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HISTORICALLY, BIOMATHEMATICAL PERFORMANCE 
PREDICTION MODELS HAVE FOCUSED ON PREDICT-
ING GROUP-AVERAGE PERFORMANCE IMPAIRMENT.1-3 
This modeling strategy necessarily de-emphasizes individual 
differences in resilience and vulnerability to sleep loss and con-
tradicts recent findings that indicate significant and systematic 
differences among individuals.4-7 For example, on a psychomo-
tor vigilance test (PVT) scale,8 restricted-sleep laboratory stud-
ies show that interindividual differences account for nearly 70% 
of the total variance in performance among a group of individu-
als, and that the differences are trait-like, stable, and innate to 
an individual.5 Hence, even if a group-average model were ca-
pable of accurately predicting mean-group performance, such 
a model would be of limited benefit without knowing how this 
translates into predictions at an individual level.9

Recently, two methods have been proposed for developing in-
dividual-specific performance prediction models for individuals 
subjected to total sleep loss with uncertain initial states (i.e., ini-
tial homeostatic pressure to sleep and circadian phase).10,11 Both 
methods employ the two-process model of sleep regulation12,13 
as the underlying parametric model structure and, because of 
the absence of quantitative individual biomarkers of perfor-

mance,14,15 use previously collected PVT data from an individual 
to customize the model for that individual. These methods, which 
involve the minimization of the error between the model fit and 
a set of performance measurements from a specific individual, 
nonetheless differ in the techniques used to adapt the two-pro-
cess model parameters to an individual. The method proposed by 
Van Dongen et al.10 is conceptually based on the earlier work of 
Olofsen et al.,16 with the original exponential model substituted 
by the two-process model of sleep regulation. Using a mixed-
effects regression framework, they separate out inter- and intra-
individual variability in previously recorded performance data 
from a group of individuals and, using the maximum likelihood 
principle, estimate the group-average model parameters and 
their corresponding variances. Thereafter, as new PVT perfor-
mance measurements for an individual, not necessarily studied 
previously, become available, a Bayesian framework makes use 
of the learned inter-individual variability of the group and the 
individual’s performance data to continuously adapt the model 
parameters (and the model) to that individual. In contrast, the 
method proposed by Rajaraman et al.11 adapts the two-process 
model parameters for an individual based solely on the individ-
ual’s performance data, without requiring inter- and intra-indi-
vidual variability information from a group of individuals. After 
an initial set of performance data for an individual is collected, 
as each new performance datum becomes available, the param-
eters of the two-process model are continuously adapted to that 
specific individual by solving a constrained, linear least squares 
(LS) problem, in which the constraint provides a trade-off be-
tween the goodness of the model fit and the requirement that the 
solution follows the two-process model. If a new performance 
measurement is unavailable at the “expected” sampling period, 
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both methods bypass model adaptation and estimate future per-
formance levels using the most recent parameter values.

Both of these methods have advantages and limitations. 
The method by Van Dongen et al.10 enables adaptation of the 
two-process model parameters using only a few performance 
measurements from an individual. Moreover, based on the 
probability distributions of the model-parameter estimates, 
the adopted Bayesian framework allows for the empirical es-
timation of 95% confidence intervals around the predictions. 
Although these empirically computed confidence intervals 
are not validated through Monte Carlo simulations, and their 
soundness has been questioned,17 they provide a first step in 
addressing a desired capability of performance models that, 
until now, has been lacking. However, some limitations do 
exist: Because of the nonlinearity of the two-process perfor-
mance model with respect to its parameters,13 the LS solution 
for finding the best estimates of the parameters involves solv-
ing a nonlinear programming (NLP) problem. In such prob-
lems, unless the objective function (i.e., the LS equation) is 
known to be convex, the NLP solution may be a local mini-
mum. Therefore, the proposed Bayesian framework10,16 cannot 
guarantee unique (optimal) estimates of the model parameters. 
This implies that the proposed method may negate a key con-
vergence property of adaptive, or learning, algorithms in that 
the model-parameters’ estimates must converge asymptoti-
cally to their underlying true (unknown) values as the number 
of measurements increases and as the amount of uncertainty 
in the measurements decreases.17,18 Furthermore, obtaining the 
optimal parameter estimates through their proposed Bayesian 
framework is computationally expensive, involving a brute-
force, grid-search procedure in which the computational cost 
increases as the desired accuracy of the resulting parameter 
estimate increases.

The method proposed by Rajaraman et al.11 addresses some 
of these limitations. It recasts the otherwise nonlinear opti-
mization problem into a set of linear optimization problems, 
whose solution, if it exists, is guaranteed to be unique. The 
model-parameter estimates are obtained by solving regular-
ized linear LS problems,11 avoiding the computationally cost-
ly grid-search optimization. More importantly, this method 
ensures that the model parameters asymptotically converge 
to their true values as the number of measurements increases 
and the amount of noise in the observed measurements de-
creases to zero. Despite these advantages, Rajaraman et al.11 
did not address two shortcomings. First, their method requires 
the accumulation of a minimum number of past performance 
measurements of an individual before model-parameter esti-
mates and performance predictions can be made. In theory, 
at least 13 measurements are required. However, in practice, 
due to noise in the measured performance data, a larger num-
ber of measurements are generally needed. This limitation 
precludes application of the method to partial/ chronic sleep 
restriction scenarios, in which, because of intermittent sleep/
wake periods, accumulation of large consecutive performance 
measurements is not possible. Second, they failed to com-
pute any measure of reliability of the model predictions. Such 
measures would provide statistical error bounds within which 
model predictions may be trusted for a predefined coverage 
probability, say, 95%.

In this paper, we extended our previous work by proposing 
solutions to these two shortcomings. To overcome the require-
ment that a minimum number of performance data points be col-
lected from an individual before the model can be customized 
and used to make predictions, we employed a Bayesian-like ap-
proach akin to that of Van Dongen.10 In this approach, we com-
bined a priori performance information with the information 
contained in the individual’s measured performance data. As 
a result, the proposed method leveraged a priori performance 
information and started adapting the model parameters and 
making predictions for a specific individual as soon as the first 
performance measurement from that individual became avail-
able. However, by retaining the strategy of transforming the 
nonlinear optimization problem into a series of linear problems, 
whose solution is the exact solution of the original nonlinear 
problem, the proposed method guaranteed unique, optimal es-
timates of the two-process model parameters, avoiding a brute-
force, grid-search procedure for computing the estimates. To 
quantitatively estimate the reliability of the model predictions, 
we reformulated the two-process model, using its linear repre-
sentation,11 into an autoregressive (AR) model framework,19-22 
which directly provides analytical expressions for computing 
statistically based error bounds around the model predictions in 
the form of prediction intervals (PIs).

