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Abstract

The emergence of low-cost sensor architectures for diverse modalities has made it possible
to deploy sensor arrays that capture a single event from a large number of vantage points and
using multiple modalities. In many scenarios, these sensors acquire very high-dimensional data
such as audio signals, images, and video. To cope with such high-dimensional data, we typi-
cally rely on low-dimensional models. Manifold models provide a particularly powerful model
that captures the structure of high-dimensional data when it is governed by a low-dimensional
set of parameters. However, these models do not typically take into account dependencies
among multiple sensors. We thus propose a jugmi manifoldframework for data ensembles
that exploits such dependencies. We show that simple algorithms can exploit the joint manifold
structure to improve their performance on standard signal processing applications. Addition-
ally, recent results concerning dimensionality reduction for manifolds enable us to formulate
a network-scalable data compression scheme that uses random projections of the sensed data.
This scheme efficiently fuses the data from all sensors through the addition of such projections,
regardless of the data modalities and dimensions.

1 Introduction

The geometric notion of a low-dimensional manifold is a common, yet powerful, tool for modeling
high-dimensional data. Manifold models arise in cases wheee{-dimensional parametércan
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be identified that carries the relevant information abougjaaiand ij) the signaky € R changes
as a continuous (typically nonlinear) function of these parameters. Some typical examples include
a one-dimensional (1-D) signal shifted by an unknown time delay (parameterized by the translation
variable), a recording of a speech signal (parameterized by the underlying phonemes spoken by the
speaker), and an image of a 3-D object at an unknown location captured from an unknown viewing
angle (parameterized by the 3-D coordinates of the object and its roll, pitch, and yaw). In these
and many other cases, the geometry of the signal class forms a notirgiarensional manifold
inRY,

M={f(0):6¢c 0O}, (2)
whereO is the K -dimensional parameter space [1-3]. Low-dimensional manifolds have also been
proposed as approximate models for nonparametric signal classes such as images of human faces
or handwritten digits [4—6].

In many scenarios, multiple observations of the same event may be performed simultaneously,
resulting in the acquisition of multiple manifolds that share the same parameter space. For ex-
ample, sensor networks — such as camera networks or microphone arrays — typically observe
a single event from a variety of vantage points, while the underlying phenomenon can often be
described by a set of common global parameters (such as the location and orientation of the ob-
jects of interest). Similarly, when sensing a single phenomenon using multiple modalities, such as
video and audio, the underlying phenomenon may again be described by a single parameterization
that spans all modalities. In such cases, we will show that it is advantageous to model this joint
structure contained in the ensemble of manifolds as opposed to simply treating each manifold in-
dependently. Thus we introduce the concept ofoirg manifold a model for the concatenation of
the data vectors observed by the group of sensors. Joint manifolds enable the development of im-
proved manifold-based learning and estimation algorithms that exploit this structure. Furthermore,
they can be applied to data of any modality and dimensionality.

In this work we conduct a careful examination of the theoretical properties of joint manifolds.

In particular, we compare joint manifolds to their component manifolds to see how quantities like
geodesic distances, curvature, branch separation, and condition number are affected. We then ob-
serve that these properties lead to improved performance and noise-tolerance for a variety of signal
processing algorithms when they exploit the joint manifold structure, as opposed to processing data
from each manifold separately. We also illustrate how this joint manifold structure can be exploited
through a simple and efficient data fusion algorithm that uses random projections, which can also
be applied to multimodal data.

Related prior work has studiedanifold alignmentwhere the goal is to discover maps be-
tween several datasets that are governed by the same underlying low-dimensional structure. Lafon
et al. proposed an algorithm to obtain a one-to-one matching between data points from several
manifold-modeled classes [7]. The algorithm first applies dimensionality reduction using diffu-
sion maps to obtain data representations that encode the intrinsic geometry of the class. Then, an
affine function that matches a set of landmark points is computed and applied to the remainder of
the datasets. This concept was extended by Wang and Mahadevan, who apply Procrustes analysis
on the dimensionality-reduced datasets to obtain an alignment function between a pair of mani-
folds [8]. Since an alignment function is provided instead of a data point matching, the mapping



obtained is applicable for the entire manifold rather thartlie set of sampled points. In our set-

ting, we assume that eithaj {he manifold alignment is provided intrinsically via synchronization
between the different sensors @i (he manifolds have been aligned using one of the approaches
described above. Our main focus is a theoretical analysis of the benefits provided by analyzing the
joint manifold versus solving our task of interest separately on each of the manifolds observed by
individual sensors.

This paper is organized as follows. Secfidn 2 introduces and establishes some basic properties
of joint manifolds. Sectiof]3 considers the application of joint manifolds to the tasks of classi-
fication and manifold learning. Sectidh 4 then describes an efficient method for processing and
aggregating data when it lies on a joint manifold, and Seéfion 5 concludes with discussion.

