

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection
of information, including suggestions for reducing this burden to Washington Headquarters Service, Directorate for Information Operations and Reports,
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget,
Paperwork Reduction Project (0704-0188) Washington, DC 20503.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

JANUARY 2008
2. REPORT TYPE

Conference Paper Postprint
3. DATES COVERED (From - To)

April 2007 – January 2008
4. TITLE AND SUBTITLE

RETROFITTING CYBER PHYSICAL SYSTEMS FOR SURVIVABILITY
THROUGH EXTERNAL COORDINATION

5a. CONTRACT NUMBER
In House

5b. GRANT NUMBER
N/A

5c. PROGRAM ELEMENT NUMBER
62702F

6. AUTHOR(S)

Kun Xiao, Shangping Ren, Kevin Kwiat

5d. PROJECT NUMBER
4519

5e. TASK NUMBER
22

5f. WORK UNIT NUMBER
49

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

AFRL/RIGG Illinois Institute of Technology
525 Brooks Road Computer Science Department
Rome, NY 13441-4505 Chicago, IL 60616

8. PERFORMING ORGANIZATION
REPORT NUMBER

 N/A

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

AFRL/RIGG
525 Brooks Road
Rome NY 13441-4505

10. SPONSOR/MONITOR'S ACRONYM(S)
 N/A

11. SPONSORING/MONITORING
AGENCY REPORT NUMBER
AFRL-RI-RS-TP-2009-61

12. DISTRIBUTION AVAILABILITY STATEMENT
Approved for public release; distribution unlimited PA# WPAFB-2007-2263 Date Cleared: 25-September-2007

13. SUPPLEMENTARY NOTES
© 2008 IEEE. This paper was presented at and published in the proc. of the HICSS: 41ST HAWAII International Conference on
System Sciences: Big Island, Hawaii, 10-January-2008. This work is copyrighted. One or more of the authors is a U.S. Government
employee working, within the scope of their Government job; therefore, the U.S. Government is joint owner of the work and has the
right to copy, distribute, and use the work. All other rights are reserved by the copyright owner.
14. ABSTRACT
Most Supervisory Control and Data Acquisition (SCADA) systems have been in operation for decades and they in general have 24x7
availability requirement, hence upgrading or adding new fault tolerant logic into the systems to sustain faults caused by cyber attacks
when these systems evolve into a cyber environment is often difficult to achieve. In the proposed approach, an external coordination
layer is constructed that only interfaces with the SCADA systems through events and separate from the process under control. The
coordination layer is a combination of transparent management of fault-tolerant schemes of critical services of a SCADA system and
a model for coordinating different critical services when faults caused by cyber attack occur in that system. In addition, security-
related knowledge, such as cyber attack patterns and potential fatal states, etc., are also modeled and built into the coordination layer.

15. SUBJECT TERMS
Coordination Models, Cyber Physical Systems, SCADA, Fault Tolerance, Security, Survivability

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF PAGES

10

19a. NAME OF RESPONSIBLE PERSON
Kevin A. Kwait

a. REPORT
U

b. ABSTRACT
U

c. THIS PAGE
U

19b. TELEPHONE NUMBER (Include area code)
N/A

 Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18

 1

Retrofitting Cyber Physical Systems for Survivability through External

Coordination

 Kun Xiao, Shangping Ren Kevin Kwiat

Computer Science Department,

Illinois Institute of Technology

{kxiao3, ren}@iit.edu

Information Directorate

Air Force Research Laboratory

kwiatk@rl.af.mil

Abstract
Most Supervisory Control and Data Acquisition

(SCADA) systems have been in operation for decades

and they in general have 24x7 availability requirement,

hence upgrading or adding new fault tolerant logic into

the systems to sustain faults caused by cyber attacks

when these systems evolve into a cyber environment is

often difficult to achieve. In the proposed approach, an

external coordination layer is constructed that only

interfaces with the SCADA systems through events and

separate from the process under control. The

coordination layer is a combination of transparent

management of fault-tolerant schemes of critical

services of a SCADA system and a model for

coordinating different critical services when faults

caused by cyber attack occur in that system. In addition,

security-related knowledge, such as cyber attack

patterns and potential fatal states, etc., are also modeled

and built into the coordination layer. The advantages of

our approach are twofold: (1) the survivability-related

knowledge and protection scheme are built in the

coordination layer which is external to the SCADA

systems and therefore the disturbance to the underlying

systems is greatly reduced; (2) “separation of concern”

principle is truly reflected in our model in that fault-

tolerance, security and survivability concerns are

separated from supervisory and acquisition. In addition,

the external coordination model will enable us to

accommodate future requirements that may not even be

anticipated today.

