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ABSTRACT 
 
Seismic monitoring for underground nuclear explosions answers three questions for all global seismic activity: 
Where is the seismic event located? What is the event source type (event identification)? If the event is an explosion, 
what is the yield? The answers to these questions involve processing seismometer waveforms with propagation 
paths predominately in the mantle. Four discriminants commonly used to identify teleseismic events are depth from 
travel time, presence of long-period surface energy (mb versus Ms), depth from reflective phases, and polarity of 
first motion. The seismic theory for these discriminants is well established in the literature (see for example 
Pomeroy et al. [1982] and Blandford [1982]). However the physical basis of each has not been formally integrated 
into probability models to account for statistical error and provide discriminant calculations generally appropriate 
for multi-dimensional event identification. This paper develops a mathematical statistics formulation of these 
discriminants and offers a novel approach to multi-dimensional discrimination that is readily extensible to other 
discriminants. For each discriminant a probability model is formulated under a general null hypothesis of H0: 
Explosion Characteristics. The veracity of the hypothesized model is measured with a p-value calculation  
(see Stuart et al. [1994] and Freedman et al. [1991]) that is filtered to be approximately normally distributed and is 
in the range [0, 1]. A value near zero rejects H0, and a moderate to large value indicates consistency with H0. The 
hypothesis test formulation ensures that seismic phenomenology is tied to the interpretation of the p-value. These  
p-values are then embedded into a multi-discriminant algorithm that is developed from regularized discrimination 
methods proposed by Smidt and McDonald (1976), DiPillo (1976) and Friedman (1989). Performance of the 
methods is demonstrated with 102 teleseismic events with magnitudes (mb) ranging from 5 to 6.5 in Anderson et al. 
(2007). Example p-value calculations are also given for two of these events. Preliminary studies on the statistical 
properties of p-values are presented here. 
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OBJECTIVES 

Anderson et al. (2007) propose a unifying framework for seismic event identification that can be populated with a 
diversity of seismic discriminants. For inclusion in the framework, a discriminant’s physical theory must be 
mathematically embedded into a probability model designed to capture significant sources of error. This is 
accomplished by formulating each discriminant as a statistical hypothesis test under a general null hypothesis of H0: 
Explosion Characteristics. For example, a depth null hypothesis under Explosion Characteristics might be H0: event 
depth ≤ 10 km with the logical alternative hypothesis HA: event depth > 10 km. The veracity of the null hypothesis 
for each discriminant is measured with a p-value calculation, which is used as the discriminant. The p-value ranges 
between zero and one, with a value near zero indicating inconsistency with Explosion Characteristics and a 
moderate to large value indicating consistency with Explosion Characteristics. With this approach to discriminant 
construction, the p-value carries information about source type fully adjusted for natural and measurement 
variability. This places a high standard on the construction of the discriminants—seismic phenomenology and path 
corrections must be integrated into an appropriate probability model, and a seismic-based hypothesis test must be 
constructed. The p-values under this formulation can be viewed as standardized discriminants with common 
interpretation across geographical regions and different discriminants. 
 
For continuous discriminants such as depth from travel time, spectral ratios, or mb versus Ms, when the null 
hypothesis is true (e.g., explosion), the p-value will have a uniform probability distribution, and when the null 
hypothesis is false (earthquake), the p-value will have a probability distribution with most of its mass near zero. 
Here, the concentration of probability mass at zero is determined by the degree of disagreement between the true 
probability model of the data and the null hypothesis model. 
 
The hypothesis test p-values can be mildly transformed to become standardized discriminants Y that also possess 
predictable statistical properties. They also range between zero and one, their interpretation is completely analogous 
to that of p-values, and they are approximately Gaussian. Therefore, established Gaussian discrimination methods 
can be used to formulate a unified decision from standardized discriminants. Specifically, the equation 
 

)arcsin(
2

valuepY −=
π

 

is well established in statistical theory as a transformation to achieve Gaussian behavior in data bounded between 
zero and one. Figure 1 illustrates the effect of standardizing the hypothesis test p-values. Precedence for interpreting 
p-values as discriminants can be found in Maharaj (2000), and Dumbgen and Homke (2000). 
 

 

Figure 1. Transformation to induce an approximate Gaussian distribution on individual p-values (denoted p 
in the graphs) to derive standardized discriminants. The H0 probability distribution is gray, and the 
HA probability distribution is black. 

In the framework proposed in Anderson et al. (2007), standardized discriminants Y are mathematically combined for 
source identification. This is accomplished with a typicality index calculation (see McLachlan [1992]) that measures 
the degree of agreement a suite of observed discriminants have with the earthquake and explosion populations.   
With the typicality index calculation, an event can be declared 

• consistent with historical explosions, 
• not consistent with historical earthquakes, 
• consistent with explosions and earthquakes (indeterminate), or 
• not consistent with either earthquakes or explosions (unidentified). 

These declarations are technically defensible. 