2 Joint manifolds

In this section we develop a theoretical framework for ensembles of manifolds whigbiraig
parameterized by a small numberaifmmondegrees of freedom. Informally, we propose a data
structure for jointly modeling such ensembles; this is obtained by concatenating points from dif-
ferent ensembles that are indexed by the same articulation parameter to obtain a single point in
a higher-dimensional space. We begin by defining the joint manifold for the general setting of
arbitrary topological manifol

Definition 2.1. Let M, M,, ..., M ; be an ensemble of topological manifolds of equal dimen-

sion K. Suppose that the manifolds are homeomorphic to each other, in which case there exists a
homeomorphismy; betweenM, and M for eachj. For a particular set of mappingswj}jzz,

we define thgoint manifold as

M ={(p1,p2,...,p5) EMi X My x--- X My :p; =v;(p),2 < j < J}
Furthermore, we say that1,, M,, ..., M are the correspondingomponent manifolds

Notice thatM; serves as a commguarameter spacér all the component manifolds. Since
the component manifolds are homeomorphic to each other, this choice is ultimately arbitrary. In
practice it may be more natural to think of each component manifold as being homeomorphic to
some fixedK —dimensional parameter spa€e However, in this case one could still defind*
as is done above by defining as the composition of the homeomorphic mappings ffemto ©
and from® to M;.

As an example, consider the one-dimensional manifolds in Figure 1. F[dures 1 (a) and (b) show
two isomorphic manifolds, whet&1, = (0, 27) is an open interval, and1, = {1(0) : 0 € M;}
where,(6) = (cos(), sin(0)), i.e., M, = S\ (1, 0) is a circle with one point removed (so that it
remains isomorphic to a line segment). In this case the joint manfétd= { (6, cos(0), sin(f)) :

6 € (0,2m)}, illustrated in Figuréll (c), is a helix. Notice that there exist other possible home-
omorphic mappings from\1; to M,, and that the precise structure of the joint manifold as a
submanifold ofR? is heavily dependent on the choice of this mapping.

1A comprehensive introduction of topological manifolds can be found in Boothby [9].
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(a) M, C R: line segment  (b)\, C R?: circle segment (cM* C R3: helix segment

Figure 1:A pair of isomorphic manifolds\i; and M, and the resulting joint manifold1*.

Returning to the definition af*, observe that although we have callet the joint manifold,
we have not shown that it actually forms a topological manifold. To proveAhatis indeed a
manifold, we will make use of the fact that the joint manifold is a subset optbduct manifold
Mix My x---x M;. One can show that the product manifold formé/&-dimensional manifold
using the product topology [9]. By comparison, we now show thtithas dimension onlyx'.

Proposition 2.1. M* is a K-dimensional submanifold g¥1; x My x --- x M.

Proof. We first observe that sincét1* is a subset of the product manifold, we automatically have
that M* is a second countable Hausdorff topological space. Thus, all that remains is to show
that M* is locally homeomorphic t®R*. Letp = (p,po,...,ps) be an arbitrary point ooM*.
Sincep; € M, we have a paifU;, ¢;) such that/; C M, is an open set containing and
¢, : Uy — V is a homeomorphism whefé is an open set iiRc. We now define foR < j < J
U; = ¢;(Uy) andg; = ¢y 095" : U; — V. Note that for each), U; is an open set and; is a
homeomorphism (since; is a homeomorphism).

Now defineU* = (U; x Uy x - - - x Uy) N M*. Observe that/* is an open set and thate U*.
Furthermore, let = (¢1, ¢, . . ., ¢;) be any element o *. Then¢,(q;) = ¢ o @bj_l(qj) = ¢1(q1)
for each2 < j < J. Thus, since the image of eaghe U, in VV under their corresponding; is
the same, we can form a single homeomorphismU* — V' by assigning?*(q) = ¢1(q1). This
shows thatM* is locally homeomorphic t&* as desired. O

SinceM* is a submanifold oM x M, x - - - x M, it also inherits some desirable properties
from its component manifolds.

Proposition 2.2. Suppose that;, M., ... M ; are isomorphic topological manifolds and(* is
defined as above.

1. If M, M5, ..., M, are Riemannian, theA* is Riemannian.

2. If My, My, ..., M, are compact, therM* is compact.



Proof. The proofs of these facts are straightforward and follow from the fact that if the component
manifolds are Riemannian or compact, then the product manifold will be asMm&lthen inherits
these properties as a submanifold of the product manifold [9]. O

Up to this point we have considered general topological no#&sf In particular, we haveot
assumed that the component manifolds are embedded in any particular space. If each compo-
nent manifoldM; is embedded ifiR"7, the joint manifold is naturally embedded K" where
N* = E;’zl N;. Hence, the joint manifold can be viewed as a model for datapfing ambient
dimensioriinked by a common parametrization. In the sequel, we assume that each mavifold
is embedded ifR"Y, which implies thatM* ¢ R7Y. Observe that while the intrinsic dimension of
the joint manifold remains constant At, the ambient dimension increases by a factoy oiWe
now examine how a number of geometric properties of the joint manifold compare to those of the
component manifolds.

We begin with the following simple observation that Euclidean distances between points on
the joint manifold are larger than distances on the component manifolds. In the remainder of this
paper, whenever we use the notatipn|| we mean| - ||, i.e., thel, (Euclidean) norm ofR”.

When we wish to differentiate this from othgynorms, we will be explicit.

Proposition 2.3. Letp = (p1,p2,...,ps) andq = (¢1,4,---,q;) be two points on the joint
manifold M*. Then

J
lp—all = | > lIps — 451>
j=1

Proof. This follows from the definition of the Euclidean norm:

JN

lp—all* = _(p(i) — q()* = D> (p;(i) — ¢;(i))* = Z Ip; — a;11*

i=1 j=1 i=1
[

While Euclidean distances are important (especially whesenis introduced), the natural
measure of distance between a pair of points on a Riemannian manifold is not Euclidean distance,
but rather thegeodesic distanc& he geodesic distance between popis € M is defined as

dm(p, q) = inf{L(7y) : 7(0) = p,v(1) = q}, 2)

wherev : [0,1] — M is aC'-smooth curve joining and ¢, and L() is the length ofy as
measured by

Liy) = / 14 ()lde. 3)

In order to see how geodesic distanceshdri compare to geodesic distances on the component
manifolds, we will make use of the following lemma.



