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1. INTRODUCTION

The purpose of this grant is to build cancer-specific contrast agents for photoacoustic imaging, using
which one could estimate the change in molecular expression of various breast-cancer-specific proteins
undergoing chemotherapy treatment. We've made significant progress towards obtaining this goal: 1) we
created the first-ever photoacoustic imaging agent (which is based on carbon nanotube nanoparticle) and
showed it can specifically target tumors in tumor-bearing mice (paper published in Nature Nanotechnology); 2)
We created 2 additional molecular imaging agents for photoacoustic imaging which exhibit 300-times higher
sensitivity and for the first allow imaging photoacoustic molecular probes at sub-nanomolar concentrations
(paper submitted to Nano Letters). We've shown that such sensitivity improvement results in the ability to
image smaller tumors. Beyond higher sensitivity, the 3 imaging agents developed in this grant thus far have
different optical spectra. We used this fact and have shown the ability to simultaneously image these agents
(multiplexing). This ability is particularly powerful and important for this grant as we plan to progress to
characterizing the response to chemotherapy of multiple cancer-specific proteins in the same tumor

simultaneously.

2. BODY
2.1 Creation of 2 new Photoacoustic imaging agents

We have recently reported on the conjugation of cyclic Arg-Gly-Asp (RGD) peptides to pegylated
SWNTs" and their use as photoacoustic imaging agents®. In order to enhance the photoacoustic signal of the
SWNTs, we attached Indocyanine Green (ICG) and QSY-21 dyes to the surface of the SWNTs through pi-pi
stacking interactions® (see Methods section for more details). The ultra-high surface area of SWNTs allows
highly efficient loading of aromatic molecules such as ICG and QSY-21 on the nanotube surface. This created
two new kinds of photoacoustic agents; SWNT-ICG and SWNT-QSY (Fig. 1a). The particles were targeted
using the RGD-peptide to a,B; integrins, which are over-expressed in tumor vasculature, while control
untargeted particles were synthesized using a non-targeted peptide, RAD.

The optical absorbance spectra of the two new particles suggest that 710 nm and 780 nm are the
preferable wavelengths for scanning SWNT-QSY and SWNT-ICG respectively (Fig. 1b). At their respective
absorbance peaks, the SWNT-QSY and SWNT-ICG particles exhibit a 17 and 20-fold higher absorbance
respectively as compared with plain SWNTs. Since blood absorption is significantly reduced at 780 nm
compared to 710 nm, SWNT-ICG was the particle of choice for the small animal experiments for this study.
Importantly, the attachment of RGD or RAD peptides to SWNT-ICG had little effect on the particles’
absorbance. We constructed a non-absorbing and non-scattering agarose phantom with inclusions of SWNT-
ICG-RGD at increasing concentrations from 0.5 nM to 121.5 nM in multiples of 3 (n = 3 samples of each
concentration). The photoacoustic signal produced by the SWNT-ICG-RGD particles correlated well with the
nanoparticle concentration (R?=0.983) (Fig. 1c).
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Figure 1. Characterization of the dye-enhanced SWNT. a, lllustration of SWNT-ICG and SWNT-QSY. ICG
and QSY-21 (red molecules) are attached to the SWNT surface through non-covalent pi-pi stacking bonds.
Polyethylene glycol-5000 (blue molecules) is conjugated to a targeting peptide in one end and to the SWNT
surface on the other end through phospholipids. b, Optical spectra of plain SWNT (green), SWNT-ICG-RGD
(red), SWNT-ICG-RAD (blue) and SWNT-QSY-RGD (black). The similarity of SWNT-ICG-RAD and SWNT-
ICG-RGD spectra suggests that the peptide conjugation does not notably perturb the photoacoustic signal. c,
The photoacoustic signal produced by SWNT-ICG was observed to be linearly dependent on the concentration
(R? = 0.9833).

2.2 Sensitivity of the imaging agents in living mice

We then tested the particle’s sensitivity in living subjects by subcutaneously injecting the lower back of
mice (n = 3) with 30 ul of SWNT-ICG-RAD mixed with matrigel at increasing concentrations of 820 pM to 200
nM in multiples of 3. Matrigel alone produced no significant photoacoustic signal (data not shown). Upon
injection, the matrigel solidified, fixing the SWNT-ICG-RAD in place and three-dimensional (3D) ultrasound and

photoacoustic images of the inclusions were acquired (Fig. 2a). While the ultrasound images visualized the



mouse anatomy (e.g., skin and inclusion edges), the photoacoustic images revealed the SWNT-ICG-RAD
contrast in the mouse. The photoacoustic signal from each inclusion was quantified using a three dimensional
region of interest (ROI) drawn over the inclusion. We observed a linear correlation (R? = 0.97) between the
SWNT-ICG-RAD concentration and the corresponding photoacoustic signal (Fig. 2b). Tissue background
signal was calculated as the average photoacoustic signal in areas where no contrast agent was injected.
Extrapolation of the signal-concentration graph reveals that 170 pM of SWNT-ICG-RAD gives the equivalent
photoacoustic signal as the tissue background (i.e., signal to background ratio = 1). This value represents over

300-times improvement in sensitivity compared to plain SWNTSs.
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Figure 2. Photoacoustic detection of SWNT-ICG in living mice. a, Mice were injected subcutaneously with
SWNT-ICG at concentrations of 0.82-200 nM. The images represent ultrasound (gray) and photoacoustic
(green) vertical slices through the subcutaneous injections (dotted black line). The skin is visualized in the
ultrasound images, while the photoacoustic images show the SWNT-ICG distribution. The white dotted lines on
the images illustrate the approximate edges of each inclusion. b, The photoacoustic signal from each inclusion
was calculated using 3D regions of interest and the ,background’ represents the endogenous signal measured
from tissues. The error bars represent standard error (n = 3 mice). Linear regression (R?> = 0.97) of the
photoacoustic signal curve estimates that a concentration of 170 pM of SWNT-ICG will give the equivalent

background signal of tissues.



