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Abstract— This paper presents a method to forecast terrain 

trafficability from visual appearance.  During training, the 

system identifies a set of image chips (or exemplars) that span 

the range of terrain appearance. Each chip is assigned a vector 

tag of vehicle-terrain interaction characteristics that are 

obtained from on-board sensors and simple performance 

models, as the vehicle traverses the terrain. The system uses the 

exemplars to segment images into regions, based on visual 

similarity to the terrain patches observed during training, and 

assigns the appropriate vehicle-terrain interaction tag to them.  

This methodology will therefore allow the online forecasting of 

vehicle performance on upcoming terrain.  Currently, we are 

using fuzzy c-means clustering and exploring a number of 

different features for characterizing the visual appearance of 

the terrain.  

I.  INTRODUCTION 

 Most, if not all, unmanned ground vehicles currently in 

use are teleoperated.  Typically, the operator relies 

exclusively on visual input from a video camera to select the 

route and speed.  Teleoperation is robust and effective.  

Vision processing for autonomous and semi-autonomous 

navigation has not matched the human operator’s visual 

terrain understanding. Current approaches to autonomous 

navigation employ a wide gamut of sensors including 3D 

imaging LIDAR, ground penetrating radar, multi-spectral 

stereovision, ultrasound, and other sensor modalities to 

detect potential obstacles and forecast trafficability.  Inspired 

by the ability of human operators, our research is focused on 

methods to assess terrain trafficability directly from image 

appearance.  We do not address obstacle detection, which is 

an important, but separate cognitive process.  

 We are also not attempting to characterize physical 

properties of the terrain that are independent of the vehicle. 

Parameters of theoretical models for smooth, semi-infinite, 

homogeneous soil, such as cohesion and shear angle, are not 

well defined for natural terrain. Natural terrain is a complex 

amalgam of layers of different materials (e.g. grass and root 

mass or loose sand and stones over a mixture of loam, sand, 

clay, rocks and tree roots) each layer having spatially 

varying thickness, composition, and moisture gradient.  Two 

vehicles with different ground pressures will interact with 

different layers of the terrain. A mobile robot was used in [1] 

to demonstrate the estimation of terrain properties. 

 We are interested in forecasting terrain trafficability for 

use in automated driving and navigation, e.g., route 

selection, decisions to cross or avoid particular terrain, and 

speed limits for the terrain. Route and speed selection 
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algorithms seek to limit or minimize some combination of 

travel time, fuel consumption, and absorbed power from 

shock and vibration (a proxy for damage and wear). In this 

paper, we have focused on two aspects of trafficability:  

roughness and resistance, which are functions of the vehicle-

terrain interaction. 

 Various researchers have worked to develop methods to 

forecast traversability based on estimates of geometrical 

properties inferred from non-contract sensors. A fuzzy-rule-

based system [2] was developed for planetary rover 

environments to mimic human “high/medium/low” 

trafficability assessment based on measures of roughness, 

slope and distance between obstacles, computed from stereo 

imagery. A stereo color vision system, together with a single 

axis LADAR, was used to classify terrestrial terrain cover 

and detect obstacles in [3]. It was noted that the color-based 

classification system could be made more robust by 

considering the texture of regions and the shape features of 

objects. A rule-based system for terrain classification from 

LADAR and color camera imagery was developed in [4]. 

 Appearance-based approaches do not estimate 

geometrical properties and then infer traversability.  Instead, 

they classify the terrain appearance and then assign the 

associated trafficability vector measured while traversing 

similar terrain, reflecting terrain properties, such as friction, 

resistance and sinkage.  The research in [5] has similar goals 

as our work and uses a clustering approach with color, 

texture and geometric features.  Although further advanced 

in terms of implementation, the classification is binary 

(Go/NoGo). The approach in [6] also considers color, 

texture and geometric features, but uses a support vector 

machine classifier to predict vibration attributes. 

 We present an approach to automated image 

segmentation and terrain classification using exemplars, or 

small image samples, to represent the variety of terrain 

appearance.  Each chip is assigned a set of measured 

vehicle-terrain interaction (VTI) parameters that describe the 

vehicle’s performance while driving over that particular 

terrain. Previous work [7] has been performed in 

determining meaningful and robust VTI parameters, such as 

vehicle slip, ground resistance and terrain roughness. An 

exemplar-based approach was used in [8] to segment terrain 

into Go and NoGo regions and compared a heuristic 

clustering method with fuzzy c-means clustering and support 

vector machines. 