We used two distinct data sets to evaluate the proposed 
method. The first consisted of simulated performance data on a 
PVT scale generated from the two-process model with known 
parameters and superimposed white Gaussian noise. Simulated 
data allowed us to verify the convergence of the model-param-
eter estimates to their true values, analyze the trade-off between 
a priori performance information and measured performance 
data, and qualitatively and quantitatively assess the PIs. We 
found that the proposed method yielded parameter estimates 
that asymptotically converged to their true values as the num-
ber of performance measurements for an individual increased 
and the amount of uncertainty (noise) in the measurements de-
creased. Moreover, the new method yielded improvements in 
parameter-estimate accuracy of up to 90% over our previous 
method.11 In addition, the soundness of the computed PIs was 
validated through Monte Carlo simulations.

The second data set consisted of PVT lapses obtained from a 
laboratory study of individuals subjected to 82 h of total sleep 
loss. The laboratory data allowed testing of the proposed ap-
proach within the context of the inter- and intra-individual 
variability encountered in actual performance data and making 
comparisons between individualized predictions and group-
average model predictions. For individuals representing three 
distinct sleep-loss phenotypes (“vulnerable,” “average,” and 
“resilient”), we found that the new method yielded individual-
ized predictions were up to 43% more accurate than the group-
average model predictions and better captured the circadian and 
homeostatic variation of the performance data. Moreover, pre-
diction accuracy improved, on average, by 10% compared with 
the previous method.

METHODS

In this paper, we proposed a new method that employed 
the two-process model of sleep regulation12,13 as the underly-
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ing model structure to enable individualized prediction of per-
formance impairment due to total sleep loss. This method is 
based on our previous work,11 in which, by taking advantage 
of the linear representation of the two-process model, we esti-
mate unique performance model parameters for an individual 
after collecting a minimum number of data points. Here, we 
improved upon the previous work by circumventing the re-
quirement that a minimum number of previously collected data 
points be available before model-parameter estimation and per-
formance predictions can commence. With this new method, 
model individualization was started as soon as the first per-
formance measurement became available. This was achieved 
through Bayesian inference, in which a priori performance in-
formation was combined with the information available from 
the individual’s measured performance data. The a priori per-
formance information was obtained from two-process model 
predictions generated using a priori model-parameter values. 
As each new performance measurement became available, it 
was added to the individual’s past performance data and togeth-
er used to update and further individualize the model-parameter 
estimates. Based on the most recent parameter estimates, we 
made predictions in accordance with a desired prediction ho-
rizon. We took further advantage of the linear representation 
of the two-process model to reformulate it into an AR model 
framework, which provides a direct analytical estimation of the 
reliability of the model predictions in terms of PIs.19

Two-Process Model of Sleep Regulation

The two-process model of sleep regulation consists of two 
separate processes:12 Process S (sleep homeostasis), which is 
dependent on sleep/wake history, increases exponentially with 
wake time and decreases exponentially with sleep/recovery time 
to a basal value,13 whose rates of increase/decrease are individ-
ual-specific, assumed to be constant, and have unknown values; 
and Process C (circadian), which is independent of sleep/wake 
history and represents a self-sustaining oscillator with a 24-h 
period.23 The equations comprising the two-process model at 
discrete sampling time index k can be expressed as13,24

( ),)1(1)/exp(1)( −−−−= kSTkS rs τ  during wakefulness,	 (1)

( ),)1()/exp()( −−= kSTkS ds τ  during sleep,	 (2)
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where S(k) denotes the value of the sleep homeostat at time k, 
usually scaled between 0 and 1;24 C(k) denotes a five-harmonic 
sinusoidal equation that approximates the circadian oscillator 
under entrained conditions;25 Ts represents the sampling period; 
τr and τd represent the time constants of Process S during wake-
fulness and sleep, respectively; τ denotes the time period of the 
circadian oscillator (~24 h); ai, where i = 1,…,5, represents the 
amplitude of the five harmonics of the circadian process (a1 = 
0.97, a2 = 0.22, a3 = 0.07, a4 = 0.03, and a5 = 0.001); and φ de-
notes the initial circadian phase.23

As suggested by Achermann and Borbély,26 we formulated 
the temporal pattern of cognitive performance as the additive 

interaction of Processes S and C. Accordingly, performance 
P(k) at time k was expressed by

),()()( kCkSkP βα += 	 (4)

where α and β are real-valued positive parameters that control 
the trade-off between the two processes of the model. For total 
sleep deprivation, Eq. (4) can be rewritten as
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where γ = exp(-ρTs), with ρ = 1/τr, ω = 2π/τ and āi = βai. Equa-
tion (5) is a function of five unknown parameters, α, γ, β, S(0), 
and φ, of which α, γ, and β have been termed trait parameters, 
and S(0) and φ have been termed state parameters.10,11

Individual-Specific Model Development Based on Performance 
Measurements

In our previous work,11 we showed that performance P(k) in 
Eq. (5) is composed of a linear combination of three basic com-
ponents, a constant signal α, an exponential signal αS(0)γk-1, and 
five sinusoidal signals ( )[ ] .5,...,1 where,)1(sin =+− iTkia si φω  
Moreover, we note that, if x(k) denotes the value of time series 
x at time k, a shift operator Z can be defined such that Zn{x(k)} 
= x(k+n). Accordingly, we establish three linear operators, Z-γ, 
Z-1 and ),1)cos(2( 2

5

1
+−Π

=
ΖTiΖ si

ω

so that when each operator is individually applied to perfor-
mance P(k) in Eq. (5), it eliminates one of the three basic com-
ponents. Hence, by successively applying the three operators in 
any order to P(k) in Eq. (5),
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we eliminate all three basic components of P(k) and obtain 
an identically zero equality. The expression within the brack-
ets can be expanded into a 12th-order polynomial in Z, which, 
given the definition of Z, represents a 12th-order linear, forward-
difference equation. That is, for any set of values for the five 
parameters [α, γ, β, S(0), and φ], P(k) in Eq. (5) is a solution of 
the 12th-order difference equation represented by Eq. (6).