2.3 Targeting of the imaging agents to tumors

Finally, we tested the nanoparticles targeting ability in living mice. Mice bearing tumor xenografts (150
mm? in size) were injected through the tail vein (IV) with 200 pl of either targeted SWNT-ICG-RGD or
untargeted SWNT-ICG-RAD particles (n = 4 mice per group) at a concentration of 1.2 yM. We acquired 3D
photoacoustic and ultrasound images of the entire tumor area before and up to 4 hours after the injection. Mice
injected with the targeted SWNT-ICG-RGD particles show significantly higher photoacoustic signal in the tumor
compared with the control group (Fig. 3a). The ultrasound images were used for visualizing the boundaries of
the tumor as well as to validate that no significant movement (beyond 100 ym) had occurred throughout the
scan. While the pre-injection photoacoustic signal is primarily due to the tumor’s blood content, post-injection
photoacoustic signal consists of both blood and SWNT-ICG. To subtract out the blood signal from the images,
a subtraction image calculated as the 2 hour post-injection minus the pre-injection image was calculated.
Measurement of the photoacoustic signal from a 3D ROI around the tumor (Fig. 3b) showed that the
photoacoustic signal in the tumor was significantly higher in mice injected with SWNT-ICG-RGD as compared
with the control particles SWNT-ICG-RAD (p < 0.001). For example, at 2 hours post-injection, mice injected
with SWNT-ICG-RGD showed over 100% higher photoacoustic signal in the tumor than mice injected with the
control SWNT-ICG-RAD.
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Figure 3. SWNT-ICG-RGD tumor targeting in living mice. a, Ultrasound (gray) and photoacoustic (green)
images of one vertical slice through the tumor (dotted black line). The ultrasound images show the skin and the
tumor boundaries. Subtraction photoacoustic images were calculated as 2 hr post-injection minus pre-injection
images. As can be seen in the subtraction images, SWNT-ICG-RGD accumulates in higher amount in the
tumor as compared to the control SWNT-ICG-RAD. b, Mice injected with SWNT-ICG-RGD showed
significantly higher photoacoustic signal than mice injected with the untargeted control SWNT-ICG-RAD (p <

0.001). The error bars represent standard error (n = 4 mice)

2.4 Imaging the two contrast agents simultaneously (Multiplexing)

Finally, we show that the two kinds of photoacoustic imaging agents we synthesized, SWNT-ICG and
SWNT-QSY can be imaged simultaneously due to their unique, though overlapping, absorbance spectra (Fig.
1b). We created an agarose gel phantom containing increasing concentrations of SWNT-ICG and decreasing
concentrations of SWNT-QSY (starting from 100nM:0nM up to OnM:100nM respectively). Photoacoustic
images of the phantom were taken at wavelengths of 700, 730, 760, 780, and 800 nm and a spectral un-mixing

algorithm was then used to separate each particle’s signal to an individual image (Fig. 4).

SWNT-ICG 100 nM 75 nM 50 nM 25 nM 0 nM

v w w 9O T

Figure 5. Multiplexing of SWNT-ICG with SWNT-QSY particles in a phantom. A phantom with various
concentrations of SWNT-ICG and SWNT-QSY was scanned under the photoacoustic instrument at
wavelengths of 700, 730, 760, 780, and 800 nm. A spectral un-mixing algorithm based on least-squares was
used to separate the signals of SWNT-ICG particles (green) from SWNT-QSY particles (red). Notice that no
SWNT-QSY signal is seen in the well with pure SWNT-ICG and vice versa, despite the fact that the two

particles have overlapping spectra.



KEY RESEARCH ACCOMPLISHMENTS

¢ Developed two more photoacoustic imaging agents
e Characterized the particles and optimized them for tumor targeting upon intra-venous
administration to tumor-bearing mice

e Optimized the imaging system to allow imaging the two imaging agents simultaneously

REPORTABLE OUTCOMES

e Paper submitted: Adam de la Zerda, Zhuang Liu’, Sunil Bodapati, Cristina Zavaleta, Omer Oralkan,
Hongjie Dai, Butrus T. Khuri-Yakub, Sanjiv S. Gambhir, “Enhanced Carbon Nanotubes for

Photoacoustic Molecular Imaging in Living Mice”, submitted to Nature Photonics (2009). (' equal

contribution)

e Paper published: Adam de la Zerda, Cristina Zavaleta, Shay Keren, Srikant Vaithilingam, Sunil
Bodapati, Zhuang Liu, Jelena Levi, Te-Jen Ma, Omer Oralkan, Zhen Cheng, Xiaoyuan Chen, Hongjie
Dai, Butrus T. Khuri-Yakub, Sanjiv S. Gambhir, “Photoacoustic Molecular Imaging in Living Mice
Utilizing Targeted Carbon Nanotubes”, Nature Nanotechnology, 3, 557-62 (2008).

