k0M
s1y . �50�

To get the highest possible visibility, the center of the modu-
lation function must be matched to the center of the triangu-
lar dip,

�center =
DL

2
, �51�

so that

s1y =
k0ML

2f
. �52�

In the case of a reflective system, in which the phase
modulation is implemented by means of a deformable mirror
�Fig. 5�, tilted by an angle �,

��x� = 2k0 tan �y = s1yy . �53�

Therefore, the amount of tilt necessary to restore high vis-
ibility is

tan � =
ML

4f
. �54�

In the case of a 1.5 mm crystal, with M =0.0723 �pump at
405 nm, SPDC at 810 nm� and lenses with focal length of 20
cm in the 4f system, we get

� = 0.14 mrad. �55�

C. Large-aperture approximation

If the detection apertures are large enough for the P̃i func-
tion to be successfully approximated by a delta function, we
get

WM��� =� dqG1
�� f

k0
q�G1�−

f

k0
q�e−i�2M/D��ê2·q. �56�

Suppose that the spatial modulator is a circular aperture
with radius r, with unit transmission and phase modulation
described by the function ��x�,

G1�x� = �0 if �x� � r

ei��x� if �x� � r .
� �57�

In this case the function ��x� can be expanded on a set of
polynomials which are orthogonal on the unit circle, such as
the Zernicke polynomials:

��q� = �
n

�
m

�nmRn
m���cos�m�� ,
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FIG. 4. On the right side we can see the interference patterns
with three different detector aperture sizes: the corresponding aper-
ture functions are shown on the left side.
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FIG. 5. Quantum-interference pattern for different detector ap-
erture sizes, introducing a linear modulation of the deformable mir-
ror, in order to restore the indistinguishability between the photons,
decreased by the spatial walkoff in the generation process.
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m = − n,− n + 2,− n + 4, . . . ,n , �58�

where q= �� cos � ,� sin ��. To calculate ��−q� we note that
−q= �� cos��+�� ,� sin��+���, so

��− q� = �
n

�
m

Rn
m���cos�m�� + ��� . �59�

If m is even then cos�m��+���=cos�m��; otherwise if m is
odd cos�m��+���= �−cos m��. Therefore

��q� − ��− q� = 2�
n

�
m odd

�nmRn
m���cos�m�� . �60�

So, only the Zernicke polynomials with m odd contribute
to the shape of the interference pattern. This effect is the
spatial counterpart of the dispersion cancellation effect, in
which only the odd-order terms in the Taylor expansion of
the spectral phase survive. The experimental demonstration
of this effect was recently reported in �11�.

An interesting question is how large the detection aper-
tures should effectively be, in order to obtain the even-order
aberration cancellation effect. According to the numerical ap-
proach proposed in Sec. IV, the even-order aberration can-

cellation effect manifests itself in the limit where P̃�x�
���x�, so that

�l,� → ��l + �� . �61�

In Fig. 6, a plot of the value for �l,� is shown for typical
values of the relevant experimental parameters �detection ap-
erture radius R=5 mm, detection distance d1=1 m, and size
d=0.1 mm of each pixel in the Fourier plane of the adaptive
optical system�. Clearly, only the diagonal elements �the ones
for which l=−�� are significant, suggesting that the effect of
even-order aberration cancellation may be observable for
most typical experimental parameters.

To get an idea of what happens for different experimental
conditions, we can compute the ratio between the intensities

of the nondiagonal coefficient �01 and the diagonal coeffi-
cient �00:

�0 =
��01�2

��00�2
. �62�

The lower the value for �0 is, the less significant the coeffi-
cients for ��−l are: the even-order aberration cancellation
effect will therefore manifest itself more clearly.

Values for �0 are shown in Fig. 7 for two different cases.
In both pictures, the value of �0 is shown as a function of the
Gaussian detection aperture radius R, for three different val-
ues of the distance between the plane �3 and the detection
lenses d1. In the upper panel, the size of each small square in
which the spatial phase is assumed to be constant is d
=0.5 mm, while in the second case it is d=0.25 mm. In
both cases �0 is significantly smaller than 1, and it becomes
smaller and smaller, increasing the value of the detection
aperture radius. However, �0 is smaller for larger values of d,
implying that the spatial variability of the modulation phase
plays a role in the degree of even-order cancellation of the
modulation itself.

It turns out that for the aberration cancellation effect to
appear, it is in fact only necessary for one aperture to be
large and for one detector to be integrated over. This is suf-
ficient to produce the transverse-momentum delta functions
that lead to even-order cancellation. To demonstrate this, we

FIG. 6. Plot of the values of ��l,��2, for l ,�=−100, . . . ,+100.
The radius of the detection apertures is R=5 mm, the distance be-
tween the exit plane of the modulation section and the detection
apertures is d−1=1 m, and the size of the modulation pixels is d
=25 �m. Clearly only the diagonal elements are nonzero, i.e., the
ones for which �=−l. In this situation the effect of even-order ab-
erration cancellation is present.

FIG. 7. �Color online� Plot of the ratio �0 between the intensities
of the nondiagonal coefficient �01 and the diagonal coefficient �00

as a function of the radius of Gaussian detection apertures, R, for
different values of the distance between the exit plane of the modu-
lation section and the detection apertures �d1=1,10,100 cm�. On
the upper plot the size of the modulation pixel d is d=0.5 mm,
while in the second case it is d=0.25 mm. Clearly, for experimen-
tally interesting cases, the off-diagonal coefficient is at least 3 or-
ders of magnitude smaller than the diagonal one, leading to even-
order aberration cancellation.
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can, for example, consider the case where the aperture at B is
large, and the detector at B is integrated over, while the ap-
erture at A is taken to be finite, with detector A treated as
pointlike. The location of the pointlike detector will hence-

forth simply be denoted as x, and we continue to work within
the quasimonochromatic approximation. If we integrate only
over xB, leaving x unintegrated, then it is straightforward to
show that the analogs of Eqs. �A3� and �A4� are

W�0��x,q,q�,�� = e−�icd/�0��q2−q�2��Q̃�q +
�0x

cf0
�Q̃��− q� −

�0x

cf0
�P̃B�q� − q� + Q̃�− q +

�0x

cf0
�Q̃��q� −

�0x

cf0
�P̃B�q − q��� ,

�63�

W�x,q,q�,�� = e−�icd/�0��q2−q�2��Q̃�q +
�0x

cf0
�Q̃��− q� +

�0x

cf0
�P̃B�− q� − q� + Q̃�− q +

�0x

cf0
�Q̃��+ q� +

�0x

cf0
�P̃B�q − q��� .

�64�

We have defined Q̃ and Q̃� to be the Fourier transforms,

respectively, of pA and pA
� . P̃B is, as before, the Fourier trans-

form of �pB�2. We now let aperture B become large, so that

the function P̃B goes over to a delta function. For G1�x�
=ei��x� and G2�x�=1, we can substitute these results into the
coincidence rate �which will now be a function of both � and
the position x of detector A�, and carry out the q� and �
integrals. For the modulation term, we find

RM�x,�� = R�x,�� − R0�x� �65�

=� dqei���q�−��−q��e�2iM�/D�e2·qe�2iq2/kp���2�/D�+L�

�Sinc�2q2L

kp
��Q̃�q +

�0x

cf0
�Q̃��− q −

�0x

cf0
�

+ Q̃�− q +
�0x

cf0
�Q̃��q −

�0x

cf0
�� . �66�

Here, we have used the fact that the Fourier transform of
pA

��x� equals the complex conjugate of the Fourier transform

of pA�−x�, in order to write Q̃� in terms of Q̃. We see from
the presence of the factor ei���q�−��−q�� that even-order aber-
ration cancellation occurs even though one aperture is finite
and the corresponding detector is pointlike. This point may
be of importance in future attempts to produce aberration-
canceled imaging.

V. CONCLUSIONS

Summarizing, in this paper we have carried out a theoret-
ical study of the relation between the wave-front modulation
of the entangled SPDC photons and the shape of the result-
ing temporal quantum-interference pattern. Due to the mul-
tiparametric nature of the generated entangled states, the
modulation on the spatial degree of freedom can affect the
shape of the polarization-temporal interference pattern in the
coincidence rate. Our aim is twofold: from one side we want

to study the effect of wave-front aberration on quantum in-
terferometry, and from the other we want to discuss a way to
engineer multiparametrically entangled states.

We have introduced a theoretical model for calculation of
the shape of the polarization-temporal interference pattern
given a certain general phase modulation in the crystal far
field, assuming as a free parameter the shape and the dimen-
sion of the collection apertures. Using a numerical method to
study the resulting equation has shown that for typical ex-
perimental cases the hypothesis of large apertures can be
assumed to be valid. In such an approximation, only the odd
part of the assigned phase modulation affects the shape of the
interference pattern. This effect has recently been demon-
strated experimentally �11�.

Moreover, it is often useful in experiments to enlarge the
collection aperture in order to collect a higher photon flux
and larger optical bandwidth. But when working with type-II
birefringently phase-matched down-conversion, spatial
walkoff between the emitted photons introduces distinguish-
ability between the two possible events that can lead to co-
incidence detection, reducing the visibility of quantum inter-
ference. Such walkoff can be compensated for with a linear
phase shift in the vertical direction, restoring high visibility.
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APPENDIX A: SKETCH OF DERIVATION OF EQ. (23)

In this appendix we sketch the major steps for the derivation of Eq. �23�. Substituting Eq. �21� into Eq. �16� and the result
into Eq. �22�, one finds the following expressions for R0 and WG���:

R0 =� dqdq�d����q,����q�,��G1
�� f

k
q�G1� f

k
q��G2

��−
f

k
q�G2�−

f

k
q��W�0��q,q�,�� , �A1�

WM��� =
1

R0
� dqdq�d����q,����q�,− ��G1

�� f

k
q�G1� f

k
q��G2

��−
f

k
q�G2�−

f

k
q��W�q,q�,�� , �A2�

where

W�0��q,q�,�� =� dxAdxBH��xA,q,��H��xB,− q,− ��H�xA,q�,��H�xB,− q�,− ��

+ H��xA,− q,− ��H��xB,q,��H�xA,− q�,− ��H�xB,q�,�� �A3�

and

W�q,q�,�� =� dxAdxBH��xA,q,��H��xB,− q,− ��H�xA,− q�,��H�xB,q�,− ��

+ H��xA,− q,− ��H��xB,q,��H�xA,q�,− ��H�xB,− q�,�� . �A4�

The angular and spectral emission function ��q ,�� is given by

��q,�� =� dz�� z

L
+

1

2
�e−i
�q,��z. �A5�

Performing the integrals over the spatial coordinates dxA and xB, one gets

W�0��q,q�,�� = ei�2d1/kp���q�2−�q��2��P̃A��q − q���P̃B�− �q − q��� + P̃A�− �q − q���P̃B��q − q���� �A6�

and

W�q,q�,�� = ei�2d1/kp���q�2−�q��2��P̃A��q + q���P̃B�− �q + q��� + P̃A�− �q + q���P̃B��q + q���� . �A7�

Finally, use of the integral representation for the sinc func-
tion �Eq. �A5�� allows the � integration to be carried out, but
at the expense of introducing two integrations over a pair of
new parameters �say, z and z��. Note the following relation,
which can easily be verified by sketching the functions on
the left-hand side:

��x���x − �� = �1 if − 1 � � � 0, − 1
2 � x �

1
2 + �

1 if 0 � � � 1, − 1
2 + � � x �

1
2

0 otherwise.
�

�A8�

From this, it follows that

� ��x���x − ��dx = ���� , �A9�

where ���� is the triangle function. These facts allow us to
carry out the two z integrations that arise from the sinc func-
tion, leading to the result shown in Eq. �23�.

APPENDIX B: JUSTIFICATION OF EQ. (32)

Suppose we have a set A, which can be partitioned into a
collection of disjoint subsets Ak, with k=1,2 , . . .:

�
k

Ak = A, Ak � Al = � if k � l . �B1�

To each set we can associate a characteristic function,

�k�x� = �1, x � Ak

0, x � Ak,
� �B2�

such that

�
k

�k�x� = �A�x�, �k�x��l�x� = �kl�k�x� , �B3�

where �A is the characteristic function for the full set,

�A�x� = �1, x � A

0, x � A .
� �B4�

The term ei�k�k�x� assumes the value of ei�k for �k�x�=1 and
the value of 1 for �k�x�=0 �1−�k�x�=1�, so
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exp�i�
k

�k�k�x�� = �
k

ei�k�k�x� = �
k

�1�1 − �k�x�� + ei�k�k�x�� = �
k

�1 + �ei�k − 1��k� . �B5�

If we express the first few terms we get

�
k

�1 + �ei�k − 1��k� = �1 + �ei�1 − 1��1��1 + �ei�2 − 1��2� ¯

= 1 + �ei�1 − 1��1 + �ei�2 − 1��2 + ¯ + �ei�1 − 1��ei�2 − 1��1�2 + �ei�1 − 1��ei�3 − 1��1�3

+ ¯ + �ei�1 − 1��ei�1 − 1��ei�1 − 1��1�2�3 + �ei�1 − 1��ei�2 − 1��ei�4 − 1��1�2�4 + ¯ . �B6�

So that in the end

exp�i�
k

�k�k�x�� = 1 + �
k

��ei�k − 1��k� = 1 + �
k

ei�k�k − �
k

�k = �
k

ei�k�k. �B7�

Since the square sets we have used in Sec. IV satisfy Eq. �B1�, then the result expressed in Eq. �B5� is valid for our case.
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We report the first experimental demonstration of even-order aberration cancellation in quantum

interferometry. The effect is a spatial counterpart of the spectral group velocity dispersion cancellation,

which is associated with spectral entanglement. It is manifested in temporal interferometry by virtue of the

multiparameter spatial-spectral entanglement. Spatially entangled photons, generated by spontaneous

parametric down-conversion, were subjected to spatial aberrations introduced by a deformable mirror that

modulates the wave front. We show that only odd-order spatial aberrations affect the quality of quantum

interference.

DOI: 10.1103/PhysRevLett.101.233603 PACS numbers: 42.50.Dv, 03.67.Bg, 42.30.Kq, 42.50.St

The nonlinear optical effect of spontaneous parametric
down-conversion (SPDC) has been a reliable source of
entangled-photon states for the last 30 years. A photon of
the pump radiation has a random chance to be converted
into two photons with lower energy while traveling though
the nonlinear material. Conservation of energy and mo-
mentum governs the spatial and spectral state of the down
converted light. In the case of a monochromatic pump
beam, energy conservation leads to strong anticorrelation
between the frequency components of signal and idler
wave packets. This symmetric superposition of all possible
anticorrelated frequencies with respect to the degenerate
frequency of signal and idler waves gives rise to frequency
entanglement.

Even-order dispersion cancellation is among the most
interesting consequences of frequency entanglement [1,2].
If one of the two photons of an entangled pair travels
through a dispersive material and both photons are com-
bined on a beam splitter in a Hong-Ou-Mandel configura-
tion [3], then the rate of coincidences between the counts of
two single-photon detectors placed at the output ports
depends on the odd-order dispersion terms only when
observed as a function of the path difference between the
two arms before the beam splitter. The detrimental effect of
even-order dispersion (such as group velocity dispersion),
which leads to the wave packet broadening, is canceled.
This has been exploited in several applications such as the
measurement of photon traveling time trough a material
[4], and improving the accuracy of remote clock synchro-
nization [5]. Optical coherence tomography [6,7] has also
benefited from this nonclassical effect. This quantum effect
has inspired recent developments of classical nonlinear
optical systems mimicking dispersion cancellation [8,9].