Lemma 2.1. Suppose thaiM,, M., ..., M ; are Riemannian manifolds, and fet [0, 1] — M*
be aC'-smooth curve on the joint manifold. Then we can wiite: (7,7, ..., vs) where each
7v; : [0,1] — M, is aC*-smooth curve oM ;, and

Proof. We begin by observing that

/ 14t = / IS e ae @)
j=1

For a fixedt, letz; = ||7,(¢)|, Ty, ...,x;) IS a vector inR’. Thus we may
apply the standard norm inequalities
1
—=llle < llle, < Nzl (5)
o

to obtain

% Z IO < Z 19 (O < Z 175 ()1]- (6)

Combining the right-hand side df](6) withl (4) we obtain

g/Dm )t = Z/n% )t = Zm

Similarly, from the left-hand side of(6) we obtain

1 1 J ‘ 1 J 1 ' 1 J
-/ 75 2= 53 | sl - v I

O

We are now in a position to compare geodesic distance$1no those on the component
manifold.

Theorem 2.1.Suppose that1,, M., ..., M ; are Riemannian manifolds. Let= (p1, p2, ..., pJ)
andq = (q1, ¢, - - -, qs) be two points on the corresponding joint manifdld*. Then

dpm (Pisqj). (7)

IIMk



If the mappings)s, ¢, ..., areisometriesi.e., da, (p1, 1) = du,; (V;(p1), ¥(q1)) for anyj
and for any pair of pointsy; ¢), then

J
wwwﬁj%zﬁm%wﬁﬂﬁdm@wﬂ ®

Proof. If v is a geodesic path betwegrandg, then from Lemma2]1,

J
1
dae (P ) = L(7) 2 —= > L)
j=1

By definition L(~y;) > da4, (pj, g;); hence, this establishéds (7).

Now observe that lower bound in Lemimal2.1 is derived from the lower inequality of (5). This
inequality is attained with equality if and only if each term in the sum is equalLi(g,) = L(x)
for all ; andk. This is precisely the case when, ¢, . .., 1 ; are isometries. Thus we obtain

dm=(p,q) = L(v) = % Z L(v;) = VJL(m).

We now conclude thak(~;) = daq, (p1,¢1) Since if we could obtain a shorter pafhfrom p; to
¢, this would contradict the assumption thais a geodesic oiM*, which establishe§(8). O

Next, we study local smoothness and global self avoidancpepties of the joint manifold
using the notion otondition number

Definition 2.2. [10] Let M be a Riemannian submanifold B". The condition number is
defined asl /7, wherer is the largest number satisfying the following: the open normal bundle
about M of radiusr is embedded iR for all r < 7.

The condition number of a given manifold controls both local smoothness properties and global
properties of the manifold. Intuitively, as'T becomes smaller, the manifold becomes smoother
and more self-avoiding. This is made more precise in the following lemmata.

Lemma 2.2. [10] SupposeM has condition number/7. Letp, ¢ € M be two distinct points on
M, and lety(t) denote a unit speed parameterization of the geodesic path joinamglq. Then

1
o< L
mase (1) < —

Lemma 2.3. [10] SupposeV has condition numbet/7. Letp, ¢ € M be two points on\ such
that||p — ¢|| = d. If d < 7/2, then the geodesic distandg,(p, ¢) is bounded by

dm(p,q) < 7(1—+/1-2d/7).



We wish to show that if the component manifolds are smooth alicgoiding, the joint man-
ifold is as well. It is not easy to prove this in the most general case, where the only assumption is
that there exists a homeomorphism (i.e., a continuous bijective/mbaptween every pair of man-
ifolds. However, suppose the manifolds difeomorphigi.e., there exists a continuous bijective
map between tangent spaces at corresponding points on every pair of manifolds. In that case, we
make the following assertion.

Theorem 2.2. Suppose that;, M,, ..., M, are Riemannian submanifolds®&f', and let1/7;
denote the condition number @8#(,. Suppose also that the,, s, ..., v, that define the corre-
sponding joint manifold\1* are diffeomorphisms. If/7* is the condition number of1*, then

or equivalently,

Proof. Let p € M*, which we can write ap = (p1,p2,...,ps) With p; € M;. Since the
{wj}jZQ are diffeomorphisms, we may viewt* as being diffeomorphic td1; i.e., we can build
a diffeomorphic map froro\1; to M* as

p=1v"(p1) = (p1,¢¥2(p2), .-, ¥s(py)).

We also know that given any two manifolds linked by a diffeomorphism M; — M},
each vectow, in the tangent spacg, (p;) of the manifoldM; at the pointp; is uniquelymapped
to a tangent vectov; := ¢;(v;) in the tangent space;(p,) of the manifold M; at the point
p; = ¥;(p1) through the map; := J o ¢;(p1) , whereJ denotes the Jacobian operator.