Paper featured in: Washington Post, US News, Forbes, USA Today, KCBS Radio, KGO Radio, KQED
Radio, NCI Alliance for Nanotechnology in Cancer Newspaper, WECT TV6, Yahoo! News, Imperial

Valley News, Wave 3, WGEM News and more.

e Abstract presented: A. de la Zerda, Z. Liu, S. Bodapati, R. Teed, C. Zavaleta, S. Vaithilingam, X.
Chen, B. T. Khuri-Yakub, H. Dai, S. S. Gambhir, “Ultra High Sensitivity Targeted Photoacoustic
Imaging Agents for Cancer Early Detection in Living Mice”, World Molecular Imaging Congress
(2009)

e Abstract presented: A. de la Zerda, Z. Liu, C. Zavaleta, S. Bodapati, R. Teed, S.Vaithilingam, T.
Ma, O. Oralkan, X. Chen, B. T. Khuri-Yakub, H. Dai, S. S. Gambhir "Enhanced Sensitivity Carbon
Nanotubes as Targeted Photoacoustic Molecular Imaging Agents”, Proceedings of SPIE Photonics
West, 7177-93:3 1-8 (2009).

Abstract poster presentation was awarded the best poster presentation at the Photoacoustic session
at the conference — the biggest photoacoustic conference.

e Abstract presented: A. de la Zerda, C. Zavaleta, S. Keren, S. Vaithilingam, S. Bodapati, R. Teed,
Z. Liu, J. Levi, B. R. Smith, T. Ma, O. Oralkan, Z. Cheng, X. Chen, H. Dai, B. T. Khuri-Yakub, S. S.
Gambhir, “Photoacoustic Molecular Imaging using Single Walled Carbon Nanotubes in Living Mice”,
Proceedings of SPIE Photonics West, 7177-78:5 1-12 (2009).



CONCLUSION

The main achievement over this past year was the development of 2 new photoacoustic
imaging agents which allow reaching unprecedented sensitivities. This development will be the basis
for measuring breast cancer response to chemotherapy and will allow investigating biomarkers which

weren’t been able to investigate before due to insufficient sensitivity of photoacoustic instruments.
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APPENDICES

1. Paper published in Nature Nanotechnology:
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Photmooustlc imaging of living sublects offers higher spatial
resalution and allmes desper tmuzs ta be imaged comparsd
with most optical imaging technigues'". As many diseases do
nat exhibit @ natural photoaconstic contrast, sspecially In their
arly stags, ki b neessary to adminisier a photoacoustc
comtrast ageni. A number of contrast agents for photoacoustc
imaging have hesn suggested previously™', but most wers not
shmwn to target @ dissased she in lving subjecs. Here we show
that slngleswalled aarbon nanotubes confugated with cvelic Args
Gheasp [RGD} peptides @an he weed a5 a conimst agent for
photoaconstl: imaging of tumaurs Intravenms adminisration
of these targsted manotuba to mice bearing fumours shmeed
sight times greater photoacoustic signal in the tumour than
mice imjected with non-wargeied nanotubes Thess resulis were
wrified o vive wslng Raman microscopy  Fhotoaooustic
imaging of targeted singlewalled mrbon nanotohes may
anntrhote i nansimashee cancer imaging and manttoring of
manatherapeutis in lving subjecis'®

Recemtly, w= reporited an the conjugation of cpdic RGD
camaining peptids  to  minglesallsd arbon  manotubesT
| EWNT=RGD) that is sable in s=rum. The singbe<walsd carban
manoiubes, which were 1=Inm in diameter and 30=303 nm in
Ength were coopisd to the BGD peptidss through palethylans
Ehyeol-3000 grafied phosphalipid [PL=PEG, | Thee SWKT-
RGD confugates bind with high affinity to o 3, imsgrin, which
is over-sxpresesd in tumowr neovasculature, and to ather
imegrine expresssd by tumoors But with imesr affiniy' ™'Y We
aitn symhesizad nonstargsted singlsowallad c@rbon manotubes
[that i, plain singisallsd mrson manotohs) By conjugating
them salsty o PL=PEG,, (Fig. la) Ow photoacmmtic
instrument®® uesd a singleeslement focused transducer o Taster
s=mn the object under wudy, which was lominated through a
fibre head [s=e Msohods and Supplememary Informatian,
Fig. 81). In a phamom siudy we mesored the photosooustic
wignal of plain singlssallad arhaon mnotubs and SWNT=RGD
at wvelengihs of §90=800nm (Fig. 15 shorier wavebmngths ans
legg degirahile as the depth of penstration through the tisuss i
reducedi! ). Thess photoacoustic specima suggsst that S30nm is
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the preferabls wansbmgih, hemuoee the photoacoostic signal of the
Eingis-walled @rbon manotubss @ highsst a1 thal wavelsngth.
Furthermare, the maio of singl=swalisd @rbon manotohes 1o
ha=mogiohin signal is higher a1 this wavelsngth when comparnsd
with ather wavelsngihe. Importanily, the photoacmstic signal of
singi=-wallad mrbon manotuhes was found to be unaffaced by
the RGD peptide comjugation. This finding was validated throogh
measursmenis of the apfial aisorbance of the two singls<walad
@roan manotubs omjugates e Sopplamemary Information,
Fig. %21 In a sepamte nonsabsarbing and nonsscattering
phamam study, we akeo validated that the photsacomtic cignal
pradicad by single<walisl @rbon nanotubes & in finear
relaticmship with their concentration (Fig. 1<) with = neeT.

