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Abstract 
Most Supervisory Control and Data Acquisition 

(SCADA) systems have been in operation for decades 

and they in general have 24x7 availability requirement, 

hence upgrading or adding new fault tolerant logic into 

the systems to sustain faults caused by cyber attacks 

when these systems evolve into a cyber environment is 

often difficult to achieve. In the proposed approach, an 

external coordination layer is constructed that only 

interfaces with the SCADA systems through events and 

separate from the process under control. The 

coordination layer is a combination of transparent 

management of fault-tolerant schemes of critical 

services of a SCADA system and a model for 

coordinating different critical services when faults 

caused by cyber attack occur in that system. In addition, 

security-related knowledge, such as cyber attack 

patterns and potential fatal states, etc., are also modeled 

and built into the coordination layer. The advantages of 

our approach are twofold: (1) the survivability-related 

knowledge and protection scheme are built in the 

coordination layer which is external to the SCADA 

systems and therefore the disturbance to the underlying 

systems is greatly reduced; (2) “separation of concern” 

principle is truly reflected in our model in that fault-

tolerance, security and survivability concerns are 

separated from supervisory and acquisition. In addition, 

the external coordination model will enable us to 

accommodate future requirements that may not even be 

anticipated today. 

 

 

1. Introduction 
 

The Supervisory Control and Data Acquisition 

(SCADA) system is a specialized software package 

positioned on top of hardware that needs to be 

monitored and controlled. SCADA systems perform 

important roles in many of the nation‟s critical 

infrastructures, ranging from electric power generation, 

transmission, and distribution to railroads and mass 

transit [1]. In general, these infrastructures have two 

layers:  

 

1. Physical layer. This layer consists of physical units 

and infrastructures, such as power distribution unit, 

plumbing, wiring, etc. that are used to deliver 

essential services. 

2. Cyber layer. This layer contains computers, 

networks and data gathering sensors that are used to 

monitor and control the physical layer. The 

SCADA system is the main part of this layer. 

Both the SCADA systems and the underlying 

physical systems have strict survivability requirements 

on a twenty-four-hours-a-day, seven-days-a-week 

(24x7) basis. Here survivability means the capability of 

a system to fulfill its mission in a timely manner, even in 

the presence of attacks, failures, or accidents [2].  

Different from fault-tolerant systems which are 

generally engineered to tolerate random natural failures, 

system survivability must also consider unpredictable 

faults which may be caused by intentional attacks.  

SCADA systems are developed to monitor and 

estimate the current operation state [9], collect, 

analyze, and diagnose fault alarms [10], as well as use 

redundant techniques to provide fault tolerance [11] for 

underlying physical systems. However, most existing 

SCADA systems themselves become a point of 

vulnerability when they evolve into a cyber 

environment. The available security technologies 

unfortunately are not targeted for protecting SCADA 

systems, and there are some misconceptions [3] as 

follows: 

 

1. SCADA system resides on a physically separated 

and stand alone network.  

2. Connections between SCADA systems and other 

corporate networks are protected by strong access 

control schemes.  

1

POSTPRINT

mailto:shenl%7d@iit.edu
mailto:kwiatk@rl.af.mil


 2 

3. SCADA systems require special knowledge, 

making them difficult for network intruders to 

access and control.  

4. In the underlying physical layer, all fault alarms are 

assumed to be caused by hardware or software 

malfunctions, and can be treated by common fault 

tolerance techniques.  

 

In recent years, operators of those critical 

infrastructures have come to realize the benefits of 

sharing SCADA information with corporate networks. 

However, the ability to access and control processes 

once isolated to standalone networks has rendered them 

vulnerable to cyber attacks from a variety of sources, 

including hostile governments, terrorist groups, 

disgruntled employees, and other malicious intruders. 

The 2003 incidence where a disgruntled Australia 

engineer released tons of dirty water upon city grounds 

to gain revenge against his supervisor is an example 

[25]. 