The wave vector of a monochromatic wave at a given
frequency� has a bidimensional transverse wave vector q

(in the plane orthogonal to the propagation direction) and a

longitudinal component �ðq;�Þ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi½n2ð�Þ�2=c2��jqj2p
.

In parametric down-conversion with a plane-wave pump,

momentum conservation leads to anticorrelation of the
transverse wave vector components [10]. This analogy
with frequency anticorrelation [11] suggests the existence
of a spatial counterpart to dispersion cancellation. How-
ever, no experimental observation of a spatial dispersion-
cancellation effect has been reported so far.
The longitudinal component of the wave vector, on the

other hand, sets up the phase-matching relation that estab-
lishes conditions for an effective energy conversion be-
tween three interacting waves, pump, signal, and idler.
Since the longitudinal wave vector depends both on fre-
quency and on transverse momentum, this condition sets a
specific relation between the frequency and the emission
angle of down-converted radiation. In other words, the
frequency and transverse momentum degrees of freedom
cannot be factorized and the overall quantum state is con-
currently entangled in both ! and q (multiparameter en-
tanglement). This leads to several interesting effects where
the manipulation of a spatial variable affects the shape of
the temporal interference pattern and also polarization
interference pattern [12] .
In this Letter, we exploit the multiparameter en-

tangled states generated by SPDC to demonstrate the
effect of even-order spatial aberration cancellation. We
use an SPDC source to produce momentum-anticorrelated
photons and we modulate their wave fronts by a transfer
function HðqÞ. Because of the correlations between q and
!, the manipulation in the q space will introduce
changes in the ! space. Therefore the spatial wave front
modulation will affect the temporal interference pat-
tern, which can be observed using a polarization two-
photon interferometer [12,13]. With this technique we
show that, due to the anticorrelation of the transverse
momenta, the even-order aberrations are canceled out,
and only the odd-order contributions influence the
resulting interference pattern. We believe this effect may
lead to interesting applications in the field of quantum
imaging.
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The setup of our experiment is sketched in Fig. 1. A laser
diode with a single longitudinal-mode selection (405 nm,
35 mW) pumps a 1.5-mm thick BBO (BaB2O4) crystal that
is cut for a collinear degenerate type-II phase matching.
Approximating the pump beam with a plane wave, the two
orthogonally polarized photons emitted by the crystal can
be described by the quantum state [10]:

jc i ¼
Z

dq
Z

d!�ðq; !ÞâyHðq;�0 þ!Þ
� âyVð�q;�0 �!Þj0i; (1)

where

�ðq; !Þ ¼ sinc

�
L�ðq; !Þ

2

�
eiðL�ðq;!Þ=2Þ: (2)

The phase-mismatch function �ðq; !Þ in the paraxial
approximation takes the form

�ðq; !Þ ¼ �!DþMê2 � qþ 2jqj2
kp

; (3)

where D is the difference between the inverse of the group
velocities of the ordinary and the extraordinary waves
inside the birefringent crystal and M is their spatial walk-

off in the vertical direction ê2. The term 2jqj2
kp

is due to

diffraction during the propagation of photons through the
crystal. In case of a BBO crystal, phase-matched for a
degenerate (�0 ¼ 810 nm) collinear type-II down-
conversion, D ¼ 182 ps=mm and M ¼ 0:0723.

A polarizing beam splitter (PBS) separates the horizon-
tally polarized photon and the vertically polarized one into

two distinct paths, one towards a flat mirror (FM) and the
other towards a deformable mirror (DM). Each photon
passes through a 4-f system comprising a lens (L1) of
focal length f ¼ 200 mm positioned at a distance f from
the output plane of the crystal, and the same distance f
from the mirror. On the way from the crystal to the mirror,
the lens maps each wave vector component to a different
point xðq; !Þ on the mirror surface. The limited down-
conversion bandwidth (about 30 nm for a collection angle
of 25 mrad) allows us to neglect the frequency dependence
of the 4-f system; assuming that the lens is achromatic:

x ðq; !Þ ¼ f

kð!Þq � f

ko
q: (4)

The deformation of the mirror surface at point x can be
described by the function �ðxÞ. A photon focused to the
point x by the lens will travel a distance �ðxÞ to the mirror
surface, will be reflected and will travel a distance �ðxÞ
back to the lens focal plane. Therefore it will acquire a
phase shift:

’ðxÞ � 2ko�ðxÞ: (5)

After reflection from the mirror, the same lens maps every
point back to a wave vector. Mathematically, the trans-
formation induced by the 4-f system can be described by
the transfer function:

HðqÞ ¼ p

�
f

k
q

�
ei’½ðf=koÞq�; (6)

where the pupil function pðxÞ describes the circular aper-
ture of the mirror.
The deformable mirror [14] consists of a thin nitrocel-

lulose silver-coated membrane (12 mm diameter, 5 �m
thick, initial flatness less than 20 nm rms) that is deformed
by electrostatic forces created when a voltage drop (maxi-
mum 270 V) is applied to 37 electrodes. The action pro-
duced by each actuator was mapped by measuring the
induced deformation with a Zygo interferometer, creating
an influence function matrix.
In addition, each photon, traveling from the PBS to the

mirror and back passes twice through a quarter-wave-plate
oriented at 45� and flips its polarization state. This way the
photon that has been transmitted is now reflected at the
polarizing beam splitter (PBS) and vice versa, resulting in
both photons leaving the modulation section together to-
wards the polarization interferometer.
The polarization interferometer [13,15] consists of a

birefringent delay line (DL, made of two sliding quartz
wedges) providing a variable delay � and a nonpolarizing
beam splitter (BS) that splits the photons in two paths
directed to two single-photon detectors D1 and D2. A
polarizer oriented at 45� is placed in front of each detector
in order to erase information about the polarization of the
incoming photon. Photons were collected by a lens in each
arm and focused onto the detector’s active area. To max-
imize the spatial collection capability we used two open-

FIG. 1 (color online). Schematic of the experimental setup.
Examples of aberrations induced by the deformable mirror are
illustrated in the inset: the even-parity aberrations on the left are
canceled, while the odd-parity ones on the right alter the shape of
the interference pattern.
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face (180 �m diameter) single-photon silicon avalanche
photodiodes. Using a fiber coupler would limit the number
of collected spatial modes. All experiments have been
performed with an 8-mm diameter pinhole placed at
330 mm from the output plane of the 4-f system, therefore
collecting photons from an angle of about 25 mrad. A
dichroic mirror and a pair of interference bandpass filters
with a bandwidth that is greater than that of down-
conversion have been used to reject the residual pump
radiation and the background light. The number of coinci-
dences acquired as a function of optical polarization delay
� shows a high-visibility quantum interference pattern in
the form of a dip [12].

Since the photon-counting detectors are slow, compared
with the coherence time of down-converted photons, and
since their surface is larger than the spot size, the expres-
sion for the coincidence rate, in the paraxial approxima-
tion, is [16]

RCð�Þ ¼ R0

�
1��

�
1� 2�

DL

�
WMð�Þ

�
; (7)

where R0 is the background coincidence rate, �ð�Þ is a
triangular function [�ð�Þ ¼ 1� j�j if j�j< 1, and
�ð�Þ ¼ 0, otherwise], and

WMð�Þ ¼
Z

dqdq0eið2d1=kpÞ½jqj2�jq0j2� ~PA½q

þ q0�sinc
�
MLê2 � ðqþ q0Þ�

�
1� 2�

DL

��

�H

�
f

k
q

�
H�

�
f

k
q0
�
e�iðM=DÞ�ê2�ðq�q0Þ: (8)

The function�ð1� 2�
DLÞ represents a usual triangular dip

one obtains in type-II quantum interferometry when work-
ing in the single spatial-mode approximation (using narrow
pinholes). The function WMð�Þ takes into account the
deformation of the triangular dip induced by the modula-
tion of the transverse wave vectors and the Fourier trans-
form of the shape of the detection apertures ~PA½q�. In
particular, the functionWMð�Þ describes how manipulation
in the q space by a filter HðqÞ is converted into a modifi-
cation of the temporal interference pattern, by means of the
coupling between wave vectors and frequencies set by the
phase-matching conditions.

If the detection apertures are sufficiently large, the func-
tion ~PA½qþ q0� can be well approximated by a
delta function, so that Eq. (8) can be simplified to

WR!1
M ð�Þ ¼

Z
dqH�

�
f

k0
q

�
H

�
� f

k0
q

�
eið2Mk0=fDÞ�ê2�q:

(9)

If the function HðqÞ has a circular symmetry, its phase
’ðqÞ ¼ argfHðqÞg can be expanded using a set of Zernike
polynomials, which are orthogonal on the unit circle [17],

’ðqÞ ¼ X
n

X
m

’nmR
m
n ð�Þ cosðm	Þ; (10)

where q ¼ ð� cos	; � sin	Þ and m ¼ �n;�nþ 2;�nþ
4; . . . ; n. Using the fact that �q ¼ ½� cosð	þ 
Þ;
� sinð	þ 
Þ�, and that ifm is even, then cos½mð	þ 
Þ� ¼
cosðm	Þ, while if m is odd, then cos½mð	þ 
Þ� ¼
� cosðm	Þ, one gets

’ðqÞ � ’ð�qÞ ¼ 2
X
n

X
m odd

’nmR
m
n ð�Þ cosðm	Þ: (11)

This means that only Zernike polynomials with m odd
(and consequently n odd) will contribute to the shape of the
interference pattern. For example, contributions from as-
tigmatism (n ¼ 2, m ¼ �2), defocus (n ¼ 2, m ¼ 0), and
spherical aberration (n ¼ 4, m ¼ 0) will all be canceled.
On the contrary, coma (n ¼ 3, m ¼ �1) and trefoil (n ¼
3, m ¼ �3) will be present.
We studied different types of aberrations: coma along

the x axis (n ¼ 3,m ¼ þ1), coma along the y axis (n ¼ 3,
m ¼ �1), astigmatism (n ¼ 2, m ¼ 2), and the aberration
corresponding to n ¼ 4 and m ¼ 4. The experimental data
for coma oriented along the x and y (parallel to the vertical-
polarization) directions are presented in Fig. 2. Because of
the multiparameter entanglement of the two-photon state,
the wave front distortion induced by the deformable mirror
modulates the spectral degree of freedom, resulting in a
modification of the temporal interference pattern. We in-
creased the maximum amplitude of the mirror deformation
from 0:2 �m (	0:25�0) to 0:75 �m (	�0) (peak-to valley
deformation) for coma along x and from 0:2 �m to
0:4 �m (	0:5�0) for coma along y axis. The shape of
the interference pattern is changed dramatically when the
intensity of the coma aberration increases. Theoretical
predictions (solid lines) based on the experimental parame-

FIG. 2 (color online). Coincidence-rate interference patterns
when coma (n ¼ 3, m ¼ �1) along the x axis (on the left) and
along the y axis (on the right) is imposed on the deformable
mirror. Solid lines illustrate theoretical fitting with experimental
parameters. The initial relative tilt between the deformable
mirror (DM) and the flat mirror (FM) is used as an adjustable
parameter to account for the imperfectness of experimental
alignment between two arms. The shapes of adaptive mirror
deformation producing selected aberrations are illustrated in the
insets.
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ters are superposed to experimental data in Fig. 2: the
matching between the two curves is pretty good.

Experimentally obtained data for astigmatism (with
symmetry axes oriented at 45� with respect to the
x-y axes) and for the aberration identified by n ¼ 4 and
m ¼ 4 are shown in Fig. 3. The effect of these even-order
aberrations is effectively canceled out due to the spatial
correlations between the photons in parametric down-
conversion. Therefore, such type of spatial aberrations do
not affect the shape of the dip so that the known quantum
interference pattern is retained.

This effect has a clear analogy with even-order fre-
quency dispersion cancellation due to frequency entangle-
ment in SPDC. In case of spectral dispersion, the use of a
nonmonochromatic pump reduces the degree of correlation
between spectral components of entangled photons and
degrades the dispersion cancellation effect. In our case of
even-order aberration cancellation, sharp spatial correla-
tions can be obtained only in the approximation of a plane-
wave pump beam. Therefore, wave vector correlations get
weaker for focused pump beams and the aberration can-
cellation effect also degrades when the pump beam is
focused tightly on the crystal. Furthermore, the spectral
dispersion cancellation effect works in the limit of slow
detectors because it requires integration over the temporal
degree of freedom. Similarly, the even-order aberration
cancellation works well only in the situation when the
collection apertures used in experiment are sufficiently
large to enable effective integration over the spatial degrees
of freedom [16].

The question remains whether the effect we have re-
ported is purely quantum, or some classical counterpart can
be envisioned, as in the case of spectral dispersion cancel-
lation. We believe that a classical optical configuration
mimicking even-order aberration cancellation could poten-

tially be discovered by exploiting a light source with strong
degree of spatial intensity correlation similar to optical
speckles.
In conclusion, we have demonstrated experimentally the

effect of cancelling even-order spatial aberration in quan-
tum interferometry using entangled-photon states gener-
ated in a type-II spontaneous parametric down-conversion
process. This effect may prove helpful in enhancing the
spatial resolution in quantum imaging.
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I. INTRODUCTION

Quantum entanglement �1� is a valuable resource in many
areas of quantum optics and quantum information process-
ing. One of the most widespread techniques for generating
entangled optical states is spontaneous parametric down-
conversion �SPDC� �2–5�. SPDC is a second-order nonlinear
optical process in which a pump photon is split into a pair of
new photons with conservation of energy and momentum.
The phase-matching relation establishes conditions to have
efficient energy conversion between the pump and the down-
converted waves, called signal and idler. This condition also
sets a specific relation between the frequency and the emis-
sion angle of down-converted radiation. In other words, the
quantum state emitted in the SPDC process cannot be factor-
ized into separate frequency and wave-vector components.
This leads to several interesting effects where the manipula-
tion of a spatial variable affects the shape of the polarization-
temporal interference pattern. For example, the dependence
of polarization-temporal interference on the selection of col-
lected wave vectors was studied in detail in �6�.

Here we engineer the quantum state in the space of trans-
verse momentum and we study how this spatial modulation
is transferred to the polarization-spectral domain by means
of quantum interferometry. We will focus on type-II SPDC
using birefringent phase matching since the correlations be-
tween wave vectors and spectrum are stronger than those
employing other phase-matching conditions.

Our aim is twofold. From one point of view, we study the
effect of spatial modulations on temporal quantum interfer-
ence. This could be useful, for example, in quantum optical
coherence tomography �QOCT� �7,8�. When focusing light
on a sample with nonplanar surface, the photons will acquire
a spatial phase distribution in the far field, which may per-
turb the shape of the interference dip. Our results will pro-
vide a tool to understand this effect.

From a second point of view, we would like to study and
characterize spatial modulation as a tool for quantum state
engineering. This may find application in the field of quan-
tum information processing, where it is important to gain a
high degree of control over the production of quantum en-
tangled states entangled in one or more degrees of freedom
�hyperentanglement�.

We start by introducing a theoretical model of a type-II
quantum interferometer, comprising the polarization, spec-

tral, and spatial degrees of freedom �Sec. II�. A modulation in
the wave-vector space is provided by an adaptive optical
setup and equations for the polarization-temporal interfer-
ence pattern in the coincidence rate are derived. In Sec. III,
we introduce a numerical approach for practical evaluation
of the results of the theoretical model, discussing a few ex-
amples for general spatial aberrations.