 Exemplar models assume that intact stimuli are stored in 

memory, and that classification or recognition is determined 

by the degree of similarity between a stimulus and the stored 

exemplars. Exemplar methods admit evolution of similarity 

metrics, since the entire sample is stored intact in memory 

and not merely a feature vector summary. Exemplar models 

are the most parsimonious models of categorization in terms 
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of the underlying associative mechanism [9].  Exemplar 

based learning has been proposed as a model of human 

learning [10] and has since been shown to explain both 

human and animal visual classification performance 

significantly better than alternative hypotheses of feature-

based and prototype-based processing [11], [12]. 

II. TECHNICAL APPROACH 

A. Data Processing 

 The proposed learning process requires three main 

functions: segmenting the terrain into areas that are visually 

similar, measuring and computing appropriate measures of 

the vehicle-terrain interaction (VTI), and matching the 

resulting parameters to the correct image area. 

 All VTI measures that we are interested in have a 

dependence on vehicle speed and, therefore, this is an 

important parameter to measure accurately.  We currently 

use a wheel encoder attached to a fifth wheel trailing the 

vehicle to provide the speed of the vehicle. Based on 

previous experiments [7], we assume that vehicle speed is 

linearly proportional to the voltage drop measured across the 

vehicle’s drive motor, v =  V.  Our measure of ground 

resistance is inversely proportional to the constant , with 

high  corresponding to low ground resistance and low  to 

high ground resistance, as seen in Fig. 1. 

 

         

   

Fig. 1.  Input training images and VTI parameters 

(resistance (1/ ) = blue, roughness ( ) = red). 

 

 The second VTI measure of interest is ground 

roughness.  We use the output of an accelerometer 

positioned over the front axle to collect disturbance data, 

which we assume is linearly proportional to speed, D =  v.  

The proportionality constant  is used as a measure of 

ground roughness, with high  for rough terrain and low  

for smooth terrain.  

 In the absence of range information, we use the “flat 

earth” assumption to associate the sensor data from the 

vehicle to the image data that the vehicle has not traversed 

yet.  By measuring the camera height off the ground and the 

distance from the front axle of the vehicle to the apparent top 

and bottom rows of the images, we can estimate the distance 

to all points in the images.  For this work, we assumed that 

the terrain was homogenous in the horizontal direction and 

the data was taken and processed to keep that essentially 

true.  A more realistic approach would identify those 

portions of the image that the wheels actually traverse.  In 

addition, the vehicle was commanded to travel in a straight 

line. In actual operation, where the vehicle turns, where the 

terrain is not flat and where there are objects in front of the 

vehicle, more complex processing and data handling 

procedures will be required. Examples of image and VTI 

data are shown in Figure 1. 

 

B. Image Processing 

 An essential function in the proposed approach is to 

numerically compare two image chips as to their similarity 

or contrast. However, there is currently no obviously correct 

metric for measuring this difference. This can be seen in 

image compression, where it is easy to measure the amount 

of compression and the encoding/decoding time, but difficult 

to measure image quality. Different image characteristics are 

important depending on the image content, the questions at 

hand, and who is looking at the image. Before an image is 

chopped into chips, it can be processed to balance relevant 

image characteristics.  In principle, therefore, simple 

measures of the aggregate difference are all that are needed. 

Even so, there are many different ways to calculate the 

difference between two image chips.  Some metrics are 

computed from the pixel-by-pixel difference between two 

chips, others are calculated from the difference in statistics 

computed from the individual chips. 

 In addition, various image processing functions, such as 

transformation to various color spaces or multi-resolution 

bandpass filtering, can be used to extract additional 

information. Another option is to process the images through 

a bank of spatial filters, such as edge and corner filters at 

different spatial scales and orientations, with each filter 

producing a single-plane output image. 