Most of national infrastructures, such as power grids, 

water management and supply systems, are built 

decades ago.  These infrastructures have gradually 

evolved into cyber systems and have been enjoying the 

flexibility and productivity that modern technology, 

such as the Internet, has brought.  However, the side 

effects and risks associated with these technologies in 

this very special area are nevertheless not fully 

addressed.   

One of the main challenges is that these systems have 

a 24x7 availability requirement that inhibits the 

„shutdown and upgrade‟ approach that otherwise is an 

effective way to handle emerging concerns.  

Furthermore, such a high availability requirement makes 

these systems highly sensitive to changes.  These 

adversary properties of the SCADA systems hence 

require that any QoS enhancement must be done 

through a non-intrusive way.  In addition, unlike 

traditional fault tolerance measures with which the 

central control and administration are sufficient, 

survivability in a cyber environment must address 

highly distributed, dynamic and unbounded 

environments that lack central control and unified 

policies [29]. 

To overcome this challenge and ensure software 

system dependability in cyber environments, a model 

that captures the characteristics of the system and the 

environment becomes essential. As critical information 

systems emerge from “closed castle” into distributed 

paradigms, the co-operation among distributed elements 

which compose of the larger cyber systems inevitably 

becomes the focus of such systems. 

The rest of the paper is organized as follows: Section 

2 discusses related work. Section 3 presents our solution 

for improving survivability of SCADA systems in 

detail. Section 4 performs a case study to further 

illustrate the use of our approach. Section 5 draws 

conclusions and points out our future work. 

 

2. Related Works  
 

Research and continuous re-evaluation of standard 

practices have been conducted to study ways of 

improving the survivability of critical infrastructures 

where errant or malicious computer operations could 

result in a catastrophe. However, few of them 

demonstrate a non-intrusive approach focusing on cyber 

attacks in SCADA systems by integrating domain 

specific security knowledge into survivability solutions.  

Pollet proposes a Network Rings of Defense model to 

provide a layered security strategy for the SCADA 

system [4]. In such a structure, developing an 

appropriate SCADA security strategy involves analysis 

of multiple layers including firewalls, proxy servers, 

operating systems, application system layers, 

communications, and policy and procedures. Risk 

analysis are applied on all these layers and known 

vulnerabilities, such as password, key stroke logging, 

and Denial of Service (DoS) attack protection, etc [5].  

An agent-based system is proposed to monitor the 

SCADA system in a distributed way to provide quick 

local fault recognition and response [7]. Firewalls [6] 

and intrusion detection techniques are also studied to 

help repel and localize cyber attacks [8].  

Protection-Shell [17], also known as a Safety Kernel 

[15,16], is “an independent computer program that 

monitors the state of the system to determine when 

potentially unsafe system states occur or when 

transitions to potentially unsafe system states may occur. 

The Safety Kernel is designed to prevent the system 

from entering the unsafe state and return it to a known 

safe state.” Leveson et al. [20] describe the term “Safety 

Kernel” as a technique which focus on centralizing a set 

of safety mechanisms. These mechanisms are used to 

enforce usage policies that are established in a given 

system to ensure system safety. Kevin G. Wika and J.C. 

Knight gave an evaluation of the feasibility of the safety 

kernel as a software architecture for the enforcement of 

safety policies [15].  

System Fault-Tree Analysis [17, 26] is a widely used 

safety analysis technique and also an important 

technology in assessment of the safety-critical systems. 

System Fault-Tree Analysis helps to make fault 

dependability predictions, and identify root causes of 

equipment failures.  Although different versions of 

2
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software replications on different hardware units are 

used to tolerate both hardware and software faults, the 

management of these replicas in a distributed 

environment is intertwined with the functional logic 

being protected.  

Until today, most of research efforts have focused on 

applying available general purpose IT security 

technologies to SCADA systems. Little effort has been 

put on developing SCADA-specific strategies.  One of 

the major characteristics of SCADA systems is that it 

could take a decade or more to renovate the existing 

SCADA systems to take full advantage of general IT 

security technologies, but on the other side, these legacy 

systems still have a considerable amount of serviceable 

life remaining [8]. Hence, compensating and non-

intrusive approaches for improving legacy systems 

survivability in a cyber environment must be sought-

after. 

