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Abstract – As a state-of-the-art algorithm, the Interacting 
Multiple Model (IMM) estimator is widely used for 
maneuvering target tracking. However, there still is uncertainty 
in how to design the multiple models used by an IMM estimator. 
In this context, this paper compares three maneuver models, 
namely, variable process noise, variable state dimension, and 
discrete acceleration inputs via computer simulations. The first 
two modeling techniques belong to the design approach using 
multiple bandwidths whereas the latter technique utilizes 
matched filters. The three models exhibit characteristic errors 
throughout a maneuver, which are termed n-, L-, and u-shaped, 
respectively. Compared to total root mean squared (RMS) 
errors, a time-equalized RMS (eRMS) may be more appropriate 
for a maneuvering target. The total and equalized RMS values 
are illustrated for the IMM under the three maneuver models 
for performance evaluation and filter tuning. 

Keywords: IMM, Maneuver Models, Evaluation, Tuning. 

1 Introduction 
The multiple model approach is a viable technique widely used in 
signal processing, state estimation, and dynamic control. It is 
particularly suited for cases where signal and system models have 
large uncertainties and/or the models are subject to unknown 
changes over time. In the context of maneuvering target tracking, 
a target’s maneuvers present such uncertainties because initiation 
and termination of a maneuver as well as the type and magnitude 
of maneuver are all unknown to a tracker. 

A Kalman filter has an inherent ability to follow the changes in 
state (i.e., a tracking capability) partly from the state transition 
model (time update) and partly from the measurement update. In 
other words, a tracking filter fits a target motion model (e.g., of 
nearly constant velocity with acceleration noise) into noisy 
measurements. For a fixed model design, a filter has to 
compromise between dynamic responsiveness and steady state 
noise performance when changes occur inside the system. In 
contrast, multiple model approaches, exemplified by the Multiple 
Model Adaptive Estimator (MMAE) [11] and Interacting 
Multiple Model (IMM) algorithm [4], are data-driven variable-
gain (adaptive) filters. Indeed, it is shown in [7] that the IMM 
outperforms the Kalman filter for large maneuver indexes. 

A comprehensive survey of maneuvering target tracking using the 
multiple-model methods is available in [8]. A comparative study 
of various multiple model algorithms for tracking maneuvering 
targets is reported in [13] wherein seven algorithms, namely, the 
basic multiple model (MM) algorithm, a first order generalized 
pseudo Bayesian algorithm (GPB1), GPB2, IMM, B-best based 
MM algorithm, Viterbi-based MM algorithm, and re-weighted 
IMM, were compared but no clear winner was found among 
them. The multiple model algorithms and particularly the IMM 
algorithm and its variants have been extensively studied [9]. The 
IMM estimator is compared with the optimal estimator in [2]. Its 

performance is comparable to a GPB2 that uses N2 Kalman filters 
per step but only requires the computation load of a GPB1 
algorithm that only needs N Kalman filters per step where N is the 
number of filter models. However, there still is uncertainty as to 
how to design the multiple models used by a multiple model 
algorithm such as the IMM estimator.  

In this paper, we investigate three maneuver modeling methods. 
These methods have been used by various authors for different 
applications [1] but no comparison of them has been reported, at 
least to the knowledge of the authors. As will be seen later in the 
paper, such comparison is valuable because it provides helpful 
information for those who have to decide which modeling method 
to use for the tracking problem at hands. 

The first method, variable process noise, is the simplest, which 
has position and velocity as the target state and assumes two 
nearly constant velocity motion models. One constant velocity 
model has a small process noise (acceleration) for the quiescent 
mode without maneuver while the other constant velocity model 
with a large process noise is intended for the maneuvering mode. 

The second method, variable state dimension, also has two 
models. One again is a nearly constant velocity model having 
position and velocity as the state with a small process noise for 
acceleration in the quiescent mode without maneuver. The 
maneuvering model now has acceleration as its state in addition 
to position and velocity. 

The above methods belong to the design approach using two 
bandwidths. The quiescent filter has a small bandwidth to smooth 
out noise in non-maneuvering periods. The maneuvering filter has 
a large bandwidth to be responsive to maneuvers (and to noise in 
measurements as well). Strictly speaking, the more proper words 
to be used here should be “instantaneous bandwidth” or 
“processing gain” because of the time-varying nature of Kalman 
filter except in steady state. 