Consider the application of this property to the diffeomorphic manifgldsand M*. In this
case, the tangent vector € 77 (p;) to the manifoldM; can be uniquely identified with a tangent
vectorv = ¢*(vy) € T*(p) to the manifoldM*. This mapping is expressed as

¢*(v1) = T o™ (p1) = (v, T o Ya(pr), -, T 0 ¥s(p1)),
since the Jacobian operates componentwise. Therefore, the tangent\veatdre written as
v o= ¢ (v1) = (v1,P2(v1), .-, Ds(p1)),
= (Ul,’Ug,. .. ,UJ).

In other words, a tangent vector to the joint manifold can be decomposed @oimponent vectors,
each of which are tangent to the corresponding component manifolds.

Using this fact, we now show that a vectpthat is normal toM* can also be broken down into
sub-vectors that are normal to the component manifolds. Considek1*, and denoté™(p)* as
the normal space at Suppose) = (11,...,n;) € T*(p)*. Decompose each; as a projection
onto the component tangent and normal spaces, i.ej,$ot, ..., J,

ni =ity w € Tpg) vy € Tipy)

8



Figure 2:Point at which the normal bundle for the helix manifold intersects itself.

such thatz;,y;) = 0 for eachj. Letx = (z4,...,2;) andy = (yi,...,ys). Thenn =z +y, and
sincey is tangent to the joint manifold1*, we have(n, y) = (x + y, z) = 0, and thus

(y, 2) = —|l=[*
But,
J
(y,x) =Y (y,2;) = 0.

Jj=1
Hencex = 0, i.e., eachy; is normal toM;.

Armed with this last fact, our goal now is to show that if< min;<;<; 7; then the normal
bundle of radius is embedded iiR", or equivalently, thap + 7 # ¢+ v provided that|n|, ||v| <
r. Indeed, supposgn||, |[|v|| < r < min;<;<;7;. Sincel|n;|| < [|n|| and||y;|| < ||v| for all
1 < j < J, we have that|n;|, ||v;|| < minj<;<;7 < 7;. Since we have proved thaf, v; are
vectors in the normal bundle d@#1; and their magnitudes are less thanthenp; 4+ n; # ¢; + v;
by the definition of condition number. Thust n # ¢ + v and the result follows. O

This result states that for general manifolds, the most wesagns that the condition number
of the joint manifold is guaranteed to be less than that ofatbiestmanifold. However, in practice
this is not likely to happen. As an example, Figlte 2 illustrates the point at which the normal
bundle intersects itself for the case of the joint manifold from Figlire 1 (c). In this case we obtain
T = y/m2?/2 4+ 1. Note that the condition numbers for the manifalds and M, generatingM*
are given byr;, = oo andr, = 1. Thus, while the condition number in this case is not as good as
the best manifold, it is still notably better than the worst manifold. In general, even this example
may be somewhat pessimistic, and it is possible that in many cases the joint manifold may be better
conditioned than even the best manifold.



3 Joint manifolds in signal processing

Manifold models can be exploited by a number of algorithms for signal processing tasks such
as pattern classification, learning, and control [11]. The performance of such algorithms often
depends on geometric properties of the manifold model such as its condition number and geodesic
distances along its surface. The theory developed in Section 2 suggests that the joint manifold
preserves or improves these properties. We will now see that when noise is introduced these results
suggest that, in the case of multiple data sources, it can be extremely beneficial to use algorithms
specifically designed to exploit the joint manifold structure.

3.1 Classification

We first study the problem of manifold-based classification. The problem is defined as follows:
given manifoldsM and, suppose we observe a signak = +n € RY where either: € M or

r € N andn is a noise vector, and we wish to find a functipn RY — {M, N} that attempts

to determine which manifold “generateg’” We consider a simple classification algorithm based
on thegeneralized maximum likelihodthmework described in [12]. The approach is to classify
by computing the distance from the observed signtl each of the manifolds, and then classify
based on which of these distances is smallest, i.e., our classifier is

f(y) = argmin [d(y, M), d(y, N)]. 9)

We will measure the performance of this algorithm for a particular pair of manifolds by considering
the probability of misclassifying a point froov as belonging taV, which we denote’, .
To analyze this problem, we employ three common notions of separation in metric spaces:

e Theminimum separatiodistance between two manifoldgl andV is defined as

e TheHausdorff distancérom M to N is defined to be

D(M,N) = sup d(p,N),

pEM

with D(N', M) defined similarly. Note that(M, N') = §(N, M), while in general
DM, N) # DN, M).

e Themaximum separatiodistance between manifolds! and\ is defined as

A(M,N) = sup sup ||z — y||.
zeMyeN

As one might expectPy\ is controlled by the separation distances. For example, suppose that
x € M,; if the noise vectom is bounded and satisfiéis:|| < o(M, N)/2, then we have that

10



d(y, M) < |In|| < §(M,N)/2 and hence

S(M,N) = pejglgeNHp—QII
— inf _ _
peAI;}quHp y+y—q
< inf _ _
< peﬂlg}quHp yll + 1y — 4l

d(y, M) +d(y,N)
S(MN)/2+d(y,N).

A

Thus we are guaranteed that
d(y,N) > 6(M,N)/2.

Therefored(y, M) < d(y,N') and the classifier defined byl (9) satisfigg = 0. We can refine
this result in two possible ways. First, note that the amount of ndilsat we can tolerate without
making an error depends an Specifically, for a given: € M, provided that|n|| < d(z, N')/2we
still have thatP,,yr = 0. Thus, for a giverr € M we can tolerate noise boundeddyt, \')/2 €
[6(M,N) /2, DIM,N)/2].