Exogenous control-driven coordination models, such 

as ARC[ren-coord06], ABT [14], LGI [15], ROAD 

[16], IWIM [11] and CoLaS [17] isolate coordination 

by considering functional entities as black boxes. For 

example, in the ARC model, QoS constraints are 

mapped into coordination constraints and are enforced 

through message manipulations which are transparent to 

the underlying computations modeled as asynchronous 

message passing systems.  The ABT model and its 

language Reo [14, 18] extend the IWIM by treating both 

computation and coordination components as 

composable Abstract Behavior Types (ABT). Similarly 

to IWIM, ABT is a two-level control-driven 

coordination model where computation and 

coordination concerns are achieved in separate and 

independent levels. [30] 

The coordination transparency inherent in the 

exogenous coordination model presents itself as a 

possible ramification for retrofitting legacy SCADA 

system for survivability in a cyber environment. 

 

3. Retrofitting SCADA Systems through 

External Coordination 
 

In this section, we present our exogenous coordination 

model for retrofitting legacy SCADA systems with fault 

tolerance in a cyber environment. 

 

3.1. An Exogenous Coordination Model  

 
The ARC (Actor, Role, Coordinator) coordination 

model is developed to model open distributed systems 

with non-functional requirements (or QoS requirements 

in general), such as survivability and attack-tolerance 

requirements [17].  

More specifically, the ARC model has the following 

characteristics: 

 

 The Actor model is used to model the concurrent 

computational part of a distributed cyber 

information system, while an independent 

coordination model is developed to address 

individual composing entities‟  “cooperation”, or 

coordination. Further, the QoS requirements in 

general, survivability and attack-tolerance 

requirements in particular, are achieved through 

specific coordination among the asynchronous 

entities. 

 The concept of a role is introduced into the 

coordination model. The role provides an 

abstraction for coordinated behaviors that may be 

shared by multiple actors and also provides 

localized coordination among its players. 

 Coordination in our model is divided into inter-role 

and intra-role coordination to ensure clearer 

separation of responsibilities and reduce the 

complexity of individual coordination entities. This 

setting further ensures that both the coordination 

constraints and coordination activities are 

decentralized and distributed among the 

coordinators and the roles.  

 The survivability and attack-tolerance requirements 

are mapped to coordination constraints and are 

transparently imposed on actors through message 

manipulations carried out by roles and 

coordinators. 

 

The ARC model may be conceptualized as the 

composition of three layers, with each of the three 

components of the model associated with a dedicated 

layer, as illustrated in Figure 1. The separation of 

concerns is apparent in the relationships involving the 

layers. The actor layer is dedicated to functional 

behavior and is oblivious to the coordination enacted in 

the role and coordinator layers. The roles and 

coordinators constitute the coordination layer 

responsible for imposing coordination and QoS 

constraints among the actors. 

The coordinator layer is oblivious to the actor layer 

and is dedicated to inter-role coordination. The role 

layer bridges the actor layer and the coordinator layer 

and may therefore be viewed from two perspectives. 

From the perspective of a coordinator, a role enables the 

coordination of a set of actors that share the static 

description of abstract behavior associated with the role 

without requiring the coordinator to have fine-grained 

knowledge of the individual actors that play the role. 

From the perspective of an actor, a role is an active 

3
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coordinator that transparently manipulates the messages 

sent and received by the actor. The roles in the role 

layer and the coordinators in the coordinator layer are 

active state-based objects, enabling the coordination 

policies within an application to adapt over time. While 

actors communicate via messages that are subject to 

delay, the information required by roles and 

coordinators is communicated via atomic events that are 

processed atomically by all interested roles and 

coordinators.  