W& then subouta naously injactad the kneer back afa mouss with
30 ! of mixmumes of singls<walisd carbon nanotubes and marigs] o
concemiratiom bewesn 80 and &00nd (w=3 jor =ah
concsntratinn). Mamigsl alon: praduced no phomaooetic cignal
[data not shenen). Upan injacion, the mairigsl sofidifisd, foding
the singls-walled @rbon manotubes in place Thres-dimensional
{30} uErazound and phonacomtic imagss of the inclusions wers
then aocquired {Fig. Za). The oirasmumd imagss showed the moumss
anatomy (for sampls, siin and indusion adges), and the
photnacomtic imagss revaglad the singlacsalsd carban nanotubes
comirast in the mouse The photcacmetic signal from each
incusion was quantified usinga 30 ragion of interest drnen over
the inclusion We obsarved a lnmr comslation (RS =09939)
hetrwizen the singlswwallsd carbon nanortubes concemration and the
cormesponding  photoacowtic signal [Fig. Zh). Importandy, this
linmar reiatian @an anly b: scpacted in spacial mes where the dp
oneminaton dos not perard the tieoe §gh distrbobon
significanty We condudsd that the photoacoustic signal produced
by tissues (hadkground) was aquivalent ta the phosoacoustic signal
prodocsd by 30nh of singl-walsd mrbon manotobes (that i a
signatochaciground rafin of 1. This erperimemal  resubt
corredatas wall with the theoretia] anabysic (2= Snpplsmsmtary
Informatian), which pradicn 2 badground signal sqmal o
T=T0nM of singlssallad mrbon nanotubes, depending on the
location of the nanotubes in the body
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Introduction

Photoacoustic imaging is an emerging modality that overcomes to a great extent the resolution and depth
limitations of optical imaging while maintaining high-contrast'®. However, since many diseases will not
manifest an endogenous photoacoustic contrast, it is essential to develop exogenous photoacoustic contrast
agents that can target diseased area(s). Recently, we showed that single-walled carbon nanotubes (SWNT5s)
have utility as targeted photoacoustic contrast agents’. Here we present a dye-enhanced SWNT agent that
markedly increases the photoacoustic contrast in living tissues by 300-times compared to plain SWNTs, leading
to sub-nanomolar sensitivities. By attaching two different dyes onto the SWNT surface, we show that the two
resulting particles can be imaged simultaneously (multiplexing). Intravenous administration of targeted dye-
enhanced SWNTs to tumor-bearing mice showed significantly higher signal in the tumor than mice injected
with untargeted particles. Finally, we show that the new dye-enhanced SWNTs can detect ~20-times less cancer

cells than previously reported SWNTs.

Results

We have recently reported on the conjugation of cyclic Arg-Gly-Asp (RGD) peptides to pegylated
SWNTs® and their use as photoacoustic imaging agents’. In order to enhance the photoacoustic signal of the
SWNTs, we attached Indocyanine Green (ICG) and QSY-21 dyes to the surface of the SWNTs through pi-pi
stacking interactions’ (see Methods section for more details). The ultra-high surface area of SWNTs allows
highly efficient loading of aromatic molecules such as ICG and QSY-21 on the nanotube surface. This created
two new kinds of photoacoustic agents; SWNT-ICG and SWNT-QSY (Fig. 1a). The particles were targeted
using the RGD-peptide to o,f3; integrins, which are over-expressed in tumor vasculature, while control
untargeted particles were synthesized using a non-targeted peptide, RAD.

The optical absorbance spectra of the two new particles suggest that 710 nm and 780 nm are the
preferable wavelengths for scanning SWNT-QSY and SWNT-ICG respectively (Fig. 1b). At their respective
absorbance peaks, the SWNT-QSY and SWNT-ICG particles exhibit a 17 and 20-fold higher absorbance
respectively as compared with plain SWNTs. Since blood absorption is significantly reduced at 780 nm
compared to 710 nm, SWNT-ICG was the particle of choice for the small animal experiments for this study.
Importantly, the attachment of RGD or RAD peptides to SWNT-ICG had little effect on the particles’
absorbance. We constructed a non-absorbing and non-scattering agarose phantom with inclusions of SWNT-
ICG-RGD at increasing concentrations from 0.5 nM to 121.5 nM in multiples of 3 (n = 3 samples of each
concentration). The photoacoustic signal produced by the SWNT-ICG-RGD particles correlated well with the
nanoparticle concentration (R*=0.983) (Fig. 1c).

We further validated that the new particles are stable in serum (see Supplementary Information and
Fig. S1). The particle’s photobleaching (loss of optical absorption due to continuous light exposure) was

characterized and found to be relatively small, 30% bleaching over 60 min of typical laser irradiation (see
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Supplementary Information and Fig. S2). Finally, cell uptake studies showed specific binding of SWNT-ICG-
RGD to US7MG cells compared with the control particles SWNT-ICG-RAD (see Supplementary Information
and Fig. S3).

We then tested the particle’s sensitivity in living subjects by subcutaneously injecting the lower back of
mice (n = 3) with 30 pl of SWNT-ICG-RAD mixed with matrigel at increasing concentrations of 820 pM to 200
nM in multiples of 3. Matrigel alone produced no significant photoacoustic signal (data not shown). Upon
injection, the matrigel solidified, fixing the SWNT-ICG-RAD in place and three-dimensional (3D) ultrasound
and photoacoustic images of the inclusions were acquired (Fig. 2a). While the ultrasound images visualized the
mouse anatomy (e.g., skin and inclusion edges), the photoacoustic images revealed the SWNT-ICG-RAD
contrast in the mouse. The photoacoustic signal from each inclusion was quantified using a three dimensional
region of interest (ROI) drawn over the inclusion. We observed a linear correlation (R* = 0.97) between the
SWNT-ICG-RAD concentration and the corresponding photoacoustic signal (Fig. 2b). Tissue background
signal was calculated as the average photoacoustic signal in areas where no contrast agent was injected.
Extrapolation of the signal-concentration graph reveals that 170 pM of SWNT-ICG-RAD gives the equivalent
photoacoustic signal as the tissue background (i.e., signal to background ratio = 1). This value represents over

300-times improvement in sensitivity compared to plain SWNTs.