 Image processing can be used to remove attributes of 

the imagery that can lead to misclassification, such as noise, 

color balance, and brightness. Automated features in 

cameras attempt to compensate for different lighting 

conditions and produce more life-like imagery.  However, 

they are sometimes only partially successful, resulting in a 

time lag before compensation or applying the correction 

over the entire image when only a portion of the image 

needs correction. We were interested in applying a transform 

to the imagery such that consistent results would be 

obtained, irrespective of the lighting conditions. As an initial 

attempt at separating the luminance component from the 

color component, we tried the HSV (hue, saturation, value) 

color space.  Although this resulted in some improvements 

over the RGB color space, the HSV system is unsatisfactory 

due to the cyclical nature of hue and the fact that HSV is far 

from perceptually uniform. This led to the implementation of 

an L*a*b* color space transform, where L* refers to 

luminance and the a* and b* components encode the color 

information (red/green and yellow/blue color opponency, 

respectively). The transformation to L*a*b* is nonlinear, 

resulting in components that are closer to perceptually 

uniform.  All the results depicted in this paper use the 

L*a*b* color space transformation. 



 

 

 Our image sequences do show evidence of spurious 

color effects, most likely due to automated features of the 

camera system. We are considering ways to alleviate this 

problem. In previous work [13], we tried having the system 

learn the color changes. For the current paper, we decided 

not to use color as a feature, even though it is an important 

visual cue. However, ideally one would like a vision system 

that is able to recognize terrain even in the presence of 

changing lighting conditions or color shifts. 

 Since membership in a terrain class is considered to be a 

bulk property of a local region, not a point-location property, 

we know that texture [14] will play an important role in our 

analysis. We have explored two primary measures of 

texture, the standard deviation and entropy. For the former, 

we created a texture image by computing the standard 

deviation over all patches of a given shape, centered on each 

pixel in the image. Because this also picked up the strong 

edges of objects and other texture boundaries, we employed 

a Canny edge detector to find these strong edges and 

suppress them in the texture image. Fig. 2 shows examples 

of texture for the images in Fig. 1. Each texture image has 

three planes, with the red and green planes containing the 

output of horizontal and vertical one-dimensional filters, 

respectively. The blue plane is computed from a two-

dimensional standard deviation filter.  

 

   

Fig. 2.  Texture images computed via standard 

deviation with 11-pixel filter. 

 

 We also computed a texture measure based on entropy 

(  x log(x)). Examples of this are shown in Fig. 3, where the 

different color planes correspond to different resolutions (5, 

11, 17 pixels). In this case, we did not use Canny edge 

detection to suppress strong edges, since they appeared less 

pronounced.  

 

   

Fig. 3.  Texture images computed via entropy. 

 

 For the current paper, based on a number of runs with a 

reduced data set, we found that the most effective features 

consisted of the mean luminance (L*), the mean of the 

standard deviation texture images with a two-dimensional 

filter at resolutions 5 and 11 pixels, and the standard 

deviation of the entropy texture images at resolutions 5 and 

11 pixels. It was found that the color information coded in 

a* and b* provided little to classification accuracy and 

actually degraded the results in most cases.  The addition of 

the horizontal and vertical standard deviation filters also did 

not help the results significantly. The median of the image 

plane chips was also explored, but added little to the 

classification accuracy. If an even smaller set of features was 

desired, the texture at resolution 11 pixels was more 

important than the resolution at 5 pixels.  Eliminating the 

mean luminance caused only a small decrease in 

classification accuracy and would result in a feature vector 

computed entirely from grayscale texture. 

 

C. Learning Algorithm 

 The software is organized into two routines: one for 

offline training and one for online learning, although the 

same algorithm could be used for both. At the end of the 

offline training, an exemplar bank is created that contains 

image and parameter identification data. During online 

learning, the exemplar bank is updated.  

 If an image difference metric based on statistical 

measures is used, one can employ one of the various 

learning algorithms, such as neural networks, fuzzy logic or 

clustering. The current system uses a fuzzy c-means 

clustering (FCM) algorithm [15]. A heuristic method for 

learning was developed in [8] that is suitable for online 

learning using either direct chip or statistical comparison.   

 The user must provide a set of representative training 

images and associated vehicle-terrain interaction (VTI) 

parameters. Ideally, the training images would be drawn 

from the same distribution as the downstream application 

images. In practice, it may not be possible to ensure this.  