The third method, discrete acceleration input, explicitly models 
maneuver dynamics wherein a set of models are used to cover 
different types of possible maneuvers and the uncertain intervals 
of maneuver parameters. This in fact falls into the design 
approach of matched filters. Many model set design 
methodologies are described in [9]. For simplicity, the particular 
maneuver considered in this paper is linear acceleration. The 
analysis can be readily extended to other types of maneuvers in 
higher dimensions. 

Target maneuvers are relatively infrequent events of short 
durations. The multiple model algorithms use a transition 
probability matrix to characterize such maneuver events as 
switching between different target motion models or filters, each 
represented by a mode (model or filter) probability that the 
corresponding mode is the true one. When the same 
measurements that are used to update the target state are also used 
to determine the mode probabilities, the filters typically exhibit a 

940



Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number. 

1. REPORT DATE 
JUL 2008 2. REPORT TYPE 

3. DATES COVERED 
  00-00-2008 to 00-00-2008  

4. TITLE AND SUBTITLE 
Characteristic Errors of the IMM Algorithm under Three Maneuver
Models for an Accelerating Target 

5a. CONTRACT NUMBER 

5b. GRANT NUMBER 

5c. PROGRAM ELEMENT NUMBER 

6. AUTHOR(S) 5d. PROJECT NUMBER 

5e. TASK NUMBER 

5f. WORK UNIT NUMBER 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
Air Force Research Lab,Wright Patterson AFB,OH,45433 

8. PERFORMING ORGANIZATION
REPORT NUMBER 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 

11. SPONSOR/MONITOR’S REPORT 
NUMBER(S) 

12. DISTRIBUTION/AVAILABILITY STATEMENT 
Approved for public release; distribution unlimited 

13. SUPPLEMENTARY NOTES 
11th International Conference on Information Fusion, June 30 ? July 3, 2008, Cologne, Germany. 

14. ABSTRACT 
see report 

15. SUBJECT TERMS 

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 
ABSTRACT 
Same as

Report (SAR) 

18. NUMBER
OF PAGES 

8 

19a. NAME OF
RESPONSIBLE PERSON 

a. REPORT 
unclassified 

b. ABSTRACT 
unclassified 

c. THIS PAGE 
unclassified 

Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Std Z39-18 



 

transient delay to react to errors developed in the predicted 
measurements and to distribute the errors to the states for 
correction (update). As part of the feedback mechanism, the 
transient errors are in fact a necessity. But the question is how 
much and for how long, which depends on the motion model(s) 
used by the filters and the filter design. Indeed, for the three 
models investigated in this paper, they exhibit characteristic 
errors throughout a maneuver, which are termed n-, L-, and u-
shaped, respectively. 

The total root mean squared (RMS) errors are typically used as a 
performance metric. For a maneuvering target, however, a time-
equalized RMS (eRMS) may be more appropriate. The total and 
equalized RMS values are illustrated in this paper with computer 
simulations for the IMM under the three maneuver models for 
performance evaluation and filter tuning. 

The paper is organized as follows. In Section 2, the three 
maneuver models for the IMM algorithm are formulated. In 
Section 3, the total RMS and equalized RMS are presented. 
Simulation scenarios and results are analyzed in Section 4 
together with characteristic error shapes for the three models. In 
Section 5, filter tuning based on the total RMS vs. equalized RMS 
is described. Finally in Section 6 conclusions are offered together 
with future works. 

2 Three Maneuver Models for IMM 
After presenting the target truth model, this section describes the 
three maneuver models to be compared in this paper. 

2.1 Target Truth Model 
For simplicity and clarity, we will consider the one-dimensional 
(1D) case. Similar equations can be written for other dimensions 
of independent motions. The 1D target truth model is given by: 
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The target state consists of position and velocity, i.e., xt = [pt, vt]’, 
which are initialized at 0 m and 10 m/s, respectively. The 
sampling interval is T = 1 second. The simulation time is t = 0 to 
120 seconds and an acceleration of at = 5 m/s2 occurs during t = 
50 to 70 seconds. The measurement noise standard deviation is σn 
= 5 m. 

2.2 Variable Process Noise 
In this method, the unknown acceleration with its change over 
time is dealt with by the following model: 
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where the process noise wt is used to account for our knowledge 
(or lack of) about the maneuver acceleration. In the initial study, 
the measurement model is the same as the truth model (1b) with 
σn = 5 m. 

Two motion models are used. The quiescent model has a small 
process noise σw = 0.1 m/s2. This provides a nearly constant 
velocity model with which the filter will weight more on the 
historic data and motion model than the noisy measurements. 