 

 
 

Figure 1. The ARC Model 

 

Actors 

Actors in our ARC model are based on the actor 

model in [1]. More specifically, actors are active 

objects. They have states and behaviors. The states and 

the current behavior of the actors decide how they 

process messages (operations).  

 

Roles 

Roles serve two purposes. First, roles provide static 

abstractions (declarative properties) for functional 

behaviors that must be realized by actors. Coordination 

based on roles is therefore relatively stable, even though 

the underlying actors may be of large quantity and 

dynamic. In addition, roles actively coordinate the 

actors playing the roles to satisfy fault tolerance 

requirements. The intra-role coordination coerced by 

roles complements the inter-role coordination enacted 

by coordinators. 

The declarative criteria in the roles not only abstract 

the behaviors of actors, but also present a static 

interface to coordinators. Coordinators, therefore, do 

not have to directly coordinate actors, but implicit 

groups of actor, i.e., roles. Although in cyber 

environment, actors are very dynamic, they join or leave 

the system frequently; with role abstraction, 

coordinators are refrained from such dynamics.  

 

Coordinator 

Similar to the roles and actors, coordinators also have 

states and are active. They are able to observe events 

and make corresponding state adaptations. The 

declarative constraint policies are state-based and apply 

to roles only. The actors and coordinators are mutually 

transparent: though changes on actors or coordinators 

may impact on each other, such impacts are only passed 

through roles. 
 

3.2. Separating Fault-Tolerance Concerns 

from Supervision and Acquisition Logics 

 
To simplify our discussion, we focus on critical 

components and their constraints that keep a SCADA 

system in safe states.   

From a workflow‟s perspective, each essential 

component in the physical layer has a corresponding 

node in the workflow. Each node has input and output 

ports for communication with other nodes and stores the 

Process Variable (PV) values of the corresponding 

device in the physical layer. A PV is a named piece of 

data associated with the current status of a process 

under control, such as setpoints and parameters. These 

values can be retrieved from the existing SCADA 

system. As the PV values represent the current device 

states in the physical layer, and the control system 

mathematical models represent the devices functional 

behaviors, the simulations of control commands or 

faults on the workflow realistically reflect their impacts 

on the real systems. 

For a complex device in the physical layer, the 

corresponding node in the workflow can be recursively 

decomposed into a workflow of simpler nodes each of 

which performs relatively simpler activities. In other 

words, our workflow is a hierarchal structure [21] with 

subworkflows nested within composite nodes.  

In addition to reflecting the essential services 

provided by the physical layer, the workflow also 

contains domain-specific security knowledge. The 

security-related knowledge is modeled by meta-nodes in 

the workflow. More specifically, depending on the roles 

the nodes play, they are distinguished as:  

1. Computational nodes. They represent system 

functional entities that compose the essential 

service parts in the physical layer.  

2. Non-functional nodes or meta-nodes. They are not 

the nodes that will be involved in simulating real 

system behaviors, but are the entities responsible 

for monitoring the states of computational nodes 

and help detect whether the system states or 

behaviors are in potential risks.  

4
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Currently, we have defined two types of meta-nodes. 

They are the Pattern Checker and the Status Checker, 

which carry out attack pattern recognition and node 

states monitoring, respectively.  

Attack patterns are derived from the domain specific 

security knowledge. In our current study, an attack 

pattern is defined as a series of states of a set of 

computational nodes. Such states in this specific set of 

nodes represent an abnormal system behavior that may 

have been caused by a cyber attack. It is formalized by a 

conjunctive normal form expressing a conjunction of 

statuses, where a status is a specific state in a 

computation node. To be more specific, during a 

simulation the Pattern Checker is responsible for 

monitoring the state of the conjunctive formula, while 

the Status Checkers are responsible for monitoring the 

state of an individual computation node. If a given 

formula turns into “TRUE”, it represents the match of 

the pattern. 