A second possible refinement that we will explore below is to ignore this dependenclutf
to extend our noise model to the case whetg > §(M, N')/2 with non-zero probability. We can
still bound Py since

Pryy < P(|nf| > 6(M, N)/2). (10)

We provide bounds on this probability for both the component manifolds and the joint manifold
as follows: first, we first compare the separation distances for these cases.

Theorem 3.1. Consider the joint manifoldd1* C M; x My x -+« x M;andN* C Nj x N; x
--- x Nj. Then, the following bounds hold:

1. Joint minimum separation:

J
252(/\/{]-,%) < P(MN) < i (52(Mk>/\[k) + ;Az(/\/lw/\[j)) - (A1)
J= J

2. Joint Hausdorff separation froov* to N'*:

J
max (DQ(Mk,Nk)+Zaz(Mj,/\/j)> < D* (M N™) < ZAQ(Mj,/\/j). (12)
j=1

1<k<J
ik
3. Joint maximum separation fromt* to A/*:

J
max (Az(/\/lk,/\/k) + 252(/\/1]-,/\/})> < AH M N < ZAZ(M]-,/\/}). (13)

1<k<J '
JF#k

11



Proof. Inequality [11) is a simple corollary of Propositibni2.3. Lket= (p;,ps,...,ps) and
q = (q1,¢,...,q;) respectively be the points afvi* and A/* for which the minimum separa-
tion distance)(M*, N'*) is attained, i.e.,

_ inf inf |[p — gl
(p,q) arg inf inf lp — qll

Then,
J
FPMHNF) = ||p—q||2=Z||pj—qu2
J
> Z (M;,N;),

since the distance between two points in any given component space is greater than the minimum
separation distance corresponding to that space. This establishes the lower bdumd in (11). We
obtain the upper bound by selecting:aand selecting € M* andg € N* such that, andg

attain the minimum separation distandé\,., \V;.). From the definition of (M*, N*), we have

that

J
FMINTY < lp—al> = llpy — 4l
j=1

= (M, No) + D gy — gl
#k
< 52(Mk,f\/k) -+ Z A2(Mj,./\/’j),
J#k
and since this holds faverychoice ofk, (I11) follows by taking the minimum over atl.
To prove inequality[(12), we follow a similar course. We begin by selegting M* and
q € N* that satisfy
= inf ||p— ¢l
(p,q) arg sup it 1P —qll

Then,
J
D’ (M N = lp—al> = Ip; — ¢
=1

J
< A2(Mj7'/\/’j)7
=1

J

which establishes the upper bound[inl(12). To obtain the lower bound, we again sk|eamd
now letp € M* be the point for which the corresponding at which the Hausdorff separition
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the component manifold,, is attained, i.e., the corresponding pagiptis furthest away from\V;
as can be possible it;,. Letq € N'* be the nearest point iV* to p. From the definition of the
Hausdorff distance, we get that

D(M*,N™) = |lp = qll,

since the Hausdorff distance is thraximaldistance between the pointsM* and their respective
nearest neighbors iN*. Again, it also follows that

D> (M N = p—al® = llps — @l + > Ip; — s

i#k
= D’ (M, No) + D lIps — g4l
J#k
> DMy, Ni) + ) 6% (M, ).
J#k

Since this again holds f@verychoice ofk, (12) follows by taking the maximum over all
One can provd (13) using the same technique used to grave (12). O

As an example, if we consider the case where the separatitandés are constant for gl)
then the joint minimum separation distance satisfies

VIS(My, Ny < S(M*N*) < VR(MLM) + (J — DA2(M,N)
< (M, NY) + VI —TAM, M)

In the case wher& M, V1) < A(M;, N7) then we observe that AM*, N'*) can be considerably
larger thanmy/.J6(M 1, V7). This means that we can potentially tolerate much more noise while
ensuringPu-p~ = 0. To see this, writer = (ny, no, ..., n;) and recall that we requirgn;|| <

€ = 6(M;, Nj)/2 to ensure thaPy, »;, = 0. Thus, if we require thaPy, ;, = 0 for all j, then we

have that
J
Il = ([ D lInglI2 < VJe = VI§ (M1, M) /2.
j=1

However, if we instead only require th&t-,~ = 0 we only need|n| < §(M*, N'*)/2, which
can be a significantly less stringent requirement.

The benefit of classification using the joint manifold is made more apparent when we extend
our noise model to the case where we allpw| > §(M;, N;)/2 with non-zero probability and
apply (10). To bound the probability i (10), we will make use of the following adaptation of
Hoeffding’s inequality [13].

Lemma 3.1. Suppose that; € R" is arandom vector that satisfi@ls ;|| < ¢, forj =1,2,...,J.
Suppose also that the; are independent and identically distributed (i.i.d.) with||n;||] = o.
Thenifn = (ny, ny,...,ny;) € R’Y, we have that for any > 0,

P (||n]* > J(o® + X)) < exp (—2J)\ ) :

=
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Using this lemma we can relax the assumptione@o that we only require that it is finite,
and instead make the weaker assumption #{dt||] = v Jo < 6(M,N)/2 for a particular pair
of manifolds M, N. This assumption ensures that= 6*(M,N)/4 — o > 0, so that we can
combine Lemma 3]1 witH (10) to obtain a bound By, Note that if this condition does not
hold, then this is a very difficult classification problem since ¢xpectechorm of the noise is
large enough to push us closer to the other manifold, in which case the simple classifier given by
(@) makes little sense.