The maneuver model has a large process noise σw = 5 m/s2, which 
has the effect of increasing the state estimation error covariance. 
It leads to a large Kalman filter gain that will weight more on 
latest measurements than historic data and the motion model. 
Instead of a Gaussian distribution with large variance in the 
maneuvering mode, the Levy distribution (a heavy tailed noise 
distribution) recently has been used in the IMM [14], which was 
shown to improve the IMM performance. 

The two models are initialized with equal model probabilities and 
the Markov matrix of transition probabilities between the two 
models is given by:  
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The filter based on the nearly constant velocity model in (2) 
becomes the α-β filter in the steady state. For an α-β filter, the 
filter design as well as its performance is determined by the 
maneuver index defined as T2σw/σn [1, 6]. The filter gain is 
further related to the damping ratio (ζ) and natural frequency 
(ωn), thus allowing the performance specification in terms of 
bandwidth and rising time [12]. 

What is implied in this method is that by opening up the 
bandwidth with a large gain, the filter will be able to correct 
predicted measurement errors and eventually catch up with the 
target after a maneuver. In other words, this method is based on 
the error-driven correction mechanism. A period of transient 
errors is evitable and in fact necessary for this method to work. 

2.3 Variable State Dimension 
In this method, two models are used. One is again the nearly 
constant velocity model with a small process noise σw = 0.1 m/s2 
as in (2). The other has an augmented state where the unknown 
acceleration is estimated explicitly. It is a nearly constant 
acceleration model: 
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where the process noise σw = 5 m/s2 is set large. This process 
noise variance, added onto the estimation error covariance for this 
state component, determines the weighting factor, thus enabling 
fast estimation of at. 

An alternative model for the acceleration in (4) is given below: 

t

t

t

t

t

t

t

w
a
v
p

T
TT

a
v
p

















−
+

































=
















+

+

+

2

2
2
1

1

1

1

1
0
0

00
10

1

αα

 (5) 

where wt is the noise for the acceleration state at with σw = 5 m/s2.  

The two models also have equal initial model probabilities and 
the Markov matrix of transition probabilities between the two 
models is the same as in (3). 

This method estimates the underlying acceleration from the noisy 
data. When there is no maneuver, it tends to be influenced by 
measurement noise while trying to extract acceleration from it. 
When there is a maneuver, it takes time to obtain a correct 
estimate of (i.e., to converge to) the true value. This is also based 
on the error-driven correction mechanism and again it will have a 
period of transient errors. 
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2.4 Discrete Acceleration Input 
The two methods described above are data-driven in the sense 
that it estimates the unknown acceleration from data. It does so by 
choosing different filter gains so as to weight either more on 
historic data (non maneuver) or latest measurements (maneuver). 
The third method studied here can be viewed as a parallel search 
approach (or a matched filter). It divides the uncertainty interval 
of acceleration into search points. Each search point is used as a 
discrete input. The model is written as:  

)(
10

1 2
2
1

1

1
tt

t

t

t

t wa
T
T

v
pT

v
p

+







+
















=









+

+  (6) 

where the process noise is used to account for modeling errors in 
maneuver acceleration with σw = 0.1 m/s2. 

For three discrete acceleration values (e.g., at = 0, ±a), the three 
models also have equal initial model probabilities (1/3) and the 
Markov matrix of transition probabilities between the three 
models is given by: 
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When at = 0, (6) is exactly the same as the nearly constant 
velocity model in (2). When one of the discrete accelerations 
happens to match the true acceleration in (1a), (6) uses a small 
process noise in the maneuver mode as in the quiescent mode to 
obtain the best noise performance. However, when at (≠ 0) is 
away from the true acceleration, a relatively large process noise 
can be used to account for the mismatch. Again, it is a tradeoff 
between noise performance and responsiveness. 

This method can also be viewed as a parametric approach (it 
parameterizes the unknown acceleration) and the obvious 
question is how to divide the uncertainty interval of acceleration, 
that is, how many search points and their spacing and placement 
[9]. Over-parameterization (i.e., dense search points over an 
interval) is counter-productive, not only because it requires more 
computation but also closely-spaced models compete for limited 
data and make them “un-identifiable,” thus biasing the average. 
In a sense, this violates the condition for the total probability 
theorem. A proper choice of model spacing needs to be 
commensurate with the underlying maneuver index [15]. 

3 Total vs. Equalized Root Mean Squared (RMS) 
Performance metrics have been designed to evaluate estimation 
errors in position and velocity and to compare different tracking 
algorithms [3, 10]. However, different applications may have 
different requirements on different aspects of tracking 
performance. For example, track continuity with uniform tracking 
errors is important to surveillance. Targeting for weapon delivery 
requires better accuracy as the time-to-go becomes smaller. In a 
dense target environment, target maneuvers become important 
because it creates confusion and track swap for closely spaced 
targets. 