1. Introduction

The Supervisory Control and Data Acquisition

(SCADA) system is a specialized software package

positioned on top of hardware that needs to be

monitored and controlled. SCADA systems perform

important roles in many of the nation‟s critical

infrastructures, ranging from electric power generation,

transmission, and distribution to railroads and mass

transit [1]. In general, these infrastructures have two

layers:

1. Physical layer. This layer consists of physical units

and infrastructures, such as power distribution unit,

plumbing, wiring, etc. that are used to deliver

essential services.

2. Cyber layer. This layer contains computers,

networks and data gathering sensors that are used to

monitor and control the physical layer. The

SCADA system is the main part of this layer.

Both the SCADA systems and the underlying

physical systems have strict survivability requirements

on a twenty-four-hours-a-day, seven-days-a-week

(24x7) basis. Here survivability means the capability of

a system to fulfill its mission in a timely manner, even in

the presence of attacks, failures, or accidents [2].

Different from fault-tolerant systems which are

generally engineered to tolerate random natural failures,

system survivability must also consider unpredictable

faults which may be caused by intentional attacks.

SCADA systems are developed to monitor and

estimate the current operation state [9], collect,

analyze, and diagnose fault alarms [10], as well as use

redundant techniques to provide fault tolerance [11] for

underlying physical systems. However, most existing

SCADA systems themselves become a point of

vulnerability when they evolve into a cyber

environment. The available security technologies

unfortunately are not targeted for protecting SCADA

systems, and there are some misconceptions [3] as

follows:

1. SCADA system resides on a physically separated

and stand alone network.

2. Connections between SCADA systems and other

corporate networks are protected by strong access

control schemes.

1

POSTPRINT

mailto:shenl%7d@iit.edu
mailto:kwiatk@rl.af.mil

 2

3. SCADA systems require special knowledge,

making them difficult for network intruders to

access and control.

4. In the underlying physical layer, all fault alarms are

assumed to be caused by hardware or software

malfunctions, and can be treated by common fault

tolerance techniques.

In recent years, operators of those critical

infrastructures have come to realize the benefits of

sharing SCADA information with corporate networks.

However, the ability to access and control processes

once isolated to standalone networks has rendered them

vulnerable to cyber attacks from a variety of sources,

including hostile governments, terrorist groups,

disgruntled employees, and other malicious intruders.

The 2003 incidence where a disgruntled Australia

engineer released tons of dirty water upon city grounds

to gain revenge against his supervisor is an example

[25].

Most of national infrastructures, such as power grids,

water management and supply systems, are built

decades ago. These infrastructures have gradually

evolved into cyber systems and have been enjoying the

flexibility and productivity that modern technology,

such as the Internet, has brought. However, the side

effects and risks associated with these technologies in

this very special area are nevertheless not fully

addressed.

One of the main challenges is that these systems have

a 24x7 availability requirement that inhibits the

„shutdown and upgrade‟ approach that otherwise is an

effective way to handle emerging concerns.

Furthermore, such a high availability requirement makes

these systems highly sensitive to changes. These

adversary properties of the SCADA systems hence

require that any QoS enhancement must be done

through a non-intrusive way. In addition, unlike

traditional fault tolerance measures with which the

central control and administration are sufficient,

survivability in a cyber environment must address

highly distributed, dynamic and unbounded

environments that lack central control and unified

policies [29].

To overcome this challenge and ensure software

system dependability in cyber environments, a model

that captures the characteristics of the system and the

environment becomes essential. As critical information

systems emerge from “closed castle” into distributed

paradigms, the co-operation among distributed elements

which compose of the larger cyber systems inevitably

becomes the focus of such systems.

The rest of the paper is organized as follows: Section

2 discusses related work. Section 3 presents our solution

for improving survivability of SCADA systems in

detail. Section 4 performs a case study to further

illustrate the use of our approach. Section 5 draws

conclusions and points out our future work.

2. Related Works

Research and continuous re-evaluation of standard

practices have been conducted to study ways of

improving the survivability of critical infrastructures

where errant or malicious computer operations could

result in a catastrophe. However, few of them

demonstrate a non-intrusive approach focusing on cyber

attacks in SCADA systems by integrating domain

specific security knowledge into survivability solutions.