A simulation in a workflow can be triggered by two 

events generated from the SCADA system, i.e. the 

CommandIssue event and the FaultOccur event. The 

Simulation Manager is responsible for monitoring and 

storing the occurrences of events, suspending the 

commands and starting/terminating the simulations 

accordingly. The next two subsections discuss, in detail, 

about the simulation process. 

Statically, a workflow contains the mathematical 

models of the physical devices and attack patterns 

derived from domain knowledge. At run time, the 

simulations on the workflow verify the behavior of the 

physical system and identify potential faults through 

attack pattern matching.    

 

3.3. Attack Detection 
 

As we proposed in [28], through simulation of 

workflow combined with matching of attack patterns, 

cyber attacks in physical system can be detected.  

However, some smart attackers may attack the system 

in a subtle way. This kind of attack is an accumulating 

process which consists of a series of commands. 

Actually, before the abnormal symptoms appear, the 

attacks have happened in the system for a while. So if 

we take these commands into consideration individually, 

all of them are legal. The mechanism discussed above 

cannot detect such an attack until the last control 

command, (creating the onset of abnormal symptoms) is 

sent to the SCADA.  

For these subtle attacks,, we will take command 

history into account... When commands are entered, 

they are tracked and time slices are used to analyze the 

commands. With analysis of the evolution of these 

slices, we determine if a series of states match a pre-

defined pattern. In the event of a match, warning 

messages are issued or some security technology, such 

as RSE [27], is invoked to further identify the intention 

of the command.  

For example, we are concerned with the following 

pattern P in a time dimension, which is a fraction of the 

whole workflow. We project the pattern P onto the time 

dimension, then we get a series of states of pattern P in 

history time order, P(t1), P(t2), P(t3), as described in 

the following figure:  

 

A

B D

C
 

Pattern P 

A

B D

C
    

A

B D

C
   

A

B D

C
 

P(t1)                       P(t2)                    P(t3) 

Figure 2 Pattern of Bad Behavior 

 

The shaded nodes are those PV values that fall into a 

range indicating potential attacks. And we can formulate 

a potential attack pattern as follows: 

 

P(t1)[A, PV1]∈ R1, 

P(t2)[B, PV2]∈ R2, 

P(t3)[C, PV3]∈ R3, 

where t1<t2<t3.  

 

Here P(t1)[A, PV1]∈ R1 means, in the pattern P of 

time t1, the value of PV parameter PV1 in node A fell in 

range R1. We can consider such an order as potentially 

dangerous.  

Besides defining attack patterns, we can also define 

acceptable behavior patterns. Considering the above 

example, we define the following order-of-actions as 

acceptable behavior. We formulate it as follows: 

P(t1)[C, PV4]∈ R4, 

P(t2)[B, PV5]∈ R5, 

P(t3)[A, PV6]∈ R6, 

where t1<t2<t3.  
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A
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A
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P(t1)                       P(t2)                    P(t3) 

Figure 3 Pattern of good behavior 

An important advantage of defining acceptable 

behavior patterns is that the number of acceptable 

behavior patterns in a system is limited, while the 

number of attack patterns may be unbounded. 

 

3.3. Attack Handling 
 

For the nodes in workflow, we can model them as 

actors and group the actors based on functionality.  The 

actors with same functionality are assigned to the same 

group - called a role - in the ARC model. The ARC 

model stipulates that, at any time, an actor can only 

belong to one role. Therefore, in general, there are two 

possible roles an actor can be assigned: a role 

representing normal behaviors or one representing 

abnormal behaviors.  

When the workflow simulation detects that the system 

is being attacked (perhaps in a subtle way), the 

corresponding actor of the attacked device will transit 

from a normal role to an abnormal role. Therefore under 

this circumstance, the coordinator will coordinate the 

roles to eliminate the actors from abnormal roles. 

For example, we can consider such a scenario in 

Figure 4. After simulation in workflow, valve V-4 

matches a bad behavior pattern for a valve, so it is 

transited to abnormal role for valve. When the 

coordinator finds the corresponding abnormal role 

status for the valve is changed (for example, the number 

of abnormal valves > 0), it will coordinate a normal role 

for the valve from the abnormal role for valve V-4.  For 

instance, simple solution would be to select a valve in 

normal role to temporarily backup valve V-4, and reset 

V-4 so as to make it behave normally, and then V-4 can 

return to the normal role for a valve. 