Fig. 1 depicts a typical profile of estimation errors in terms of the 
RMS value as a function of time. For a maneuvering target, this 
RMS value may contain six segments as shown in Fig. 1: 

(1) Tracking errors due to initialization, 

(2) Tracking errors prior to maneuver, 

(3) Tracking errors after maneuver initiation, 

(4) Tracking errors during maneuver, 

(5) Tracking errors after maneuver termination, and 

(6) Tracking errors after maneuver. 

The 2nd segment contains mostly the steady-state tracking errors 
and so does the 6th segment in the non-maneuver mode whereas 
the 4th segment contains the steady-state tracking errors in the 
maneuver mode. The 1st segment contains the initial transient 
errors; the 2nd segment contains the maneuver transient error, and 
the 5th segment contains the maneuver termination transient error. 
Since the steady-state and transient errors (prior to and after 
maneuvers) are quite different, the ratios of time intervals in these 
six segments are important factors affecting the total RMS 
valuation. This observation leads to the introduction of the time-
equalized RMS value. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1 Definition of Maneuver Events and Time-Weighted RMS Value 

Since the maneuvers are relative infrequent events, the steady-
state errors may become overwhelming, thus masking the 
transient errors in the total RMS (tRMS). The conventional total 
RMS can be written as: 
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where iii xx −= ˆε  is the estimation error of the quantity x, N 
is the total number of RMS values, RMSj is the total RMS value 
per segment, and Nj is the number of RMS values per segment. 

Clearly the ratios Nj/N in (8) weight down those events of short 
durations. Yet, they are critical events which are important for 
tracking performance evaluation. A time-equalized RMS (eRMS) 
is defined as: 
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where RMSj is the total RMS value per segment. 

To calculate the time-equalized RMS, one has to divide the target 
trajectory into maneuver events-related segments. This is rather 
simple in simulation where we know the truth about maneuvers. 
The concept of time-equalization can be applied to the normalized 
estimation error squared (NEES). 

In (9), all the segments are given equal importance. However, if 
an application has different emphases on different segments, the 
above definitions can be adjusted accordingly. Metrics similar to 
the equalized RMS have been used in the past for performance 

N1 N2 N3 N4 N5 N6

Total Time of Tracking: N = ∑
=

6

1i
iNTotal Time of Tracking: N = ∑

=

6

1i
iN

Initialization

Non-Maneuver
Steady-State

Maneuver
Onset

Transient

Maneuver
Termination
Transient

Non-Maneuver
Steady-State

Maneuver Steady-State

RMS1 RMS2 RMS3 RMS4 RMS5 RMS6

942



 

evaluation. Many authors have used tabulated RMS values, peak 
values, averages, peak to average ratios per segment for instance.  

4 Three Maneuver Models in IMM 
For the same simulation scenario, three IMM trackers using the 
three models described in Section 2 are applied. Although 
individual trackers are not optimized for the given scenario, their 
distinct behaviors are clear from the results, which are presented 
below with analysis. 

Fig. 2 shows the position estimation error RMS for the three 
methods. Except for two small bumps after the start and end of 
the maneuver, the errors for Method 3 with discrete inputs (the 
green curve) remain flat with some small variations. The errors 
for Method 1 with variable process noise (the red curve) match 
those of Method 3 during the maneuver but smaller in other 
periods. In contrast, the errors for Method 2 with variable state 
dimension (the blue curve) are smallest (and smoothest) during 
the quiescent periods but largest right after the start of the 
maneuver. Both Methods 1 and 3 are slightly below this value 
whereas Method 2 is only below this level in quiescent periods. 

The differences of these three methods can be seen more clearly 
in Fig. 3 for the velocity estimation error RMS. The errors for 
Method 3 with discrete inputs (the green curve) are smaller than 
other two methods during the maneuvering period. It is even 
smaller than quiescent periods. However, it still has two small 
bumps after the start and end of the maneuver. The errors for 
Method 1 with variable process noise (the red curve) are smaller 
than those of Method 3 during quiescent periods but larger during 
the maneuver period. The errors for Method 2 with variable state 
dimension (the blue curve) are again smallest (and smoothest) 
during the quiescent periods but largest right after the start and 
end of the maneuver. 