Finally, we tested the nanoparticles targeting ability in living mice. Mice bearing US7MG tumor
xenografts (150 mm® in size) were injected through the tail vein (IV) with 200 pl of either targeted SWNT-ICG-
RGD or untargeted SWNT-ICG-RAD particles (n = 4 mice per group) at a concentration of 1.2 uM. We
acquired 3D photoacoustic and ultrasound images of the entire tumor area before and up to 4 hours after the
injection. Mice injected with the targeted SWNT-ICG-RGD particles show significantly higher photoacoustic
signal in the tumor compared with the control group (Fig. 3a). The ultrasound images were used for visualizing
the boundaries of the tumor as well as to validate that no significant movement (beyond 100 um) had occurred
throughout the scan. While the pre-injection photoacoustic signal is primarily due to the tumor’s blood content,
post-injection photoacoustic signal consists of both blood and SWNT-ICG. To subtract out the blood signal
from the images, a subtraction image calculated as the 2 hour post-injection minus the pre-injection image was
calculated. Measurement of the photoacoustic signal from a 3D ROI around the tumor (Fig. 3b) showed that the
photoacoustic signal in the tumor was significantly higher in mice injected with SWNT-ICG-RGD as compared
with the control particles SWNT-ICG-RAD (p < 0.001). For example, at 2 hours post-injection, mice injected
with SWNT-ICG-RGD showed over 100% higher photoacoustic signal in the tumor than mice injected with the
control SWNT-ICG-RAD.

To compare the performance of plain SWNT-RGD to SWNT-ICG-RGD, we incubated US7MG cells,

which express the target a,B3; on their surface, with either particle solution for 2 hours. After incubation, the
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cells were washed 3 times with cold saline to remove unbound particles and placed in a phantom at increasing
concentrations from 25x10° to 6x10° cells per well (n = 3 samples per group) and imaged with the
photoacoustic system (Fig. 4a). Quantitative analysis of the photoacoustic signal from the phantom revealed
that cells exposed to SWNT-ICG-RGD were detected at 20-times lower concentration than cells exposed to
plain SWNT-RGD (p < 0.0001) (Fig. 4a-b). These observations are consistent with the optical absorbance of
SWNT-ICG-RGD being ~20 times higher than plain SWNT-RGD.

Finally, we show that the two kinds of photoacoustic imaging agents we synthesized, SWNT-ICG and
SWNT-QSY can be imaged simultaneously due to their unique, though overlapping, absorbance spectra (Fig.
1b). We created an agarose gel phantom containing increasing concentrations of SWNT-ICG and decreasing
concentrations of SWNT-QSY (starting from 100nM:0nM up to OnM:100nM respectively). Photoacoustic
images of the phantom were taken at wavelengths of 700, 730, 760, 780, and 800 nm and a spectral un-mixing

algorithm was then used to separate each particle’s signal to an individual image (Fig. 5).

We have synthesized, characterized and demonstrated the application of dye-enhanced SWNTs as ultra-
high sensitivity photoacoustic imaging agents. A concentration of 170 pM was estimated to produce an
equivalent photoacoustic signal as tissue background signal, representing 300-times higher sensitivity than plain
SWNTs in living mice. This improvement is likely due to both the higher optical absorption of the particles as
well as the fact that the new particle’s absorption peak is at 780nm where the background tissue photoacoustic
signal is greatly reduced. Intravenous injection of RGD-targeted SWNT-ICG particles to tumor-bearing mice
led to significantly greater accumulation of the particles in the tumor compared to non-targeted control particles.
We demonstrated the ability to multiplex 2 kinds of dye-enhanced SWNTs and showed the ability to detect 20-
times fewer cancer cells when using SWNT-ICG-RGD as the imaging agent, as compared with plain SWNT-
RGD. These results agree with the fact that SWNT-ICG has ~20 times greater optical absorbance compared to
plain SWNT. Applications of the enhanced particles may therefore be exploited to lead to the earlier detection
of cancer by providing the ability to detect smaller tumors.

The in-vivo targeting study results are likely negatively influenced by the effect of photo-bleaching,
where continued laser light exposure of tumor causes reduction in the optical absorption (and photoacoustic
signal) of particles that are bound to the tumor. This particularly affect the targeted group, SWNT-ICG-RGD,
and to a much lesser extent the untargeted group, SWNT-ICG-RAD, which continue to circulate through the
animal’s blood stream unexposed to laser irradiation. Therefore, it is likely that the difference between these
two groups is even greater in reality than reflected in the results.

Most of the work done on photoacoustic contrast agents has been focused on gold nanoparticles'*'* as

13, 14

well as other kinds of nanoparticles ™ *. However, the main challenge that has yet been solved is the delivery of

such agents to the tumor in sufficient amounts to create detectable and specific signal. This is likely due to the
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particles’ large size that leads to rapid clearance by the reticuloendothelial system (RES) upon intravenous
injection, preventing the particles from accumulating at the tumor site. In contrast, the SWNTs used here are 1-2
nm in diameter and 50-300 nm in length. Since the dye we used was attached to the surface of the SWNTs,
under the PEG, it is expected that the total particle size was not significantly changed, thereby allowing the
particles to keep a favorable bio-distribution as previously reported®. Hence, the dye-enhanced SWNTs
presented in this work offer unprecedented photoacoustic signal strengths while maintaining relatively small
size allowing them to target tumors upon intravenous injection. We have also previously published pilot
toxicology studies of the SWNTs with encouraging results in mouse models'” as well as observed they are able
to be excreted via the biliary pathway'®.