To adapt these parameters and develop individual-specific 
models, our previous method only makes use of current and 
past performance measurements, such as PVT lapses, from the 
individual being modeled. In this formulation, the relationship 
between PVT performance measurements y(k), with k = 1, …, 
N, and P(k) in Eq. (5) with unknown parameter values can be 
written as

),()()( kkPky ε+= 	 (7)

where ε(k) denotes a normally distributed error (measurement 
noise) with zero mean and variance σ2. We uniquely estimate 
P(k), or equivalently, the five parameters of the two-process 
model in Eq. (5) from y(k), by successively applying a pair of 
the three linear operators to y(k) and solving the three resulting 
linear constrained LS problems: the first LS problem solves for 
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discussed above. For example, γ was estimated by solving the 
two-step constrained linear LS problem
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where ỹ denotes the M x 1 vector of prior performance data 
ỹ(k);μ is a positive real number; and P represents the (N + M) x 
1 vector of the performance fit P (k), with k = 1-M, 2-M,…, N, 
whose first M elements are represented by P~   and the remaining 
N elements are represented by P. In other words, P denotes the 
concatenation of vectors P~   and P.

The first term in Eq. (9) quantifies the fit of the solution of P 
to the individual’s measured performance data y, whereas the 
second term quantifies the fit to a priori generated performance 
data ỹ, with degree µ2. Accordingly, µ2 provides a mechanism 
to obtain a solution of P that provides a trade-off between our 
trust in the measured performance data and the a priori perfor-
mance information. As µ2 decreases, we increase our trust in 
the measured data and emphasize the fit of P to y, giving less 
weight to the prior information. This shift in emphasis increases 
the variance of the solution of P (i.e., it increases the trace of 
the covariance of P), since the y measurements are noisy.29 In 
the limit where µ2 = 0.0, the a priori performance information 
is not considered, and the last N elements of the solution of 
P in Eq. (9) are identical to P obtained from solving Eq. (8). 
Conversely, as µ2 increases, we increase our trust in the prior 
information and the model-parameter estimates obtained from 
the solution of P converge to the a priori selected values.

The optimal value for µ2 was computed by the algorithm de-
scribed in Appendix A and is a function of a user-provided es-
timate of the uncertainty (i.e., noise level) 2 in the measured 
performance data y. The computed µ2 was optimal in the sense 
that, given 2, it minimized a cost function that simultaneously 
accounted for the fit to the measured data and the fit to the prior 
information. Accordingly, as the provided uncertainty in the mea-
sured data 2 decreased, the optimal µ2 decreased, accentuating 
the trust in the measured data, and vice versa. The algorithm for 
the optimal selection of µ2 endowed another desired feature of 
Bayesian estimation algorithms30 in that the trust in the measure-
ments (i.e., observations) outweighs the trust in the a priori infor-
mation as the number of measurements provided to the algorithm 
increases. As a result, the optimal µ2 decreased asymptotically as 
the number of performance measurements N from an individual 
increased. That is, as more and more performance measurements 
were attained for an individual, the algorithm placed more and 
more trust in the measurements, de-emphasizing the prior infor-
mation. The rate of decrease of µ2, however, became faster or 
slower as the user-provided uncertainty 2 in the measurements y 
decreased or increased, respectively.

We solved Eq. (9) for the optimal estimate of γ following 
steps similar to those used in solving Eq. (8) discussed above. 
We performed this procedure over the entire range 0 ≤ γ < 1 to 
estimate the optimal γ. Next, using the optimal γ and the cor-
responding solution of P, we uniquely estimated the other four 
parameters of the two-process model by solving the associated 
constrained LS problems. As new performance measurements 
from the individual became available, they were combined with 
the previous measurements y and used together with the prior 

γ, the second for α and S(0), and the third for β and φ.11 For 
example, we estimate a unique value for γ by solving the fol-
lowing two-step constrained linear LS problem

[ ]{ },minargminarg
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where y denotes the N x 1 vector of performance measure-
ments y(k), with k = 1, …, N; P represents the corresponding 
N x 1 vector of the performance fit P(k); Lγ denotes the N-12 
x N matrix that represents the expression within the brackets 
in Eq. (6); and λ2 is a positive real number. To minimize Eq. 
(8), we first fix the value of γ (0 ≤ γ < 1) and, through con-
strained LS,11 find P that minimizes the expression within 
the brackets, for a chosen λ2. In this formulation, λ2 provides 
a trade-off for the solution of P between fitting the perfor-
mance measurements y (the first term inside the brackets) 
and satisfying the constraint imposed by Lγ (the second 
term),27 which requires that P follows the two-process mod-
el in Eq. (5). By setting λ2 to an arbitrarily large value, we 
forced the solution of P to follow the two-process model, 
while simultaneously fitting the measurements y. To avoid 
potential numerical problems with this procedure, we trans-
formed Eq. (8) to its standard form,28 solved it with λ2 set to 
an arbitrarily large value, and transformed its solution back 
to the original problem. Next, we change the value of γ and 
repeat this process over the entire range of possible values, 0 
≤ γ < 1, to estimate the optimal γ, which minimizes Eq. (8). 
Using the optimal γ and the corresponding solution of P from 
Eq. (8), we estimate the other four parameters of the two-
process model by solving two additional constrained linear 
LS problems.11 As new performance measurements from the 
individual being modeled become available, they are com-
bined with the previous measurements y and together used to 
adapt the model parameters for that individual by repeating 
the above procedure.

A limitation of this method is the requirement that a mini-
mum number of past performance measurements be available 
for the individual before model-parameter estimation and per-
formance prediction can begin. In theory, at least 13 measure-
ments are required; however, in practice, due to noise in the 
measurements y, a larger number of measurements is generally 
needed.

Individual-Specific Model Development Based on A priori 
Knowledge and Performance Measurements

To overcome this limitation and permit model individualiza-
tion and performance prediction as soon as the first measured 
performance datum becomes available, we modified the above 
approach by considering a priori performance information 
in addition to the information available from the individual’s 
measured performance data. The a priori performance infor-
mation was obtained from performance data generated from 
the two-process model in Eq. (5), with its model parameters 
set to a priori estimated values. This Bayesian approach was 
mathematically implemented by adding a term to Eq. (8), which 
accounted for M a priori data ỹ(k) = 1-M, 2-M,...,0, and solving 
the augmented expression through the series of optimizations 
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(5) with its parameters set to selected values and superimposing 
random noise to emulate the uncertainty present in measured 
performance data. Simulated data enabled verification of key 
convergence properties of the proposed approach, sensitivity 
analyses of the trade-off between prior information and mea-
sured data, and quantitative and qualitative assessment of the 
analytically computed PIs.

The second data set consisted of PVT lapse measurements 
from nine healthy individuals who had participated in a 82-h to-
tal sleep deprivation study under laboratory conditions.11,35 The 
laboratory data set allowed testing of the proposed approach 
within the context of the inter- and intra-individual variabil-
ity that characterizes measured performance data and compar-
ing the individualized predictions versus those obtained with 
group-average prediction models.

