Vehicle-Snow Interaction:
Modeling, Testing and Validation

Jonah Lee
Department of Mechanical Engineering
University of Alaska Fairbanks

October 12, 2009
Goodyear Tech Center, Luxembourg

UNCLAS: Dist A. Approved for public release
Report Documentation Page

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.

<table>
<thead>
<tr>
<th>1. REPORT DATE</th>
<th>2. REPORT TYPE</th>
<th>3. DATES COVERED</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 OCT 2009</td>
<td>N/A</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4. TITLE AND SUBTITLE</th>
<th>5a. CONTRACT NUMBER</th>
<th>5b. GRANT NUMBER</th>
<th>5c. PROGRAM ELEMENT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vehicle-Snow Interaction: Modeling, Testing and Validation</td>
<td>W56 HIZV-08-C-0236</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6. AUTHOR(S)</th>
<th>5d. PROJECT NUMBER</th>
<th>5e. TASK NUMBER</th>
<th>5f. WORK UNIT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jonah Lee</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)</th>
<th>8. PERFORMING ORGANIZATION REPORT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Department of Mechanical Engineering University of Alaska Fairbanks, USA</td>
<td>20246</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)</th>
<th>10. SPONSOR/MONITOR’S ACRONYM(S)</th>
<th>11. SPONSOR/MONITOR’S REPORT NUMBER(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>US Army RDECOM-TARDEC 6501 E 11 Mile Rd Warren, MI 48397-5000, USA</td>
<td>TACOM/TARDEC</td>
<td>20246</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>12. DISTRIBUTION/AVAILABILITY STATEMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approved for public release, distribution unlimited</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>13. SUPPLEMENTARY NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>The original document contains color images.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>14. ABSTRACT</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>15. SUBJECT TERMS</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>16. SECURITY CLASSIFICATION OF:</th>
<th>17. LIMITATION OF ABSTRACT</th>
<th>18. NUMBER OF PAGES</th>
<th>19a. NAME OF RESPONSIBLE PERSON</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. REPORT</td>
<td>unclassified</td>
<td>SAR</td>
<td></td>
</tr>
<tr>
<td>b. ABSTRACT</td>
<td>unclassified</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c. THIS PAGE</td>
<td>unclassified</td>
<td>42</td>
<td></td>
</tr>
</tbody>
</table>

Standard Form 298 (Rev. 8-98)

Prescribed by ANSI Std Z39-18
Outline

• Part I - Snow mechanics
 – Background
 – Experimental procedure
 • Tribometer for indentation, plowing, sliding tests
 • 3D X-Ray Microtomography for microstructure
 – Numerical modeling procedure
 – Typical results (indentation, plowing, compression, tension, penetration)

• Part II - Vehicle-snow interaction
 – Alaska Instrumented Vehicle and profilometer
 – Validation of models
Background: Characteristics of (Geometric) Snow Models

- Multi-scale in nature:
 - um scale at the sub-grain level (microscale)
 - mm scale at the grain level (mesoscale)
 - cm scale at the terrain level (macroscale)

- Stochastic in nature:
 - Stochastic models at each scale (e.g., Gaussian Random Field at the mesoscale, semi-variogram at the macroscale)
 - Key challenge:
 - Integrate (‘patch’) models at different scales
Background:
Indentation, plowing and sliding

- Resultant Forces due to Sinkage/Ploughing and Longitudinal/Lateral Slips
- Motion Resistance, Shear Force and Drawbar
Background:
Needs

- Microstructure (uncertainty) effect not assessed
- Need better understanding of deformation and failure mechanisms
- Little work done in plowing and sliding
- Size effect not understood
Background: Goals and Approaches

• Goals:
 – Develop models for the mechanical properties of different types of snow
 – Quantify the associated uncertainties and understand the sources of uncertainties

• Approaches:
 – Experimental:
 • Microscale tests using microtribometer
 • Microstructural statistics using microCT scanner
 – Numerical:
 • Microscale simulations using a meshless method with appropriate constitutive laws
 – Semi-analytical:
 • Continuum mechanics based stochastic models incorporating microstructural information
Experimental Procedure