Pollet proposes a Network Rings of Defense model to

provide a layered security strategy for the SCADA

system [4]. In such a structure, developing an

appropriate SCADA security strategy involves analysis

of multiple layers including firewalls, proxy servers,

operating systems, application system layers,

communications, and policy and procedures. Risk

analysis are applied on all these layers and known

vulnerabilities, such as password, key stroke logging,

and Denial of Service (DoS) attack protection, etc [5].

An agent-based system is proposed to monitor the

SCADA system in a distributed way to provide quick

local fault recognition and response [7]. Firewalls [6]

and intrusion detection techniques are also studied to

help repel and localize cyber attacks [8].

Protection-Shell [17], also known as a Safety Kernel

[15,16], is “an independent computer program that

monitors the state of the system to determine when

potentially unsafe system states occur or when

transitions to potentially unsafe system states may occur.

The Safety Kernel is designed to prevent the system

from entering the unsafe state and return it to a known

safe state.” Leveson et al. [20] describe the term “Safety

Kernel” as a technique which focus on centralizing a set

of safety mechanisms. These mechanisms are used to

enforce usage policies that are established in a given

system to ensure system safety. Kevin G. Wika and J.C.

Knight gave an evaluation of the feasibility of the safety

kernel as a software architecture for the enforcement of

safety policies [15].

System Fault-Tree Analysis [17, 26] is a widely used

safety analysis technique and also an important

technology in assessment of the safety-critical systems.

System Fault-Tree Analysis helps to make fault

dependability predictions, and identify root causes of

equipment failures. Although different versions of

2

 3

software replications on different hardware units are

used to tolerate both hardware and software faults, the

management of these replicas in a distributed

environment is intertwined with the functional logic

being protected.

Until today, most of research efforts have focused on

applying available general purpose IT security

technologies to SCADA systems. Little effort has been

put on developing SCADA-specific strategies. One of

the major characteristics of SCADA systems is that it

could take a decade or more to renovate the existing

SCADA systems to take full advantage of general IT

security technologies, but on the other side, these legacy

systems still have a considerable amount of serviceable

life remaining [8]. Hence, compensating and non-

intrusive approaches for improving legacy systems

survivability in a cyber environment must be sought-

after.

Exogenous control-driven coordination models, such

as ARC[ren-coord06], ABT [14], LGI [15], ROAD

[16], IWIM [11] and CoLaS [17] isolate coordination

by considering functional entities as black boxes. For

example, in the ARC model, QoS constraints are

mapped into coordination constraints and are enforced

through message manipulations which are transparent to

the underlying computations modeled as asynchronous

message passing systems. The ABT model and its

language Reo [14, 18] extend the IWIM by treating both

computation and coordination components as

composable Abstract Behavior Types (ABT). Similarly

to IWIM, ABT is a two-level control-driven

coordination model where computation and

coordination concerns are achieved in separate and

independent levels. [30]

The coordination transparency inherent in the

exogenous coordination model presents itself as a

possible ramification for retrofitting legacy SCADA

system for survivability in a cyber environment.

3. Retrofitting SCADA Systems through

External Coordination

In this section, we present our exogenous coordination

model for retrofitting legacy SCADA systems with fault

tolerance in a cyber environment.

3.1. An Exogenous Coordination Model

The ARC (Actor, Role, Coordinator) coordination

model is developed to model open distributed systems

with non-functional requirements (or QoS requirements

in general), such as survivability and attack-tolerance

requirements [17].

More specifically, the ARC model has the following

characteristics:

 The Actor model is used to model the concurrent

computational part of a distributed cyber

information system, while an independent

coordination model is developed to address

individual composing entities‟ “cooperation”, or

coordination. Further, the QoS requirements in

general, survivability and attack-tolerance

requirements in particular, are achieved through

specific coordination among the asynchronous

entities.

 The concept of a role is introduced into the

coordination model. The role provides an

abstraction for coordinated behaviors that may be

shared by multiple actors and also provides

localized coordination among its players.

 Coordination in our model is divided into inter-role

and intra-role coordination to ensure clearer

separation of responsibilities and reduce the

complexity of individual coordination entities. This

setting further ensures that both the coordination

constraints and coordination activities are

decentralized and distributed among the

coordinators and the roles.

 The survivability and attack-tolerance requirements

are mapped to coordination constraints and are

transparently imposed on actors through message

manipulations carried out by roles and

coordinators.