 

V-1 V-2 V-3 V-4

Normal Role 
for valve

Abnormal 
Role for valve

Coordinator

 
Figure 4 Example of valves in ARC model  

 

3.4. Preventing Fault Propagation through 

Coordinators 
 

Faulty states in the physical layer are monitored by 

SCADA systems. Through workflow analysis, 

extensions of the current fault can be identified, which 

provides valuable information for the SCADA system to 

forecast the potential fault propagations in the physical 

system and take necessary actions [28].  

When fault propagation is predicted by workflow, we 

can apply ARC model to prevent the propagation. In the 

following figure, Valves V-5, V-6, V-7, V-8 belong to 

the role of valve, while level meter L1 and L2 belong to 

the role of  level meter. The actions on V-5, V-6, V-7, 

and V-8 may change the output of level meter L1 and 

L2. For instance, the workflow simulation finds a fault 

propagation path from V-5 to Level meter 2. The 

coordinator can coordinate role for valve and role for 

level meter. Based on the coordination between roles, 

the role for valve will select a suitable valve to prevent 

the fault propagation.  
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L

Level Meter 1
V-7 V-6 V-5 V-8

 Role for valve

L

Level Meter 2

 Role for Level 
meter

Coordinator

 
Figure 5 Example of valves and level meters in ARC 

model  

 

 

4. Case Study 
 

In this section, we use our approach on a simplified 

Water Treatment System as a case study. To simplify 

our discussion, we omit non-essential services of the 

system.  

In the water treatment system, there are six valves 

(V1~V6) which control the fluid velocity and four 

pumps (P1~P4) which are used to pump raw water into 

the process system and distribute the purified water to 

consumers. In the normal condition only P3 and P4, 

called primary pumps, will operate. P1 and P2 are 

backups and will be activated only when the primary 

pumps are out of order.  

To detect the faults on the pumps, two sensors (S1 

and S2) are attached to the primary pumps to monitor 

their status. As soon as the status of the primary pump is 

abnormal, the backup pumps are activated. We also 

have a pressure vessel in which raw water is buffered 

and where elementary filtering is applied. Normally, 

over pressurization will not occur even when up to three 

pumps are activate because the filter can also release 

some pressure; however, when all four pumps are 

running simultaneously can the vessel be over 

pressured. This condition is a rare, abnormal situation.  

A pressure release container is attached to the 

pressure vessel as a safety mechanism. A sensor (S3) is 

used to detect the pressure level in the pressure vessel. 

When its sensed pressure value exceeds a threshold, the 

valve (V6) for the pressure release container will be 

activated to release water from the pressure vessel. We 

assume that both sensors are highly reliable. Figure 6 

depicts the simplified water treatment system.  

 

Pressure Vessel   p4

   p2

V-1

V-2
Filter

V-3

P-5

Product 

Booster Pump

P-6

Raw water

Raw water

For Consumption

V-4 V-5

Pressure Release Container

V-6

 Purified Water Container

 p3

V-7
Raw water

     p1

V-8Raw water

S1

S2

S3

 

 Figure 6 A Simplified Water Treatment System 

 

We first define cyber attack patterns on this system 

using our domain-specific security knowledge. This 

knowledge allows us to specify that the condition that 

can over pressurize the  pressure vessel over pressured 

is when all four pumps are activated and the pressure 

relief valve (V6) simultaneously  fails. This low 

probability scenario can be seen as an attack pattern. 

We can describe such an attack pattern in a conjunctive 

normal form as follows: 

311 ppC  

422 ppC  

63 vC  

64231321 )()( vppppCCCP

Here, P is the Attack Pattern and conditions C1, C2 and 

C3 are the output of three Status Checkers. Literals in the 

formula are described in the following table.  