In Sec. IV we will highlight and discuss theoretically two
interesting special cases. The first one is the possibility of
restoring high visibility in type-II quantum interference with
large collection apertures. In some situations, to collect a
higher photon flux or a broader photon bandwidth, it can be
useful to enlarge the collection apertures of the optical sys-
tem. But when dealing with type-II SPDC in birefringent
crystals, for large collection apertures the effect of spatial
walkoff introduces distinguishability between the photons,
leading to a reduced visibility of temporal and polarization
quantum interference. We will show that high visibility can
be restored with a linear phase shift along the vertical axis.

The second effect is the spatial counterpart of spectral
dispersion cancellation �9,10�. In the limit of large detection
apertures, the correlations between the photons’ momenta
will cancel out the effects of even-order aberrations, exactly
as in the limit of slow detectors the frequency correlations
cancel out the even-order terms of spectral dispersion. The
experimental demonstration of this effect has been reported
recently �11�.

As we proceed from the general case of Secs. II and III
into the specific examples of Sec. IV, we will gradually see
that optical aberration is a subject with two very different
faces. On one hand, aberrations in optical components are
normally seen as undesirable, since they lead to distortions in
imaging. We will see that these unwanted spatial modula-
tions may to some extent be canceled. On the other hand, we
will find that such spatial modulations may also be turned
into a useful tool: by deliberately introducing spatial modu-
lations �in effect, purposely adding aberrations in a con-
trolled manner�, we can produce useful effects such as the
restoration of visibility mentioned above. The examples we
provide in Sec. IV will illustrate these two aspects and will
show that both can benefit from more detailed study of the
interplay between spatial modulations and spectral correla-
tions.
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II. THEORETICAL MODEL

Consider the scheme in Fig. 1. A laser beam pumps a ��2�

nonlinear material phase matched for type-II parametric
down-conversion, creating a pair of entangled photons. Each
of the generated photons passes through a Fourier-transform
system, and then enters a modulation system which trans-
forms transverse wave vectors for the horizontally �H� polar-
ized photon according to the transfer function G1�q1� and for
the vertically �V� polarized photon according to G2�q2�. Af-
ter being modulated in q space, the photons enter a type-II
interferometer. A nonpolarizing beam splitter �BS� creates
polarization entanglement from the polarization-correlated
pair emitted by the source. The beams at the output ports of
the beam splitter are directed toward two single-photon de-
tectors. Two polarizers at 45° before the BS restore indistin-
guishability in the polarization degree of freedom. An adjust-
able delay line � is scanned and the coincidence rate R���
between the detection events of the two detectors is recorded.
An aperture is placed before the beam splitter to select an
appropriate collection angle.

A. Notation

Consider a monochromatic plane wave of complex ampli-
tude E�r�=E0e

−ik·r, with r= �x ,y ,z�. For a given wavelength
�, corresponding to a frequency �, the wave vector can be
split into a transverse component q= �qx ,qy� and a longitudi-
nal component ��q ;��:

k = �q,��q;��� . �1�

The wave number is

k��� =
n����

c
. �2�

The longitudinal component of the wave vector is

��q,�� = �k2��� − �q�2. �3�

Therefore the electric field at the position r and time t can be
written as

E�r;t� =� dq� d�Ẽ�q,��e−iq·�e−i��q;��zei�t, �4�

where �= �x ,y�.

In paraxial approximation �q�2�k2���, so that

��q,�� � k��� −
�q�2

2k���
. �5�

For a quasimonochromatic wave packet centered around the
frequency �0, one can write �=�0+�, with ���0. This
expression can be approximated by

��q,�� � k0 +
�

u0
−

�q�2

2k0
, �6�

where k0=k��0� and u0= �� dk���
d� ��=�0

�−1 is the group velocity
for the propagation of the wave packet through the material.

B. State generation

Using first-order time-dependent perturbation theory, the
two-photon state at the output of the nonlinear crystal can be
calculated as

�		 
 −
i



� dtHI�t��0	 , �7�

where the interaction Hamiltonian is

HI�t� =
1

V
� dr��2��r�Ep

�+��r,t�Es
�−��r,t�Ei

�−��r,t� . �8�

The strong, undepleted pump beam can be treated classically.
Assuming a monochromatic plane wave propagating along
the z direction,

Ep�r,t� = Epe
i�kpz−�pt�. �9�

The signal and idler photons are described by the following
quantum field operators:

Êj
�−��r,t� =� dq j� d� je

i���qj,�j�z+qj·�−�jt�â�q j,� j� , �10�

where j=e ,o.
The biphoton quantum state at the output plane of the

nonlinear crystal is �12�

�		 =� dq� d��̃�q,��âo
†�q,�0 + ��âe

†�− q,�0 − ���0	 .

�11�

Two photons are emitted from the nonlinear crystal, one
horizontally polarized �ordinary photon� and the other verti-
cally polarized �extraordinary photon�, with anticorrelated
frequencies and emission directions.

In the case of a single bulk crystal of thickness L and
constant nonlinearity �o, the probability amplitude for having
the signal photon in the mode �q ,�0+�� and the idler in the
mode �−q ,�0−�� is

�̃�q,�� = sinc�L
�q,��
2

�ei�
�q,��L/2�. �12�

For type-II collinear degenerate phase matching, the phase-
mismatch function 
�q ,�� can be approximated to be

FIG. 1. �Color online� Scheme of the proposed setup. Horizon-
tally polarized photons from type-II SPDC are assigned a phase
dependent on the photon transverse momentum �o�qo�, while the
vertically polarized ones are assigned a phase �e�qe�. The modu-
lated photons enter a type-II quantum interferometer, which records
the coincidence count rate as a function of the delay � between the
photons given by an appropriate delay line.
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�q,�� = − �D + Mê2 · q +
2�q�2

kp
, �13�

where D is the difference between the inverse of the group
velocities of the ordinary and extraordinary photons inside
the birefringent crystal and the quadratic term in q is due to
diffraction in paraxial approximation. The remaining term is
the first-order approximation for the spatial walkoff.

C. Propagation

Consider a photon described by the operator âj�q ,�� �po-
larization j=e ,o, frequency �, and transverse momentum q�.
Its propagation through an optical system to a point xk on the
output plane is described by the optical transfer function
Hj�xk ,q ;��. In our setup, the field at the detector will be a
superposition of contributions from the ordinary and extraor-
dinary photons. The quantized electric fields at the detector
planes are

ÊA
�+��xA,tA� =� dq� d�ei�tA�He�xA,q;��âe�q,��

+ Ho�xA,q;��âo�q,��� ,

ÊB
�+��xB,tB� =� dq� d�ei�tB�He�xB,q;��âe�q,��

+ Ho�xB,q;��âo�q,��� . �14�

The probability amplitude for detecting a photon pair at the
detector planes, with space-time coordinates �xA , tA� and
�xB , tB�, is

A�xA,xB;tA,tB� = 
0�ÊA
�+��xA,tA�ÊB

�+��xB,tB��		 . �15�

For the biphoton probability amplitude we get

A�xA,xB;tA,tB� =� dqodqed�od�e��qo,qe;�o,�e�

��He�xA,qe;�e�Ho�xB,qo;�o�e−i��etA+�otB�

+ Ho�xA,qo;�o�He�xB,qe;�e�e−i��otA+�etB�� .

�16�

This probability amplitude represents the superposition of
two possible events leading to a coincidence count in the
detectors:

�1� the V polarized photon with momentum qe and fre-
quency �e going through the lower branch to arrive at posi-
tion xA in detector A, while the H polarized photon with
momentum qo and frequency �o goes through the upper
branch to arrive at position xB in detector B; and

�2� the V polarized photon with momentum qe and fre-
quency �e going through the lower branch to arrive at posi-
tion xB in detector B, while the H polarized photon with
momentum qo and frequency �o goes through the upper
branch to arrive at position xA in detector A.

Since the superposition is coherent, there are quantum-
interference effects between the two probability amplitudes.

1. State engineering section

In the state engineering section, each of the two branches
consists of a pair of achromatic Fourier-transform systems
coupled by a spatial light modulator or a deformable mirror.
Each Fourier-transform system consists of a single lens of
focal length f , separated from the optical elements before
and after it by a distance f . The first Fourier system maps
each incident transverse wave vector q on the plane �in to a
point x�q� on the Fourier plane �F:

x�q� =
f

k0
q, k0 =

�0

c
, �17�

where f is the focal length of the Fourier-transform system.
Since we assume that the system is achromatic for a certain
bandwidth around a central frequency �0, the position x�q�
depends only on q and not on �.

The spatial modulator assigns a different amplitude and
phase to the light incident on each point, as described by the
function G�x�= t�x�ei��x�. Each point is then mapped back to
a wave vector on the plane �out by the second achromatic
Fourier-transform system.

Using the formalism of Fourier optics �13�, the transfer
function between the planes �in and �out can be calculated
to be

h1�x1,x3� =� dxG�x�e−i�k0/f�x·�x1+x3�. �18�

The corresponding momentum-transfer function is

H1�q1,q3� = G� f

k0
q1���q1 − q3� . �19�

2. Interferometer

After the plane �out the two photons enter a type-II quan-
tum interferometer. Each propagates in free space to a bire-
fringent delay line and a detection aperture p�x� to be finally
focused to the detection planes by means of lenses of focal
length f0. Following the derivation in �6� the transfer func-
tion is

H2�xi,q;�� =� h�x1,xi;��eiq·x1dx1

= ei��/c��d1+d2+f0� exp�− i
��xi�2

2cf0
�d2

f0
− 1��

�e−i�cd1/2���q�2P̃� �

cf0
xi − q� , �20�

where P̃�q� is the Fourier transform of �p�x��2.
A combination of the two different stages is described by

the transfer function

H��xj,q�;��� = G�� f

k0
q��H2�xj,q�;�� , �21�

where the two functions G1�q� and G2�q� are the
momentum-transfer functions which describe the modulation

MULTIPARAMETER ENTANGLED-STATE ENGINEERING… PHYSICAL REVIEW A 79, 062304 �2009�

062304-3



imparted, respectively, on the ordinary and the extraordinary
photons.

D. Detection

Since the single-photon detectors used in quantum optics
experiments are slow with respect to the temporal coherence
of the photons and their area is larger than the spot onto
which the photons are focused by the collection lens, we
integrate over the spatial and temporal coordinates. There-
fore the coincidence count rate expressed in terms of the
biphoton probability amplitude is

R��� =� dxA� dxB� dtA� dtB�A�xA,xB;tA,tB��2. �22�

Following the derivation described in Appendix A, one
gets

R��� = R0�1 − ��1 −
2�

DL
�WM���� , �23�

where ��x� is the triangular function

��x� = �1 − �x� , �x� � 1

0, �x� � 1.
� �24�

Therefore, the coincidence count rate R��� is given by the
summation of a background level R0 and an interference pat-
tern given by the triangular dip ��1− 2�

DL � that one gets when
working with narrow apertures, modulated by the function
WM��� which depends on the details of the adaptive optical
system.

The expressions for R0 and WM��� are

R0 =� dq� dq� sinc�MLê2 · �q − q���

�G1
�� f

k0
q�G1� f

k0
q��G2

��−
f

k0
q�

�G2�−
f

k0
q��e−i�ML/2�ê2·�q−q��ei�2d1/kp���q�2−�q��2�

�P̃A�q − q��P̃B�− q + q�� �25�

and

WM��� =
1

R0
� dq� dq� sinc�MLê2 · �q + q���

��1 −
2�

DL
��G1

�� f

k0
q�G1� f

k0
q��G2

��−
f

k0
q�

�G2�−
f

k0
q��e−i�M/D��ê2·�q−q��ei�2d1/kp���q�2−�q��2�

�P̃A�q + q��P̃B�− �q + q��� . �26�

In the following we will assume there is spatial modula-
tion only on one of the photons; therefore we set G2�q��1.

III. NUMERICAL SOLUTIONS FOR A GENERAL
PHASE SHIFT

Numerically solving for the quantities in Eqs. �25� and
�26� in the case of a general aberration may be computation-
ally demanding. Here, we propose an approximation, valid in
the case where the function G�x� changes smoothly over the
mirror surface, as it is the case in experimentally relevant
situations. This model is also interesting from the practical
point of view, since in many cases adaptive optical systems
are implemented using spatial light modulators or segmented
deformable mirrors, where the modulation surface is parti-
tioned into small pixels.

Suppose we partition the Fourier plane �F into small
squares �pixels� of side d �Fig. 2�. Let us define the rectan-
gular function

��x� = �0 if �x� �
1
2

1 if �x� �
1
2 .
� �27�

The pixel �l ,m� is identified by

�l,m�x,y� = �� x

d
+ l��� y

d
+ m� , �28�

selecting the area

�l − 1
2�d � x � �l + 1

2�d ,

FIG. 2. �Color online� Example of the numerical approach
adopted to evaluate Eqs. �25� and �26�. The spatial modulation sur-
face is discretized in sufficiently small squares over which the phase
is averaged.
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�m − 1
2�d � y � �m + 1

2�d . �29�

We approximate the value of the phase in each square by
the mean value of the actual phase within the square:

�lm =
1

d2� dxdy��x,y��� x

d
+ l��� y

d
+ m� . �30�

That is,

ei��x,y� � �
l,m

ei�l,m���x/d�+l����y/d�+m�. �31�

In this case �see Appendix B for a justification�

�
l,m

ei�l,m���x/d�+l����y/d�+m� = �
l,m

ei�l,m�� x

d
+ l��� y

d
+ m� .

�32�

Substituting this expression into Eq. �23� and collecting the
integrations, one finds

R��� � �
l,m

�
�,�

e−i�lm−��,��l�Im���� , �33�

where

�l� =� dqx� dQx�� f

kd
qx − l��� f

kd
Qx − ��ej�2d1/kp��qx

2−Qx
2�P�qx+Qx�P�−�qx+Qx�� �34�

and

Im,���� =� dqy� dQy�� f

kd
qy − m��� f

kd
Qy − ��ej�2d1/kp��qy

2−Qy
2�e−j�M/D���qy−Qy�

�Sinc�ML�qy + Qy���1 −
2�

DL
��P�qy + Qy�P�− �qy + Qy�� . �35�

Performing the integrations one gets

�l� =� dxP̃�x��� fx

kd
− �l + ���sinc�2dd1

f
x�� fx

kd
− �l + ����ei�dd1/f��l−��x �36�

and

Im���� =� dxP̃�x��� fx

kd
− �m + ���sinc�MLx��1 −

2�

DL
��

�sinc�2kd

f
�2d1

kp
x −

M

D
���� fx

kd
− �m + ����ei�kd/f���2d1/kp�x−�M/D����m−��. �37�

A similar expression can be found for the background coincidence rate:

R0 � �
l,m

�
�,�

e−i��lm−��,��Rl�
�x�Rm�

�y� , �38�

where

Rl�
�x� =� dxP̃�x��� fx

kd
− �l − ���sinc�2dd1

f
x�� fx

kd
− �l − ����ei�dd1/f��l+��x �39�

and

Rm�
�y� =� dxP̃�x��� fx

kd
− �m − ���sinc�MLx�sinc�2dd1

f
x�� fx

kd
− �m − ����ei��dd1/f��m+��−ML/2�x. �40�

The advantage of our numerical approach is that one can
calculate and tabulate the functions Rl�

�x�, Rm�
�y� , �l�, and Im����

for a given configuration, determined by the focal length f ,
the shape of the detection apertures, the width of the deform-
able optics, and the distance between the crystal and the

detectors. Then, to calculate the shape of the interference
pattern for a certain phase distribution on the adaptive optics,
one just needs to change the coefficient of a linear combina-
tion of the tabulated functions. This can be a helpful tool for
studying the effect of specific aberrations on the temporal
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interference or to engineer the shape of the Hong-Ou-Mandel
�HOM� dip.