Simulated Data Set

We generated simulated data sets by running the two-process 
performance model in Eq. (5) with known parameters and su-
perimposing white (i.e., uncorrelated) Gaussian noise to emu-
late the variability observed in measured performance data. By 
sampling from the group-average distribution of parameters es-
timated by Van Dongen et al.,10 we set the three trait parameters 
in Eq. (5) to α = 30.30, β = 6.35, and ρ = 0.03 h-1 (γ = 0.94), 
whereas by sampling from uniform distributions with support 
[0 1] and [0 24], respectively, we set the state parameters S(0) 
= 0.82 and φ = 6 h. In each simulation, performance data were 
generated for 82 h of total sleep deprivation and sampled once 
every 2 h to emulate the sampling rate of performance mea-
surements in typical sleep studies. Data from each simulation 
were superimposed with white noise sampled from a Gaussian 
distribution with zero mean and one of three levels of variance: 
16, 4, or 1. These variances at 82 h of wakefulness correspond-
ed to a signal-to-noise ratio (SNR) of 3.70 (59.10/16), 14.77 
(59.10/4), and 59.10 (59.10/1), respectively, where 59.10 was 
the variance of the performance data generated by running Eq. 
(5) with the abovementioned parameters for 82 h. The SNR is 
defined as the ratio of the variance of a signal to the variance of 
the white noise corrupting that signal. In each simulation, the a 
priori values of the trait parameters, αpr = 29.70, βpr = 4.30, and 
ρpr = 0.03 h-1 (γpr = 0.94), were chosen to match Van Dongen’s 
estimates of their group-average model parameters,10 whereas 
the a priori values of the state parameters, S(0)pr = 0.92 and 
φpr = 12.6 h, were randomly chosen by sampling from uniform 
distributions, as above. These same parameters were used in 
the group-average model predictions for all simulations. Based 
on these values, we employed Eq. (5) to generate 13 prior per-
formance data points. Thirteen is the minimum number of data 
points required to recover the two-process model-parameter 
values, since the model is the solution of the 12th-order dif-
ference equation [i.e., Eq. (6)]. Although a greater amount of 
previously collected data may be used, we empirically found 
that 13 data points provided the fastest rate of convergence of 
the model-parameter estimates to their true values.

To make the first prediction, the 13 a priori data were com-
bined with the first performance measurement y(1) to estimate 
the homeostatic-rate parameter ρ, or equivalently γ, by mini-
mizing Eq. (9). We set λ2 to 21024 (the largest-possible double 

information ỹ to adapt the model-parameter estimates and make 
new predictions.

Prediction Uncertainty Quantification

Under certain conditions, individualized predictions may be 
of limited value unless they are accompanied by measures of 
reliability of prediction in the form of statistically based error 
bounds, such as PIs.31 One way to estimate these PIs within 
the context of the two-process model is to first compute con-
fidence intervals for the model-parameter estimates and then 
translate them into PIs through Eq. (5). However, the nonlin-
ear relationship between the two-process model and its param-
eters13 precludes the derivation of analytical functions that map 
confidence intervals of the parameters’ estimates onto PIs for 
the model predictions.32 Rather, PIs are often estimated through 
computationally expensive Monte Carlo simulations.33

Here, we analytically computed PIs about the model predic-
tions by taking advantage of the linear representation of the 
two-process model in Eq. (5). Using the property that P(k) in 
Eq. (5) is a solution of the 12th-order difference equation in 
Eq. (6),11 we considered P(k) as a 12th-order autoregressive 
(AR) process (see Appendix B) in which, for each time k, P(k) 
is expressed as a linear combination of previous performance 
measurements,19, 22, 34 such that

,)()(
12

1
∑
=

−=
i

i ikPbkP 	 (10)

where bi, with i = 1,…,12, denotes the AR-model coefficients. 
By considering the correspondence between Eqs. (10) and (6) 
[see Appendix B], we obtained bi as the coefficients of the 12th-
order polynomial given by the expression within the brackets 
in Eq. (6). Finally, by taking advantage of the availability of an 
analytic expression to compute statistically based error bounds 
for AR-model predictions,19 we obtained the following equation 
for computing PIs with a coverage probability of 100(1-θ) %

,ˆ)()( 2

2/)%1(100 σθθ +±=−

TZkPkPI bbΣ 	 (11)

where θ represents the significance level; Zθ/2 represents the 
percentage point of a standard normal distribution with a pro-
portion θ/2 above it; b denotes the 1 x 12 vector of coefficients 
bi, with i = 1,…,12; P(k) denotes the performance prediction at 
time k given previous measurements y(k-1), y(k-2),…;Σ denotes 
the covariance matrix of P(k-1),...,P(k-12), obtained by solving 
Eq. (9); and 2 denotes the user-provided noise-level estimate of 
the performance measurements y. We computed P(k) through 
Eq. (10), where P(k-i), i = 1,...,12, were obtained from the solu-
tion of P in Eq. (9). To compute PI100(1-θ)%(k-n),

 
for n ≥ 1, we 

recursively applied Eq. (10) to generate predictions at k + m, 
with m = 1,2,…,n, followed by Eq. (11) for computing the cor-
responding PIs.

RESULTS

We employed two data sets to validate our proposed ap-
proach. The first consisted of simulated performance data ob-
tained from running the two-process performance model in Eq. 
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lization of intermediate measurements with low SNR could re-
sult in incorrect model-parameter estimates that, while yielding 
a good fit to the measurements, result in poorer predictions.18 As 
a result, low SNR measurements could yield predictions over a 
longer horizon with smaller RMSEs than ones over shorter ho-
rizons. Nonetheless, as the number of measurements increases, 
the model parameters estimates should converge to their true 
(unknown) values, and the RMSEs should be approximately the 
same regardless of the prediction horizon.11

For the simulation in Figure1, Figure 2 shows the param-
eter estimates (solid squares), their true values (dashed lines), 
and a priori values (solid lines) of the five model parameters 
as a function of the number of available performance measure-
ments, starting with the first PVT measurement at time zero. At 
first, the parameter estimates oscillate due to the low SNR in the 
simulated performance data during this initial period. Later, as 
additional measurements became available and the variance in 
the data increased, achieving a SNR = 14.77 at 82 h of wakeful-
ness, each of the parameters asymptotically converged to their 
true values, attaining 95% accuracy after ~50 h of wakeful-
ness.

