A MODULATION BASED APPROACH TO WIDEBAND-STAP (BRIEFING CHARTS)

Ke Yong Li, Unnikrishna S. Pillai, Peter Zulch, and Michael Callahan
C & P Technologies, Inc.

OCTOBER 2007

Approved for public release; distribution unlimited.
See additional restrictions described on inside pages

STINFO COPY

AIR FORCE RESEARCH LABORATORY
SENSORS DIRECTORATE
WRIGHT-PATTERSON AIR FORCE BASE, OH 45433-7320
AIR FORCE MATERIEL COMMAND
UNITED STATES AIR FORCE
# A MODULATION BASED APPROACH TO WIDEBAND-STAP (BRIEFING CHARTS)

**4. AUTHOR(S)**

Ke Yong Li (C & P Technologies, Inc.)
Unnikrishna S. Pillai (Polytechnic University)
Peter Zulch (AFRL/RIEC)
Michael Callahan (AFRL/RHRT)

**5. CONTRACT NUMBER**

FA8750-06-C-0117

**5c. PROGRAM ELEMENT NUMBER**

62204F

**5d. PROJECT NUMBER**

5017

**5e. TASK NUMBER**

RL

**5f. WORK UNIT NUMBER**

517R1511

**6. AUTHOR(S)**

C & P Technologies, Inc.
317 Harrington Avenue
Suites 9 & 10
Closter, NJ 07624-1911

Polytechnic University
Brooklyn, NY 11201

**7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)**

C & P Technologies, Inc.
317 Harrington Avenue
Suites 9 & 10
Closter, NJ 07624-1911

Polytechnic University
Brooklyn, NY 11201

Communications Exploitation Branch (AFRL/RIEC)
Information and Intelligence Exploitation Division
Air Force Research Laboratory
525 Brooks Road, Rome, NY 13441-4505

United States Air Force

Radar Signal Processing Branch (AFRL/RHRT)
RF Sensor Technology Division
Air Force Research Laboratory, Sensors Directorate
Wright-Patterson Air Force Base, OH 45433-7320

Air Force Materiel Command, United States Air Force

**9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)**

Air Force Research Laboratory
Sensors Directorate
Wright-Patterson Air Force Base, OH 45433-7320

Air Force Materiel Command
United States Air Force

**10. SPONSORING/MONITORING AGENCY ACRONYM(S)**

AFRL/RIEC

**AFRL/RHRT**

**AFRL-RY-WP-TP-2009-1306**

**11. SPONSORING/MONITORING AGENCY REPORT NUMBER(S)**

Approved for public release; distribution unlimited.

**13. SUPPLEMENTARY NOTES**


**14. ABSTRACT**

In this presentation, a new method for processing wideband radar data is presented. To perform the full degree of freedom wideband processing, 3-D space-time adaptive processing (STAP) needs to be implemented, which involves intense computational burden. One approach in this case is to do subband STAP processing and combine these outputs. In this presentation, instead of traditional subband processing, the incoming wide band data signal is modulated by multiple carriers, combined, and filtered prior to processing using narrowband STAP. This method offers a significant decrease in computation burden compared to the subband method.

**15. SUBJECT TERMS**

wideband space-time adaptive processing

**16. SECURITY CLASSIFICATION OF:**

a. REPORT Unclassified

b. ABSTRACT Unclassified
c. THIS PAGE Unclassified

17. LIMITATION OF ABSTRACT:

SAR

18. NUMBER OF PAGES 30

19a. NAME OF RESPONSIBLE PERSON (Monitor)

Michael J. Callahan

19b. TELEPHONE NUMBER N/A

Form Approved
OMB No. 0704-0188

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39-18
A Modulation Based Approach to Wideband-STAP

Ke Yong Li
C & P Technologies, Inc., Closter, NJ

Unnikrishna Pillai
Polytechnic University, Brooklyn, NY

Peter Zulch
AFRL, Rome, NY

Michael Callahan
AFRL, Wright-Patterson AFB, OH
Outline

• Wideband Array Data Modeling
• Optimum Wideband Processor
• Subband Processing
• New Approach: Subband Combining without Partitioning
• Conclusions
Time-Domain Wideband Clutter Generation

• Wideband signal \( s(t) \) is transmitted from all sensors

• Delay taps are used at sensors to focus the transmitted signal to a specific look angle \( \theta_o \)

\[
f(t, \theta) : \text{combined signal at angle } \theta
\]

Combined signal at desired angle \( \theta_o \) :

\[
f(t, \theta_o) = N \cdot s(t)
\]

The combined signal at the desired look angle has been coherently amplified by a factor of \( N \).
For any other angle, the signals from different sensors will add up incoherently resulting in a transmit array gain pattern.