The reason for loading a SWNT with many small dye molecules is the high efficiency of optical
absorption of these dyes as compared to their weight. By this measure of absorption divided by weight, ICG is
7-times more efficient than SWNT and ~8500-times more efficient than commercial gold nanorods with peak
absorption at 780 nm.

The dye-enhanced SWNT photoacoustic contrast agents reported here have the capability to bind to
molecular targets while maintaining a high photoacoustic signal. No other imaging modalities or reported
imaging agents have the precise depth information and sub-millimeter spatial resolution at sub-nanomolar

sensitivity that can be achieved with photoacoustic imaging of dye-enhanced SWNTs.

Methods

Dye-enhanced SWNTSs synthesis

A complete description of the synthesis of SWNT-RGD and SWNT-RAD can be found elsewhere®. 250nM
SWNT-RGD or SWNT-RAD was incubated with 2mM Indocyanine Green (ICG) molecules for overnight. ICG
(Spectrum Laboratory Products, CA) (20 mM) was dissolved in DMSO first and then added to SWNT water
solutions with a final DMSO concentration of 10% by volume. Unbound ICG molecules were removed from
the solution by filtration through 100 kDa centrifuge filters (Millipore) and washed for 6-8 times. The SWNTs
used in this work were 50-300 nm in length and 1-2 nm in diameter. The molar concentrations are based on an
average molecular weight of 170 kDa per SWNT (150 nm in length and 1.2 nm in diameter). SWNT-QSY
particles were synthesized the same way except replacing ICG with QSY-21.

Statistical methods. For the SWNT-ICG tumor targeting experiment, we used a mixed effects regression of
signal on fixed factors of time, the square of the time, and group, and random factor of mouse to test the
hypothesis that mice injected with SWNT-ICG-RGD showed an increased photoacoustic signal over time in the

tumor compared with the control group injected with SWNT-ICG-RAD. There were significant effects of group
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(Group 1 higher than Group 2, p=.001), and linear and quadratic effects of time (p<.001 and p=.019,
respectively). There was no significant interaction between group and time effects (p=.915). For the cell uptake
studies, we used the 1-tailed student’s t-test to test whether the group in which U87MG cells were exposed to
SWNT-ICG-RGD had statistically higher signal than the group of cells that was exposed to SWNT-ICG-RAD.
For the experiment comparing SWNT-ICG-RGD to SWNT-RGD in-vitro, signal was compared between groups
by a Wilcoxon test stratified by cell concentration. All statistics were done with Stata Release 9.2 (StataCorp

LP, College Station, TX).

Mouse arrangement in the photoacoustic system. All animal experiments were performed in compliance with
the Guidelines for the Care and Use of Research Animals established by the Stanford University Animal Studies
Committee. A complete description of the photoacoustic system can be found in the Supplementary
Information. Female nude mice were used for all the photoacoustic studies. The mice that were scanned in the
photoacoustic system were fully anesthetized using isoflurane delivered through a nose-cone. Prior to the
photoacoustic scan, the areas of interest were covered with agar gel to stabilize the area and minimize any
breathing and other motion artifacts. A saran-wrap water bath was placed on top of the agar gel. An ultrasonic
transducer, placed in the water bath, was therefore acoustically coupled to the mouse tissues. This setup allowed

the ultrasonic transducer to move freely in 3D while not applying any physical pressure on the mouse.

SWNT-ICG tumor targeting in living mice. Two groups of female nude mice (n = 3 in each group) 6-8 weeks
old were inoculated subcutaneously at their lower right back with 10’ U87MG cells (American Type Culture
Collection, ATCC) suspended in 50 pl of saline (PBS pH 7.4 1X, Invitrogen). The tumors were allowed to grow
to a volume of ~100-150 mm’. Before the injection, photoacoustic and ultrasound images of the mice were
taken. Photoacoustic excitation light was 780 nm to match the absorption peak of SWNT-ICG. The mice were
then injected with 200ul of 1.2uM or either targeted SWNT-ICG-RGD or control SWNT-ICG-RAD into the
tail-vein (IV). During the injection the mice positioning was not changed. After the injection, photoacoustic and
ultrasound images were acquired at: 0.5, 1, 2, 3, 4 hrs. post-injection. The scanning area varied between mice
depending on the tumor orientation, but typically was ~10 mm x 10 mm, with a step size of 0.25 mm. At 4 hr
post-injection, the mice were sacrificed. Using AMIDE software'’, a three dimensional ROI was drawn over the
tumor volume (which was clearly illustrated in the ultrasound images). The mean photoacoustic signal in the

tumor ROI was calculated for each photoacoustic image.
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Figure 1. Characterization of the dye-enhanced SWNT. a, Illustration of SWNT-ICG and SWNT-QSY. ICG
and QSY-21 (red molecules) are attached to the SWNT surface through non-covalent pi-pi stacking bonds.
Polyethylene glycol-5000 (blue molecules) is conjugated to a targeting peptide in one end and to the SWNT
surface on the other end through phospholipids. b, Optical spectra of plain SWNT (green), SWNT-ICG-RGD
(red), SWNT-ICG-RAD (blue) and SWNT-QSY-RGD (black). The similarity of SWNT-ICG-RAD and SWNT-
ICG-RGD spectra suggests that the peptide conjugation does not notably perturb the photoacoustic signal. c,
The photoacoustic signal produced by SWNT-ICG was observed to be linearly dependent on the concentration
(R* =0.9833).
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Figure 2. Photoacoustic detection of SWNT-ICG in living mice. a, Mice were injected subcutaneously with
SWNT-ICG at concentrations of 0.82-200 nM. The images represent ultrasound (gray) and photoacoustic
(green) vertical slices through the subcutaneous injections (dotted black line). The skin is visualized in the
ultrasound images, while the photoacoustic images show the SWNT-ICG distribution. The white dotted lines on
the images illustrate the approximate edges of each inclusion. b, The photoacoustic signal from each inclusion
was calculated using 3D regions of interest and the ‘background’ represents the endogenous signal measured
from tissues. The error bars represent standard error (n = 3 mice). Linear regression (R? = 0.97) of the
photoacoustic signal curve estimates that a concentration of 170 pM of SWNT-ICG will give the equivalent