 

 

 

 

 

 

 

 

 

 

 

Based on the above information, we build a workflow 

[28]. In this workflow, Status Checkers SC1, SC2, SC3 

and Pattern Checker PC1 are meta-nodes containing the 

security knowledge. Other entities are computation 

nodes which have counterparts in physical layer. The 

connections between computation nodes are based on 

both the data flows and control flows in the physical 

layer, while those between meta-nodes are based on the 

cyber attack patterns. Meanwhile, at any time an actor 

will be assigned to a role. For example, in this case, 

there are the following roles, normal/abnormal role for a 

pump, normal/abnormal role for a valve, 

Literal Description (Running Status of) 

p1 backup pump P1 is active and normal 

p2 backup pump P2 is active and normal 

p3 primary pump P3 is active and normal 

p4 primary pump P4 is active and normal 

v6 valve V6 is abnormal 

 

Table 1. The Description of Literals 
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normal/abnormal role for a sensor, normal/abnormal 

role for the pressure vessel, and normal/abnormal role 

for the container. At the beginning, all the actors are 

assigned to normal roles, as depicted in the following 

figure: 

 

V-1 V-2 V-7 V-8

 Normal Role 
for valve

Normal Role 
for Pump

Coordinator

……...

Abnormal 
Role for valve

Abnormal 
Role for Pump

P1 P4

……...

……...

 Figure 7 Initial Actor Assignment 

 

 The most primitive information comes from the 

Process Variables (PVs) stored in individual 

computation nodes. Based on this information, the 

Status Checkers SC1, SC2, SC3 decide whether 

conditions C1, C2, C3 are satisfied. By collecting the 

outputs of Status Checkers, the Pattern Checker PC1 

can detect whether this pattern is matched. For attack 

resistance, workflow simulation anticipates the effect 

that control commands will have on essential service (i.e. 

those listed in Table 1). For example, assume there is a 

new command issued from one of the terminals in the 

SCADA system to “Activate Pump1”. This command 

will be noticed by the Simulation Manger, which will 

trigger a simulation of the command on the workflow. 

Assume that in the current system state the Pump2~4 are 

all active, and the V6 is closed. In such a condition, the 

Pattern Checker will find a matching pattern such that 

application of the command on the real system is 

prevented.  At this time, backup pump P1 and P2 will 

transit from a normal role to an abnormal role. When 

coordination detects the status change to an abnormal 

role, it will coordinate all the roles to eliminate the 

adverse effect. 

For the preventing damage propagation, consider that 

the PV value in the Pressure Vessel indicates that the 

device is over pressurized. The Simulation Manager 

then starts the simulation immediately. We further 

assume that by simulation, the first propagated fault is 

located as the over pressurization of the filter. The 

Simulation Manager then suspends the simulation and 

compares this fault with the fault events stored in the 

fault event queue by content and time stamp. 

Unfortunately, by comparison, it finds that at this 

moment the fault has already happened in the real 

system. It then continues the simulation and locates the 

next propagated fault, which is the overflow of the 

Purified Water Container. It repeats the action described 

above. Fortunately, the fault is captured before the error 

occurs on this device in the actual system. The 

simulation is terminated and the fault propagation 

information will be reported to the ARC model. Then 

coordinator will take measurements to prevent the 

propagation (as we discussed in subsection 3.3). 

 

5. Conclusions and Future Work 
 

In this paper we have presented a coordination-based 

non-intrusive approach for enhancing the survivability 

of critical infrastructure.  The advantages of our 

approach are twofold: (1) survivability-related 

knowledge and a protection scheme are built in the 

coordination layer which is external to the SCADA 

systems and therefore the disturbance to the underlying 

systems is greatly reduced; (2) the “separation of 

concerns” principle is truly reflected in our model in 

that fault tolerance and survivability concerns are 

separated from supervisory and acquisition. Such 

separation enables us to accommodate future 

requirements that may not even be anticipated today.  
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