Some examples of how the temporal quantum-
interference dip is modulated by a generic spatial phase shift
are reported in Fig. 3, for coma �upper plot� and a superpo-
sition of several different aberrations �lower plot�. The inter-
ference visibility clearly degrades in presence of wave-front
aberrations.

IV. PARTICULAR CASES

In this section we will discuss the quantum-interference
pattern, described by Eq. �23�, for a few simple cases. First
we will consider the case when no spatial modulation is as-
signed to the photons and Eq. �23� will reduce to the results
already described in the literature for quantum interferometry
with multiparametric entangled states from type-II down-
conversion �6�. Then we will examine the effect of a linear
phase, describing its implications for the compensation of the
spatial walkoff between the two photons. Finally we will
describe what happens in the approximation of sufficiently
large detection apertures, introducing the effect of even-order
aberration cancellation.

A. No phase modulation

Applying no phase modulation, our equations reduce to
the ones derived in �6�. Particularly we find

R0 = P̃A�0�P̃B�0� �41�

and

WG��� = Sinc�M2Lkp

2d1D
���1 −

2�

DL
��P̃A

�� Mkp

2d1D
�ê2�P̃B�−

Mkp

2d1D
�ê2� . �42�

The shape of the interference pattern is essentially given by
the product of the triangular function by the Fourier trans-
form of the aperture function, centered at �=0. For physi-
cally relevant parameters the sinc function is almost flat in
the region where the triangular function is not zero.

To get an analytic result one may assume Gaussian detec-
tion apertures of radius RG centered along the system’s opti-
cal axis:

p�x� = e−�x�2/2RG
2

. �43�

In this case the solution is quite simple:

R��� = R0�1 − ��1 −
2�

DL
�e−�2/2�1

2� , �44�

with

�1 =
2d1D

kpMRG
. �45�

Typically, sharp circular apertures are used in experi-

ments. In this case, the function P̃�q� is described in terms of
the Bessel function J1�x�. For a circular aperture of radius R,

P̃�q� =
J1�2R�q��

R�q�
. �46�

However the Gaussian approximation is still a good one if
the width RG of the Gaussian is taken to roughly fit the
Bessel function �of width R�: in our case we take RG
=R / �2�2�.

Therefore Eq. �44� is still approximately valid in the case
of sharp circular apertures, just taking

�1 =
4�2d1D

kpMRB
. �47�

Mathematically, in Eq. �44� the interference pattern is
given by the multiplication of a triangular function centered
at �=DL /2 by a Gaussian function centered at �=0. The
width of the Gaussian function �1 decreases with increasing
radius of the aperture RB. Therefore, in the small-aperture
approximation, the width of the Gaussian is so large that it is
approximately constant between �=0 and �=DL /2, giving
the typical triangular dip found in quantum-interference ex-
periments. On the other hand, increasing the aperture size,
the width of the Gaussian function decreases, reducing the
dip visibility �see Fig. 4�. Physically, this can be explained
by the fact that by increasing the aperture size we let more
wave vectors into the system, and so the spatial walkoff in
type-II interferometry introduces distinguishability, reducing

FIG. 3. �Color online� Examples of the shape of the polarization
quantum-interference dip with two different spatial phase modula-
tions �in black the unperturbed dip, in red the modulated one�. In
the upper figure the effect of a small amount of coma along the
vertical axis is shown. In the lower figure a more complicated su-
perposition of aberrations affects dramatically the shape of the dip.
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the interference visibility. Enlarging the aperture sizes is of-
ten useful in practice, for example, to get a higher photon
flux. Moreover, since in the SPDC process different fre-
quency bands are emitted at different angles, it may be nec-
essary to open the detection aperture in applications where a
broader bandwidth is needed. This is clearly a problem when
using type-II phase matching in birefringent crystals, since
the visibility of temporal and polarization interference gets
drastically reduced.

B. Linear phase shift

Suppose now we introduce a linear phase function with
the spatial light modulator, along the direction s1,

��x� = s1 · x , �48�

we get

WM��� = Sinc�M2Lkp

2d1D
���1 −

2�

DL
��P̃A

�� Mkp

2d1D
�ê2 + 2fs1�P̃B�−

Mkp

2d1D
�ê2 − 2fs1� .

�49�

If we compare Eq. �49� with Eq. �44� we can see that the
structure is the same. We again have a triangular function
centered at �=DL /2, along with two aperture functions. But
this time, instead of being centered at �=0, the aperture func-
tions can be shifted at will along the � axis. Suppose we now
apply a tilt along the y axis �s1x=0�. The modulation function
is then shifted to

�center =
fD

k0M
s1y . �50�

To get the highest possible visibility, the center of the modu-
lation function must be matched to the center of the triangu-
lar dip,

�center =
DL

2
, �51�

so that

s1y =
k0ML

2f
. �52�

In the case of a reflective system, in which the phase
modulation is implemented by means of a deformable mirror
�Fig. 5�, tilted by an angle �,

��x� = 2k0 tan �y = s1yy . �53�

Therefore, the amount of tilt necessary to restore high vis-
ibility is

tan � =
ML

4f
. �54�

In the case of a 1.5 mm crystal, with M =0.0723 �pump at
405 nm, SPDC at 810 nm� and lenses with focal length of 20
cm in the 4f system, we get

� = 0.14 mrad. �55�

C. Large-aperture approximation

If the detection apertures are large enough for the P̃i func-
tion to be successfully approximated by a delta function, we
get

WM��� =� dqG1
�� f

k0
q�G1�−

f

k0
q�e−i�2M/D��ê2·q. �56�

Suppose that the spatial modulator is a circular aperture
with radius r, with unit transmission and phase modulation
described by the function ��x�,

G1�x� = �0 if �x� � r

ei��x� if �x� � r .
� �57�

In this case the function ��x� can be expanded on a set of
polynomials which are orthogonal on the unit circle, such as
the Zernicke polynomials:

��q� = �
n

�
m

�nmRn
m���cos�m�� ,
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FIG. 4. On the right side we can see the interference patterns
with three different detector aperture sizes: the corresponding aper-
ture functions are shown on the left side.
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FIG. 5. Quantum-interference pattern for different detector ap-
erture sizes, introducing a linear modulation of the deformable mir-
ror, in order to restore the indistinguishability between the photons,
decreased by the spatial walkoff in the generation process.
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m = − n,− n + 2,− n + 4, . . . ,n , �58�

where q= �� cos � ,� sin ��. To calculate ��−q� we note that
−q= �� cos��+�� ,� sin��+���, so

��− q� = �
n

�
m

Rn
m���cos�m�� + ��� . �59�

If m is even then cos�m��+���=cos�m��; otherwise if m is
odd cos�m��+���= �−cos m��. Therefore

��q� − ��− q� = 2�
n

�
m odd

�nmRn
m���cos�m�� . �60�

So, only the Zernicke polynomials with m odd contribute
to the shape of the interference pattern. This effect is the
spatial counterpart of the dispersion cancellation effect, in
which only the odd-order terms in the Taylor expansion of
the spectral phase survive. The experimental demonstration
of this effect was recently reported in �11�.

An interesting question is how large the detection aper-
tures should effectively be, in order to obtain the even-order
aberration cancellation effect. According to the numerical ap-
proach proposed in Sec. IV, the even-order aberration can-

cellation effect manifests itself in the limit where P̃�x�
���x�, so that

�l,� → ��l + �� . �61�

In Fig. 6, a plot of the value for �l,� is shown for typical
values of the relevant experimental parameters �detection ap-
erture radius R=5 mm, detection distance d1=1 m, and size
d=0.1 mm of each pixel in the Fourier plane of the adaptive
optical system�. Clearly, only the diagonal elements �the ones
for which l=−�� are significant, suggesting that the effect of
even-order aberration cancellation may be observable for
most typical experimental parameters.

To get an idea of what happens for different experimental
conditions, we can compute the ratio between the intensities

of the nondiagonal coefficient �01 and the diagonal coeffi-
cient �00:

�0 =
��01�2

��00�2
. �62�

The lower the value for �0 is, the less significant the coeffi-
cients for ��−l are: the even-order aberration cancellation
effect will therefore manifest itself more clearly.

Values for �0 are shown in Fig. 7 for two different cases.
In both pictures, the value of �0 is shown as a function of the
Gaussian detection aperture radius R, for three different val-
ues of the distance between the plane �3 and the detection
lenses d1. In the upper panel, the size of each small square in
which the spatial phase is assumed to be constant is d
=0.5 mm, while in the second case it is d=0.25 mm. In
both cases �0 is significantly smaller than 1, and it becomes
smaller and smaller, increasing the value of the detection
aperture radius. However, �0 is smaller for larger values of d,
implying that the spatial variability of the modulation phase
plays a role in the degree of even-order cancellation of the
modulation itself.

It turns out that for the aberration cancellation effect to
appear, it is in fact only necessary for one aperture to be
large and for one detector to be integrated over. This is suf-
ficient to produce the transverse-momentum delta functions
that lead to even-order cancellation. To demonstrate this, we

FIG. 6. Plot of the values of ��l,��2, for l ,�=−100, . . . ,+100.
The radius of the detection apertures is R=5 mm, the distance be-
tween the exit plane of the modulation section and the detection
apertures is d−1=1 m, and the size of the modulation pixels is d
=25 �m. Clearly only the diagonal elements are nonzero, i.e., the
ones for which �=−l. In this situation the effect of even-order ab-
erration cancellation is present.

FIG. 7. �Color online� Plot of the ratio �0 between the intensities
of the nondiagonal coefficient �01 and the diagonal coefficient �00

as a function of the radius of Gaussian detection apertures, R, for
different values of the distance between the exit plane of the modu-
lation section and the detection apertures �d1=1,10,100 cm�. On
the upper plot the size of the modulation pixel d is d=0.5 mm,
while in the second case it is d=0.25 mm. Clearly, for experimen-
tally interesting cases, the off-diagonal coefficient is at least 3 or-
ders of magnitude smaller than the diagonal one, leading to even-
order aberration cancellation.
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can, for example, consider the case where the aperture at B is
large, and the detector at B is integrated over, while the ap-
erture at A is taken to be finite, with detector A treated as
pointlike. The location of the pointlike detector will hence-

forth simply be denoted as x, and we continue to work within
the quasimonochromatic approximation. If we integrate only
over xB, leaving x unintegrated, then it is straightforward to
show that the analogs of Eqs. �A3� and �A4� are

W�0��x,q,q�,�� = e−�icd/�0��q2−q�2��Q̃�q +
�0x

cf0
�Q̃��− q� −

�0x

cf0
�P̃B�q� − q� + Q̃�− q +

�0x

cf0
�Q̃��q� −

�0x

cf0
�P̃B�q − q��� ,

�63�

W�x,q,q�,�� = e−�icd/�0��q2−q�2��Q̃�q +
�0x

cf0
�Q̃��− q� +

�0x

cf0
�P̃B�− q� − q� + Q̃�− q +

�0x

cf0
�Q̃��+ q� +

�0x

cf0
�P̃B�q − q��� .

�64�

We have defined Q̃ and Q̃� to be the Fourier transforms,

respectively, of pA and pA
� . P̃B is, as before, the Fourier trans-

form of �pB�2. We now let aperture B become large, so that

the function P̃B goes over to a delta function. For G1�x�
=ei��x� and G2�x�=1, we can substitute these results into the
coincidence rate �which will now be a function of both � and
the position x of detector A�, and carry out the q� and �
integrals. For the modulation term, we find

RM�x,�� = R�x,�� − R0�x� �65�

=� dqei���q�−��−q��e�2iM�/D�e2·qe�2iq2/kp���2�/D�+L�

�Sinc�2q2L

kp
��Q̃�q +

�0x

cf0
�Q̃��− q −

�0x

cf0
�

+ Q̃�− q +
�0x

cf0
�Q̃��q −

�0x

cf0
�� . �66�

Here, we have used the fact that the Fourier transform of
pA

��x� equals the complex conjugate of the Fourier transform

of pA�−x�, in order to write Q̃� in terms of Q̃. We see from
the presence of the factor ei���q�−��−q�� that even-order aber-
ration cancellation occurs even though one aperture is finite
and the corresponding detector is pointlike. This point may
be of importance in future attempts to produce aberration-
canceled imaging.

V. CONCLUSIONS

Summarizing, in this paper we have carried out a theoret-
ical study of the relation between the wave-front modulation
of the entangled SPDC photons and the shape of the result-
ing temporal quantum-interference pattern. Due to the mul-
tiparametric nature of the generated entangled states, the
modulation on the spatial degree of freedom can affect the
shape of the polarization-temporal interference pattern in the
coincidence rate. Our aim is twofold: from one side we want

to study the effect of wave-front aberration on quantum in-
terferometry, and from the other we want to discuss a way to
engineer multiparametrically entangled states.

We have introduced a theoretical model for calculation of
the shape of the polarization-temporal interference pattern
given a certain general phase modulation in the crystal far
field, assuming as a free parameter the shape and the dimen-
sion of the collection apertures. Using a numerical method to
study the resulting equation has shown that for typical ex-
perimental cases the hypothesis of large apertures can be
assumed to be valid. In such an approximation, only the odd
part of the assigned phase modulation affects the shape of the
interference pattern. This effect has recently been demon-
strated experimentally �11�.

Moreover, it is often useful in experiments to enlarge the
collection aperture in order to collect a higher photon flux
and larger optical bandwidth. But when working with type-II
birefringently phase-matched down-conversion, spatial
walkoff between the emitted photons introduces distinguish-
ability between the two possible events that can lead to co-
incidence detection, reducing the visibility of quantum inter-
ference. Such walkoff can be compensated for with a linear
phase shift in the vertical direction, restoring high visibility.
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APPENDIX A: SKETCH OF DERIVATION OF EQ. (23)

In this appendix we sketch the major steps for the derivation of Eq. �23�. Substituting Eq. �21� into Eq. �16� and the result
into Eq. �22�, one finds the following expressions for R0 and WG���:

R0 =� dqdq�d����q,����q�,��G1
�� f

k
q�G1� f

k
q��G2

��−
f

k
q�G2�−

f

k
q��W�0��q,q�,�� , �A1�

WM��� =
1

R0
� dqdq�d����q,����q�,− ��G1

�� f

k
q�G1� f

k
q��G2

��−
f

k
q�G2�−

f

k
q��W�q,q�,�� , �A2�

where

W�0��q,q�,�� =� dxAdxBH��xA,q,��H��xB,− q,− ��H�xA,q�,��H�xB,− q�,− ��

+ H��xA,− q,− ��H��xB,q,��H�xA,− q�,− ��H�xB,q�,�� �A3�

and

W�q,q�,�� =� dxAdxBH��xA,q,��H��xB,− q,− ��H�xA,− q�,��H�xB,q�,− ��

+ H��xA,− q,− ��H��xB,q,��H�xA,q�,− ��H�xB,− q�,�� . �A4�

The angular and spectral emission function ��q ,�� is given by

��q,�� =� dz�� z

L
+

1

2
�e−i
�q,��z. �A5�

Performing the integrals over the spatial coordinates dxA and xB, one gets

W�0��q,q�,�� = ei�2d1/kp���q�2−�q��2��P̃A��q − q���P̃B�− �q − q��� + P̃A�− �q − q���P̃B��q − q���� �A6�

and

W�q,q�,�� = ei�2d1/kp���q�2−�q��2��P̃A��q + q���P̃B�− �q + q��� + P̃A�− �q + q���P̃B��q + q���� . �A7�

Finally, use of the integral representation for the sinc func-
tion �Eq. �A5�� allows the � integration to be carried out, but
at the expense of introducing two integrations over a pair of
new parameters �say, z and z��. Note the following relation,
which can easily be verified by sketching the functions on
the left-hand side:

��x���x − �� = �1 if − 1 � � � 0, − 1
2 � x �

1
2 + �

1 if 0 � � � 1, − 1
2 + � � x �

1
2

0 otherwise.
�

�A8�

From this, it follows that

� ��x���x − ��dx = ���� , �A9�

where ���� is the triangle function. These facts allow us to
carry out the two z integrations that arise from the sinc func-
tion, leading to the result shown in Eq. �23�.