We now illustrate how Lemmia_3.1 can be be used to compare error bounds between classi-
fication using a joint manifold and classification using a particular pair of component manifolds
My, N

Theorem 3.2.Suppose that we observe a vegior x+n wherexr € M*andn = (ny,na,...,ny)
is a random vector such that,|| < ¢ for j = 1,2,...,J, and that then; are i.i.d. with
Eflln;|l] = o < 0(My, Ni) /2.

S(M* N™)
(M, Np) < ——Z2—2, 14
(M, Ni) Nai (14)
and we classify the observatigraccording to[(), then
Prpa+ < exp (—204 ) , (15)
€
and )
C
such that
> .
Proof. First, observe that
2 * *
MMiJ’N) > 63 (M, Niy) > 4o (17)

Thus, we may set = 6%(M*, N*)/4J — o? > 0 and apply LemmB3l1 to obtain {15) with

L (BMEINT) N
C—J(T—U).

Similarly, we may again apply Lemnia3.1 by setting= 6*(M;,N;)/4 —o? > 0and.J = 1to

obtain [16) with
(52<Mk,./\/’k) 2)2

14



It remains to show that* > ¢;. Thus, observe that

62(/\/{*’/\/*)
J

VIR (M N*) — (VT = 1)62(M*, N¥)

J

(M N®) V7 2 (M* N7)

(-1 =/
V)=

2 (M* N™)
VI

where the last inequality follows frorh (L 7). Rearranging terms, we obtain

*(My, Ni) 2 < \T <52(M*,N*) B 02) |

(M, Ny) <

IN

—40*(VJ = 1),

4 4J
Thus,
Ver Ve,
and sincec;, > 0 by assumption, we obtain
cp < ¢
as desired. ]

This result can be weakened slightly to obtain the followiagpdary.

Corollary 3.1. Suppose that we observe aveagior z+n wherex € M*andn = (ny,na,...,ny)
is a random vector such thdfn;| < ¢ for j = 1,2,...,J and that then; are i.i.d. with
Ellln;ll] = 0 < §(My, Ni)/2. If

Zj;ﬁk 52(ijj\/})

J—1 ’
and we classify according t61(9), thedn{15) ahdl(16) hold with the same constants as in Theorem
[B.2.

Proof. We can rewrite[(18) as

2 (M, Nip) < (18)

ST (M, N) — 32( My, N
2 J
S My, Njy) < T .

After rearranging terms, this reduces to

T 82(M,, N
52(Mk,Nk) S 23_1 S J J>.

Applying (11) from Theoreri 311, we obtain

2 (M* N™)
J )
which allows us to apply Theorelm 8.2 to prove the desired result. O

2 (M, Ni) <
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Corollary[3.1 shows that we can expect joint classificatiomutperform thek-th individ-
ual classifier whenever the squared separation distance fdr-tineomponent manifolds is not
too much larger than the average squared separation distance among the remaining component
manifolds. Thus, we can expect that the joint classifier is outperforming most of the individual
classifiers, but it is still possible that some of the individual classifiers are doing better. Of course,
if one were able to know in advance which classifiers were best, then one would only use data
from the best sensors. We expect that a more typical situation is when the separation distances are
(approximately) equal across all sensors, in which case the conditibnlin (18) is true for all of the
component manifolds.

3.2 Manifold learning

In contrast to the classification scenario described above, where we knew the manifold s&ructure
priori, we now consider manifoltbarningalgorithms that attempt to learn the manifold structure

by constructing a (possibly nonlinear) embedding of a given point cloud into a sulikktwhere

L < N. Typically, L is set toK, the intrinsic manifold dimension. Several such algorithms have
been proposed, each giving rise to a nonlinear map with its own special properties and advantages
(e.g. Isomap [14], Locally Linear Embedding (LLE) [15], Hessian Eigenmaps [16], etc.) Such
algorithms provide a powerful framework for navigation, visualization and interpolation of high-
dimensional data. For instance, manifold learning can be employed in the inference of articulation
parameters (eg., 3-D pose) of points sampled from an image appearance manifold.

In particular, the Isomap algorithm deserves special mention. It assumes that the point cloud
consists of samples from a data manifold that is (at least approximately) isometric to a convex
subset of Euclidean space. In this case, there exists an isometric mgppimm a parameter
space® C R to the manifoldM such that the geodesic distance between every pair of data
points is equal to thé, distance between their corresponding pre-imagés im essence, Isomap
attempts to discover the coordinate structure of fiatimensional space.

Isomap works in three stages:

e We construct a grapty’ that contains one vertex for each input data point; an edge connects
two vertices if the Euclidean distance between the corresponding data points is below a
specified threshold.

e We weight each edge in the gragh by computing the Euclidean distance between the
corresponding data points. We then estimate the geodesic distance between each pair of
vertices as the length of the shortest path between the corresponding vertices in th&.graph

e We embed the points iR¥ using multidimensional scaling (MDS), which attempts to embed
the points so that their Euclidean distance approximates the geodesic distances estimated in
the previous step.

A crucial component of the MDS algorithm is a suitable linear transformation of the matrix of
squared geodesic distancBs the rank# approximation of this new matrix yields the best pos-
sible K-dimensional coordinate structure of the input sample points in a mean-squared sense.
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Further results on the performance of Isomap in terms of ga@ywoperties of the underlying
manifold can be found in [17].