• Collection and storage of snow
 – February to March, 2009, Tanana River, Fairbanks, Alaska
 – Fine-grained just underneath the surface
 – Coarse-grained about 20 cm from surface
 – Snow temperature ~-6 C
 – Stored in a freezer ~-25 C

• Microtribometer –
 – Temperature ~-10C
 – Pin sizes (1/8”, 1/4”, 3/8”, 1/2”)
 – Force or velocity control
 – Multiple steps and modes (indentation, pin-on-disk etc.)
Experimental Procedure:
tribometer setup

Environment

UNCLAS: Dist A. Approved for public release
Experimental Procedure: Skyscan 1172 Microtomography
Experimental Procedure:
Snow Sample Holder

UNCLAS: Dist A. Approved for public release
Experimental Procedure:
Grey-level Cross-Sectional Image
Sieved Snow < 1 mm Grain Size

7.344 mm by 7.344 mm
Resolution: 1225 by 1225, Pixel size: 6 micron

UNCLAS: Dist A. Approved for public release
Experimental Procedure: Grey-Level Histogram

- **pore** is on the left side of the histogram
- **ice** is on the right side of the histogram
- **threshold** is indicated by a vertical line in the middle of the histogram
Experimental Procedure:
Segmentation

grey-level

binarized image

Black is ice

UNCLAS: Dist A. Approved for public release
Experimental Procedure:
Removal of Unconnected Parts

Binarized image

Remove speckles

Black is ice

UNCLAS: Dist A. Approved for public release
Experimental Procedure:
3-D Visualization of a Cube of Snow Microstructure
Side Length = 3.618 mm
Experimental Procedure:
Extract Statistical Information from Images

Porosity (pore volume fraction)

Two-point probability function
Probability that two points a distance r apart will lie in pore space
Numerical Modeling: Generalized Interpolation Material Point (GIMP) method (1/2)

- Geometry from CT images
 - 148x148x148 voxels (48 um resolution);
 7.1mmx7.1mmx7.1mm
 - Each voxel (ice) is mapped to a material point (particle)
 - ~1 million particles

- Boundary conditions
 - Periodic on the sides (for indentation)
 - Frictionless
 - Speed of indentation is 71 mm/sec

- Indenters
 - 1/16”, 1/8”, 1/4”
Generalized Interpolation Material Point (GIMP) Method (2/2)

- Software: parallel code Uintah installed on a Sun cluster at Arctic Region Supercomputing Center
- Constitutive law used for ice particles
 - Failure according to maximum tensile stress
 - Post failure
 - Stress set to zero if mean stress is tensile
 - Stress set to mean stress if compressive
- Algorithm
 - Dynamic, explicit
Tests and Simulations

• Tests
 – Compression
 – Indentation
 – Plowing
 – Sliding on compacted snow (future work)
 – Penetration (future work)

• Simulations
 – Compression and Tension
 – Indentation
 – Plowing
 – Sliding (future work)
 – Penetration
 – Triaxial tests
Typical Results: Indentation tests for fine snow

Fine-grained snow depth=18mm, speed=5mm/sec

<table>
<thead>
<tr>
<th>Fraction</th>
<th>Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/8</td>
<td>(2)</td>
</tr>
<tr>
<td>1/4</td>
<td>(1)</td>
</tr>
<tr>
<td>3/8</td>
<td>(1)</td>
</tr>
<tr>
<td>1/2</td>
<td>(1)</td>
</tr>
</tbody>
</table>

Pressure (kPa) vs. Displacement (mm)
Microstructure after Indentation Tests via MicroCT

Fine-grained snow:
- Top View
 - Initial density: ~290 kg/m3
 - Final density: ~590 kg/m3

UNCLAS: Dist A. Approved for public release
Typical Indentation Simulation Results

Fine-grained snow, 71 mm/sec 1/4-inch indenter

UNCLAS: Dist A. Approved for public release
Typical Indentation Simulation Results: Cumulative damage

Fine-grained snow, 71 mm/sec

Normalized cumulative damage

Displacement (mm)
Failed Particles from Indentation Simulation

UNCLAS: Dist A. Approved for public release
Characteristics of Indentation Test Curves

Fine-grained snow, 5mm/sec

I II III IV

Pressure (kPa)

Displacement (mm)

UNCLAS: Dist A. Approved for public release
Background:
Indentation modeling using continuum mechanics