background signal of tissues.
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Figure 3. SWNT-ICG-RGD tumor targeting in living mice. a, Ultrasound (gray) and photoacoustic (green)
images of one vertical slice through the tumor (dotted black line). The ultrasound images show the skin and the
tumor boundaries. Subtraction photoacoustic images were calculated as 2 hr post-injection minus pre-injection

images. As can be seen in the subtraction images, SWNT-ICG-RGD accumulates in higher amount in the tumor
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as compared to the control SWNT-ICG-RAD. b, Mice injected with SWNT-ICG-RGD showed significantly
higher photoacoustic signal than mice injected with the untargeted control SWNT-ICG-RAD (p < 0.001). The

error bars represent standard error (n =4 mice)
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Figure 4. Comparison of plain SWNT-RGD to SWNT-ICG-RGD. a. Photoacoustic vertical slice image
through a gel phantom containing increasing number of cells exposed to SWNT-ICG-RGD and SWNT-RGD.
While 1.7x10° cells exposed to SWNT-RGD are barely seen on the image, a clear photoacoustic signal was
observed from 1.4x10° cells exposed to SWNT-ICG-RGD. The signal inside the ROI (dotted white boxes) is
not homogenous due to possible aggregates of cells. b. Quantitative analysis of the photoacoustic signals from
the phantom (n = 3) showed that SWNT-ICG-RGD can see ~20-times less cancer cells than SWNT-RGD can (p
<0.0001). The background line represents the average background signal in the phantom. Linear regression was

calculated on the linear regime of both curves.
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Figure 5. Multiplexing of SWNT-ICG with SWNT-QSY particles in a phantom. A phantom with various
concentrations of SWNT-ICG and SWNT-QSY was scanned under the photoacoustic instrument at wavelengths
of 700, 730, 760, 780, and 800 nm. A spectral un-mixing algorithm based on least-squares was used to separate
the signals of SWNT-ICG particles (green) from SWNT-QSY particles (red). Notice that no SWNT-QSY signal
is seen in the well with pure SWNT-ICG and vice versa, despite the fact that the two particles have overlapping

spectra.

28



3. Abstract presented SPIE 2009:

Title: Photoacoustic Molecular Imaging using Single Walled Carbon Nanotubes in Living Mice

Authors: Adam de la Zerda'?, Cristina Zavaleta', Shay Keren', Srikant Vaithilingamz,
Sunil Bodapatil, Robert Teed', Zhuang Liu®, Jelena Levi', Bryan R. Smith', Te-Jen Maz,
Omer Oralkan®, Zhen Cheng', Xiaoyuan Chen', Hongjie Dai’, Butrus T. Khuri-Yakub?®, Sanjiv S. Gambhir'*

Abstract Text for Online or Printed Programs (100 words, early release)

Photoacoustic molecular imaging is an emerging modality offering non-invasive high resolution imaging of
diseases using an external photoacoustic imaging agent. Here we demonstrate for the first time the utility of
single walled carbon nanotubes as disease-targeted photoacoustic imaging agents in living mice. The carbon
nanotubes were conjugated to RGD-peptides to target the o,f; integrin that is associated with tumor
angiogenesis. Intravenous administration of these targeted carbon nanotubes to tumor-bearing mice showed
significantly higher photoacoustic signal in the tumor as compared to non-targeted carbon nanotubes. These
results were verified ex-vivo using a Raman microscope that is sensitive to SWNTs Raman signal.

Keywords:
Photoacoustic Imaging

Opotoacoustic Imaging
Molecular Imaging
Carbon Nanotubes

Abstract Text for Technical Review Purposes (250 words, publicized during the meeting)

Photoacoustic molecular imaging is an emerging technology offering non-invasive high resolution imaging of
the molecular expressions of a disease using a photoacoustic imaging agent. Here we demonstrate for the first
time the utility of single walled carbon nanotubes (SWNTs) as targeted imaging agents in living mice bearing
tumor xenografts. SWNTs were conjugated with polyethylene-glycol-5000 connected to Arg-Gly-Asp (RGD)
peptide to target the a,[3; integrin that is associated with tumor angiogenesis.

In-vitro, we characterized the photoacoustic spectra of the particles, their signal linearity and tested their uptake
by a,Bs-expressing cells (U87MG). The photoacoustic signal of SWNTs was found not to be affected by the
RGD conjugation to the SWNTs and was also found to be highly linear with concentration (R*=0.9997 for 25-
400nM). The cell uptake studies showed that RGD-targeted SWNTSs gave 75% higher photoacoustic signal than
non-targeted SWNTs when incubated with US7MG cells.