It is interesting to note that even though the three methods use the 
same quiescent model, their tracking performance in quiescent 
periods is quite different. This is because interacting of all models 
involved in the IMM. In the maneuver period, the errors of 
Method 1 with variable process noise (the red curve) are n-
shaped, the errors of Method 2 with variable state dimension (the 
blue curve) are L-shaped, and the errors for Method 3 with 
discrete inputs (the green curve) are u-shaped. 

The different behaviors are analyzed below in reference to a 
particular sample run as shown in Figs. 4 through 10. It is easy to 
understand why the errors of Method 1 with variable process 
noise are n-shaped, particularly for the velocity estimates. This is 
because the maneuver model of Method 1 does not include an 
acceleration state but is a constant velocity model with large 
process noise. It thus allows for larger and faster velocity updates 
than the quiescent counterpart. 

This is shown in Fig. 4 for the innovations (i.e., the predicted 
measurement errors) for the quiescent model (the blue curve) and 
the maneuver model (the green curve). The two curves have about 
the same shapes during the quiescent periods but the green curve 
for the maneuver model is larger in size. The model probability 
for the quiescent model is therefore larger than the maneuver 
model as shown in Fig. 5. With the process noise σw = 0.1 vs. 5 
m/s2, the model probability is 0.6 vs. 0.4, not definitely in favor 
of the quiescent model, though. 

In the maneuver period, the predicted measurement errors for the 
quiescent model are larger than those of the maneuver model, 
indicating large velocity estimates are used to catch up witch 
acceleration. This explains the presence of small bias in position 
estimate but large bias in velocity estimates. This is also reflected 

in the model probabilities where the maneuver model is higher 
than the quiescent model over the maneuver period as shown in 
Fig. 5 (some pikes reach above 0.9 but there are lots of volatility). 

The errors of Method 2 with variable state dimension (the blue 
curve) are L-shaped as shown in Figs. 2 and 3 for the position and 
velocity estimates, respectively. The large errors, right after the 
maneuver, are due to the latency of the filter, which takes time 
(i.e., measurements) to estimate the underlying maneuver. Once 
this is done, the errors drop to the lowest level. Fig. 7 shows the 
model probability that rapidly rises to almost unity after the 
maneuver during which the position and velocity errors 
accumulate. The acceleration estimate is shown in Fig. 10. 

Just like the fact that it takes time for the filter to estimate the 
acceleration, the filter also takes time to dump the acceleration 
estimate (discharge from an integrator) when the maneuver is 
terminated. That is the reason for the small rise in errors after 
maneuver termination. This is true for all higher-order models 
where integrators need to be charged and discharged. There are 
actually double actions going on. On the one hand, the maneuver 
model itself is estimating (or de-estimating) the acceleration 
which just vanishes. On the other hand, it transitions from the 
maneuver model to the quiescent model. 

In the quiescent periods, the two models in Method 2 have 0.51 
vs. 0.49 probabilities of being in favor as shown in Fig. 7. Their 
innovations are of about the same shape and size. This is different 
from Method 1 where the maneuver model has large errors. This 
is because in Method 2, the maneuver model attempts to estimate 
acceleration from noisy measurements. When there is no 
maneuver, its value is small as shown in Fig. 10 and it contributes 
little to prediction errors. In contrast, the maneuver model in 
Method 1 directly opens its processing gain and weights more on 
measurements, thus subject to noise. 

The position errors for Method 3 with discrete inputs (the green 
curve) are comparable to (slightly larger than) those of Method 1 
with variable process noise (the red curve) as shown in Fig. 2. 
However, Method 3 has the lowest errors in velocity during 
maneuver except for the u-shaped spikes after the start and end of 
the maneuver. In a sense, the error spikes are necessary to flash 
out old estimates and to establish new estimates. 

The innovations for the three models in Method 3 are shown in 
Fig. 8, which have about the same shape except they are shifted 
upwards and downwards by their discrete inputs. During 
quiescent periods, the measurement prediction errors stabilize 
around +20 and -20 m for the models with -5 and +5 m/s2. Since 
these filters are mixed at each prediction and updating cycle, with 
the velocity error of 4 m/s, the equivalent time span is 2 to 3 
updating intervals (T = 1 second) under 5 m/s2 to develop such 
position errors. 

The model probability for the quiescent model is close to 0.9 but 
with large spikes. The state mixed from the three models 
therefore produces the largest position and velocity errors among 
the three methods during the quiescent periods. However, during 
the maneuver period, the maneuver model with 5 m/s2 prevails 
with the model probability close to unity as shown in Fig. 9. That 
is why the velocity errors are the smallest for Method 3. 