To verify the ability of the algorithm to consistently improve 
the estimation of the model parameters as a function of data 
uncertainty 2 and the number of performance measurements 
N, we performed three sets of simulations. Each consisted of 
100 trials, in which each trial in a set was superimposed with 
white noise sampled from one of the three Gaussian distribu-
tions with mean zero and variances that, at 82 h of wakefulness, 
corresponded to SNRs of 59.10 (σ2 = 1), 14.77 (σ2 = 4), and 3.70 
(σ2 = 16). In this way, we observed the impact of each noise 
level on parameter estimation. Table 1 shows the mean, the 
variance, and the mean squared error (MSE), i.e., the square of 
the bias plus variance, for each of the five parameter estimates 
over the 100 trials for the three sets of simulations. The MSE, 
which accounts for both estimation accuracy (bias) and estima-
tion precision (variance), is the most statistically meaningful 

precision floating point number) and, given the user-provided 
uncertainty 2 in y(1), estimated the optimal µ2 as discussed 
in the Methods Section. The remaining four parameters of the 
two-process model [α, S(0), β, and φ], were estimated by solv-
ing the associated LS problems,11 with P taken as the solution of 
Eq. (9). Thereafter, as new performance measurements became 
available, they were added to previous measurements, one at a 
time, and, by following the procedure above, the model param-
eters were adapted to take into account the entire set of mea-
surements up to the last datum. Using the most recent estimates 
of the parameters, we made performance predictions for a de-
sired prediction horizon. For example, a 6-h-ahead prediction 
at time index k was made using the model-parameter estimates 
obtained at time index k-3.

Figure 1 shows a representative realization of the perfor-
mance profile of a simulated individual, with SNR = 14.77 at 82 
h of wakefulness (i.e., σ2 = 4), and individualized performance 
predictions for three selected prediction horizons of 2, 6, and 10 
h. The performance units were normalized to emulate results of 
typical 10-min PVT laboratory studies. The root mean squared 
error (RMSE) was used as a metric to quantify the accuracy of 
the predictions (the smaller the RMSE between the predicted 
and the true underlying performance signal, the better is the 
resulting prediction).19 For consistency, RMSEs were computed 
across overlapping prediction time intervals spanning from 10 
to 82 h. As shown in Figure 1, the individualized model was con-
sistently more accurate than the group-average model, yielding 
a two- to three-fold reduction in prediction errors. Moreover, 
we note that the group-average model predictions (solid line) 
were out of phase with the simulated performance profile (solid 
circles). As expected, the RMSEs increased monotonically with 
increasing prediction horizons. This should be expected because 
the model parameters were not updated over the prediction ho-
rizon, preventing longer-horizon predictions from employing 
intermediate measurements to adapt the model parameters and 
improve the predictions. However, it should be noted that uti-
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Figure 1—Simulated performance data, normalized to a psychomotor vigilance task scale, for 82 h of total sleep deprivation with a signal-to-
noise ratio of 14.77. The solid circles show the simulated performance lapses every 2 h. The dotted, dash-dotted, and dashed lines represent 2-, 6-, 
and 10-h-ahead predictions, respectively, based on individualized models with prior parameter values as those used in the group-average model 
and noise-level estimate set to the correct value (σ2 = 4). The solid line represents the group-average model predictions. We used the root mean 
squared error between the predicted and the simulated performance data, calculated from 10 through 82 h, as a comparative metric.
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This anomaly usually occurs during the early phases of model-
parameter estimations and when the SNR is large. In this case, 
the algorithm de-emphasizes the prior performance information 
and only trusts the measured data, which do not contain suffi-
cient information for model-parameter estimation. As a result, 
the estimates have large uncertainty, occasionally causing the 
MSE to be larger than expected.

We also compared the results from our previous work11 
with the present results. For the particular representative re-
alization of the simulated performance profile in Figure 1, we 

metric,36 and can be quantified in simulated data where the bias 
in the estimate can be determined. The parameter estimates are 
shown at four points in time, at 22, 42, 62, and 82 h of wakeful-
ness, for each of the three SNRs. For each of the parameters, 
the results consistently indicated that, for a fixed time point, 
the MSE increased as the SNR decreased and, for a fixed SNR, 
the MSE decreased as the number of available performance 
measurements increased. The only exception was for α at 22 h 
of wakefulness, when the MSE for SNR = 59.10 (104.44) was 
larger than the corresponding value for SNR = 14.77 (98.49). 
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analytically computed 95% PIs. To corroborate these estima-
tions, we empirically computed the 95% PIs (dash-dotted lines) 
through 100 Monte Carlo simulations. The results indicated 
that while the analytically computed 95% PIs were initially un-
derestimated, for each of the three SNRs, they converged to the 
corresponding empirically calculated values as the number of 
performance measurements increased. This is attributed to the 
Bayesian aspect of our method, where during the early phases 
of the model-parameter estimates the algorithm places greater 
trust on the prior performance information than the measured 
data, resulting in PIs that are narrower than expected. However, 
as the number of performance measurements for an individual 
increased, the 95% PI converged to the corresponding Monte 
Carlo simulated values, covering almost entirely the individu-
al’s performance measurements. The results also indicated that, 
as expected, the width of the analytically computed 95% PIs 
decreased from the top to the bottom panels as the SNR in the 
simulated performance data increased.

To analyze the sensitivity of the a priori chosen values of the 
two-process model parameters on the performance prediction, 
we compared and contrasted predictions for three simulated in-
dividuals, each representing a different sleep-loss phenotype. 
Figure 4 shows simulated performance profiles (solid circles), 

observed significant prediction and parameter-estimate im-
provements with the current method. In particular, the average 
prediction RMSE over the three horizons, computed between 
52 and 82 h of wakefulness, was 80% smaller with the current 
method. The average MSEs over the five parameters shown 
in Table 1 at 62 h of wakefulness were 50%, 90%, and 93% 
smaller with the new method when the SNR was set at 59.10, 
14.77, and 3.70, respectively, whereas at 82 h of wakefulness, 
the corresponding values were 45%, 50%, and 89% smaller 
with the new method. These two time points (62 and 82 h of 
wakefulness) were the only common points to both studies. 
The simulation results indicated that the proposed method’s 
improvements in predictions and parameter estimations were 
more significant when 2 in the performance data was high and 
the number of available measurements for parameter estima-
tion was small.