The effect that different conditions between the training 

image set and test/application image set, such as different 

terrain, foliage, season, lighting, and weather, has on 

segmentation and parameter identification performance is a 

question for empirical investigation. 

 

 
Fig. 4.  Error in , using 5 features (red), 4 features 

(green) and 3 features (blue). 

 

 For the offline portion of the system, we are using the 

most basic form of FCM clustering with spherical clusters of 

the same size.  Future work may look at non-spherical 

clusters of different sizes. As described earlier, our initial 

data set consisted of three features computed from each of 

the three L*a*b* image planes and twelve texture planes 

(nine multi-resolution standard deviation and three multi-

resolution entropy).  However, it was determined through 

experimentation that a five-element feature vector would 

suffice and could even be reduced to three or four elements 

with little loss of accuracy, as seen in Fig. 4.  

 The FCM algorithm provides a list of cluster centers 

and a matrix with the distance of each data point to each 



 

 

cluster.  Since the cluster centers have no direct connection 

to the data, we move each cluster center to the location of 

the nearest exemplar in feature space and recompute the 

distances.  From the resulting matrix, we can identify which 

exemplar (cluster center) should be assigned to each image 

chip in the data.  

 Since each chip has an associated set of VTI parameters, 

this gets naturally carried along with the corresponding 

exemplar. However, for the results in this paper, instead of 

using the VTI parameters for the particular exemplar, we 

have averaged the parameters over all chips within the 

cluster and used the resulting values to tag each exemplar. 

This helps smooth out some of the variability in the data. We 

modified existing computer code [16] for our 

implementation of the FCM algorithm. 

 

   
 

Fig. 5. Reconstruction of images with exemplars. 

 

 There is no obvious and correct way to represent the 

different segments for purposes of visualization. To provide 

direct visual insight into the basis for the segmentation, the 

software replaces each image chip with the exemplar chip to 

which it is associated. By using the exemplar chips 

themselves, the visualization image shows what the 

exemplars look like, and which image chips they are 

associated with. Comparing the visualization to the original 

image gives prima fascia evidence of the credibility of the 

segmentation. See Fig. 5 for reconstruction of the images in 

Fig. 1, which is based on the image feature set discussed 

earlier that does not include color.  

 

IV.  RESULTS 

 The data collection that forms the basis for the results in 

this paper consists of 34 runs over different types of terrain, 

such as concrete, asphalt, dirt, grass, bricks, gravel, sand and 

rocks.  Each run was between 15-25 seconds, with periods at 

the beginning and end where the vehicle was motionless; 

vehicle motion occurred for between 10-15 seconds.  The 

vehicle-terrain interaction (VTI) parameters that we are 

currently exploring are for quasi-steady state conditions and 

so we are not considering effects due to acceleration or 

deceleration.  For each run over a given terrain segment, we 

also had another run in the opposite direction.  

 For this paper, as in a previous work [13], we chose five 

runs to train the system and used the companion runs in the 

opposite direction for testing.  Terrain 1 consisted of rocks, 

terrain 2 was brick pavers and grass, terrain 3 was cement 

and grass, terrain 4 was asphalt and cement, and terrain 5 

was rough sand.  

 We smoothed the voltage data with a Hamming-like 

filter of length 0.5 s. The acceleration data was converted to 

disturbance by a Hamming-like standard deviation filter of 

length 0.5 s.  We used a heuristic algorithm to remove spikes 

from the wheel encoder data, which was then filtered by a 

derivative filter of length 0.5 s to produce vehicle speed.  

 We extracted every fifth frame in the training 

sequences, resulting in 325 images, and every frame in the 

test sequences, resulting in 1575 images. We cropped the 

320x240 images to 200x160 by taking 60 pixels off each 

side and 80 pixels off the bottom.  We chose an image chip 

size of 24x24, which resulted in 48 chips per frame.  The 

resulting training set had 15,520 samples and the test set had 

75,560 samples. A five-element feature vector was 

computed for each of the image chip samples in the training 

and test sets.  