Fig. 10 shows the acceleration estimates for Method 2 (blue) and 
Method 3 (green). Method 1 does not include an acceleration 
state so its curve (red) stays at zero. Method 3 produces the 
acceleration estimate rather close to the true value whereas 
Method 2 has delay and does not cover the entire duration. 
However, during the quiescent periods, the acceleration estimate 
of Method 3 remains volatile with large spikes corresponding to  
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Fig. 2 Comparison of Position Errors 
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Fig. 3 Comparison of Velocity Errors 
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Fig. 4 Innovations for Method 1 
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Fig. 5 Model Probabilities for Method 1 
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Fig. 6 Innovations for Method 2 
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Fig. 7 Model Probabilities for Method 2 
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Fig. 8 Innovations for Method 3 
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Fig. 9 Model Probabilities for Method 3 
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Fig. 10 Acceleration Estimates 
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Fig. 11 Measurement Errors (100 Runs) 
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Fig. 12 Position Error RMS for Three Methods 
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Fig. 13 Velocity Error RMS for Three Methods 
 

 
those in measurement noise. This makes it very responsive but 
also creates variations in model probabilities as well as in velocity 
and position estimates. In contrast, the acceleration estimate of 
Method 2 is close to zero and smoothing during quiescent 
periods. This makes its velocity and position estimates small but 
it is lack of responsiveness. These are examples showing 
tradeoffs between quiescent and maneuver periods. 

Fig. 11 shows a sample measurement error, the mean value of 
measurement errors over the 100 Monte Carlo runs, and the RMS 
value of the measurement errors, which is close to the true value 
of σn = 5 m. 
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5 Evaluation and Tuning 
By means of computer simulation, this section investigates the 
use of total RMS and equalized for performance evaluation and 
filter tuning. 

5.1 Evaluation under Total & Equalized RMS 
Consider the same simulation scenario presented in the previous 
section. Everything remains the same except for the simulation 
time, which is doubled now. That is, the relative maneuver period 
ratio is reduced from 20/120 = 16.7% to 20/240 = 8.3%. For the 
simulation, the time interval is divided to two time zones: one is 
for the initial transition (from 1 to 8) and maneuver plus transition 
(from 50 to 78) and the other is for quiescent periods (from 9 to 
49 and from 79 to 240). 

Figs. 12 and 13 show the position and velocity error RMS values 
for the three methods, which are very similar to Figs. 2 and 3 over 
the initial half of simulation. The blue curve has large errors 
during maneuver periods but small errors otherwise. If the non-
maneuver period is rather long, the maneuver errors in position 
and velocity are likely to be averaged out. This is indeed the case 
as shown in Table 1. 

In Table 1, the first data column lists the total RMS for position 
estimates. Compared to Method 1 and Method 3, the value of 
Method 2 is slightly larger. It can be expected that if the 
simulation interval is increased a bit longer, this value will be 
smaller than the other two. However, in the third data column, the 
time-equalized RMS for position estimates of Method 2 is bigger 
than both Method 1 and Method 3 when the averaging effect is 
removed. 

The averaging effect is more evident when we compare the 
velocity errors. The second data column shows that the total RMS 
of velocity estimates for Method 2 is smaller than Method 1 and 
Method 3. In contrast, the four data column shows that the time-
equalized RMS of velocity estimates for Method 2 is bigger than 
Method 1 and Method 3. 

Table 1 Total RMS and Time-Equalized RMS 

 Total RMS Time-Equalized RMS 

 Position Velocity Position Velocity 

Method 1  4.1218 3.5088 4.3540 4.3033 

Method  2  4.9162 2.9171 7.8811 5.1741 

Method 3  4.6369 4.2124 4.7219 4.2955 

 

The use of time equalized RMS values eliminates the effect of 
time duration, which may otherwise mask infrequent events in 
calculating the total RMS. Furthermore, the equalized RMS is 
better suited to tune the IMM filter for maneuver scenarios as 
shown next. This is similar to sensitivity analysis of filter 
performance as a function of design parameters [5]. 

5.2 Tuning under Total and Equalized RMS 
The parameters of individual filters using the three maneuvering 
models can be optimized in terms of the conventional total vs. 
time equalized RMS. For Method 1 with variable process noise, 
the key filter parameters are the process noise variances for the 
quiescent (q0) and maneuvering (q1) models. In the study, the true 
acceleration is at = 5 m/s2. Both the true and model measurement 
variances are set to be the same as σ = σt = 5 m. The value for the 
quiescent process noise model is set to be q0 = 0.01 m/s2. The 

value for the maneuver process noise model is tuned or varied as 
q1 = κ at for κ = 0.1 to 10. 