The ARC model may be conceptualized as the

composition of three layers, with each of the three

components of the model associated with a dedicated

layer, as illustrated in Figure 1. The separation of

concerns is apparent in the relationships involving the

layers. The actor layer is dedicated to functional

behavior and is oblivious to the coordination enacted in

the role and coordinator layers. The roles and

coordinators constitute the coordination layer

responsible for imposing coordination and QoS

constraints among the actors.

The coordinator layer is oblivious to the actor layer

and is dedicated to inter-role coordination. The role

layer bridges the actor layer and the coordinator layer

and may therefore be viewed from two perspectives.

From the perspective of a coordinator, a role enables the

coordination of a set of actors that share the static

description of abstract behavior associated with the role

without requiring the coordinator to have fine-grained

knowledge of the individual actors that play the role.

From the perspective of an actor, a role is an active

3

 4

coordinator that transparently manipulates the messages

sent and received by the actor. The roles in the role

layer and the coordinators in the coordinator layer are

active state-based objects, enabling the coordination

policies within an application to adapt over time. While

actors communicate via messages that are subject to

delay, the information required by roles and

coordinators is communicated via atomic events that are

processed atomically by all interested roles and

coordinators.

Figure 1. The ARC Model

Actors

Actors in our ARC model are based on the actor

model in [1]. More specifically, actors are active

objects. They have states and behaviors. The states and

the current behavior of the actors decide how they

process messages (operations).

Roles

Roles serve two purposes. First, roles provide static

abstractions (declarative properties) for functional

behaviors that must be realized by actors. Coordination

based on roles is therefore relatively stable, even though

the underlying actors may be of large quantity and

dynamic. In addition, roles actively coordinate the

actors playing the roles to satisfy fault tolerance

requirements. The intra-role coordination coerced by

roles complements the inter-role coordination enacted

by coordinators.

The declarative criteria in the roles not only abstract

the behaviors of actors, but also present a static

interface to coordinators. Coordinators, therefore, do

not have to directly coordinate actors, but implicit

groups of actor, i.e., roles. Although in cyber

environment, actors are very dynamic, they join or leave

the system frequently; with role abstraction,

coordinators are refrained from such dynamics.

Coordinator

Similar to the roles and actors, coordinators also have

states and are active. They are able to observe events

and make corresponding state adaptations. The

declarative constraint policies are state-based and apply

to roles only. The actors and coordinators are mutually

transparent: though changes on actors or coordinators

may impact on each other, such impacts are only passed

through roles.

3.2. Separating Fault-Tolerance Concerns

from Supervision and Acquisition Logics

To simplify our discussion, we focus on critical

components and their constraints that keep a SCADA

system in safe states.

From a workflow‟s perspective, each essential

component in the physical layer has a corresponding

node in the workflow. Each node has input and output

ports for communication with other nodes and stores the

Process Variable (PV) values of the corresponding

device in the physical layer. A PV is a named piece of

data associated with the current status of a process

under control, such as setpoints and parameters. These

values can be retrieved from the existing SCADA

system. As the PV values represent the current device

states in the physical layer, and the control system

mathematical models represent the devices functional

behaviors, the simulations of control commands or

faults on the workflow realistically reflect their impacts

on the real systems.

For a complex device in the physical layer, the

corresponding node in the workflow can be recursively

decomposed into a workflow of simpler nodes each of

which performs relatively simpler activities. In other

words, our workflow is a hierarchal structure [21] with

subworkflows nested within composite nodes.

In addition to reflecting the essential services

provided by the physical layer, the workflow also

contains domain-specific security knowledge. The

security-related knowledge is modeled by meta-nodes in

the workflow. More specifically, depending on the roles

the nodes play, they are distinguished as:

1. Computational nodes. They represent system

functional entities that compose the essential

service parts in the physical layer.

2. Non-functional nodes or meta-nodes. They are not

the nodes that will be involved in simulating real

system behaviors, but are the entities responsible

for monitoring the states of computational nodes

and help detect whether the system states or

behaviors are in potential risks.

4

 5

Currently, we have defined two types of meta-nodes.

They are the Pattern Checker and the Status Checker,

which carry out attack pattern recognition and node

states monitoring, respectively.