 We chose to use 40 clusters for this test, although test 

error results were relatively flat beyond 20 clusters, as seen 

in Fig. 4.  This resulted in a training error of 6.2% and 

34.2% and a test error of 9.7% and 47.0%, for the ground 

resistance and ground roughness predictions, respectively. 

The error was computed as the absolute difference between 

prediction and measurement divided by the average of the 

two.  The large error in ground roughness can be attributed 

in large part to the significant variation in  when traveling 

over even homogenous rough terrain, such as in Fig. 1.  In 

fact, the average ratio of mean-normalized variation between 

the roughness and resistance parameters was about 5, similar 

to the ratio of errors.  

 We also ran the same data through a decision tree 

algorithm [17, 18] and found that the error on the training set 

was 5.9% and 30.9%, and the error on the test set was 9.3% 

and 50.3%, for the ground resistance and ground roughness, 

respectively. Based on these results, we are anticipating that 

the decision tree algorithm may provide a more suitable 

online learning algorithm, while maintaining the 

classification performance of the FCM clustering algorithm. 

 

     

Fig. 6.  Measured vehicle-terrain interaction 

parameters (  = center and  = right). 

 

 We implemented a color-coding scheme to graphically 

illustrate the predicted VTI measures using the image data. 

The color red corresponds to the least desirable end of the 

parameters (0.2 for  and 2.7 for ), while green 

corresponds to the most desirable end of the parameters (0.3 

for  and 0.7 for ). Quantities outside that range were 

truncated.  Image chips that were determined to be too far 

from any exemplar were color-coded blue, with those having 

desirable VTI parameter values being cyan-hued and those 

that were least desirable were magenta-hued.  The unknown 

chips were included in the error computations. 

 Fig. 6 shows an example of extrapolating the measured 

values for the VTI parameters to specific image locations via 

the “flat earth” assumption, which are input to the FCM 

algorithm for the training image on the left.  The center 

image contains the terrain resistance parameter and the right 



 

 

image contains the terrain roughness parameter.  This figure 

illustrates where errors can enter the process: synchronizing 

the onboard data with the image data.  Errors can enter due 

to faulty range estimations, but here the terrain is fairly flat 

and the problem is due to distances being computed from the 

front axle of the vehicle. The terrain resistance is maximized 

when both the front and rear tracks are on the terrain, while 

the roughness manifests when the front track encounters the 

boundary. This lag between terrain roughness and resistance 

can also be seen in the right plot of Fig. 1. 

 

   

   

Fig. 7.  Predicted vehicle-terrain interaction 

parameters (top) and color-coded images (bottom) 

(  = left and  = right). 

 

 Fig. 7 shows a prediction for the VTI parameters for the 

training image in Fig. 1 along with the color-coding scheme.  

The terrain resistance images are on the left and the terrain 

roughness images are on the right. Note that the predictions 

are not very accurate, they show the pavers being rough with 

high resistance and the grass being smooth with low 

resistance. The error can be traced with the aid of the 

reconstruction image on the right side of Fig. 2, where a 

poor choice for exemplars is shown for the image chips.  In 

this case, our training database did not contain enough 

samples of brick pavers in different lighting conditions.  In 

fact, the exemplar bank contained only two exemplars from 

the paver portion of the dataset. 

 

   

   

Fig. 8.  Test image reconstruction (top right) and VTI 

predictions (bottom,  = left and  = right). 

 

 Fig. 8 shows data from the vehicle being run over rough 

rocks. Here the results are generally good and correspond to 

expectations for both the terrain resistance and the terrain 

roughness.  Because of the high variability in the rock and 

sand images, they tend to dominate the exemplar bank, with 

11 exemplars each out of 40.  This is reflected in the 

reconstruction, which is reasonably close to the original.  

Exemplars derived from cement portions of the images were 

next with 8 exemplars and those with grass had 7 exemplars.  

Note the color variations within the reconstruction image in 

Fig. 8, which is due to an absence of a color element in the 

feature vector. In previous work, where color was a part of 

the feature vector, the reconstruction was more accurate in 

regards to color, but the overall VTI parameter prediction 

was less accurate. 

 

   

   

Fig. 9.  Test image reconstruction (top right) and VTI 

predictions (bottom,  = left and  = right). 