APPENDIX B: JUSTIFICATION OF EQ. (32)

Suppose we have a set A, which can be partitioned into a
collection of disjoint subsets Ak, with k=1,2 , . . .:

�
k

Ak = A, Ak � Al = � if k � l . �B1�

To each set we can associate a characteristic function,

�k�x� = �1, x � Ak

0, x � Ak,
� �B2�

such that

�
k

�k�x� = �A�x�, �k�x��l�x� = �kl�k�x� , �B3�

where �A is the characteristic function for the full set,

�A�x� = �1, x � A

0, x � A .
� �B4�

The term ei�k�k�x� assumes the value of ei�k for �k�x�=1 and
the value of 1 for �k�x�=0 �1−�k�x�=1�, so

BONATO et al. PHYSICAL REVIEW A 79, 062304 �2009�

062304-10



exp�i�
k

�k�k�x�� = �
k

ei�k�k�x� = �
k

�1�1 − �k�x�� + ei�k�k�x�� = �
k

�1 + �ei�k − 1��k� . �B5�

If we express the first few terms we get

�
k

�1 + �ei�k − 1��k� = �1 + �ei�1 − 1��1��1 + �ei�2 − 1��2� ¯

= 1 + �ei�1 − 1��1 + �ei�2 − 1��2 + ¯ + �ei�1 − 1��ei�2 − 1��1�2 + �ei�1 − 1��ei�3 − 1��1�3

+ ¯ + �ei�1 − 1��ei�1 − 1��ei�1 − 1��1�2�3 + �ei�1 − 1��ei�2 − 1��ei�4 − 1��1�2�4 + ¯ . �B6�

So that in the end

exp�i�
k

�k�k�x�� = 1 + �
k

��ei�k − 1��k� = 1 + �
k

ei�k�k − �
k

�k = �
k

ei�k�k. �B7�

Since the square sets we have used in Sec. IV satisfy Eq. �B1�, then the result expressed in Eq. �B5� is valid for our case.
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We describe a novel effect involving odd-order dispersion cancellation. We demonstrate that odd- and

even-order dispersion cancellation may be obtained in different regions of a single quantum interferogram

using frequency-anticorrelated entangled photons and a new type of quantum interferometer. This offers

new opportunities for quantum communication and metrology in dispersive media.

DOI: 10.1103/PhysRevLett.102.100504 PACS numbers: 03.67.Bg, 42.30.Kq, 42.50.Dv, 42.50.St

Introduction.—The even-order dispersion cancellation
effect based on nonclassical frequency-anticorrelated en-
tangled photons has been known in quantum optics for
some time [1,2]. The nonlinear optical process of sponta-
neous parametric down conversion (SPDC) traditionally
provides a reliable source of frequency-entangled photon
pairs with anticorrelated spectral components, as a conse-
quence of energy conservation. If the frequency of the
signal photon is !s, then the frequency of its twin idler
photon must be!i ¼ �p �!s, where�p is the frequency

of the pump beam. A quantum interferometer records the
modulation in the rate of coincidence between pulses from
two photon-counting detectors at the output ports of a
beam splitter in response to a temporal delay between
two spectrally correlated photons entering its input ports
symmetrically. This type of quantum optics intensity cor-
relation measurement, exhibited in the Hong-Ou-Mandel
(HOM) interferometer [3], is manifested by an observed
dip in the rate of coincidences. In previous demonstrations
of dispersion cancellation, one photon of the down-
converted pair travels through a dispersive material in
one arm of the HOM interferometer while its twin travels
only through air. The final coincidence interference dip is
not broadened in this case, demonstrating insensitivity to
even-order dispersion coefficients [2,4].

Even-order dispersion cancellation has been used in
quantum-information processing, quantum communica-
tion, and in quantum optical metrology. For example, it
enhances the precision of measuring photon tunneling time
through a potential barrier [5] and improves the accuracy
of remote clock synchronization [6]. The same effect pro-
vides superior resolution in quantum optical coherence
tomography [7] by eliminating the broadening of the in-
terference envelope resulting from group velocity disper-
sion. The potential of quantum even-order dispersion
cancellation has recently stimulated efforts to mimic this
effect by use of classical nonlinear optical analogues [8–
10].

In this Letter, we introduce a novel type of quantum
interferometer that enables the demonstration of the odd-

order dispersion cancellation as a part of a new dispersion
management technique. In our design, both even-order and
odd-order dispersion cancellation effects can be recorded
as parts of a single quantum interference pattern.
HOM interferometers are commonly used to produce

either j�i � j2; 0i-j0; 2i state, when the delay �1 is set to
balance the two paths, ensuring destructive interference in
the middle of the interference dip, or a superposition of
j1; 1i, j0; 2i, and j2; 0i states, when the delay �1 signifi-
cantly unbalances two paths and shifts coincidences to the
shoulder of HOM interference pattern. Mach-Zehnder
(MZ) interferometers fed by a particular quantum state
have also been studied in detail [11].
In the new design, two interferometers work together:

one output port of a HOM interferometer provides input to
a MZ interferometer. The state of light introduced into the
MZ interferometer is continuously modified when the
delay �1 in the HOM interferometer is scanned. A signal
from one of the HOM output ports is fed into a MZ
interferometer with a dispersive sample providing a phase
shift � in one arm, as shown in Fig. 1. The delay �2 inside
the MZ interferometer is kept at a fixed value. A peculiar
quantum interference pattern is observed in the rate of

FIG. 1 (color online). Schematic diagram of the optical setup.
The SPDC source produces pairs of frequency-anticorrelated
photons combining on a beam splitter in a HOM interferometer
configuration. Photons exiting one HOM port are fed into a MZ
interferometer. Coincidence events are registered between two
single-photon detectors at the output ports of the MZ interfer-
ometer. A dispersive sample in one arm of the MZ interferometer
generates a phase delay (�).
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coincidences between two photon-counting detectors, D1
and D2, at the output ports of the MZ interferometer as a
function of �1. The interference profile has two distinct
patterns. The central interference pattern depends only on
even-order dispersion coefficients, while the peripheral
pattern depends only on odd-order terms. This ability to
manipulate and evaluate odd-order and even-order disper-
sion terms independently in a single quantum interferome-
ter opens new perspectives in quantum communication and
in precise optical measurement.

Theoretical model.—For detectors D1 and D2, much
slower than the temporal coherence of the down-converted
photons, the coincidence rate in such intensity correlation
measurements is [12]

Rcð�1; �2Þ ¼
Z

dt1
Z

dt2G
ð2Þðt1; t2Þ; (1)

with Gð2Þðt1; t2Þ the second-order correlation function

Gð2Þðt1; t2Þ:
Gð2Þðt1; t2Þ ¼ jh0jÊðþÞ

1 ðt1ÞÊðþÞ
2 ðt2Þj�ij2: (2)

EðþÞ
1 ðt1Þ and EðþÞ

2 ðt2Þ are the electrical field operators at the
surfaces of detectors D1 and D2, respectively.

Ê ðþÞ
j ðtjÞ ¼ 1ffiffiffiffiffiffiffi

2�
p

Z
d!je

�i!jtj b̂jð!jÞ; (3)

where b̂jð!jÞ is the mode operator at detector j, expressed

in terms of the input field operators âjð!jÞ [12]. The

quantum state of light emitted in a frequency-degenerate
noncollinear type-I phase-matching SPDC process with a
monochromatic pump �p is

j�i /
Z

d!fð!Þây1 ð�0 þ!Þây2 ð�0 �!Þj0i; (4)

where fð!Þ is a photon wave packet spectral function
defined by the phase-matching condition in the nonlinear
material, �0 ¼ �p=2 is a central frequency of each wave

packet, !s ¼ �0 þ! is the signal photon frequency, and
!i ¼ �0 �! is the idler frequency.

The phase shift �ð!Þ acquired by the broadband optical
wave packet as it travels through a dispersive material
could be expanded in a Taylor’s series [13]:

�ð!s;iÞ ¼ c0 þ c1ð!s;i ��0Þ þ c2ð!s;i ��0Þ2
þ c3ð!s;i ��0Þ3 þ � � � ; (5)

where the linear term c1 represents the group delay and the
second-order term c2 is responsible for group delay dis-
persion. In a conventional white-light interferometer, c1 is
responsible for a temporal shift of the interference pattern
envelope, c2 causes its temporal broadening, while c3
provides a nonsymmetric deformation of the wave packet
envelope. Higher-order terms might be included when a
strongly-dispersive material is used or in the case of ex-
tremely broadband optical wave packets.

In the optical setup of Fig. 1, the dispersive material
providing phase shift �ð!Þ could be situated in three
possible locations. When the sample is placed on an arm
of the HOM interferometer, it leads to the well-known
even-order dispersion cancellation effect [4]. It may be
shown that the presence of a dispersive material between
the two interferometers does not affect the coincidence
interferogram. We thus concentrate on the most interesting
case: we place the dispersive sample of phase shift �ð!Þ
inside the MZ interferometer, with delay �2 set to a fixed
value, and �1 as the variable parameter.
Following the usual formalism [12], one can show that

the coincidence rate between the detectors is

Rcð�1; �2Þ ¼
Z

d!½�0 ���ð!; �2Þ ���ð!; �2Þ�
� ½fð!Þf�ð!Þ þ fð!Þf�ð�!Þe�2i!�1�; (6)

where �0 is a constant,

��ð!; �2Þ ¼ e�2i!�2ei�ð�0�!Þe�i�ð�0þ!Þ þ c:c:; (7)

and

��ð!; �2Þ ¼ e�2i�0�2e�i�ð�0�!Þe�i�ð�0þ!Þ þ c:c: (8)

Although not obvious from the form of Eq. (6),
Rcð�1; �2Þ is a real function for any spectrum fð!Þ, as
can be seen by rewriting Eq. (6) in manifestly real form:

Rcð�1; �2Þ ¼
Z

d!fjfð!Þj2 þ jfð�!Þj2

þ ½e�2i!�1fð!Þf�ð�!Þ þ c:c:�g
� ½�0 ���ð!Þ ���ð!Þ�: (9)

This fact ensures that the technique demonstrated here
applies to all types of broadband frequency-anticorrelated
states of light, including those with nonsymmetric spectral
profiles produced in chirped periodically-polled nonlinear
crystals.
The final coincidence counting rate Rcð�1; �2Þ of Eq. (6)

may also be written as a linear superposition:

Rcð�1; �2Þ ¼ Bþ R0ð�1Þ � Revenð�1; �2Þ � Roddð�1; �2Þ:
(10)

The first coefficient B incorporates all terms that are not
dependent on the variable delay �1, providing a constant
after integration. It establishes a baseline level for the
quantum interferogram. The following terms,

R0ð�1Þ ¼ 4
Z

d!fð!Þf�ð�!Þe�2i!�1 ; (11)

Revenð�1; �2Þ ¼
Z

d!fð!Þf�ð�!Þ
� e�2i!�1½e�2i�0�2e�i�ð�0�!Þe�i�ð�0þ!Þ

þ e2i�0�2ei�ð�0�!Þei�ð�0þ!Þ�; (12)
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Roddð�1; �2Þ ¼
Z

d!fð!Þf�ð�!Þ
� ½e�2i!ð�1þ�2Þei�ð�0�!Þe�i�ð�0þ!Þ

þ e�2i!ð�1��2Þe�i�ð�0�!Þei�ð�0þ!Þ� (13)

are responsible for the shape of the interference pattern.
The term R0ð�1Þ represents a peak centered at �1 ¼ 0

that is simply a Fourier transform of the down-converted
radiation spectrum and is insensitive to the dispersion
associated with �ð!Þ. Since Revenð�1; �2Þ is dependent on
the sum �ð�0 �!Þ þ�ð�0 þ!Þ, it is sensitive only to
even-order terms in the expansion Eq. (5). This manifests
odd-order dispersion cancellation and generates a
dispersion-broadened function centered around �1 ¼ 0.
The last term Roddð�1; �2Þ, in contrast, is sensitive only to
odd-order dispersion terms in �ð!Þ. This term demon-
strates the well-known even-order cancellation. The coef-

ficients e�2i!ð�1þ�2Þ and e�2i!ð�1��2Þ shift the two dips away
from the center of the interference pattern in opposite
directions. Such decomposition of quantum interference
terms makes it possible to observe odd-order and even-
order dispersion cancellation effects in two distinct regions
of the coincidence interferogram.

Example.—Our results are illustrated by a numerical
example of quantum interference for a 3-mm thick slab
of a strongly-dispersive optical material ZnSe, inserted in
one arm of theMZ interferometer to provide the phase shift
�ð!Þ. In this experiment, we assume the use of frequency-
entangled down-converted photons with a 100-nm wide
spectrum. As illustrated in Fig. 2, one can identify the
narrow peak R0ð�1Þ in the center, which is insensitive to
dispersion, along with the component Revenð�1; �2Þ, which
is broadened by even-order dispersion contributions only.
This central component of the interferogram illustrates the
odd-order dispersion cancellation effect.

Two symmetric side dips Roddð�1; �2Þ appear shifted far
away from the central peak by the group velocity delay c1
acquired by entangled photons inside the dispersive mate-
rial. However, this shift can be controlled by properly
adjusting the value of the fixed delay �2. Such a simple
adjustment moves both dips back closer to the center and
makes it convenient for observing both dispersion cancel-
lation features in a single scan of the variable delay line
(�1) inside the HOM interferometer (see Fig. 2). The
appearance of asymmetric fringes on the side of two dips
is a clear sign of the third-order dispersion [13].