Figure 3 shows the performance profile, the 10-h-ahead pre-
dictions, and their corresponding 95% PIs for the simulated in-
dividual in Figure 1with SNRs set at 3.70 (top), 14.77 (middle), 
and 59.10 (bottom). The 10-h-ahead predictions at any sam-
ple index k were actually computed at sample index k-5 and 
are illustrated in all three panels by dashed lines. The dotted 
lines represent the corresponding upper and lower limits of the 
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Table 1—Parameter Estimates of One Individual for Three Monte Carlo Simulations of 100 Trials, Each with Three Different Signal-to-Noise 
Ratios (59.10, 14.77, and 3.70)

		  α (lapses)	 ρ (h-1)	 β (lapses)	 S(0)	 φ (h)
	 True values	 30.30	 0.03	 6.35	 0.82	 6.00
	 Signal-to-	 Time					   
	noise-ratio	 awake (h)					   
	 59.10
	 22	 29.02 (SD = 10.14)	 0.04 (SD = 0.03)	 6.39 (SD = 0.50)	 0.81 (SD = 0.06)	 6.12 (SD = 0.33)
		  MSE = 104.44	 MSE = 0.00	 MSE = 0.25	 MSE = 0.00	 MSE = 0.12
	 42	 30.43 (SD = 3.88)	 0.03 (SD = 0.01)	 6.25 (SD = 0.33)	 0.83 (SD = 0.02)	 6.02 (SD = 0.22)
		  MSE = 15.10	 MSE = 0.00	 MSE = 0.12	 MSE = 0.00	 MSE = 0.05
	 62	 30.29 (SD = 1.50)	 0.03 (SD = 0.00)	 6.29 (SD = 0.27)	 0.83 (SD = 0.02)	 6.01 (SD = 0.18)
		  MSE = 2.25	 MSE = 0.00	 MSE = 0.08	 MSE = 0.00	 MSE = 0.03
	 82	 30.20 (SD = 0.77)	 0.03 (SD = 0.00)	 6.29 (SD = 0.24)	 0.83 (SD = 0.02)	 5.99 (SD = 0.14)
		  MSE = 0.60	 MSE = 0.00	 MSE = 0.06	 MSE = 0.00	 MSE = 0.02
	 14.77
	 22	 28.48 (SD = 9.76)	 0.05 (SD = 0.08)	 6.36 (SD = 0.90)	 0.82 (SD = 0.09)	 6.19 (SD = 0.60)
		  MSE = 98.49	 MSE = 0.01	 MSE = 0.81	 MSE = 0.01	 MSE = 0.40
	 42	 30.28 (SD = 5.91)	 0.03 (SD = 0.01)	 6.06 (SD = 0.67)	 0.83 (SD = 0.04)	 6.07 (SD = 0.44)
		  MSE = 34.98	 MSE = 0.00	 MSE = 0.53	 MSE = 0.00	 MSE = 0.20
	 62	 30.26 (SD = 2.63)	 0.03 (SD = 0.01)	 6.20 (SD = 0.54)	 0.83 (SD = 0.03)	 6.03 (SD = 0.35)
		  MSE = 6.93	 MSE = 0.00	 MSE = 0.32	 MSE = 0.00	 MSE = 0.13
	 82	 30.14 (SD = 1.44)	 0.03 (SD = 0.00)	 6.19 (SD = 0.47)	 0.83 (SD = 0.03)	 5.99 (SD = 0.28)
		  MSE = 2.11	 MSE = 0.00	 MSE = 0.25	 MSE = 0.00	 MSE = 0.08
	 3.70
	 22	 26.63 (SD = 10.19)	 0.06 (SD = 0.05)	 6.21 (SD = 1.69)	 0.83 (SD = 0.15)	 6.41 (SD = 1.15)
		  MSE = 117.33	 MSE = 0.00	 MSE = 2.87	 MSE = 0.02	 MSE = 1.49
	 42	 28.66 (SD = 5.88)	 0.04 (SD = 0.02)	 5.56 (SD = 1.30)	 0.85 (SD = 0.09)	 6.28 (SD = 0.91)
		  MSE = 37.24	 MSE = 0.00	 MSE = 2.31	 MSE = 0.01	 MSE = 0.90
	 62	 29.81 (SD = 3.44)	 0.03 (SD = 0.01)	 5.88 (SD = 1.09)	 0.85 (SD = 0.07)	 6.18 (SD = 0.77)
		  MSE = 12.09	 MSE = 0.00	 MSE = 1.41	 MSE = 0.01	 MSE = 0.62
	 82	 29.93 (SD = 2.21)	 0.03 (SD = 0.01)	 5.89 (SD = 0.95)	 0.84 (SD = 0.06)	 6.05 (SD = 0.59)
		  MSE = 5.03	 MSE = 0.00	 MSE = 1.12	 MSE = 0.00	 MSE = 0.35

The estimates’ mean, standard deviation (SD), and mean squared error (MSE), i.e., the square of bias plus variance, are shown at four time 
points: 22, 42, 62, and 82 h of wakefulness.
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to an individual’s true (unknown) parameters, the more accu-
rate the individualized predictions were for that individual.

Except in simulations, one does not know the noise level σ2 
in performance data. Hence, to analyze the robustness of the 
proposed individualized prediction method against errors in 
noise-level estimates 2, we compared the predictions for a sim-
ulated individual using three different  2. Figure 5 shows three 
10-h-ahead predictions for the “average” individual in Figure 
4 with SNR equal to 14.77. In each prediction, the noise-level 
estimate 2 was set to one-hundredth (dotted), equal to (dashed), 
and 100 times (dash-dotted) the true noise level (σ2 = 3.38) used 
in simulating performance profile.

10-h-ahead predictions (dashed lines), and group-average mod-
el predictions (solid lines) for representative “average” (top), 
“vulnerable” (middle), and “resilient” (bottom) individuals with 
SNRs set to 14.77. We computed the group-average predictions 
using the same parameter values as those used for generating a 
priori performance data. The figure shows that the accuracy in 
the 10-h-ahead predictions, measured in terms of RMSE, var-
ied between individuals, in that the larger the RMSE between 
the group-average model predictions and the true underlying 
performance of an individual, the larger the error in the indi-
vidualized performance predictions for that individual. In other 
words, as expected, the closer the prior parameter values were 
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tom). The dash-dotted lines in each of the three panels represent the 95% prediction intervals computed through 100 Monte Carlo simulations.
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correct noise-level estimate. This was because the two-process 
model is composed of sinusoidal and exponential components, 
which do not possess enough flexibility to yield performance 
signals that exactly fit a set of noisy performance measurements. 
Hence, underestimation of the noise level, which increased the 
trust on the measured performance data, did not allow the algo-
rithm to overfit the performance data. Although, for a particular 