Attack patterns are derived from the domain specific

security knowledge. In our current study, an attack

pattern is defined as a series of states of a set of

computational nodes. Such states in this specific set of

nodes represent an abnormal system behavior that may

have been caused by a cyber attack. It is formalized by a

conjunctive normal form expressing a conjunction of

statuses, where a status is a specific state in a

computation node. To be more specific, during a

simulation the Pattern Checker is responsible for

monitoring the state of the conjunctive formula, while

the Status Checkers are responsible for monitoring the

state of an individual computation node. If a given

formula turns into “TRUE”, it represents the match of

the pattern.

A simulation in a workflow can be triggered by two

events generated from the SCADA system, i.e. the

CommandIssue event and the FaultOccur event. The

Simulation Manager is responsible for monitoring and

storing the occurrences of events, suspending the

commands and starting/terminating the simulations

accordingly. The next two subsections discuss, in detail,

about the simulation process.

Statically, a workflow contains the mathematical

models of the physical devices and attack patterns

derived from domain knowledge. At run time, the

simulations on the workflow verify the behavior of the

physical system and identify potential faults through

attack pattern matching.

3.3. Attack Detection

As we proposed in [28], through simulation of

workflow combined with matching of attack patterns,

cyber attacks in physical system can be detected.

However, some smart attackers may attack the system

in a subtle way. This kind of attack is an accumulating

process which consists of a series of commands.

Actually, before the abnormal symptoms appear, the

attacks have happened in the system for a while. So if

we take these commands into consideration individually,

all of them are legal. The mechanism discussed above

cannot detect such an attack until the last control

command, (creating the onset of abnormal symptoms) is

sent to the SCADA.

For these subtle attacks,, we will take command

history into account... When commands are entered,

they are tracked and time slices are used to analyze the

commands. With analysis of the evolution of these

slices, we determine if a series of states match a pre-

defined pattern. In the event of a match, warning

messages are issued or some security technology, such

as RSE [27], is invoked to further identify the intention

of the command.

For example, we are concerned with the following

pattern P in a time dimension, which is a fraction of the

whole workflow. We project the pattern P onto the time

dimension, then we get a series of states of pattern P in

history time order, P(t1), P(t2), P(t3), as described in

the following figure:

A

B D

C

Pattern P

A

B D

C

A

B D

C

A

B D

C

P(t1) P(t2) P(t3)

Figure 2 Pattern of Bad Behavior

The shaded nodes are those PV values that fall into a

range indicating potential attacks. And we can formulate

a potential attack pattern as follows:

P(t1)[A, PV1]∈ R1,

P(t2)[B, PV2]∈ R2,

P(t3)[C, PV3]∈ R3,

where t1<t2<t3.

Here P(t1)[A, PV1]∈ R1 means, in the pattern P of

time t1, the value of PV parameter PV1 in node A fell in

range R1. We can consider such an order as potentially

dangerous.

Besides defining attack patterns, we can also define

acceptable behavior patterns. Considering the above

example, we define the following order-of-actions as

acceptable behavior. We formulate it as follows:

P(t1)[C, PV4]∈ R4,

P(t2)[B, PV5]∈ R5,

P(t3)[A, PV6]∈ R6,

where t1<t2<t3.

5

 6

A

B D

C

A

B D

C

A

B D

C

P(t1) P(t2) P(t3)

Figure 3 Pattern of good behavior

An important advantage of defining acceptable

behavior patterns is that the number of acceptable

behavior patterns in a system is limited, while the

number of attack patterns may be unbounded.

3.3. Attack Handling

For the nodes in workflow, we can model them as

actors and group the actors based on functionality. The

actors with same functionality are assigned to the same

group - called a role - in the ARC model. The ARC

model stipulates that, at any time, an actor can only

belong to one role. Therefore, in general, there are two

possible roles an actor can be assigned: a role

representing normal behaviors or one representing

abnormal behaviors.

When the workflow simulation detects that the system

is being attacked (perhaps in a subtle way), the

corresponding actor of the attacked device will transit

from a normal role to an abnormal role. Therefore under

this circumstance, the coordinator will coordinate the

roles to eliminate the actors from abnormal roles.

For example, we can consider such a scenario in

Figure 4. After simulation in workflow, valve V-4

matches a bad behavior pattern for a valve, so it is

transited to abnormal role for valve. When the

coordinator finds the corresponding abnormal role

status for the valve is changed (for example, the number

of abnormal valves > 0), it will coordinate a normal role

for the valve from the abnormal role for valve V-4. For

instance, simple solution would be to select a valve in

normal role to temporarily backup valve V-4, and reset

V-4 so as to make it behave normally, and then V-4 can

return to the normal role for a valve.