Fig. 14 shows the two position error RMS values as a function of 
the tuning parameter κ. One is the conventional total RMS (blue) 
and the other is the equalized RMS (green). It is interesting to see 
that for the conventional total RMS, the minimum value is not at 
κ = 1 but some value smaller. In contrast, the minimum value for 
the equalized RMS is near κ = 1. Both total and equalized 
position error RMS values increase rapidly as κ becomes smaller 
because the maneuver model is less effective. It increases slowly 
as κ becomes bigger. 

Fig. 15 shows the two velocity error RMS values as a function of 
the tuning parameter κ: the blue curve is the conventional total 
RMS (blue) and the green one is the equalized RMS. Similarly, 
the minimum value of the conventional total RMS is not at κ = 1 
but somewhat smaller whereas the minimum value for the 
equalized RMS is near κ = 1. Both total and equalized position 
error RMS values increase rapidly as κ becomes smaller and it 
increases as κ becomes bigger. 

In the second simulation, the true acceleration is again at = 5 m/s2 
and both the true and model measurement variances are set to be 
the same as σ = σt = 5 m. The value for the maneuver process 
noise model is set at q1 = 5 m/s2 while the value for the quiescent 
process noise model is tuned or varied as q0 = κ at for κ = 0 to 1. 

Fig. 16 shows the two position error RMS values as a function of 
the tuning parameter κ for the conventional total RMS (blue) and 
the equalized RMS (green). Both the conventional total RMS and 
equalized RMS values decrease as κ becomes smaller. It flattens 
out after κ < 0.05 or q0 = 0.25. The use of q0 = 0.01 in the 
previous simulation seems reasonable. 

Fig. 17 shows the two velocity error RMS values as a function of 
the tuning parameter κ. The same results hold. The equalized 
RMS (green) is larger than the conventional total RMS (blue) for 
both the position and velocity errors. 

For Method 2 with variable state dimension, the key filter 
parameters are also the process noise variances for the two-state 
filter (q0) and for the three-state filter (q1). Again, the true 
acceleration is at = 5 m/s2. The true and model measurement 
variances are set to be the same as σ = σt = 5 m. In the following 
simulation, the state process noise variance for one filter is fixed 
while for the other filter is tuned or varied as q = κ at with κ. 

In the first trial, the value for the two-state process noise model is 
set to be q0 = 0.01 m/s2. The value for the three-state process 
noise model is tuned or varied as q1 = κ at for κ = 0 to 10.  
Fig. 18 shows the two position error RMS values as a function of 
the tuning parameter κ. One is the conventional total RMS (blue) 
and the other is the equalized RMS (green). For both the 
conventional total RMS and the equalized RMS, the minimum 
occurs around κ = 0.2 or a = 1 m/s2. The position error RMS 
values increase rapidly as κ moves away from this minimum 
value of 0.2 and it starts to flatten out after κ > 2.  
Fig. 19 shows the two velocity error RMS values as a function of 
the tuning parameter κ for the conventional total RMS (blue) and 
the equalized RMS (green). It exhibits the similar behavior as Fig. 
18, that is, for both the conventional total RMS and the equalized 
RMS, the minimum occurs around κ = 0.2 or a = 1 m/s2. The 
velocity error RMS values increase rapidly as κ moves away from 
this minimum value of 0.2 but it does not flatten out as quickly as 
the position error RMS values. 
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Fig. 14 Position Errors over q1 for q0 = 0.01 
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Fig. 15 Velocity Errors over q1 for q0 = 0.01 
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Fig. 16 Position Errors over q0 for q1 =5 
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Fig. 17 Velocity Errors over q0 for q1 = 5 

0 1 2 3 4 5 6 7 8 9 10
3.8

3.9

4

4.1

4.2

4.3

4.4

4.5

4.6

4.7

model q/true acc

po
si

tio
n 

er
ro

r 
rm

s,
 m

variable state dimension, monte run, [a
t
, r, r

f
]=[5,5,5]

 

 

total rms

equalized rms

Fig. 18 Position Errors over q1 for q0 = 0.01 
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Fig. 19 Velocity Errors q1 for q0 = 0.01 
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Fig. 20 Position Errors over q0 for q1 = 1 
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Fig. 21 Velocity Errors over q0 for q1 = 1 
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Fig. 22 Position Errors over ±a for q = 0.01 
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Fig. 23 Velocity Errors over ±a for q = 0.01 
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Fig. 24 Position Errors over q for a = ±5 
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Fig. 25 Velocity Errors over q for a = ± 5 
 

 

In the second trial, the value for the three-state process noise 
model is set to be q1 = 1 m/s2. The value for the two-state process 
noise model is tuned or varied as q0 = κ at for κ = 0 to 0.5. 