Inherently, the proposed algorithm followed a key property 
of learning algorithms,18 assigning greater trust to the measured 
performance data as the user-provided noise-level estimate ( 2) 
decreased to zero, and vice versa. Figure 5 shows that, while 
over-estimation of the noise level results in predictions closer to 
the group-average model predictions, underestimation results in 
predictions with RMSEs equivalent to those obtained using the 
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sensitivity to sleep loss (top), vulnerable to sleep loss (middle), and resilient to sleep loss (bottom)]. The solid circles in each of the panels 
represent the simulated performance data with a signal-to-noise ratio of 14.77. The dashed lines represent 10-h-ahead predictions using the 
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model predictions.
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the present study, we tested a subset of 11 subjects who had 
not been administered active fatigue countermeasures, and for 
whom PVT measures were collected every 2 h, for a total of 42 
measurements. Figure 6 shows the mean performance profile 
(solid circles) and the standard deviation of the 11 subjects over 
the 82 h of PVT data collection and the group-average model 
predictions (solid lines). Overall, the trend suggested that both 
PVT lapses and variance (70% of which could be attributable 
to inter-individual variability5) increased over time. Moreover, 
the figure shows that the group-average model does not even 
predict the mean-group performance well.

For comparison purposes, we selected the same three sub-
jects as in the previous study,11 each representing one of three 
different sleep-loss phenotypes: relatively vulnerable to sleep 

realization of noise in the performance data, predictions with 
under-estimation of the noise level may yield smaller RMSEs 
than those with the correct noise-level estimate, predictions av-
eraged over a number of noise realizations should yield smaller 
RMSEs when 2 is closer to the true noise level in the measured 
data.

Laboratory Data Set

The second data set used to test the proposed approach 
was collected from a controlled laboratory study in which 48 
healthy adults were kept awake for 85 consecutive hours to 
determine the effects of fatigue countermeasures on perfor-
mance and alertness during prolonged sleep deprivation.35 In 
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nerable (middle), and resilient (bottom) subjects along with 
the group-average model predictions (solid lines), the 10-h-
ahead predictions (dashed lines), and their corresponding 95% 

loss, relatively average sensitivity to sleep loss, and relatively 
resilient to sleep loss. The three panels in Figure 7 show the 
observed PVT lapses (solid circles) for the average (top), vul-
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Figure 7—Individualized model predictions for three subjects with different behavioral phenotypes [average sensitivity to sleep loss (top), 
vulnerable to sleep loss (middle), and resilient to sleep loss (bottom)], with prior parameter values equal to those used in the group-average 
model and noise-level estimate 2 set to 77.60. The solid circles in each of the panels represent the measured psychomotor vigilance task 
(PVT) lapses, measured every 2 hours. The dashed lines represent the 10-h-ahead predictions, whereas the dotted lines represent the corre-
sponding analytically computed 95% prediction intervals. The solid lines in each panel represent the group-average model predictions.
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performance predictions made over shorter horizons were more 
accurate than predictions made over longer horizons. This ob-
servation is because of the more frequent use of intermediate 
performance measurements by shorter horizons in updating the 
model-parameter estimates. However, intermediate measure-
ments with low SNR could result in inaccurate models that, 
while yielding a good fit to the measurements, predict poor-
ly.18 We also analyzed the analytically computed 95% PIs and 
found, as expected, that their width was positively correlated 
with the amount of noise in the performance data. Moreover, 
as more performance measurements were available to the algo-
rithm, the PIs converged to those empirically obtained through 
Monte Carlo trials, validating the accuracy of the PIs computed 
by the new method. Employing PVT data from a laboratory 
study, the proposed method yielded individualized predictions 
for three sleep-loss phenotypes that were up to 43% more ac-
curate than group-average model predictions. Additionally, the 
corresponding 95% PIs almost entirely covered the entire set of 
measurements.

When comparing the results of the proposed method with 
those from our previous approach on the same simulated data, 
we observed average improvements in the accuracy of the 
model-parameter estimates of 70% and in the accuracy of the 
performance predictions of 80%. In particular, we found that 
the improvements in parameter estimation accuracy were more 
pronounced during the early phases of parameter estimation 
(typically, before obtaining 13 measurements) and when the 
SNR was low. This was because the algorithm places more trust 
on the a priori information during the early stages of adapta-
tion (i.e., before the performance impairment trend could be 
completely learned) and when the estimated amount of noise 
in the data was large. Similarly, on the laboratory data set, the 
new method yielded a 10% average reduction in the prediction 
error.

We found the accuracy of the model-parameter estimates and 
of the performance predictions to be a function of the a priori 
selected values for the model parameters and the noise-level 
estimate of the performance measurements. We empirically ob-
served that, as expected, the closer the a priori parameter values 
were to the true values underlying an individual, the more accu-
rate were the predictions for that individual. Additionally, over-
estimation of the noise level in the measurements resulted in 
predictions biased toward the a priori information, whereas un-
derestimation of the noise level did not yield necessarily worse 
predictions than the ones based on the correct value of the noise 
level. This was because the two-process model of sleep regu-
lation is composed of sinusoidal and exponential components, 
which prevent a perfect fit of the model to non-smooth signals, 
such as additive white noise in the performance measurements. 
This precludes model overfitting and resulting deterioration of 
model predictions.

Despite the advances made by the new method for individu-
alized performance prediction of sleep-deprived individuals, it 
does have limitations. In particular, this method suffers from 
the same limitations as any Bayesian approach, where a “good” 
choice of a priori parameter values and a “reasonable” estimates 
of the noise-level in performance data are key for obtaining opti-
mal results.18 Another limitation relates to the underlying assump-
tion that measures of performance, such as PVT lapses, would be 

PIs (dotted lines). In these calculations, we set the noise-level 
estimate 2 = 77.60, as in Van Dongen.10 For consistency, the 
RMSEs were computed between 10 and 82 h, and they indi-
cated that the individualized predictions were up to 43% more 
accurate than the group-average model predictions for all three 
subjects, with the measurements falling almost completely 
within the corresponding analytically computed 95% PIs. We 
also compared the 10-h-ahead predictions with our previous 
method11 and found that, on average, the new method reduced 
the prediction error by 10%.

