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Recovery of Clustered Sparse Signals
from Compressive Measurements

Volkan Cevhef), Piotr Indyk®?, Chinmay Hegde), and Richard G. Baraniuk
(1) Electrical and Computer Engineering, Rice University, Houston, TX
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Abstract: ing algorithms for dimensionality reduction.

We introduce a new signal model, callgil, C)-sparse, to _ Fortunately, it i; possible to design CS recovery al-
capturek -sparse signals itV dimensions whose nonzero gprlthms that _epr0|t the knowledge of structured spar-
coefficients are contained within at mastclusters, with Sty models with provable performance guarantees [3, 5,
C < K < N. In contrast to the existing work in 6]. In particular, the model-based CS recovery framework
the sparse approximation and compressive sensing literl [3] 9éneralizes to any structured-sparsity model that has
ature on block sparsity, no prior knowledge of the loca- a tractable model-based gpproxmatpn algorithm. This
tions and sizes of the clusters is assumed. We prove thaff@mework has been applied productively to two struc-
O (K + Clog(N/C))) random projections are sufficient tu_red signal models: block sparsity and wavelet trees
for (K, C)-model sparse signal recovery based on sub-With robust recovery guarantees froy(K’) measure-

space enumeration. We also provide a robust polynomialMeNts [3]. To recover signals that have structured spar-

time recovery algorithm fot &, C')-model sparse signals sity, problem-specific convex relaxation approaches are
with provable estimation guarantees. also used in the literature with recovery guarantees sim-

ilar to those in [3]; e.g., for block sparse signals, see [5, 6].

1. Introduction In this paper, we introduce a new structured sparsity

Compressive sensing (CS) is an alternative to Shan model, called the &, C')-model, that constrains thi-

non/Nyquist sampling for the acquisition of sparse or sparse signal coefficients to be containeq within at. most
compressible signals in an appropriate basis [1, 2]. ByC—clusters. In contrast to the block sparsny.model in [5,
sparse, we mean that only of the N basis coefficients 0} 0ur proposed model does not assume prior knowledge
are nonzero, wher& < N. By compressible, we mean of the locations and sizes of the coefﬁuent_ clu_sters. We
the basis coefficients, when sorted, decay rapidly enougrsnoW thatd (K + C'log(N/C))) random projections are

to zero so that they can be well-approximatedasparse.  sufficient for (K, C')-model signal recovery using a sub-
Instead of taking periodic samples of a signal, CS mea-SPace counting argument. We also provide a polynomial-
sures inner products with random vectors and then recoviMe model-based approximation algorithm based on dy-
ers the signal via a sparsity-seeking convex optimization™@Mic programming and a CS recovery algorithm based
or greedy algorithm. The number of compressive mea-°" the model-based recovery framework of [3]. In con-

surementsl/ necessary to recover a sparse signal underirast to the clustered sparse recovery algorithm based on

this framework grows a8/ = O (K log(N/K)) the probabilistic Ising model in [7], thgk, C)-model has
provable performance guarantees.

In many applications, including imaging systems and , _ . .
high-speed analog-to-digital converters, such a saving can | "€ Paperis organized as follows. Section 2 provides
be dramatic; however, the dimensionality reduction from € necessary theoretical and algorithmic background on
N to M is still not on par with state-of-the-art transform Medel-based CS. Section 3 introduces the C')-model,
coding systems. While many natural and manmade signal&€rives its sampling bound for CS recovery, and describes
can be described to a first-order as sparse or compres® dynamic programming solution for optimal’, C)-
ible, their sparse supports often have an underlying do_model apprp_xmatlon._ Se_ct|on 4 discusses the aspect of
main specific structure [3-6]. Exploiting this structure in COmMPressibility and highlights some connections to the
CS recovery has two immediate benefits. First, the numbeP!0CK sparsity model.  Simulation results are given in
of compressive measurements required for stable recovery€Ction 5 to demonstrate the effectiveness of(tkieC’)-
decreases due to the reduction in the degrees of freedom gfodel- Section 6 provides our conclusions.

a sparse or compressible signal. Second, true signal infor2_ Model-based CS Background

mation can be better differentiated from recovery artifacts

during signal recovery, which increases recovery robust-A K-sparse signal vectar lives in Xx C RY, which
ness. Only by exploiting a priori information on coeffi- is a union of(%) subspaces of dimensidki. Other than
cient structure in addition to signal sparsity, can CS hopeits K -sparsity, there are no further constraints on the sup-
to be competitive with the state-of-the-art transform cod- port or values of its coefficients. Anion-of-subspaces



signal model (asignal model in the sequel for brevity) en-
dows theK -sparse signat with additional structure that
allows certaink -dimensional subspacesiiy and disal-
lows others [4, 8].