Combined signal at an arbitrary angle is given by:

\[
f(t, \theta) = \sum_{n=1}^{N} s \left( t - (n - 1) \frac{d \left( \sin \theta - \sin \theta_o \right)}{c} \right).
\]

- **Bandwidth** \( BW = 80 \text{ MHz} \)
- **Center frequency** \( f_c = 435 \text{ MHz} \)
- **Number of sensors** \( N = 14 \)
- **Interelement spacing** \( d = 0.33 \text{ m} \)
- **Look angle** \( \theta_o = 0^\circ \)
- **PRF** = 625 Hz

Mountain Top Radar Parameters are used.
Frequency Sensitive Array Gain Pattern

Array Amplitude Pattern

\[ C(\theta, \omega_k) = \sum_{i=1}^{N} e^{\frac{-j2\pi d}{\lambda_k} (i-1)\sin \theta} \]

Array Gain Pattern

\[ G(\theta, \omega_k) = \left| C(\theta, \omega_k) \right|^2 \]

Bandwidth = 395 MHz - 475 MHz (80 MHz), Sensors used: 14
Array Gain Pattern (Freq. Domain)

Array gain pattern as function of frequency for different angles

Array gain pattern as function of angle for different frequencies
Time-Domain Wideband Clutter Generation

• The received signal vector arriving from $\theta_i$ for all the sensors is given by:

$$r(t, \theta_i) = \alpha_i \left[ f(t, \theta_i) \\ f(t - \tau_i, \theta_i) \\ \vdots \\ f(t - (N-1)\tau_i, \theta_i) \right]$$

• Wideband data vector received from all the azimuth angles is:

$$x(t) = \sum_i r(t, \theta_i)$$

$$\tau_i = \frac{d \sin \theta_i}{c}$$
Wideband STAP

\[ x(t) = f(t) + c(t) \]

\[ x(t) = \left[ x_1(t), x_2(t), \cdots, x_M(t) \right]^T \]

\[ x_i(t) = \left[ x_{i,1}(t), x_{i,2}(t), \cdots, x_{i,N}(t) \right] \]

Target at \( \theta_o \), moving with velocity \( V \) (both parameters are unknown)

\[ f_{ik}(t) = f \left( t - (i-1)\tau_1 - (k-1)\tau_2 \right) \]

Sensor

Pulse

Spatial: (Azimuth) \( \tau_1 = \frac{d \sin \theta_o}{c} \), Temporal: (Doppler) \( \tau_2 = \frac{2V T_r \sin \theta_o}{c} = \beta \tau_1 \)
Optimum Wideband Processor

Interference Covariance Matrix: \( R_c = E\{x(t)x^*(t)\} \)

Optimum Processor:

1. Whitening followed by
2. Matched Filter

(1) Whitening Filter \( H(z) \)

\[
\begin{align*}
x(t) & \Rightarrow \mathbf{R}_c^{-1/2} \\
y(t) & = \mathbf{R}_c^{-1/2} \mathbf{f}(t) + \mathbf{w}(t)
\end{align*}
\]

\[
\begin{bmatrix}
f(t), & \cdots, & f(t-(N-1)\tau_1) \\
\end{bmatrix}
\]

First pulse return

\[
\begin{bmatrix}
f(t-\tau_2), & \cdots, & f(t-\tau_2-(N-1)\tau_1) \\
\end{bmatrix}
\]

Second pulse return

\[
\begin{bmatrix}
\cdots, & \cdots, & \cdots \\
\end{bmatrix}^T
\]

m\textsuperscript{th} pulse return
Optimum Wideband Processor – Freq. Domain

\[
Y(\omega) = F(\omega)R_c^{-1/2} \begin{bmatrix}
1 \\
e^{-j\omega \tau_1} \\
\vdots \\
e^{-j\omega(N-1)\tau_1} \\
e^{-j\omega \tau_2}a(\theta, \omega) \\
\vdots \\
e^{-j\omega(M-1)\tau_2}a(\theta, \omega)
\end{bmatrix} + w(\omega)
\]

\[
\overline{b(V, \omega)} \otimes \overline{a(\theta, \omega)} = \overline{s(\theta, V, \omega)}
\]

\[
= F(\omega)R_c^{-1/2} \overline{s(\theta, V, \omega)} + \overline{w(\omega)} = \overline{c + v}
\]

(2) Matched Filter is given by \( \overline{c^*} \)
Optimum Wideband Processor

\[
Z = c^* Y(\omega) = \left(s^*(\theta, V, \omega) R_c^{-1/2}\right) \left(R_c^{-1/2} X(\omega)\right) = s^*(\theta, V, \omega) R_c^{-1} X(\omega) = W^*(\omega) X(\omega)
\]