Figs. 20 and 21 show the position and velocity error RMS values 
as a function of the tuning parameter κ, respectively, where the 
conventional total RMS is blue-colored and the equalized RMS is 
green-colored. After κ < 0.05 or a = 0.25 m/s2, the curves start to 

flatten out. The use of q0 = 0.01 m/s2 seems to be a reasonable 
choice. The figures also show that the increase of RMS starts to 
reach a plateau (particularly for position) after κ > 0.5 or a = 2.5 
m/s2. 

For Method 3 with discrete acceleration input, the key issue of 
filter design is determination of the number and selection of 
values for the discrete acceleration inputs. However, the process 
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noise variance is also important for the two-state filters with or 
without discrete acceleration input. The true acceleration is at = 5 
m/s2. The true and model measurement variances are set to be the 
same as σ = σt = 5 m. 

In the first trial, the value for the two-state process noise model is 
set to be q = 0.01 m/s2. Three acceleration input values are chosen 
for a = 0 (for quiescent without maneuver) and ±κ at with κ = 0 to 
10 (for maneuver). 

Fig. 22 shows the two position error RMS values as a function of 
the tuning parameter κ. One is the conventional total RMS (blue) 
and the other is the equalized RMS (green). For both the 
conventional total RMS and the equalized RMS, the minimum 
occurs around κ = 1.5 or a = 7.5 m/s2 (the true value is at = 5 
m/s2). The position error RMS values increase rapidly as κ 
decreases but flatten out as κ increases. 

Fig. 23 shows the two velocity error RMS values as a function of 
the tuning parameter κ for the conventional total RMS (blue) and 
the equalized RMS (green). It differs from Fig. 22 in two aspects. 
First, the conventional total RMS (blue) has its minimum at a κ 
value smaller than unity whereas the equalized RMS (green) has 
its minimum very near κ = 1. Second, both the RMS curves have 
a local maximum, which is around κ = 4 for the conventional 
total RMS (blue) and κ = 4.5 for the equalized RMS (green). 

As κ goes smaller, the discrete acceleration input to the maneuver 
models becomes smaller. The maneuver models degenerate into 
non-maneuver filters. This explains why the RMS value increases 
rapidly as κ decreases. On the other hand, when κ becomes 
bigger, the true maneuver may become closer to the no-maneuver 
model than the maneuver models with very large acceleration 
input. As a result, the large acceleration models are excluded 
from the combined filter output where the non-maneuver model is 
dominant. 

In the second trial, the discrete acceleration input is set to be a = 
±5 m/s2. The value for the process noise variance (equal for both 
maneuver and non-maneuver models) is tuned or varied as q = κ 
at for κ = 0 to 0.5. 

Figs. 24 and 25 show the position and velocity error RMS values 
as a function of the tuning parameter κ, respectively, where the 
conventional total RMS is blue and the equalized RMS is green. 
In general, the position error RMS values decrease with increased 
κ whereas the velocity error RMS values increase with increased 
κ. The increase of position error RMS and the decrease of 
velocity error RMS flatten out for small κ. It is reasonable to 
choose q = 0.01 as the process noise variance. 

Additional results for filter behaviors under model mismatches 
can be found in [18]. 

6 Conclusions 
In this paper, we investigated the use of three maneuver models in 
the IMM algorithm for maneuvering target tracking and showed 
their characteristic errors. More specifically, right after the start 
and ending of a maneuver, the errors of the model with variable 
process noise are n-shaped, the errors of the model with variable 
state dimension are L-shaped, and the errors for the model with 
discrete inputs are u-shaped. The performance and tuning of these 
models were compared under the total vs. equalized RMS errors. 

It is readily to extend the observations made on the 1D case in 
this paper to the 2D and 3D cases and from linear accelerations to 

turning and other more complicated maneuvers. For example, the 
unknown turn rate in the coordinated turn maneuver can be 
treated in much the same way as the unknown linear acceleration 
studied in this paper. In addition, it is interesting to apply the 
three maneuver models to other multiple model estimation 
algorithms. Because of their distinct behaviors during quiescent 
and maneuvering periods, it might be valuable to combine the 
multiple model estimation algorithms with different models, 
resulting in “methodology fusion.” To reduce transient errors, the 
fusion with other sources of information such as the target 
maneuver indicator derived from the target’s range-Doppler 
images [16, 17] is under investigation [18]. 
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