V-1 V-2 V-3 V-4

Normal Role
for valve

Abnormal
Role for valve

Coordinator

Figure 4 Example of valves in ARC model

3.4. Preventing Fault Propagation through

Coordinators

Faulty states in the physical layer are monitored by

SCADA systems. Through workflow analysis,

extensions of the current fault can be identified, which

provides valuable information for the SCADA system to

forecast the potential fault propagations in the physical

system and take necessary actions [28].

When fault propagation is predicted by workflow, we

can apply ARC model to prevent the propagation. In the

following figure, Valves V-5, V-6, V-7, V-8 belong to

the role of valve, while level meter L1 and L2 belong to

the role of level meter. The actions on V-5, V-6, V-7,

and V-8 may change the output of level meter L1 and

L2. For instance, the workflow simulation finds a fault

propagation path from V-5 to Level meter 2. The

coordinator can coordinate role for valve and role for

level meter. Based on the coordination between roles,

the role for valve will select a suitable valve to prevent

the fault propagation.

6

 7

L

Level Meter 1
V-7 V-6 V-5 V-8

 Role for valve

L

Level Meter 2

 Role for Level
meter

Coordinator

Figure 5 Example of valves and level meters in ARC

model

4. Case Study

In this section, we use our approach on a simplified

Water Treatment System as a case study. To simplify

our discussion, we omit non-essential services of the

system.

In the water treatment system, there are six valves

(V1~V6) which control the fluid velocity and four

pumps (P1~P4) which are used to pump raw water into

the process system and distribute the purified water to

consumers. In the normal condition only P3 and P4,

called primary pumps, will operate. P1 and P2 are

backups and will be activated only when the primary

pumps are out of order.

To detect the faults on the pumps, two sensors (S1

and S2) are attached to the primary pumps to monitor

their status. As soon as the status of the primary pump is

abnormal, the backup pumps are activated. We also

have a pressure vessel in which raw water is buffered

and where elementary filtering is applied. Normally,

over pressurization will not occur even when up to three

pumps are activate because the filter can also release

some pressure; however, when all four pumps are

running simultaneously can the vessel be over

pressured. This condition is a rare, abnormal situation.

A pressure release container is attached to the

pressure vessel as a safety mechanism. A sensor (S3) is

used to detect the pressure level in the pressure vessel.

When its sensed pressure value exceeds a threshold, the

valve (V6) for the pressure release container will be

activated to release water from the pressure vessel. We

assume that both sensors are highly reliable. Figure 6

depicts the simplified water treatment system.

Pressure Vessel p4

 p2

V-1

V-2
Filter

V-3

P-5

Product

Booster Pump

P-6

Raw water

Raw water

For Consumption

V-4 V-5

Pressure Release Container

V-6

 Purified Water Container

 p3

V-7
Raw water

 p1

V-8Raw water

S1

S2

S3

 Figure 6 A Simplified Water Treatment System

We first define cyber attack patterns on this system

using our domain-specific security knowledge. This

knowledge allows us to specify that the condition that

can over pressurize the pressure vessel over pressured

is when all four pumps are activated and the pressure

relief valve (V6) simultaneously fails. This low

probability scenario can be seen as an attack pattern.

We can describe such an attack pattern in a conjunctive

normal form as follows:

311 ppC

422 ppC

63 vC

64231321)()(vppppCCCP

Here, P is the Attack Pattern and conditions C1, C2 and

C3 are the output of three Status Checkers. Literals in the

formula are described in the following table.

Based on the above information, we build a workflow

[28]. In this workflow, Status Checkers SC1, SC2, SC3

and Pattern Checker PC1 are meta-nodes containing the

security knowledge. Other entities are computation

nodes which have counterparts in physical layer. The

connections between computation nodes are based on

both the data flows and control flows in the physical

layer, while those between meta-nodes are based on the

cyber attack patterns. Meanwhile, at any time an actor

will be assigned to a role. For example, in this case,

there are the following roles, normal/abnormal role for a

pump, normal/abnormal role for a valve,

Literal Description (Running Status of)

p1 backup pump P1 is active and normal

p2 backup pump P2 is active and normal

p3 primary pump P3 is active and normal

p4 primary pump P4 is active and normal

v6 valve V6 is abnormal

Table 1. The Description of Literals

7

 8

normal/abnormal role for a sensor, normal/abnormal

role for the pressure vessel, and normal/abnormal role

for the container. At the beginning, all the actors are

assigned to normal roles, as depicted in the following

figure:

V-1 V-2 V-7 V-8

 Normal Role
for valve

Normal Role
for Pump

Coordinator

……...