29th Monitoring Research Review:  Ground-Based Nuclear Explosion Monitoring Technologies

527



  

In the framework, a second source identification calculation is made that assumes only two possible decisions – 
earthquake or explosion (indeterminate and unidentified are not possible). Bayesian statistical methods can be used 
to calculate the P(earthquake | event data) and P(explosion | event data). Note again that these probabilities sum to 
one. One possible rule is to simply take the higher of the two probabilities as the source identification. The objective 
of this research was to determine some of the statistical properties Bayesian source identification calculations with 
simulated teleseismic discriminants X versus the corresponding standardized discriminants Y. 
 

RESEARCH ACCOMPLISHED 

A simulation was performed that emulates the first-order properties of teleseismic discriminants for earthquakes and 
explosions. The simulation represents the potential source populations for two discriminants e.g., mb versus Ms 
(denoted X1), and a teleseismic spectral ratio discriminant (denoted X2) (see Taylor and Marshall [1991]). A subset 
of the simulation is reported here. The explosion model used to simulate X1 and X2 had the centroid (0,0) and a 

covariance matrix ⎟
⎠
⎞
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. The earthquake model had the centroid (-2,-2) with a suite of covariance 
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First, using one of the earthquake/explosion model combinations above (the true explosion/earthquake models), 30 
explosions and 300 earthquakes were simulated emulating the acquisition of teleseismic discriminant calibration 
data (X1 and X2). These calibration data were used to calculate the centroids (calibrated centroids) and a pooled 
covariance (calibrated covariance) for the explosion and earthquake models for data X1 and X2. The simulated 
calibration data were then converted to p-values from a Z-score. The Z-scores for the X1 data are gotten by 
subtracting the calibrated explosion mean from the X1 data and dividing by the standard deviation of X1 from the 
calibrated covariance matrix. The p-value calculation for each data point X1 is then the left tail probability of the 
standard Gaussian distribution (see Figure 2). Calculations are analogous for the X2 data. With the p-value 
calculations, the explosion data for both X1 and X2 will have a histogram that is uniformly distributed and the 
earthquake data will have a distribution that is tightly packed near zero (see the left graphic in Figure 1). The 
calibration p-values are then transformed to standardized discriminants Y1 and Y2. These data are then used to 
calculate the centroids (calibrated centroids) and a pooled covariance (calibrated covariance) for the explosion and 
earthquake models for data Y1 and Y2. On completion of the calibration step, we have the models for source event 
identification with either teleseismic discriminants X1 and X2 or standardized discriminants Y1 and Y2. 

 

 

Figure 2. Graphical representation of p-value calculations from Z-scores for X1 and X2. 

In the next step, 5000 explosions and 5000 earthquakes are simulated using the true earthquake/explosion models. 
These data emulate new events with associated teleseismic discriminants (X1 and X2). The standardized 
discriminants Y1 and Y2 are calculated from these data using the calibrated explosion means and the standard 
deviations from the calibrated covariance matrix – the calculations are exactly as those made with the calibration 
data step. It is these 5000 simulated explosions and 5000 simulated earthquakes that are used to compare the 
properties of X1 and X2 versus Y1 and Y2 in the Bayesian source identification calculation. For this simulation study, 
the larger of P(earthquake | event data) and P(explosion | event data) is taken as the source identification with both 
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the teleseismic discriminant data X1 and X2, and the standardized discriminants. With these simulated event data the 
probability of correctly identify an explosion (PD [=] probability of detection) and the probability of a false-alarm 
(FA [=] false-alarm probability) can be calculated, that is, the number of times an explosion is correctly identified 
divided by 5000 and the number of times an explosion is identified as an earthquake divided by 5000. To compare 
the properties of Bayesian source identification with the two discriminants, we use the ratio FA/PD. In other words, 
this ratio is the false-alarms per detection, and the smaller this ratio the better. The ratios FA/PD are reported in 
Table 1 for Bayesian source identification with simulated teleseismic discriminants and standardized discriminants. 
The true models used in the simulation are graphically represented in the top row. In all cases, using the 
standardized discriminants gives better false-alarm performance relative to explosion identification probability. This 
is consistent with the results observed in the full simulation. 

Table 1. False-alarms per detection for simulated teleseismic discriminants and standardized discriminants. 
True models used to simulate teleseismic discriminants X1 and X2 are presented graphically in the 
first row. Ellipses for the models are 95% probability regions. 

 

     

Simulated teleseismic 
discriminants 0.093 0.186 0.164 0.147 

Standardized 
discriminants 0.040 0.121 0.090 0.073 

 

CONCLUSIONS AND RECOMMENDATIONS 

Conclusions are preliminary – theorems are not proven with simulations. However, we can conclude, based on 
simulations of statistical population behavior typical of some teleseismic discriminants, that standardized 
discriminants give improved operational performance over teleseismic discriminants, as measured by false-alarms 
per detection (FA/PD). Using p-values as discriminants has the advantage of unifying physical and statistical 
corrections into a single measurement. Therefore, in principle, p-values represent pure information about a seismic 
event source type. This is a compelling reason for using p-values as discriminants on its merits. The preliminary 
performance properties of p-values further supports p-values as seismic discriminants. Further research includes 
comprehensive simulations and potentially the development of mathematical arguments (theorems) that generalize 
this property of standardized discriminants.  
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