Discussion.—This result can also be understood physi-
cally by analyzing all possible probability amplitudes that
lead to measured coincidence events between D1 and D2.
The MZ interferometer input is a pair of spectrally-
entangled photons separated by time delay �1; if the lead-
ing photon has a high frequency, the lagging photon will
have a low frequency, and vice versa. We consider first the
case when no dispersive element is present, so that the MZ
interferometer introduces only a time delay �2 between its

two arms. We assume that �2 is much greater than the
photon wave packet width, �c. To explain the dependence
of the photon coincidence rate on �1, as shown in Fig. 2, we
consider three processes occurring at the input ports of the
last beam splitter in the MZ interferometer: (1) If j�1j> �c
and j�2 � �1j> �c, then the two photons arriving at the
final beam splitter will be distinguishable, so that no quan-
tum interference is exhibited. (2) If j�1j � j�2j, so that
j�2 � �1j< �c, then quantum interference can occur
when the leading photon takes the long path of the MZ
interferometer and the lagging photon takes the short path.
The two arrive almost simultaneously (within a time �c) at
the two ports of the final beam splitter. Then the HOM
effect is exhibited at the beam splitter, albeit with only 25%
visibility because of the presence of the other possibility
that both photons arrive at a single port, leading to a
background coincidence rate independent of �1. From a
different perspective, one may regard this scenario as
similar to that obtained in a Franson interferometer [14],
for which photon pairs follow long-long or short-short
paths. This scenario explains the components of the coin-
cidence interferogram near �1 ¼ ��2, and in this case the
two spectrally-entangled photons entering separate ports of
the final beam splitter lead to quantum interference accom-
panied by even-order dispersion cancellation. (3) Finally,
when j�1j< �c, then one possibility is that the photons
arrive at separate input ports of the final beam splitter.
Since these photons are separated by a time �2 	 �c,
they are distinguishable and do not contribute to quantum
interference. The other possibility is that the pair arrive at
the same beam splitter input port. In this case, upon trans-
mission or reflection at the beam splitter there are two
alternatives for producing coincidence: transmission of
the high-frequency photon and reflection of the low-
frequency photon, or vice versa. This explains the compo-

FIG. 2 (color online). The normalized coincidence rate as a
function of �1 when a 3-mm thick ZnSe sample is placed in the
MZ interferometer. The fixed delay �2 ¼ 26 ps is used. The
insert illustrates the odd-order dispersion contribution.
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nent of the coincidence interferogram near �1 � 0. In this
scenario, which involves two spectrally-entangled photons
entering a single port of a beam splitter, quantum interfer-
ence is accompanied by odd-order dispersion cancellation.
We thus see that the quantum interference effects exhibited
in scenarios (2) and (3) are accompanied by dispersion
cancellation—although in opposite manners in the two
cases.

In conclusion, we have demonstrated a new effect in
which even- and odd-order dispersion cancellations appear
in different regions of a single interferogram. This is
achieved via frequency-anticorrelated photons in a new
quantum interferometer formed by a variable delay HOM
interferometer followed by a single-input, fixed-delay
Mach-Zehnder interferometer. The possibility of indepen-
dently evaluating even- and odd-order dispersion coeffi-
cients of a medium has potential for applications in
quantum communication and in quantum metrology of
complex dispersive photonics structures. In particular, the
ability to accurately characterize higher-order dispersion
coefficients is of great interest in the study of flattened-
dispersion optical fibers [15,16] and in dispersion engi-
neering with metamaterials [17]. The demonstrated poten-
tial of even-order dispersion cancellation has stimulated
the search for classical analogues [8,9]. We expect that the
scheme presented here would also trigger the similar de-
velopment of nonlinear optical techniques mimicking this
quantum effect. Finally, note that our apparatus may be
extended by adding a second Mach-Zehnder to the unused
HOM output port, allowing the investigation of new four-
photon interference effects.
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We investigate cancellation of spatial aberrations induced by an object placed in a quantum coincidence
interferometer with type-II parametric down conversion as a light source. We analyze in detail the physical
mechanism by which the cancellation occurs and show that the aberration cancels only when the object resides
in one particular plane within the apparatus. In addition, we show that for a special case of the apparatus it is
possible to produce simultaneous cancellation of both even-order and odd-order aberrations in this plane.
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I. INTRODUCTION AND BACKGROUND

A. Introduction

Aberration or spatial dispersion occurs when light passing
through or reflecting off of an object gains unwanted phase
shifts that vary in the transverse spatial direction !orthogonal
to the optical axis". These phase shifts are “unwanted” in the
sense that they differ from those obtained from Gaussian
optics and cause distortions of the outgoing wavefronts.
Mathematically, we can represent the aberrations by pure
imaginary exponentials ei!!x", where x is the transverse dis-
tance. Often !!x" may be expanded into a power series in #x#
and separated into even and odd orders,

!!x" = !even!x" + !odd!x" , !1"

!even!x" = $
j

a2jr
2jP2j!"" , !2"

!even!x" = $
j

a2j+1r
2j+1P2j!"" . !3"

Here, r= #x#, while P2j!"" and P2j+1!"" are polynomials in
sin " and/or cos ". Usually, the expansion is expressed in
terms of Seidel or Zernike polynomials %1–3&, but for our
purposes the details of the expansion are not important. The
important point here is simply that the even-order terms are
symmetric under reflection, !even!x"=!even!−x", while the
odd terms are antisymmetric, !odd!x"=−!odd!−x".

In Refs. %4,5&, a particular type of interferometric device
was described, and it was shown that if an object was placed
in either arm of this device, then all even-order phase shifts
introduced by the object will cancel in a temporal correlation
experiment. The effect is very similar to the even-order
frequency-dispersion cancellation first described in Refs.
%6,7&. As a light source, the aberration-cancellation experi-
ment used photon pairs produced via spontaneous parametric
down conversion !SPDC". The cancellation effect depended
on the entanglement of the transverse spatial momenta in the
resulting entangled-photon pairs.

In this paper we re-examine the setup of Refs. %4,5& with
two purposes in mind. After reviewing the apparatus and the
even-order aberration-cancellation effect in the next subsec-
tion, we first show !in Sec. II" that for a special case of the
apparatus we can in fact cancel all aberration, both even

order and odd order. This cancellation only occurs when the
sample is placed in one particular plane and opens up the
possibility of cancelling sample-induced aberration in dy-
namic light scattering %8,9&, fluorescence correlation spec-
troscopy %10&, or other temporal correlation-based experi-
ments. Our second purpose !carried out in Sec. III" is to
analyze in more detail the results for the coincidence rate in
order to better understand the physical mechanisms involved
in aberration cancellation. In Sec. IV we discuss the conclu-
sions that can be drawn from these results.

Note that, because we are motivated by the desire to can-
cel aberrations, we will use the phrase “aberration cancella-
tion” for convenience throughout this paper, but in fact we
mean the cancellation of all phase shifts arising in a given
plane not just the subset that differ from the predictions of
Gaussian optics. In other words, “aberration cancellation”
here means that only the intensity of the light is affected by
the object, not the phase. So, for example, the placement in
the object plane of an ideal lens, whose operation depends on
second-order phase shifts, should have no focusing power at
this point; it will be as if the lens is not there.

B. Even-order aberration cancellation

Consider the setup shown in Fig. 1. In the main part of the
apparatus, the two branches each consist of a Fourier trans-
form system containing lenses of focal length f and a sample
providing a modulation Gj!y" of the beam, where j=1,2
labels the branch and y is the transverse distance from the
optic axis. The Gj represent objects or samples whose prop-
erties we wish to analyze, and the goal is to cancel optical
aberrations introduced by the samples. The case where there
is a sample only in branch 1 is included by simply setting
G2=1, but we will keep the more general two-sample case;
we will see later that the extra generality pays off by allow-
ing useful additional effects. A controllable time delay # is
inserted in one arm of the interferometer. Since we will be
referring to it often, we give a name to the plane containing
the samples, denoting this plane by $. The $ plane is simul-
taneously the back focal plane of the first lens and the front
focal plane of the second. The two lenses together form a 4f
Fourier transform system. We will examine in a later section
what happens when the sample is moved out of the $ plane.
Throughout this paper, we assume that the sample is of neg-
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ligible thickness compared to all of the other distances in-
volved in the apparatus. We will refer to the photon in the
upper branch !branch 1" as the signal and the photon in
branch 2 as the idler. The polarizing beam splitter sends the
horizontally polarized photon into the upper !signal" branch
and the vertically polarized photon into the lower !idler"
branch.

Photons are fed into the system by a continuous-wave
laser which pumps a %!2" nonlinear crystal, leading to collin-
ear type-II parametric down conversion. The frequencies of
the two photons are &0'(, while the transverse momenta
are 'q. For simplicity, assume the frequency bandwidth is
narrow compared to &0. The two photons have total wave
numbers

&0'(

c , which will be approximated by k=
&0

c where
appropriate. The down-conversion spectrum is given by

)!q,(" = sinc'L*!q,("
2

(ei%L*!q,("&/2. !4"

Here, L is the thickness of the nonlinear crystal and for
type-II down conversion we have

*!q,(" = − (D + Mê2 · q +
2#q#2

kpump
. !5"

D is the difference between the group velocities of the ordi-
nary and extraordinary waves in the crystal, and M is the
spatial walk off in the direction ê2 perpendicular to the inter-
ferometer plane. The last term in * is due to diffraction as
the wave propagates through the crystal.

The parametric down-conversion process may be de-
scribed by a Hamiltonian of the form

Ĥ = i+%âs
†âi

† + H.c., !6"

where âs and âi are annihilation operators for the signal and
idler photons. The constant % includes the amplitude of the
classical pump field. Applying the time evolution operator

e−iĤt/+ to the vacuum state, we find that the wave function
entering the apparatus from the crystal can be written as

#,!t") = !1 − #-#2/2"#0) + -#,2) + -2#,4) + ¯ , !7"

where -=%t, and #,2n) represents a term with n photons in
the signal mode and n in the idler mode. For parametric
down conversion we operate in the regime where #-#.1 so
that terms higher than #,2) may be neglected. In addition,
the vacuum term may be ignored since it will not contribute
to coincidence detection. Thus, effectively our wave function
is given by

#,) * #,2) =+ dqd()!q,("âs
†!q,&0 + ("âi

†!− q,&0 − ("#0) .

!8"

Note that G1 and G2 could be produced by two separate
objects at two separate points in space, in which case we
would need to use a polarizing beam splitter !PBS" to sepa-
rate the incoming beams. Alternatively, G1 and G2 could
both be produced by a single object which acts differently on
the two polarization states, in which case we could dispense
with the PBS.

In the detection stage, two bucket detectors D1 and D2 are
connected in coincidence. We add adjustable irises with ap-
erture functions p1!x1" and p2!x2" in front of the detectors.
We will end up taking these apertures to be of infinite width
but initially we leave them in for reasons to be explained
below. A lens of focal length fd is placed one focal length in
front of each detector. The distances from the Fourier plane
of the main part of the apparatus to the aperture and from the
aperture to the lens are d1 and d2. In order to erase path
information for the photons reaching each detector, a polar-
izer at 45° to the polarization directions of both incoming
beams is placed in each path. The two polarizers are oriented
orthogonal to each other.

The full transfer function for each branch is %5&

Hj/!x/,q j,0" = Gj, f

k
q j-HD/

!x/,q j,0" , !9"

where the transfer function of the detection stage is

HD/
!x/,q j,0" = eik!d1+d2+fD"e−!ik/2fD"%!d2/fD"−1&x/

2
e−i!d1/2k"qj

2

1P̃/, k

fD
x/ − q j- . !10"

P̃/ is the Fourier transform of the aperture function,

P̃/, k

fD
x/ − q j- =+ d2x!p/!x!"e−i%!k/fD"x/−qj&·x!, !11"

with /= .1,2/ labeling the detector and j= .s , i/ labeling the
signal or idler branch. In these expressions, k is the longitu-
dinal wave number, k=0!0 /c"2−q2* 0

c for #q#.k.
The nonpolarizing beam splitter mixes the incident

beams, so each detector sees a superposition of the signal
and idler beams. The positive-frequency part of the field en-
tering detector / is given by

FIG. 1. !Color online" Schematic view of aberration-
cancellation setup. !Distances and angles not necessarily drawn in
correct proportions." The horizontally polarized signal travels in the
upper branch and experiences modulation G1, while the vertically
polarized idler experiences modulation G2 in the lower branch. G1
and G2 are both located in the plane $, halfway between the lenses
of focal length f . The beam splitter mixes the beams before they
reach the detectors D1 and D2, which are connected by a coinci-
dence circuit.
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E/
!+"!x/,t/" =+ dqd0e−i0t/%Hs/!x/,qs,0"âs!qs,0"

+ Hi/!x/,qi,0"âi!qi,0"& . !12"

Using this field, we can compute the amplitude for coinci-
dence detection:

A!x1,x2,t1,t2" = 10#E1
!+"!x1,t1"E2

!+"!x2,t2"#,)

=+ d2qd()!q,("

1%e−i!&o+("t1e−i!&o−("t2Hs1!x1,q,("

1Hi2!x2,− q,− (" + e−i!&o−("t1e−i!&o+("t2

1Hi1!x1,− q,− ("Hs2!x2,q,("& , !13"

where Hj/!x/ ,q j ,&0'(" have been abbreviated by
Hj/!x/ ,q j , '(".

The coincidence rate as a function of time delay # is

R!#" =+ d2x1d
2x2dt1dt2#A!x1,x2,t1,t2"#2. !14"

As was shown in %11&, R!#" will generically be of the form

R!#" = R0'1 − 2,1 −
2#

DL
-W!#"( . !15"

where 2!x" is the triangular function:

2!x" = 21 − #x# , #x# 3 1

0, #x# 4 13 . !16"

The #-independent background term R0 and #-dependent
modulation term W!#" were calculated in %5& to be:

R0 =+ d2qd2q! sinc%MLe2 · !q − q!"&G1
!, fq

k
-G2

!,−
fq
k
-

1G1, fq!
k
-G2,−

fq!
k
-P̃1!q − q!"

1P̃2!− q + q!"e−!iML/2"e2·!q−q!"e2i!d1/kpump"!q2−q!2", !17"

W!#" =
1
R0
+ d2qd2q! sinc'MLe2 · !q + q!"2,1 −

2#

DL
-(

1G1
!, fq

k
-G2

!,−
fq
k
-G1, fq!

k
-G2,−

fq!
k
-

1P̃1!q + q!"P̃2!− q − q!"e−!iM/D"#e2·!q−q!"

1e2i!d1/kpump"!q2−q!2". !18"

Now let the apertures be large, so that the P̃ j become delta
functions, reducing Eqs. !17" and !18" to

R0 =+ d2q4G1, fq
k
-G2,−

fq
k
-42

, !19"

W!#" =
1
R0
+ d2qe−!2iM#/D"e2·qG1

!, fq
k
-G1,−

fq
k
-

1G2
!,−

fq
k
-G2, fq

k
- . !20"

Suppose that Gj!x"= tj!x"ei!j!x", where tj is real and the ef-
fects of aberrations are contained in the phase factor ! j. Dis-
regarding the background term for the moment, we see from
the presence in Eq. !20" of the factors

G1
!, fq

k
-G1,−

fq
k
- = t1

!, fq
k
-t1,−

fq
k
-e−i%!1!fq/k"−!1!−fq/k"&

!21"

that even-order aberration terms arising from sample 1 can-
cel from the modulation term. The even-order aberrations
from sample 2 cancel similarly. This is the even-order can-
cellation effect of Refs. %4,5&.

It should be remarked that the setup of Fig. 1 may be
simplified by removing the lenses immediately in front of the
detectors. We have left both the lenses and the apertures in
the setup because together they lead to the presence of the
Fourier-transformed aperture functions P̃ j in Eqs. !17" and
!18"; the delta functions that arise from the P̃ j when the
apertures become large will serve as convenient bookkeeping
devices in the following sections as we trace various terms
back to their origins. If we choose to simplify the apparatus
and remove the lenses, then Eq. !10" will be replaced by

HD/
!x/,q j,0" = eik!d1+d"e−id1qj

2/2k

1+ p!x!"e!ik/2d"!x! − x/"2
eiq·x!d2x!,

!22"

where d is the total aperture-to-detector distance, with corre-
sponding changes in Eqs. !17" and !18". However, in the
large-aperture limit this does not affect the coincidence rate,
which will still be given by expressions !15", !19", and !20".

II. ALL-ORDER CANCELLATION

A. Aberration cancellation to all orders

Now, consider the background term R0 in Eq. !19". It
depends on G1 and G2 only through the squared modulus of
each. Thus any phase changes introduced by G1 or G2 cancel
completely; in particular, the background term R0 exhibits
cancellation of aberrations of all orders not just even orders.
In the current situation, this R0 is of no importance, simply
being a constant and having no effect on the #-dependence of
the correlation. However, the fact that all orders of aberration
can be cancelled in the background term raises the question
as to whether it can be arranged for this to happen in the
modulation term as well.