We examine the performance of manifold learning using Isomap with samples @iitihe
manifold as compared to learning any of the component manifolds. We first assume that we are
given noiseless samples from tlidsometric component manifold$t,, Ms, ..., M. In order
to judge the quality of the embedding learned by the Isomap algorithm, we will observe that for
any pair of pointg, ¢ on a manifoldM, we have that

< lp =4l

for somep € [0, 1] that will depend om, ¢. Isomap will perform well if the largest value pfthat
satisfies[(19) for any pair of samples that are connected by an edge in the(giapthose tol.

Using this result, we can compare the performance of manifold learning using Isomap on samples
from the joint manifoldM* to using Isomap on samples from a particular component manifold
M.

Theorem 3.3. Let M* be a joint manifold fromJ isometric component manifolds. Let=

(p1,p2,---,ps) @andq = (q1,qe,--.,qs) denote a pair of samples g¥1* and suppose that we
are given a graplt: that contains one vertex for each sample. Foreach 1,. .., J, definep; as
the largest value such that
Ip; — g5l
py < Gl < (20)
’ dm; (pjs 45)

for all pairs of points connected by an edge(in Then we have that

J
> i1 P < llp—dl
J = dm(p,q)

<1, (21)

Proof. By Propositior 2.3,
J
lp—al”> =" llp; = 4%,
7j=1
and from Theorerh 211 we have that

d.%\/i* (p7 Q) = ‘]dg\/ll(plv Ch)
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Thus,

J
lp—al> _ Xl — gl
d.%\/l*<p7 Q) Jd,%\/ll(prII)
_ Z p; —qgll

M1 Pl,Ch

I

_ Z |pj — 4

p],q])
1 2
Z 3 ij,
j=1

which establishes the lower bound [n¥21). The upper bound is trivial since we always have that
A (p,q) > |lp —qll. -

From Theoreni_3]3 we see that, in many cases, the joint marefiichates of the geodesic
distances will be more accurate than the estimates obtained using one of the component manifolds.
For instance, if for particular component manifold, we observe that

J
p Zj:l p?
k J )

IN

then we know that the joint manifold leads to better estimates. Essentially, we can expect that the
joint manifold will lead to estimates that are better than the average case across the component
manifolds.

We now consider the case where we have a sufficiently dense sampling of the manifolds so that
thep; are very close to one, and examine the case where we are obtaining noisy samples. We will
assume that the noise affecting the data samples is i.i.d., and demonstrate that any distance calcu-
lation performed on\1* serves as a better estimator of the pairwise (and consequently, geodesic)
distances between two points labeledigndq than that performed on any component manifold
between their corresponding poinptsandg;.

Theorem 3.4. Let M* be a joint manifold fromJ isometric component manifolds. Let=
(p1,p2,...,ps)andqg = (¢, q, - - ., q;) be samples oM * and assume thafp; — ¢, || = dforall ;.
Assume that we acquire noisy observatisns p + n andr = g +n’, wheren = (ny,ns, ..., ny)
andn’ = (n},n,,...,n’;) are independent noise vectors with the same variance and norm bound

Elln;1?) = o® and ;] < e, j=1,....J.

Then,
|s — 7|2

lp—ql* +2J02 ~

P(1—5<

2
_ 2 [ d?>+20
wherec = exp (25 (d\[JrE) )

1+5) >1—2c,
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Proof. We write the distance between the noisy samples as
J
ls = 71* = {llp; — 4ilI> + 2(p; — g5, n; — ) + lln; — n)1*}. (22)
j=1
This can be rewritten as
J
ls =rl> = llp — all* = Y _{2(p; — a5, n; — nj) + |In; = nj|[*}. (23)
j=1

We obtain the following statistics for the term inside the sum:

El(p; — qj,n; — nf) + [ln; = nj|]°] = 20%
(s = a5,m5 = 1) + lny = nflIP| < 2dv/e+e

Using Hoeffding’s inequality, we obtain

p<'_

J
Z{2<pj —qj,n; — ) + |n; — nj|*} — 2J07
7j=1

_ 2Jx2
> 2\ | < 2e Cavero?,

This result is rewritten to obtain

27252
P(‘HS—THz—||p—q||2—2J02‘>J)\) < 2e @dvero?
27272

P(lls=rI>=lp—qll’ =2J0%| < JX) > 1—2e Gavea?,

Simplifying, we get

A |s — 7| A 2022
Pl1- < <14 —" ) >1—2¢ Gavero?,
( P20 p—qPr2ie = T eran )T T

A

15,2 to obtain the result. =

Replaced =

We observe that the estimate of the true distance suffers &raonstant small bias; this can
be handled using a simple debiasing ﬁeﬂiheorenf?m indicates that the probability of large
deviations in the estimated distance decreagpsnentiallyn the number of component manifolds
J; thus the “denoising” effect in joint manifold learning is manifested even in the case where only
a small number of component manifolds are present.

As an example, we consider three different manifolds formed by images of an ellipse with
major axise and minor axis translating in a 2-D plane; an example point is shown in Figlure 3.
The eccentricity of the ellipse directly affects the condition numberof the image articulation
manifold; in fact, it can be shown that articulation manifolds formed by more eccentric ellipses
exhibit higher values for the condition number. Consequently, we expect that it is “harder” to learn
such manifolds.