In-vivo, we measured the minimal detectable concentration of SWNTs in living mice by subcutaneously
injecting SWNTs at increasing concentrations. The lowest detectable concentration of SWNTs in living mice
was found to be 50nM. Finally, we administered RGD-targeted and non-targeted SWNTs via the tail-vein to
U87MG tumor-bearing mice (n=4 for each group) and measured the signal from the tumor before and up to 4
hours post-injection. At 4 hours post-injection, tumors of mice injected with RGD-targeted SWNTs showed 8
times higher photoacoustic signal compared with mice injected with non-targeted SWNTs. These results were
verified ex-vivo using a Raman microscope that is sensitive to the SWNTs Raman signal.
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4. Abstract 2 presented at SPIE 2009:

Enhanced Sensitivity Targeted Photoacoustic Molecular Imaging Agents in Living Mice

Adam de la Zerda, Zhuang Liu, Cristina Zavaleta, Sunil Bodapati, Robert Teed, Srikant Vaithilingam, Te-Jen
Ma, Omer Oralkan, Xiaoyuan Chen, Butrus T. Khuri-Yakub, Hongjie Dai, Sanjiv Sam Gambhir

Abstract Text for Online or Printed Programs (100 words, early release)

Photoacoustic imaging of living subjects offers significantly higher spatial resolution at increased tissue depths
compared to purely optical imaging techniques. We developed a new version of extremely bright photoacoustic
imaging agent based on single walled carbon nanotubes (SWNTs) and the small molecular dye Indocyanine
Green (ICG). We measured the photoacoustic signal from the new particle in-vitro and in-vivo and found it is
17-times higher than plain SWNTs. We conjugated the particles to RGD-peptides to target the a,f; integrin
associated with tumor angiogenesis and showed that it can bind selectively to tumors when injection
intravenously to living mice.

Abstract Text for Technical Review Purposes (250 words, publicized during the meeting)

Photoacoustic imaging of living subjects offers high spatial resolution at increased tissue depths
compared to purely optical imaging techniques. We have recently shown that intravenously injected single
walled carbon nanotubes (SWNTs) can be used as targeted photoacoustic imaging agents in living mice using
RGD peptides to target a,f; integrins.

We have now developed a new targeted photoacoustic imaging agent based on SWNTs and Indocyanine
Green (SWNT-ICG) with absorption peak at 780nm. The photoacoustic signal of the new imaging agent is
enhanced by ~17 times as compared to plain SWNTs. To synthesize this particle, SWNTs were coupled to RGD
peptides through polyethylene glycol-5000 grafted phospholipid. ICG molecules were then attached to the
surface of each SWNT non-covalently through pi-pi stacking interactions.

In-vitro, we measured the serum stability of the particles and through cell uptake studies with U87MG
cells, we verified that the particles bind selectively to a,p3 integrin. In-vivo, we injected the imaging agents
subcutaneously to living mice (n=4) and were able to detect concentrations as low as 3nM, a 17-fold
enhancement in sensitivity over plain SWNTs (p<0.05). Finally, we injected U§7MG tumor-bearing mice (n=4)
with RGD-targeted SWNT-ICG via the tail-vein. Control mice were injected with non-targeted SWNT-ICG.
Upon administration, the RGD-targeted particles created a significantly higher photoacoustic signal in the
tumors than the non-targeted particles (p<0.05). These results were verified ex-vivo using a Raman microscope
sensitive to the SWNTs Raman signal.

In summary, the new SWNT-based particle can target tumors in living mice while possessing a very
high photoacoustic signal.
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5. Abstract presented at World Molecular Imaging Congress 2009

Ultra High Sensitivity Targeted Photoacoustic Imaging Agents for Cancer Early Detection in Living Mice

Adam de la Zerda*, Zhuang Liu*, Sunil Bodapati, Robert Teed, Cristina Zavaleta, Srikant Vaithilingam,
Xiaoyuan Chen, Butrus T. Khuri-Yakub, Hongjie Dai+,
Sanjiv Sam Gambhir

Photoacoustic molecular imaging of living subjects offers high spatial resolution at increased tissue
depths compared to optical imaging strategies. We have recently demonstrated single walled carbon nanotubes
(SWNTs) conjugated to Indocyanine Green (SWNT-ICG) as targeted photoacoustic imaging agents in-vitro.

In the current work, we created a significantly improved SWNT-ICG particle with over 1000-times
better sensitivity than plain SWNT and demonstrated their ability to target tumors when injected intravenously
to a living mouse.

The targeted SWNT-ICG particles were synthesized by coupling of ICG molecules to the surface of
SWNT-RGD particles through pi-pi stacking interactions. Control SWNT-ICG particles were created using the
untargeted SWNT-RAD instead.

We verified the particles are stable in serum and target o,f3 integrin through cell uptake studies with
U87 cells. We found the photoacoustic signal produced by the particles to be highly linear to their concentration
both in phantom studies (R* = 0.99) as well as in living mice injected with the particles subcutaneously (R* =
0.971). We further measured the detection sensitivity of SWNT-ICG in living mice (n = 3 mice) and found it to
be 30 pM. This represents more than 3 orders of magnitude improvement compared to plain SWNTSs sensitivity
in living mice (p < 0.05). Furthermore, xenograft-bearing mice were tail-vein injected with RGD-targeted
SWNT-ICG. At 2 hours post-injection, mice injected with the RGD-targeted particles showed 2.1-times higher
photoacoustic signal in the tumor compared to mice injected with control particles (p < 0.05, n = 4 mice).
Finally, we demonstrated the superiority of the SWNT-ICG-RGD particles by incubating them with U87 cells
and detecting in living mice 1000-times such cells than if the cells were incubated with plain SWNT-RGD.

This is the first photoacoustic imaging agent tested and targeted in living animals that we know of that
can reach such a high sensitivity of 30 pM.
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