 

 Fig. 9 shows results for an image that contains asphalt.  

The system provided erroneous results for this whole image 

sequence since the exemplar bank only contained one 

exemplar derived from asphalt, likely due to a shortage of 

asphalt images in the training sequences.  As the 

reconstruction image shows, the system tended to pick sand 

exemplars as the best match, which resulted in modest 

agreement with the terrain resistance parameter and poor 

agreement for the terrain roughness parameter.  The blue 

areas indicate that the image patches were too far from any 

exemplar, but the closest exemplar was one that was average 

in regards to both ground resistance and roughness. The 

reconstruction image in fact indicates that the top part of the 

resistance image would have been yellow and the top part of 

the roughness image would have been orange. 

 

   

   

Fig. 10.  Test image reconstruction (top right) and 

VTI predictions (bottom,  = left and  = right). 

 

 Fig. 10 shows some interesting results for the cement 

images, which generally had good agreement with reality, 

although the cracks were mistaken for pavers, which still 

resulted in accurate predictions since pavers and cement 

have the same VTI characteristics.  In past work [13], with 



 

 

less emphasis on texture, the cracks were often mistaken for 

rocks, resulting in poor agreement in those specific portions. 

V. FINDINGS AND OBSERVATIONS 

 This paper has demonstrated an approach to image-

based terrain segmentation using exemplars, as applied to 

vehicle-terrain interaction (VTI) prediction. Exemplars 

provide a simple way to represent the characteristic 

color/luminance and spatial patterns of terrain. Since the 

exemplars are drawn from training images in such a way as 

to span the appearance of the training images, they are well 

suited to represent the variations of appearance without an a 

priori model of terrain appearance. Preliminary results 

indicate the approach has potential to segment terrain in a 

manner that is consistent with subjective perception. The 

segmentation appears to provide some robustness over 

changes in lighting, specific terrain, and automatic camera 

gain and contrast adjustments, but still needs some 

additional work. We continue to explore methods to 

compensate for automatic gain and color distortions. 

 Although humans do not have a specific range sensing 

capability, they use many clues and past experience to infer 

estimates of range from the environment and to recognize 

obstacles. The current “flat earth” assumption is not viable 

for real-world application.  So, until we can replicate a 

human’s image-based approach, solutions include using 

internal sensors to measure pitch and roll and then correct 

for them, although this just provides a correction for the “flat 

earth” assumption.  More costly methods would use a stereo 

camera system or laser range finder, which are already 

available on many autonomous vehicles. 

 Other subjects to explore in the current system include 

shape filtering and multi-resolution processing, which could 

yield improvements to the clustering without much change 

to the existing architecture.  Implementing bandpass multi-

resolution techniques, such as wavelets or Gaussian-

Laplacian pyramids, or other more complex texture metrics 

[14] may also be fruitful. In addition, we can analyze the 

spatial organization of image variance to differentiate 

structure from texture.  Tracking image chips or using an 

evidence grid would provide multiple looks at the same 

terrain, something not done now. 

 Based on the experience in [18], we are now exploring 

the use of a decision tree algorithm [17] for both the training 

and online portions of the system. Preliminary tests indicate 

that the decision tree algorithm provides comparable offline 

performance to the fuzzy c-means algorithm, with shorter 

training times. Future work includes investigating the ability 

to add new exemplars to the data bank without retraining the 

entire system, something difficult to achieve with fuzzy c-

means (FCM) clustering.  While the heuristic online 

algorithm [8] worked reasonably well, it was less accurate 

than FCM clustering and generated substantially more 

exemplars.  Using the decision tree algorithm, we can 

partition the data, based not only on the independent 

variables, but also on the dependent variables.  This may 

allow the discovery of hidden structure in the independent 

variables. 

 We are reasonably satisfied with the VTI parameters for 

roughness and ground resistance.  A simple and reliable 

technique for measuring wheel slip would also be of interest. 

However, this can be complicated by non-steady state 

events, such as accelerating and braking 

 The system as a whole shows promise and we intend to 

explore further elements in order to provide more accurate 

predictions. The visualization tools that have been developed 

for this project have been very valuable in determining 

where the system performs correctly and where it does not 

and will greatly aid with upcoming enhancements. 
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