It turns out that the answer to this question is positive: it is
possible to use this apparatus to cancel all aberrations in-
duced by a thin sample, of both even and odd orders. The
means for doing so is evident from examining Eq. !20". Sup-
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pose that G1!x"=G2!x", as shown schematically in Fig. 2.
This can happen in one of two ways: either two identical
samples may be placed in the two arms or it may be arranged
so that the two beams both pass through the same sample; in
either case it is necessary for the sample to act in the same
manner on both polarization states. The second possibility
will usually be of more practical interest, since identical
samples will often not be available. For G1=G2, Eqs. !17"
and !18" give

R0 =+ d2q4G1, fq
k
-G1,−

fq
k
-42

, !23"

W!#" =
1
R0
+ d2qe−2iM# e2

̂
·q/D4G1, fq

k
-G1,−

fq
k
-42

.

!24"

Setting G1!x"= t!x"ei!!x", we see that all phases now cancel
from the #-modulated term W. Thus, all aberrations induced
by the sample, of any order, will completely cancel from the
coincidence rate.

B. Condition for all-ordercancellation

Up to this point, we have assumed that the objects pro-
viding the modulation were located in the plane labeled $ in
Fig. 1. Now we consider what happens if the modulation
objects !the samples" are moved out of the $ plane by some
distance z!0. Consider a single arm of the apparatus, as
shown in Fig. 3. We will take the distance z from $ to be
positive if the sample is moved toward the source, and nega-
tive if moved toward the detector. Now, the impulse response
functions for the first and second lens respectively in each
branch of the system will be

h1!!,y" =
1

i5f

1
i5!f − z"+ eik/2.%y2/!f−z"&+!!2/f"/eik/2%1/!f−z"&x!2

1e−ikx!·.%y/!f−z"&+!!/f"/d2x! !25"

h2!y,x" =
1

i5f

1
i5!f + z"+ eik/2.%y2/!f+z"&+!x2/f"/eik/2%1/!f+z"&x"2

1e−ikx"·.%y/!f+z"&+!x/f"/d2x" !26"

y, x!, x", and ! are the transverse distances at the points
shown in Fig. 2. The integrals can be carried out, giving us
the result that

h1!!,y" =
1

i5f
e!ik/2f"%!z!2/f"−2!·y&, !27"

h2!y,x" =
1

i5f
e−!ik/2f"%!zx2/f"+2x·y& = − h1

!!− x,y" . !28"

So the impulse response for one branch of the apparatus
from source to Fourier plane !not including the detection
stage" is

hj!!!,x" =+ h1!!,y"Gj!y"h2!y,x"d2y , !29"

=
e!ik/2f2"z!!2−x2"

!i5f"2 + e−!ik/f"!!+x"·yGj!y"d2y . !30"

Fourier transforming to find the transfer function leads to

Hj!!x,q,0" =+ h!!,x"eiq·!d2! !31"

=
1

!i5f"2+ d2yGj!y"e−!ik/f"!x·y"e−!ik/2f2"!zx2"

1+ d2!e!ikz/2f2"!2
ei!!q−kx/f" !32"

=−
1
5z

e−iq·x+ d2yGj,y +
fq
k
-e−!ik/f"!x·y"

1e!−ik/2z"y2
e−!ikz/2f2"x2

. !33"

Previously, for z=0, this transfer function was simply given
by

Hj!!x,q,0" = !constants"Gj, fq
k
-e−iq·x. !34"

Therefore, for z!0, we must make the replacement !up to
overall constants" !Fig. 3"

G, fq
k
- →+ d2yG,y +

fq
k
-e−!ik/f"!x·y"e!−ikz/2f2"x2,1

z
e!−ik/2z"y2-

!35"

in all previous results, and Eq. !9" now involves an integral
instead of a simple product. !For z=0, the factors in the last
set of parentheses become proportional to 6!2"!y", leading
back to the previous results." In particular, in Eqs. !23" and
!24", the factor #G1! fq

k "#2 becomes

FIG. 2. !Color online" Schematic view of apparatus in Fig. 1,
with G1 set equal to G2. !Distances and angles not necessarily
drawn in correct proportions." Here G1 and G2 are being produced
by a single object. The signal and idler are collinear. It is also
possible for G2 and G2 to be produced by two identical but spatially
separate objects interacting with noncollinear signal and idler.
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+ d2yd2y!G1,y +
f

fD
x-G1

!,y! +
f

fD
x-e−!ik/2z"!y2−y!2".

!36"

Clearly, the phase of G1 no longer cancels out of this expres-
sion since nothing forces y to equal y!. The arguments of the
two factors of G1 are now unrelated, so that aberration can-
cellation no longer occurs.

So any cancellation that occurs can hold exactly only for
phases arising in the $-plane of the Fourier transform sys-
tem. The cancellation is approximate in the vicinity of this
plane. For samples of finite thickness, the degree of approxi-
mate cancellation will diminish as the thickness increases.

Defining 7=y−y!, the exponential term in Eq. !36" be-
comes

e−!ik/2z"!27·y−72". !37"

Assuming that G1
!!y−7+ f

fd
x" is slowly varying in 7 com-

pared to the variation of the exponential, we may obtain an
estimate of the distance z over which the sample may be
moved out of the plane while still maintaining a high degree
of aberration cancellation. The aberration cancels when 7
=0, so we may use the maximum size of 7 as a measure of
the degree of failure of the aberration cancellation. As z
→0, the rapid oscillations of the exponential term cause the
integral of Eq. !36" to go to zero, unless k#27 ·y−72# also
goes to zero at least as fast as #z#. So, we must have

#27 · y − 72# 8 4 z

k
4 5 #z5# . !38"

From this, we have

#z# 5
7M#y#

5
, !39"

where 7M is the maximum value of 7. Let rs be the maximum
illuminated radius of the sample. Then, by requiring that
#7M#.rs, we have the estimate that

#z# .
rs

2

5
. !40"

This is essentially a limit on how far from stationarity we
may be and still safely apply a stationary-phase approxima-
tion. Actually, we may make this limit a bit more precise.
Since two-sample points y and y! inside the Airy disk of the
lens cannot be distinguished from each other, we may require
that #7M#5Rairy, where

Rairy =
1.22f5

a
!41"

is the radius of the Airy disk. By substituting this into Eq.
!39", we can thus conclude that, at most, the order of mag-
nitude of #z# may be given by

#z# 8
frs

a
. !42"

Taking for example the values rs510−4 m, a51 cm, f
510 cm, and 5510−7 m, this gives us an upper limit of
about 1 mm.

C. Comparison with dispersion cancellation

The idea of aberration cancellation via entangled-photon
interferometry arose in analogy to the similar dispersion-
cancellation effect %6,7&. It is known that even-order and
odd-order dispersion effects may be separated so that either
even-order terms or odd-order terms may be cancelled %12&
but that it is impossible to simultaneously cancel both sets of
terms together. Thus, it is a surprise that in the case of aber-
rations such a simultaneous cancellation should be possible.

The fact that aberration cancellation only occurs in a
single plane sheds some light on the difference between ab-
erration cancellation and dispersion cancellation. Aberrations
are caused by phase differences between different points in a
plane transverse to the propagation direction of the light,
while dispersion comes about as a result of phase differences
accumulating along the propagation direction. We have man-
aged to cancel all orders of aberration produced by a single
transverse plane. But since dispersive effects accumulate
longitudinally, we cannot arrange their cancellation in all of
the infinite number of transverse planes the photon travels
through; thus, although even-order and odd-order dispersion
may each occur separately, simultaneous all-order dispersion
cancellation will not occur.

A more physical explanation can be given for the inability
in principle to cancel all orders of dispersion. Suppose that
the index of refraction is expanded about some frequency 00,

n!0" = n0 + n1!0 − 00" + n2!0 − 00"2 + ¯ . !43"

The phase and group velocities are

vp =
c

n!0"
, !44"

FIG. 3. !Color online" Blown up version of a portion of one
branch from apparatus of Fig. 1 !or Fig. 2", with the object moved
a distance z out of the central plane, $.
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vg = , dk

d0
-−1

= c'n!0" + 0
dn!0"

d0
(−1

= c%n0 + 2n1!0 − 00" + 3n2!0 − 00"2 + ¯&−1.

!45"

If both the odd-order and even-order dispersion coefficients
vanish simultaneously !including the zeroth-order term", then
n!0" and dn

d0 both vanish. In consequence, the phase and
group velocities both diverge. This is in contradiction to spe-
cial relativity, which requires a finite group velocity. In con-
trast, no similar obstacle exists to prevent the spatially dis-
tributed phase shift !!x" from vanishing, so there is no
fundamental principle preventing all-order aberration cancel-
lation.

One further point to note is that the dispersive and aber-
rative cases considered here are not entirely analogous, in the
sense that one is not simply obtained from the other by in-
terchanging time and space. In the aberration case, the phase
is a function of the transverse position x in the physical
coordinate space. In contrast, for the dispersive case the
phase is due to a frequency-dependent index of refraction;
i.e., the source of the effect is in the Fourier transform
space, not in the !temporal" coordinate space. However, in
both cases the cancellation occurs in the Fourier space. Thus,
for aberration cancellation an optical Fourier transform sys-
tem is required to move from the coordinate space !where the
source of aberration is" to the Fourier space !where the can-
cellation occurs". For the dispersive case, the source of the
dispersion already operates in the Fourier space so it is not
necessary to introduce an extra Fourier transform via the
optical system.

III. PHYSICAL INTERPRETATION

We now wish to develop a better understanding of how
aberration cancellation occurs in the polarization-based coin-
cidence interferometer that we are using to illustrate this ef-
fect. Let q and q! be the ingoing and outgoing momenta in
the upper branch at the beam splitter. The ingoing and out-
going momenta for the lower branch will be− q and− q!, as
in Figs. 4 and 5 below.

Note first of all that the coincidence detection amplitude
in transverse momentum space may be written in the form
A!q"=Ar!q"+At!q", where At represents the amplitude for
both photons to be transmitted at the beam splitter and Ar is
the amplitude for both to be reflected. The counting rate
involves the integrated and squared amplitude; if the mo-
menta q and q! were independent variables, we could write
this as

4+ A!q"d2q42

=+ A!q"A!!q!"d2qd2q!, !46"

which has terms Ar!q"At!q!"!+At!q"Ar
!!q!" involving inter-

ference between reflection and transmission !see Fig. 4", as
well as noninterference terms Ar!q"Ar!q!"!+At!q"At

!!q!"
!Fig. 5". However, q and q! are not independent variables;
momentum conservation and the fact that the photons are
produced from down conversion together force the require-

ment q!= 'q. These constraints are explicitly enforced in
the current context by the factors of P̃ j in Eqs. !17" and !18",
which become delta functions in the large-aperture limit. The
delta functions sew together the amplitudes Ar and At as
shown in the figures.

Suppose again that Gj!x"= tj!x"ei!j!x". Since we are un-
concerned with effects related to amplitude modulation we
henceforth set tj!x"=1. Examining Eqs. !17" and !18", we
then note that even-order and odd-order aberration cancella-
tion arise from different sources. Even-order cancellation
arises from the combination of the following ingredients:

!A1" the Fourier transforming property of the lens in the
focal plane. This converts the transverse momentum en-
tanglement into spatial entanglement in the $ plane.

!A2" The condition q=−q! satisfied by the nonback-
ground half of the terms !those that comprise W". These

FIG. 4. !Color online" Schematic representation of interference
terms. In the squared amplitude 6dqdq!A!q"A!!q!", the part of the
amplitude in which both photons undergo reflection at the beam
splitter !Ar" interferes with the portion in which both photons are
transmitted at the beam splitter !At". For these terms, q=−q!, due to
the delta function that connects the amplitudes.

FIG. 5. !Color online" Schematic representation of noninterfer-
ence terms. In the top part of the figure the transmission portion of
the amplitude At interacts only with itself, while in the bottom part
the same is true of the reflection amplitude Ar. For these terms, q
=q!
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terms arise from the interference part of the squared ampli-
tude, as in Fig. 4.

!A3" The Gj!
fq
k "Gj

!! fq!
k " structure that arises from taking

the absolute square of the amplitude to find counting rates in
quantum mechanics !j=1,2". Combined with the momentum
constraint of A2, this becomes Gj!

fq
k "Gj

!!− fq
k "=ei%!j!q"−!j!−q"&.

In contrast, odd-order cancellation occurs when the fol-
lowing combination of ingredients is present:

!B1" the Fourier transforming action of the lens, as in A1;
!B2" for every photon of transverse momentum q there is

a photon of− q present due to down conversion; and
!B3" G1=G2 so that the product G1! fq

k "G2!− fq
k " becomes

G1! fq
k "G1!− fq

k "=ei%!1!q"+!1!−q"&. !Note that the cancellation is
taking place between different terms of Eq. !20" than were
involved in the cancellation of A3."

In order to have all-order cancellation, there are two pos-
sibilities. Either both of the above sets of conditions may be
satisfied simultaneously, or else a third set of conditions may
be satisfied:

!C1" same as A1 and B1;
!C2" the condition q=q! must be satisfied, as in the back-

ground term R0; this occurs in the noninterference terms of
Fig. 5; and

!C3" similar to A3, the Gj!
fq
k "Gj

!! fq!
k " structure arises from

the quantum-mechanical absolute squaring of the amplitude.
But now, coupled with C2, we have Gj!

fq
k "Gj

!! fq
k "

=ei%!j!q"−!j!q"&=1, giving cancellation of all orders.
In A3 and C3 the phase from a single arm of the interfer-

ometer cancels with itself, whereas B3 is a cancellation be-
tween the two different !but identical in this case" arms.
Cases A and B both involve interference between the ampli-
tudes Ar and At !shown schematically in Fig. 4", while case C
comes from the noninterference terms of Fig. 5 and so will
occur even if only one of the two amplitudes Ar and At is
present.

IV. CONCLUSIONS

To summarize the main results of this paper, for the ap-
paratus of Fig. 1 we have found that:

!i" even-order aberrations induced by the samples G1 and
G2 cancel;

!ii" if the two beams overlap so that G1=G2, then all
orders of aberration cancel; and

!iii" these cancellations only occur if G1 and G2 are con-
fined to the z=0 plane.

These results open up the possibility of using quantum
interferometry to eliminate the effects of sample-induced ab-
erration in experiments using temporal correlation-based
methods such as dynamical light scattering or fluorescence
correlation spectroscopy. Through the continued study of ab-
erration cancellation and dispersion cancellation, it is hoped
that a better understanding of the effects of objects or mate-
rials placed in an optical system, and better methods of con-
trolling those effects, will gradually emerge. The results re-
ported here are one more step along that path.

The effects described in this paper make essential use of
the spatial entanglement !or equivalently the transverse mo-
mentum entanglement" between the photons in the down-
conversion pair. In contrast, the frequency entanglement
played no essential role. Similarly, the anticorrelation of the
polarizations was used primarily to control the paths of the
photons and then to erase the path information; but these
functions could be accomplished by other means. So only the
spatial entanglement was essential. On the other hand, it is
the frequency entanglement that is essential for dispersion
cancellation. A question for future investigation is whether
use of the simultaneous entanglement of frequency, momen-
tum, and polarization variables !so-called hyperentangle-
ment" may allow control over further optical effects of ma-
terials.
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Correlated-Photon Imaging with Aberration Cancellation

D.S. Simon1 and A.V. Sergienko1, 2
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We discuss an apparatus that is capable of producing correlated-photon images that are free of
object-induced aberration. We show that both quantum-entangled and classically correlated light
sources are capable of producing the desired spatial-aberration cancellation.