More formally, letz|, represent the entries efcor-
responding to the set of indicés C {1,..., N}, and let
Q¢ denote the complement of the $&t A signal model
M is then defined as the union @fx canonical K -
dimensional subspaces

my
Mg = U Xy X = {1 2)0,, € RK7.I|Q§L = 0}.

m=1

Each subspac#,, contains all signals with supp(z) €
Q.. Thus, the signal modeM i is defined by the set of
possible support&Qy, ..., 2, }. Signals fromM x are
called K-model sparse. Likewise, we may define\,

to be the set of-wise differences of signals belonging
to Mg. Clearly, Mg C Sg and M3 C Syk. In
the sequel, we will use an algorithisfi(z; K') that returns
the bestK-term approximation of the signal under the
modelM k.

If we know that the signak being acquired igs-

wherex o, = M(z; K) is the best model-based approxi-
mation ofz within M.

3. The(k,C)-Model

Motivation: The block sparsity model is used in appli-
cations where the significant coefficients of a sparse signal
appear in designated blocks on the ambient signal dimen-
sion, e.g., group sparse regression problems, DNA mi-
croarrays, MIMO channel equalization, source localiza-
tion in sensor networks, and magnetoencephalography [3,
5,6,10-14]. It has been shown that recovery algorithms
provably improve standard CS recovery by exploiting this
block-sparse structure [3, 5].

The (K, C)-model generalizes the block sparsity
model by allowing the significant coefficients of a sparse
signal to appear in at moét clusters of unknown size and
location (Figure 1(a)). This way, th@, C')-model fur-
ther accommodates additional applications in, e.g., neuro-
science problems that are involved with decoding of nat-
ural images in the primary visual cortex (V1) or under-
standing the statistical behavior of groups of neurons in
the retina [15]. In this section, we formulate thE, C)-

model sparse, then we can relax the standard restricteénodel as a union of subspaces and pose an approximation

isometry property (RIP) [1] of the CS measurement matrix
® and still achieve stable recovery from the compressive
measurementg = ®x. The model-based RIP M -RIP
requires that

1)

hold for signalst € My [4, 8], whered o4, is the model-
based RIP constant.

(1= o )ll2ll3 < [[@]3 < (1+ a0 I3

Blumensath and Davies [4] have quantified the num-
ber of measurement® necessary for a subgaussian CS
matrix to have theM i -RIP with constand r¢,, and with
probabilityl — e~ to be

12

M >
2 "

&%, (ln(QmK) + Kln » —|—t). (2)

algorithm on this union of subspaces.

To define the set of K, C)-sparse signals, without
loss of generality, we focus on canonically sparse signals
in N + 2 dimensions whose first and last coefficients are
zero. Consider expressing the support of such signals via
run-length coding with a vectof = (f51,...,020+1)

(B; # 0), wheref,qq counts the number of continuous
zero-signal values ang@l..., counts the number of contin-
uous nonzero-signal values (i.e., clusters).

Definition:
defined as

The(K, C)-sparse signal modeéH x ¢ is

} |

@)

2C+1

> B

i=1

C
=N+2) Bu=K

i=1

Mg,y = {m c RN*t2

This bound can be used to recover the conventional csS@mpling Bound:  The number of subspaces k¢ in

result by substitutingnx = () ~ (Ne/K)*.

To take practical advantage of signal models in CS,

we can integrate them into a standard CS recovery algo-

rithm based on iterative greedy approximation. The key
modification is surprisingly simple [3]: we merely replace
the besti-term approximation step with the bdstterm
model-based approximatidfi(z; K). For example, in the
CoSaMP algorithm [9], the bedtK -term approximation
(with L a small integer) is modified to incorporate a best
LK-term model-based approximation. The resulting al-
gorithm (see [3]) then inherits the following model-based
CS recovery guarantee at each iteratipwhen the mea-
surement matrix has theM-RIP with§,2 < 0.1:

o = Zill2 < 27[lz]l2 + 20<|x — Tl

1
gl =l + |n|2>,

Mk ) can be obtained by counting the numbepo$-
tive solutions to the following integer equations:

N +2,
K

Bi+ P2+ ...+ Pact1
Bo+4 Pa+ ...+ Pac

)
which can be rewritten as

Gr1+03+...+0Pac1 =N+2-K, @)
Bo+Bs+ ...+ Pac =K.

Note that the number of positive integer solutions to the
following problem:

Bi+ B+ Ps+...+ 8, =N,

is given by(Y ~). Then, we can count the solutions to the
two of decoupled problems in (4) and multiply the number

of solutions to obtaim k. ¢:
N+1-K
o .