Abnormal
Role for valve

Abnormal
Role for Pump

P1 P4

……...

……...

 Figure 7 Initial Actor Assignment

 The most primitive information comes from the

Process Variables (PVs) stored in individual

computation nodes. Based on this information, the

Status Checkers SC1, SC2, SC3 decide whether

conditions C1, C2, C3 are satisfied. By collecting the

outputs of Status Checkers, the Pattern Checker PC1

can detect whether this pattern is matched. For attack

resistance, workflow simulation anticipates the effect

that control commands will have on essential service (i.e.

those listed in Table 1). For example, assume there is a

new command issued from one of the terminals in the

SCADA system to “Activate Pump1”. This command

will be noticed by the Simulation Manger, which will

trigger a simulation of the command on the workflow.

Assume that in the current system state the Pump2~4 are

all active, and the V6 is closed. In such a condition, the

Pattern Checker will find a matching pattern such that

application of the command on the real system is

prevented. At this time, backup pump P1 and P2 will

transit from a normal role to an abnormal role. When

coordination detects the status change to an abnormal

role, it will coordinate all the roles to eliminate the

adverse effect.

For the preventing damage propagation, consider that

the PV value in the Pressure Vessel indicates that the

device is over pressurized. The Simulation Manager

then starts the simulation immediately. We further

assume that by simulation, the first propagated fault is

located as the over pressurization of the filter. The

Simulation Manager then suspends the simulation and

compares this fault with the fault events stored in the

fault event queue by content and time stamp.

Unfortunately, by comparison, it finds that at this

moment the fault has already happened in the real

system. It then continues the simulation and locates the

next propagated fault, which is the overflow of the

Purified Water Container. It repeats the action described

above. Fortunately, the fault is captured before the error

occurs on this device in the actual system. The

simulation is terminated and the fault propagation

information will be reported to the ARC model. Then

coordinator will take measurements to prevent the

propagation (as we discussed in subsection 3.3).

5. Conclusions and Future Work

In this paper we have presented a coordination-based

non-intrusive approach for enhancing the survivability

of critical infrastructure. The advantages of our

approach are twofold: (1) survivability-related

knowledge and a protection scheme are built in the

coordination layer which is external to the SCADA

systems and therefore the disturbance to the underlying

systems is greatly reduced; (2) the “separation of

concerns” principle is truly reflected in our model in

that fault tolerance and survivability concerns are

separated from supervisory and acquisition. Such

separation enables us to accommodate future

requirements that may not even be anticipated today.

References
[1] United States General Accounting Office. Critical

Infrastructure Protection – Challenges and Efforts to

Secure Control Systems. Report to Congressional

Requesters. March 2004.

[2] R. J. Ellison, D. A. Fisher, R.C. Linger, H. F. Lipson, T.

Longstaff, N. R. Mead. Survivable Network Systems: An

Emerging Discipline. Technical Report, CMU/SEI-97-

TR-013. Nov. 1997.

[3] Understanding SCADA Security Vulnerabilities.

Technical Report. Riptech, Inc. 2001.

[4] J. Pollet. Developing a Solid SCADA Security Strategy.

SICON. Houston. TX. 2002.

[5] F. Haji. L. Lindsay. S. Song. Practical Security Strategy

for SCADA Automation Systems and Networks.

CCECE/CCGEI, Saskatoon. May 2005.

[6] C. L. Bowen. T. K. Buennemeyer. R. W. Thomas. Next

Generation SCADA Security: Best Practices and Client

Puzzles. In Proceedings of the IEEE Workshop on

Information Assurance and Security. West Point, NY.

2005.

[7] D. Gamez. S. N. Tehrani. J. Bigham. C. Balducelli. K.

Burbeck. T. Chyssler. Dependable Computing Systems:

Paradigms, Performance Issues, and Applications. Wiley,

Inc. 2000.

[8] InTech Inc. Intrusion Detection and Cybersecurity.

Technical Report. May 2004.

8

 9

[9] Y. A. Grishin, I. N. Kolosok, E. S. Korkina, L. V. Em.

State Estimation of Electric Power System from New

Technological systems. In Proc. Of Electric Power

Engineering. 1999.

[10] M. Blanke, M. Staroswiecki, N. E. Wu. Concepts and

Methods in Fault-tolerant Control. In Proc. Of the

American Control Conference. Arlington, VA. 2001.