PACS numbers: 42.30.Va,42.15.Fr,42.30.Kq

I. INTRODUCTION

Correlated-photon imaging, also known as ”ghost”
imaging, in which coincidence measurements are used
to form images via photons that never interacted with
the object being viewed, has been a topic of great in-
terest since its discovery using entangled photon pairs
[1]. It has since been found that most aspects of ghost
imaging can be simulated using spatially-correlated clas-
sical light [2, 3], including thermal and speckle sources
[4, 5, 6, 7, 8, 9].

Separately, it has been demonstrated that the entan-
gled photon pairs produced in spontaneous parametric
downconversion (SPDC) may also be used to cancel some
of the effects of frequency dispersion [10, 11, 12] or spatial
dispersion (aberration) [13, 14, 15].

In [15], it was pointed out that it is possible to con-
struct a device such that if an object is placed in a par-
ticular plane then all phase shifts induced by that object,
including all orders of aberration induced by it, will can-
cel. The goal here is to make use of that observation for
imaging. We show that this may be achieved by a sim-
ple variation of the traditional ghost imaging apparatus
of figure 1. We then show that, although an entangled
source was required for the temporal correlation exper-
iments discussed in [13, 14, 15], only a classical source
with transverse spatial correlation is required for imag-
ing.

The outline of the paper is as follows. In section II,
we review ghost imaging and aberration cancellation. In
section III we discuss aberration-cancelled ghost imaging
with an entangled light source, followed by a similar dis-
cussion with a classical source in section IV. We discuss
an important technical point about the need for lenses
in front of the detectors in section V, with conclusions in
section VI.

II. CORRELATED-PHOTON IMAGING AND

ABERRATION CANCELLATION

A. Correlated-photon imaging

Correlated-photon or ”ghost” imaging [1] is done with
an apparatus like the one depicted schematically in figure

G

Beam
Splitter

D

D
1

2

Bucket

CCD

Coincidence
Circuit

Correlated
Photon
Source

q

-q

FIG. 1: Schematic depiction of correlated-photon imaging

setup. The photons in the two arms have anticorrelated trans-

verse momenta ±q.

1. In the original version, the correlated photon source
is a χ(2) nonlinear crystal pumped by a laser, leading
to spontaneous parametric downconversion. Entangled
photon pairs with anticorrelated momentum components
q and −q transverse to the propagation direction travel
along the two arms of the apparatus. The object to be
viewed is placed in arm 2 (the upper branch), followed by
a large bucket detector, D2. The detector’s area is inte-
grated over, so D2 can not record any information on the
position or momentum of the photon that reached the
object; all this detector is able to tell us is whether the
photon reached the detector unimpeded, or whether its
passage was blocked by an object. In the other branch of
the apparatus there is no object, and all of the photons
reach a CCD camera or array of pointlike detectors with-
out hindrance. A coincidence circuit is used to record a
count every time a photon detection occurs simultane-
ously (within the coincidence time window) at each de-
tector. By plotting the coincidence rate as a function of
position x1 in detector 1, we build up an image of the
object. This is true even though photons that actually
encountered the object in branch 2 left no record of the
object’s position, and the photons in branch 1 that do
carry position information never encounter the object.

The crucial ingredient is the spatial correlation of the
downconverted photon pair. The question arose as to
whether the entanglement of the photons was necessary,
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FIG. 2: Schematic of interferometer with even-order

aberration-cancellation. Large bucket detectors D1 and D2

are integrated over.

or if a classical source with anticorrelated transverse mo-
menta could mimic the effect. It was found [2, 3] that
this was indeed possible. The correlated light source in
this case consists of a beam steering modulator (a rotat-
ing mirror, for example) which directs a classical light
beam through a range of q vectors, illuminating differ-
ent spots on the object. The beamsplitter then turns
the single beam of transverse momentum q into a pair of
beams with momenta q and −q. The results were simi-
lar to those with the entangled source, but with half the
visibility. It was later shown that thermal and speckle
sources may also lead to ghost imaging ([4, 5, 6, 7, 8, 9]).

B. Aberration Cancellation in Quantum

Interferometry

Consider the setup shown in figure 2 [13, 14, 15]. Each
branch contains a 4f Fourier transform system with lenses
of focal length f and a thin sample that provides modula-
tion Gj(y) of the beam, where j = 1, 2 labels the branch,
and y is the position in the plane transverse to the axis.
The goal is to cancel sample-induced optical aberrations
(position-dependent phase shifts produced by the Gj).
The case where there is a sample only in one branch may
be included by simply setting G = 1 in the other branch.
The plane containing the samples, which we denote by
the letter Π is simultaneously the back focal plane of the
first lens and the front focal plane of the second. Time
delay τ is inserted in one branch. The light may be either
transmitted through each sample, or reflected off of it.

In the detection stage, two large bucket detectors D1

and D2, connected in coincidence, record the arrival of
photons, but not their positions. Apertures described
by aperture functions p1(x1) and p2(x2) are followed by
crossed polarizers at 45◦ to each beam’s polarization, be-
fore arriving at the detectors.

A continuous wave laser pumps a χ(2) nonlinear crys-
tal, leading to type II parametric downconversion. The
frequencies of the two photons are Ω0 ± ν, with trans-

verse momenta ±q. For simplicity, assume the frequency
bandwidth is narrow compared to Ω0. The two photons
have total wavenumbers Ω0±ν

c
≈ Ω0

c
. The downconver-

sion spectrum is

Φ(q, ν) = sinc

[

L∆(q, ν)

2

]

ei
L∆(q,ν)

2 , (1)

where L is the thickness of the crystal, and

∆(q, ν) = −νD + M ê2 · q +
2|q|2

kpump

. (2)

D is the difference between the group velocities of the
ordinary and extraordinary waves in the crystal, and M
is the spatial walk-off in the direction ê2 perpendicular
to the interferometer plane. The last term in ∆ is due to
diffraction as the wave propagates through the crystal.
Ignoring the vacuum term and terms of higher photon
number, the wavefunction entering the apparatus is ap-
proximately the biphoton wavefunction of the downcon-
verted pair, given by

|Ψ〉 =

∫

d2q dν Φ(q, ν)â†
s(q, Ω0 + ν)â†

i (−q, Ω0 − ν)|0〉,

(3)
where âs and âi are annihilation operators for the signal
and idler photons. For collinear pairs, horizontally polar-
ized photons are directed into the upper branch and ver-
tically polarized photons into the lower branch by means
of a polarizing beamsplitter. Alternatively, noncollinear
pairs could be used with polarizers selecting horizontal
(H) polarization in the upper branch and vertical (V) in
the lower one. In either case, we will refer to the H pho-
ton in the upper branch (branch 2) as the signal and the
V photon in branch 1 as the idler.

The coincidence rate is of the generic form [16]

R(τ) = R0

[

1 − Λ

(

1 −
2τ

DL

)

W (τ)

]

, (4)

where Λ(x) is the triangular function:

Λ(x) =

{

1 − |x|, |x| ≤ 1
0, |x| > 1

(5)

For large apertures, p1(x1) = p2(x2) ≈ 1; so, as shown
in [14], the background and τ -modulation terms are

R0 =

∫

d2q

∣

∣

∣

∣

G1

(

fq

k

)

G2

(

−
fq

k

)∣

∣

∣

∣

2

(6)

W (τ) =
1

R0

∫

d2qe−
2iMτ

D
e2·q (7)

×G∗
1

(

fq

k

)

G1

(

−
fq

k

)

G∗
2

(

−
fq

k

)

G2

(

fq

k

)

,

where k is the longitudinal wavenumber.
We are concerned here with the phases introduced by

the Gj , not with their effect on amplitude, so we will
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FIG. 3: Schematic of correlated-photon imaging setup with

aberration-cancellation. All orders of aberration cancel.

assume that the Gj are pure phase objects, Gj(x) =

eiφj(x), with aberration effects contained in the phase
factor φj . The presence in equation (8) of the factors

G∗
1

(

fq

k

)

G1

(

− fq

k

)

= e−i[φ1( fq

k )−φ1(− fq

k )] shows that

even-order aberrations arising from sample 1 cancel from
the modulation term. The even-order aberrations from
sample 2 cancel in a similar manner. This is the even-
order cancellation effect demonstrated in [13] and [14].
As pointed out in [15], if G1 = G2, then both even-
and odd-orders cancel simultaneously. These cancella-
tions are exact only for aberrations induced by passage
through thin objects in the plane Π, or by reflection from
a single surface at the same location.

In the term R0, both even-order and odd-order aber-
rations occur even when G1 6= G2. For time correlation
experiments, this is an unimportant background term;
however it is this term that is the foundation of the imag-
ing apparatus described below, since by removing the
beamsplitter, the modulation term W (τ) will be absent.

The physical mechanism of the various possible can-
cellations are discussed in more detail in [15].

III. ABERRATION-CANCELLED IMAGING

WITH ENTANGLED SOURCE

Now we wish to combine aberration cancellation with
ghost imaging, in the hybrid device of fig. 3. In this
section, we assume that the light source is parametric
downconversion from a nonlinear crystal. This new appa-
ratus differs from that of fig. 2 in several respects. First,
we have removed the time delay and polarization filters,
which are not necessary for imaging purposes. Second,
the beam splitter before the detectors has been removed.
As described in [15], even-order-only cancellation effects
occur due to interference between reflection and trans-
mission amplitudes, while non-interference terms exhibit
all-order interference. The beamsplitter needed to pro-
duce the interference effects desired in [13, 14, 15] is not
needed for the imaging desired here. Without it there will

be no interference, so we expect to find all-order cancel-
lation. Finally, one bucket detector (D1) is replaced by a
moveable pointlike detector, or a CCD camera. Whether
the remaining beamsplitter is polarizing or not is unim-
portant. After making these changes and allowing for
an arbitrary source of correlated (quantum or classical)
light, we arrive at an apparatus that looks very much like
the ghost imaging setup of figure 1.

The coincidence rate at location x1 of D1 is

R(x1) =

∫

d2x2dt1dt2|A(x1,x2, t1, t2)|
2, (8)

where the transition amplitude is

A(x1,x2, t1, t2) = 〈0|E
(+)
1 (x1, t1)E

(+)
2 (x2, t2)|Ψ〉. (9)

Taking the two detection apertures described by p1 and
p2 to be large, we can compute the coincidence rate to
be

R(x1) = {[B(x1) + B(−x1)] + [C(x1) + C∗(x1)]}

×

∣

∣

∣

∣

G1

(

f

fD

x1

)

G2

(

−
f

fD

x1

)
∣

∣

∣

∣

2

, (10)

where

B(x1) =

∫

dν

∣

∣

∣

∣

Φ

(

kx1

fD

, ν

)∣

∣

∣

∣

2

, (11)

C(x1) =

∫

dν Φ

(

kx1

fD

, ν

)

Φ∗

(

−
kx1

fD

,−ν

)

. (12)

Using eq. (1), these integrals may be evaluated; they
turn out to be x1-independent constants. Sweeping all
overall constants into a single constant R0, we find:

R(x1) = R0

∣

∣

∣

∣

G1

(

f

fD

x1

)

G2

(

−
f

fD

x1

)
∣

∣

∣

∣

2

. (13)

We see that only the modulus-squared of each Gj en-
ters into R(x), so that the aberration introduced by each
object cancels to all orders. If G2 = 1, then we have an
ordinary (non-ghost) image of G1. On the other hand, if
G1 = 1 then we have an inverted ghost image of G2. In
either case, the image is magnified by a factor of f

fD
.

IV. ABERRATION-CANCELLED IMAGING

WITH CLASSICAL SOURCE

We now replace the downconversion source of the pre-
vious section by a classical source of anticorrelated pho-
tons, as in [2]. Light entering a beam splitter with trans-
verse momentum q leads to outgoing beams with anticor-
related momenta q and −q. If the beam steering modula-
tor produces momentum spectrum f(q), the input state
for pairs of photons having the same q before the beam-
splitter will be ∼

∫

d2qF (q)â†
p(q)â†

p(q)|0〉, where â†
p is the

creation operator for pump photons and F (q) ≡ f2(q).
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We assume for simplicity that F (q) is an even function,
F (q) = F (−q). Denoting creation operators in the two

outgoing branches by â
†
1 and â

†
2, the incoming photon

pair will produce a state after the beamsplitter given by:

|Ψ〉 =
1

2

Z

d
2
qF (q)

h

â
†
1(q) + â

†
2(−q)

i

·
h

â
†
1(q) + â

†
2(−q)

i

|0〉

=

Z

d
2
qF (q)

h

â
†
1(q)â†

2(−q) + additional terms
i

|0〉,(14)

where the ”additional terms” do not contribute to coinci-
dence detection. The detection amplitude of eq. (9) is then
proportional to

Z

d
2
qF (q)eiq·(x1−x2)

H1(q,x1)H2(−q,x2), (15)

where Hj is the transfer function for branch j. Integrating
over D2, we then have the coincidence rate:

R(x1) =

˛

˛

˛

˛

F

„

k

fD

x1

«

G1

„

f

fD

x1

«

G2

„

−
f

fD

x1

«

˛

˛

˛

˛

2

. (16)

This is similar to the result for the entangled-source appa-

ratus, except modulated by the factor F
“

k
fD

x1

”

which is

determined by the details of the beam steering modulator.
Similarly, for thermal or speckle sources, this factor will arises
from the transverse momentum spectrum of the source.

V. ROLE OF THE DETECTION LENS

Consider now the lenses immediately before the detectors
in figure 3. With no such detection lens present, the transfer
function for branch j would be

Hj(qj , xj) = Gj

„

fqj

k

«

e
iq·xj , (17)

from which we see that the information from each q value is
spread over all x values. But with the lens, eq. (17) becomes

Hj(qj ,xj) = Gj

„

fqj

k

«

e
−

ikxj
2

2fD

“

d2
fD

−1
”

e
−

id1qj
2

2k δ

„

kxj

fD

− qj

«

,

(18)
so that each q value is localized at a single point in the de-
tector plane via the delta function. Since each q value is also
matched to a sample point, the localization in the second case

defines a correspondence between points in the sample plane
and points in the detection plane, allowing reconstruction of
an image by the pointlike detector D1. This can be explicitly
verified by computing the coincidence rate with or without
the final lenses, i.e. using either eq. (17) or eq. (18). Doing
this, we find that without the lens in branch 1 the coincidence
rate becomes independent of x1, making imaging impossible.
In contrast, removing the lens in branch 2 has no effect. This
makes intuitive sense: since we integrate over x2 anyway, it
does not matter whether the momentum information in this
branch is localized or spread over the entire detector.

Thus we arrive at an important technical point: the lens in
branch 1 is essential for imaging, whereas the lens before the
bucket detector may be removed without harm.

The need for a lens before D1 may be viewed as follows.
The 4f system in either branch transfers modulation Gj from

the transverse coordinate space (x) to the Fourier space (q),
which is where the aberration cancellation actually takes place
(see [15]). The lens in front of D1 is then needed to transfer
the modulation back to coordinate space for imaging.

VI. CONCLUSIONS

In conclusion we have proposed a means of producing ghost
imaging of a reflecting surface or thin translucent object with
cancellation of object-induced aberrations. The method in-
volves a relatively simple apparatus and can be done with
either entangled photon pairs or with a classically-correlated
light source. This aberration-cancellation effect has potential
for producing improved image quality in a number of appli-
cations in biomedical research and other fields.
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