K-1

o1 ®)

m(k,c) = (



Plugging (5) into (2), we obtain the sampling bound 4. Additional Remarks

for M : _— : :
(X.0) Compressibility: Just as compressible signals are

N nearly K-sparse and live close to the union of sub-
M=0 <K + Clog E) , (6)  spacesk inRY, (K, C)-compressible signals anearly

(K, C)-model sparse and live close to the restricted union

Note that the(K, C')-sampling bound (6) becomes the Of subspaces\x ¢). Here, we rigorously introduce a

standard CS bound dff = O (K log %) whenC =~ K. (K, C)-compressible signal model in terms of the decay
Model Approximation Algorithm:  In this section we  Of their (K, C')-model approximation error.
focus on designing an algorithii(z; K, C) for finding We first define thé, error incurred by approximating

the best(K, C')-model approximation to a given signal ;. ¢ RY py the best approximation M c):
x. The algorithm uses the principle of dynamic program- ’

ming [16]. For simplicity, we focus on the problem of
finding the cost of the best(K, C)-clustered signal ap-
proximation in¢s. This solution generalizes to the best
(K, C)-clustered signal approximation iy for p > 1. The decay of thé K, C')-model approximation error in (7)
The actual sparsity pattern can be then recovered usinglefines thé K, C')-compressibility of a signal. Then, a set
standard back-tracing techniques; see [16] for the details.of (K, C')-model s-compressible signalsis given by

O @) 2l el = o~ M(x: K. C)

The algorithm M(z; K,C) computes an array
costi, j, k,c], wherel < i < 57 < N,0 < k < K,

s = RN : op. < S(GK) /s
and0 < ¢ < C. At the end of the algorithm, each entry o, {m < TM;.0) (@) < SGK) ’

costi, j, k, ¢| contains the smallest cost of approximating (7)
x;.5, the signal vector restricted to the index get. ., j], I1<K<N,S<o0,j=1,..., {EJ
using at mostk: non-zero entries that span at mostius- - K

ters.M(z; K, C) performs the following operations.

(Initialization) When eithere = 0 or & = 0, the sig-
nal approximation costs can be computed directly, since
costi, j,0,c] = |lz;;|3 and cosfi, j, k,0] = ||@i;13, We use the restricted amplification property (RAmMP)
for all valid indicesi, j,k,c. Moreover, for all entries and the nested approximation property (NAP) in [3] to
i,7,k,csuch thate > 0andj —i+ 1 < k, we have  ensure that thé K, C)-model based CoSaMP recovery

Define Sg as the smallest value ¢f for which this con-
dition holds forz ands.

cosfi, j, k, c] = 0 since we can include afl— i + 1 coor- possesses the following guarantee {éf, C')-model s-
dinates of the vectat;.; in the approximation. compressible signals at each iteration
(Main loop) All other cost entries can then be com- ’ S
puted using the following recursion: |z = Zillz2 < 27"||z||l2 + 35 (Han + K””: (1+ ln[N/Kl)) ,
costi,j, k,c] = min min min ; (®)
0k, B S W VR P ST when® has theM{y o -RIP withd, < 0.1and the

(ex,7)-RAMP withex < 0.1 andr = s — 1.
costi, j*, k*,¢*] x costj* + 1,45,k — k™, c — c*] ;.

The correctness of the algorithm follows from the follow- Simulation via Block Sparsity:  Itis possible to recover

ing observation. Let be the bestk, ¢)-clustered approx- (¥, C)-sparse signals by using the block sparsity model if
imation ofz;.;. Unless all entries af;.; can be included ~We are willing to pay an added penalty in terms of the
in the approximatiom (in which casej — i + 1 > k and number of measurements. To demonstrate this, we define
the entry has been already computed during initialization), uniform blocks of sizeX’/C (e.g., average cluster length)
then there must exist an indéx [i, . . ., j] such that; is on the signal space. Then, it is straightforward to see that
not included ino. Let!* = [if I < j, andl* = j — 1 oth- the number of active blockB in the block sparse model
erwise. Letk* be the number of non-zero entries present is upper-bounded by

in the left segment of 7,.;~, and letc* be the number of

clusters present in that left segment. Then, it must be the B<2C—1)+ K-2(C-1) <3¢, (9

case thaw;,- is the best(k*, ¢*)-approximation toz;,;, K/C

andv,1.; is the bes{k — k*, c — ¢*)-approximation to

x(+41);;. Otherwise, those better approximations could To reach this upper bound, we first construct/, C)-

have been concatenated together to yield an even bettesparse signal that h&€’ — 1)-clusters with2 coefficients

(k, c)-approximation ofr;.;. Thus, the recursive formula and a single cluster with the remaining sparse coefficients.
will identify the optimal split and compute the optimal ap- We then place the clusters with two coefficients at the
proximation cost. boundary of the block sparse model so that each cluster ac-

The cost table contair@ (NQKC) entries. Each en- tivate two blocks in the block sparse model to arrive at (9).

try can be computed i@ (N K C) time. Thus, the running E]calq,(;h((igf;/%)fcg;\éaleﬂn; Sgorggéza\r;ﬁerpgd_egnges
time of the algorithm iD (N3 K2C?). - B , =oC.
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Figure 1:Monte Carlo simulation results féiK, C')-model based recovery with = 10, C = 2..
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