[11] B. Selic. Fault Tolerance Techniques for Distributed

Systems. IBM Technical Report. 2004.

[12] Reverse Social Engineering: Countering the Insider

Attack by Simulating a Human Overseer. Submitted to

SCSC, 2006.

[13] Bertram Ludäscher, Ilkay Altintas, Chad Berkley, Dan

Higgins, Efrat Jaeger, Matthew Jones, Edward A. Lee,

Jing Tao, Yang Zhao, Scientific Workflow Management

and the Kepler System, Concurrency & Computation:

Practice & Experience, 2005.

[14] J. Eker, J. Janneck, E. Lee, J. Liu, X. Liu, J. Ludvig, S.

Neuendorffer, S. Sachs, Y. Xiong, Taming

Heterogeneity---the Ptolemy Approach, Proceedings of

the IEEE, v.91, No. 2, January 2003.

[15] Wika, K.J., Safety Kernel Enforcement of Software

Safety Policies, Ph.D. dissertation, Department of

Computer Science, University of Virginia,

Charlottesville, VA, 1995.

[16] NATO AC/310 Ad Hoc Working Group on Munition

Related Safety Critical Computing Systems, “Safety

Design Requirements and Guidelines for Munition

Related Safety Critical Computing Systems,” NATO

Standardization Agreement (STANAG) 4404 (Draft),

March 1990.

[17] Knight J. C. Nakano L. G. Software test techniques for

system fault-tree analysis. In Proc. SAFECOMP 97,

1997, pp. 369-380

[18] Institute of Electrical and Electronics Engineers. IEEE

Standard Computer Dictionary: A Compilation of IEEE

Standard Computer Glossaries. New York, NY: 1990.

[19] Paul Brutch, Tasneem Brutch, and Udo Pooch,

“Electronic Quarantine: An Automated Intruder

Response Tool”, Proceedings of the 1998 IEEE

Information Survivability Workshop (ISW‟98), October

1998.

[20] Leveson, N. G., T. J. Shimeall, J. L. Stolzy, and J. C.

Thomas, “Design for Safe Software,” in Proceedings

AIAA Space Sciences Meeting, Reno, Nevada, 1983.

[21] S. Bowers and B. Ludäscher. Actor-oriented design of

scientific workflows. In Proc. of the Intl. Conf. on

Conceptual Modeling (ER), 2005.

[22] T. M. Oinn, M. Addis, J. Ferris, D. Marvin, M. Senger,

R. M. Greenwood, T. Carver, K. Glover, M. R. Pocock,

A. Wipat, and P. Li. Taverna: a tool for the composition

and enactment of bioinformatics workflows.

Bioinformatics, 20(17):3045–3054, 2004.

[23] S. Majithia, M. S. Shields, I. J. Taylor, and I. Wang.

Triana: A Graphical Web Service Composition and

Execution Toolkit. In Proc. of the IEEE Intl. Conf.

onWeb Services (ICWS). IEEE Computer Society, 2004.

[24] http://ptolemy.eecs.berkeley.edu

[25] Wayne Labs. Technology Brief (Issue 2, 2004). How

secure is your control system?

http://www.automationnotebook.com/2004_Issue_2/tech

nologybrief_September2004.html

[26] NUREG-0492, Fault Tree Handbook, U.S. Nuclear

Regulatory Commission, January, 1981.

[27] Nancy Leveson. A New Accident Model for

Engineering Safer Systems . Safety Science, Vol. 42, No.

4, April 2004

[28] Kun Xiao, Nianen Chen, Shangping Ren, Kevin Kwiat,

et al. A Workflow-based Non-intrusive Approach for

Enhancing the Survivability of Critical Infrastructures in

Cyber Environment. 3th International Workshop on

Software Engineering for Secure Systems(SESS),

Minneapolis, MN, May 2007

[29] Shangping Ren, Limin Shen, Jeffrey Tsai:

Reconfigurable Coordination Model for Dynamic

Autonomous Real-Time Systems. SUTC (1) 2006: 60-67

[30] Shangping Ren, Yue Yu, Nianen Chen, Kevin Marth,

Pierre-Etienne Poirot, Limin Shen: Actors, Roles and

Coordinators - A Coordination Model for Open

Distributed and Embedded Systems. COORDINATION

2006: 247-265

9

http://ptolemy.eecs.berkeley.edu/
http://www.automationnotebook.com/2004_Issue_2/tech