Optimum wideband STAP Processor:

\[
W(\omega) = R_c^{-1} s(\theta, V, \omega)
\]

Frequency sensitive processor. Same form as in the narrowband case; Difficult to implement.
Wideband STAP Processor

- Phase delays become frequency sensitive filters
- STAP Processor must be compensated at all frequencies – difficult to implement

In practice, use subband schemes

Subband schemes are suboptimal since narrowband processing is done on each subband

Objective: Avoid subband processing
Multiple Subband STAP

- Input Spectrum
- Subband
- \( \omega_1 \), \( \omega_2 \), \( \cdots \), \( \omega_K \)

Multiple Beamformers or other STAP methods

\( x(k) \)

\( P(\theta, V) \)

Subband Channel 1 → Beamformer 1

Subband Channel 2 → Beamformer 2

Subband Channel K → Beamformer K

\[ \sum \]
Subband Filter Design

Subband filter design using modulated linear phase low pass FIR filters

\[ h_{BP}(n) = h_{LP}(n)e^{j2\pi f_i n T_s} \quad \leftrightarrow \quad H_{BP}(e^{j\omega}) = H_{LP}(e^{j(\omega - 2\pi f_i)}) \]

- Signal BW = 80 MHz
- 8 MHz (3dB BW)
- 10 Sub-Bands

Mountain Top radar carrier freq. = 435 MHz. Wideband data BW = 80 MHz

2007 ASILOMAR Conference, Pacific Grove, CA.
Typical Subband STAP Outputs (SMIDL)

SMIDL with subarray smoothing using 20 Samples

(a) Subband 1, Freq. = 395 MHz
(b) Subband 4, Freq. = 419 MHz
(c) Subband 7, Freq. = 443 MHz
(d) Subband 10, Freq. = 467 MHz

CNR = 40dB, SNR = 0dB, Target at 0° moving at 40m/s
Subband Averaging (10 Subbands)

Substantial computational burden for subband methods
New Approach

Subband Combining Without Subband Partitioning

Objectives:

• Use the entire wideband information
• Avoid/minimize subbanding
• Take advantage of narrowband STAP
Wideband Processing: Subband Combining Without Subband Partitioning

- Imagine the wideband signal partitioned into \( L \) subbands (No physical partitioning)

- Select one band centered at \( \omega_o \) for actual processing

- Modulate the signal by various carrier frequencies and align the subbands with the selected band

- Perform a single subband filtering at the final stage

- Apply narrowband STAP and align the outputs

Modulate, Combine, Filter and Align
Subband Combining Without Subband Partitioning

Example

- Entire bandwidth is partitioned into subbands
- Data is modulated by different carrier freq. and then combined
- A single band pass filter is applied to the summed data

\[ y(n) = x(n) \sum_{k=0}^{2} e^{j(\omega - \omega_k)n} \ast h_{BP}(n) \]

\[ Y(\omega) = (X(\omega) + X_1(\omega) + X_2(\omega)) H_{BP}(\omega) \]

Narrowband STAP on \( y(n) \)
Modulate, Combine and Filter – 10 Modulations

Doppler spread

Data is modulated by 10 carrier frequencies to 435 MHz.
SMIDL using data at 435 MHz with 10 range samples.
Data is modulated by 20 carrier frequencies to 435 MHz. SMIDL using data at 435 MHz with 10 range samples.
Modulate, Combine, Filter and Align

- A single target at $\theta_1$ in the filtered data generates multiple direction vectors corresponding to frequencies $\omega_1, \omega_2, \ldots, \omega_L$

- Or equivalently, processing at $\omega_o$ generates multiple targets at $\theta_1, \theta_2, \ldots, \theta_L$ where

$$\omega_o \sin \theta_1 = \omega_k \sin \theta_k, \quad k = 2, 3, \ldots, L$$

- “Angle-Doppler spread” in STAP output spectrum processed at a single frequency $\omega_o$

- Align the angle-Doppler spectrum to compensate for the Doppler spread
Waveform Design for Coherent Combining

• **Target return**

\[ S_t(\omega) = S(\omega) a(\omega, \theta_t, \omega_d) \]

Spatio-temporal steering vector

Desirable Tx Waveform

Transmit Waveform

Undesirable Tx Waveform

• Transmit waveform magnitude/phase variations should be minimized (Waveform Design)

• Present method avoids subband processing (one subband only) and uses the entire wideband information

• Takes advantage of narrowband STAP
Conclusions

• Method presented here is ideal for initial search over a large region

• Present method avoids subband processing (one subband only) and uses the entire wideband information

• Doppler spreading needs to be compensated

• Use waveform diversity for coherent combining.