2Manifold learning algorithms such as Isomap deal with biased estimates of distances by “centering” the matrix of
squared distances, i.e., removing the mean of each row/column from every element.
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(i) (a,b) = (7,7) (i) (a,b) = (7,6) (iii) (a,b) = (7,5)

Figure 3: Three articulation manifolds embeddedriff*® sharing a common 2-D parameter sp&ce

Figure[4 shows that this is indeed the case. We add a small amount of white gaussian noise
to each image and apply the Isomap algorithm [14] to both the individual datasets as well as the
concatenated dataset. We observe that the 2-D embedding is poorly learnt in each of the individual
manifolds, but improves visibly when the data ensemble is modeled using a joint manifold.

4 Joint manifolds for efficient dimensionality reduction

We have shown that joint manifold models for data ensembles can significantly improve the perfor-
mance on a variety of signal processing tasks, where performance is quantified using metrics like
probability of error for detection and accuracy for parameter estimation and manifold learning. In
particular, we have observed that performance tends to improve exponentially fast as we increase
the number of component manifolds However, we have ignored that whérnand the ambient
dimension of the manifoldd’ become large, the dimensionality of the joint manifold /A —

may be so large that it becomes impossible to perform any meaningful computations. Fortunately,
we can transform the data into a more amenable form via the methradddm projectionsit has

been shown that the essential structure &f-@imensional manifold with condition numbeyr
residing inR" is approximately preserved under an orthogonal projection into a random subspace
of dimensionO (K log(N/7)) < N [18]. This result can be leveraged to enable efficient design of
inference applications, such as classification using multiscale navigation [19], intrinsic dimension
estimation, and manifold learning [20].

We can apply this result individually for each sensor acquiring manifold-modeled data. Sup-
poseN-dimensional data frond component manifolds is available. X is large, then the above
result would suggest that we project each manifold into a lower-dimensional subspace. By collect-
ing this data at a central location, we would obtdinectors, each of dimensian(K log N), so
that we would havé (J K log N) total measurements. This approach, however, essentially ignores
thejoint manifold structure present in the data. If we instead view the data as arising ffom a
dimensional joint manifold residing iR’ with bounded condition number as given by Theorem
[2.2, we can then project the joint data into a subspace whizhlyslogarithmicin .J as well as the
largestcondition number among the components, and still approximately preserve the manifold
structure. This is formalized in the following theorem.
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Figure 4: Results of Isomap applied to the translating ellipse image data sets.

Theorem 4.1. Let M* be a compact, smooth, Riemannian joint manifold ifi/é-dimensional
space with condition numbedr/7*. Let ® denote an orthogonal linear mapping from* into
a randomM-dimensional subspace &'~. Let M > O(K log(JN/7*)/€?). Then, with high
probability, the geodesic and Euclidean distances between any pair of points*@re preserved
up to distortione under the linear transformatiot.

Thus, we obtain a faithful approximation of our manifold-modeled data that iSofiylog JN)
dimensional. This represents a significant improvement over performing separate dimensionality
reduction on each component manifold.

Importantly, the linear nature of the random projection step can be utilized to perform dimen-
sionality reduction in a distributed manner, which is particularly useful in applications when data
transmission is expensive. As an example, consider a netwaflsefsors observing an event that
is governed by d-dimensional parameter. Each sensor records a signalRV,1 < j < J;
the concatenation of the signals= [« 23 ... z]|" lies on aK-dimensional joint manifold
M* C RN, Since the required random projections are linear, we can take local random projec-
tions of the observed signals at each sensor, and still calculaggdbal measurements of1*
in a distributed fashion. Let each sensor obtain its measurements®;z;, with the matrices
d; € RM*N 1 < j < J. Then, by defining thél/ x JN matrix ® = [®;...®,], our global
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projectionsy* = ®*x* can be obtained by

= (1)1{22'1—|—(I>2{L'2—|—...+(I)J{EJ.

Thus, the final measurement vector can be obtained by siagaing independent random pro-
jectionsof the signals acquired by the individual sensors. This method enables a novel scheme
for compressive, multi-modal data fusjan addition, the number of random projections required

by this scheme is onliogarithmicin the number of sensots. Thus, the joint manifold frame-

work naturally lends itself to a network-scalable data aggregation technique for communication-
constrained applications.

5 Discussion

Joint manifolds naturally capture the structure present in a variety of signal ensembles that arise
from multiple observations of a single event controlled by a small set of global parameters. We
have examined the properties of joint manifolds that are relevant to real-world applications, and
provided some basic examples that illustrate how they improve performance and help reduce com-
plexity.

We have also introduced a simple framework for dimensionality reduction for joint manifolds
that employs independent random projections from each signal, which are then added together
to obtain an accurate low-dimensional representation of the data ensemble. This distributed di-
mensionality reduction technique resembles the acquisition framework proposed in compressive
sensing (CS) [21,22]; in fact, prototypes of inexpensive sensing hardware [23, 24] tluteczly
acquirerandom projections of the sensed signals have already been built. Our fusion scheme can
be directly applied to the data acquired by such sensors. Joint manifold fusion via random pro-
jections, like CS, isuniversalin the sense that the measurement process is not dependent on the
specific structure of the manifold. Thus, our sensing techniques need not be replaced for these
extensions; only our underlying models (hypotheses) are updated.

The richness of manifold models allows for the joint manifold approach to be successfully ap-
plied in a larger class of problems than principal component analysis and other linear model-based
signal processing techniques. In fact, joint manifolds can be immediately applied in signal pro-
cessing tasks where manifold models are common, such as detection, classification, and parameter
estimation. When these tasks are performed in a sensor network or array, and random projections
of the captured signals can be obtained, joint manifold techniques provide improved performance
by leveraging the information from all sensors simultaneously.
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