DISCUSSION

In this paper, we presented a new method based on the two-
process model of sleep regulation that enabled individualized 
predictions of performance impairment represented by PVT 
lapses for subjects exposed to total sleep loss. The method ad-
vanced our previous work11 in two important ways. First, it al-
lowed model-parameter estimation and performance predictions 
as soon as the first performance measurement became available. 
This was achieved by combining a priori performance informa-
tion with the individual’s performance data through Bayesian 
inference. However, by retaining the strategy used in our previ-
ous work, where the nonlinear optimization problem of find-
ing the best estimates of the two-process model parameters is 
transformed into a series of linear problems, the new method 
guaranteed unique estimates of the five parameters of the two-
process model, avoiding brute-force, grid-search procedures.10 
Another important feature of the new method was that a priori 
performance information was optimally combined with the in-
dividual’s performance data as a function of a user-provided 
estimate of the uncertainty (i.e., the noise level) in the mea-
surements. As a result, the algorithm increased its trust in the 
a priori performance information as the estimate of the noise 
level in the measurements increased, and vice versa. Moreover, 
as more and more performance measurements were attained for 
an individual, the algorithm placed more and more trust in the 
measurements, de-emphasizing a priori performance informa-
tion. The rate of increase of the trust placed in the measure-
ments, however, became faster or slower as the user-provided 
uncertainty in the measurements decreased or increased, re-
spectively.

Second, the current work, for the first time, provided sta-
tistically based error bounds around the model predictions in 
the form of prediction intervals. This was achieved by taking 
advantage of the linear representation of the two-process model 
proposed in our previous work,11 which afforded the reformula-
tion of the two-process model into an equivalent AR model and, 
thus, provided analytical expressions for estimating PIs about 
the model predictions, bypassing the need to first estimate con-
fidence intervals of the model parameter estimates.10

Employing a simulated performance data set generated from 
the two-process model with selected parameters and with su-
perimposed white Gaussian noise, we found that the param-
eters’ estimates asymptotically converged to their true values 
as the number of performance data points increased and as the 
amount of noise in the performance data decreased, thereby 
confirming that the proposed method satisfied key convergence 
properties of adaptive algorithms.18 Moreover, we observed that 
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available on a frequent basis. This may not be possible in some 
operational settings, since it may not be practical to discontinue 
work-related tasks for administering performance tests. Further-
more, we note that, although PVT lapse (selected as our predicted 
variable) is recognized as a widely used and sensitive measure to 
sleep loss and although PVT may be the most practical test for 
some operational environments,37 it may not accurately reflect 
real, work-related performance of individuals.

Our future modeling efforts will focus on predicting perfor-
mance under chronic sleep restriction conditions, where wake 
and sleep episodes alternate, precluding the availability of a 
large set of contiguous performance measurements from which 
individualized models can be obtained. This difficulty can 
be handled by our proposed method in that model adaptation 
would take place incrementally during wake episodes, and fu-
ture performance levels would be predicted based on the latest 
parameter values. In addition, we will assess the performance 
of the proposed approach for the prediction of other outcome 
measures of performance, such as the Karolinska sleepiness 
scale,38 the Stanford sleepiness scale,39 the serial addition/sub-
traction task,40 and the digit symbol substitution task.41

Considerable modeling efforts are still required to fully ad-
dress the set of capability gaps identified at the Department of 
Defense-sponsored Fatigue and Performance Modeling Work-
shop.1-3 However, the work described here provides significant 
contributions toward closing the research gaps and developing 
models that accurately predict cognitive performance impair-
ments due to sleep deprivation at an individual level.
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As µ2 increases, the first term in Eq. (A.2) increases monoton-
ically while the second term decreases monotonically.29 There-
fore, the cost function in Eq. (A.2) has at most one minimum,42 
which corresponds to the optimal µ2. Because tr[cov(Pμ2)] in 
Eq. (A.2) is proportional to the user-provided uncertainty 2 in 
the measurements y (i.e., the noise level in y), the optimal µ2 
is a function of 2. Thereby, as 2 increases, the optimal µ2 in-
creases, accentuating the trust in the prior performance data in 
Eq. (A.1), and vice versa.

Appendix B

In this appendix, we show the equivalence between the two-
process model of performance given by Eq. (5)
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and the 12th-order autoregressive (AR) model given by Eq. (10)
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Note that for any set of values for the five parameters [α, γ, 
β, S(0), and φ], P(k) in Eq. (B.1) is a solution to the 12th-order 
difference equation given by the expression within the brackets 
in Eq. (6)
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where Z denotes a shift operator, such that Zn{P(k)} = P(k+n). 
By expanding the linear, forward-difference operator in Eq. 
(B.3) into a 12th-degree polynomial in Z and applying it to P(k) 
in Eq. (B.1), we obtain the following difference equation
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Appendix A

Optimal Selection of the Parameter µ2 in Eq. (9) [main text]

In this appendix, we describe the method employed to obtain 
an optimal value for the parameter µ2 in Eq. (9)
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which simultaneously accounts for the fit to the measurements 
y [the first term in Eq. (A.1)] and the fit to the prior performance 
data ỹ(the second term).

We obtained an optimal value for µ2 by minimizing the ex-
pression (i.e., the cost function) within the braces of the follow-
ing equation
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where Pμ2 denotes the last N elements of the solution of P in Eq. 
(A.1), for a specific µ2 and for λ2 set to an arbitrarily selected 
large number (21024). To avoid potential numerical problems 
with this procedure, we transformed Eq. (A.1) to its standard 
form,28 solved it for a specific µ2 and for λ2 set to an arbitrarily 
selected large number (21024), and transformed its solution back 
to the original problem [i.e., Eq. (A.1)]. The first term within 
the braces in Eq. (A.2) represents the fit of the solution of Eq. 
(A.1) to the performance data measurements y, whereas the sec-
ond term represents the trace of the covariance of Pμ2, which is 
equivalent to the fit of the solution of P to the a priori-generated 
performance data ỹ, i.e., the second term in Eq. (A.1). Noting 
that Pμ2 and tr[cov(Pμ2)] are functions of µ2 and λ2, for which 
closed-form expressions exist,28 and because Eq. (A.2) has a 
unique minimum (see below), the optimal µ2 can be obtained 
through standard numerical unconstrained optimization tech-
niques, such as Levenberg-Marquardt or Gauss-Newton.
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By analyzing the correspondence between Eqs. (B.5) and 
(B.2), we concluded that the two-process model in Eq. (5) is 
equivalent to the 12th-order AR model given by Eq. (10), where 
bi = ci, with i = 1,…,12.

where ci, with i = 1,…,12, are real numbers, which are fixed 
given the values of γ, ω, and Ts. According to Eq. (B.4), we 
observe that P(k +12) can be expressed as a linear combination 
of the previous 12 measurements or, alternatively, P(k) can be 
expressed as a linear combination of P(k-1), P(k-2),…, and P(k-
12) as follows

Individualized Performance Prediction—Rajaraman et al