Three zones:
I: Elastic
II: Hardening (via cavity expansion theory and Drucker-Prager criterion)
III: Densification (via upper bound theory and Drucker-Prager criterion)

Potential Deformation Mechanisms

A: Upper ‘yield’ point (inelastic due to damage)
B: Lower ‘yield’ point
 – OAB: Initial yield zone
B-C: Hardening (additional damage)
C: Plateau stress
C-D: Compaction (little additional damage)
D-E: Densification (pressure bulb hits bottom)
Initial Peak Stress (‘Upper Yield’): Coarse-grained
Results: Plowing tests

Fine-grained, 1/4-inch

UNCLAS: Dist A. Approved for public release
Results: Snow Penetration Simulations
(45 deg inclusion angle)*

*Lee et al., Proceedings of ISTVS 2009
Results: Typical Penetration Geometry

Deformed snow

Failed particles

UNCLAS: Dist A. Approved for public release
Results: Strengths from Inversion of Penetration Signals

Microscale compressive strength from simulation is 0.0063 N/mm^2
Part II: Vehicle-Snow Interaction

• An instrumented vehicle (Alaska Instrumented Vehicle) to collect data about vehicle and wheel states
• A vehicle-mounted profilometer to measure terrain topology
• Equipment to obtain microstructure and mechanical properties of snow
Alaska Instrumented Vehicle

- 2008 Jeep Commander (with ESP)
- Vehicle states:
 - Longitudinal slip (via wheel longitudinal speed and wheel angular speed from ESP)
 - Vehicle speed, sideslip, wheel slip angle, yaw, pitch and roll (VBOX II SX ?+ ESP)
 - Wheel forces and moments
 - Kistler’s wheel-force transducers (a set of 4)
- Validation on pavement first
Terrain Profiling

- Vehicle-mounted profilometer (Kern and Ferris, 2007)
 - Inertial navigation system (INS) to determine the position and orientation of the vehicle
 - Differential GPS system
 - Inertial measurement unit (IMU) – gyros and accelerometers for orientation and position
 - Scanning laser for profiling
 - 4-meter wide scan (claimed accuracy of vertical measurements 0.7-1.0 mm)
 - Claimed horizontal precision is 1mm for short-distance traveled
Measurements Needed

- Depth of snow cover ~5 cm – 30 cm
- Snow density and in-situ compressive strength
- Mechanical properties and microstructure by collecting and transporting select samples from field to lab
- Vehicle and wheel states
Tentative Test Protocols: Before Vehicle Travel

- Select areas for types of snow - (dry, wet, windblown etc.), depth of snow, strength of snow – with enough room to maneuver the two vehicles (AIV and profilometer)
- Measure snow depth by profiling ground twice – with and without snow (winter first, summer later)
- Measure snow properties along the intended path before vehicle travel
Tentative Test Protocols

• Passes:
 – Single pass: rut created by front wheels not traveled by rear wheels for virgin snow
 – Multiple passes for compacted snow

• After vehicle travel:
 – Measure sinkage (3D) using profilometer
 – Measure deformed mechanical properties of snow

• Maneuvers:
 – Combination of driven and driving wheels
 – Longitudinal and lateral motions
 – Effects of ESP
Development and Validation of Models for Virtual Proving Ground

• Development of stochastic terrain models
• Improvement of indentation model (J. Lee, 2009)
• Validation of stochastic tire-snow interaction model for combined slip (Li et al., 2009)
• Validation of finite element tire-snow interaction model for combined slip (J. Lee, under review)
• Validation of time-dependent tire-snow interaction model for combined slip (Lee and Liu, 2006)
People

- Daisy Huang, Ph.D. student, UAF: mechanical properties of snow.
- Steve Meurer, US Army Cold Region Test Center, Fort Greely, Alaska (the only winter test track in Alaska): instrumentation and vehicle-snow interaction.
- Tom Johnson, Mechanical Engineer, UAF: instrumentation and vehicle-snow interaction.
- Dr. Al Reid, TARDEC: terrain profiling
- Open position of a postdoctoral fellow in vehicle-terrain interaction.
Collaborators

• Dr. Jim Guilkey, Schlumberger
• Hongyan Yuan, Penn State University, stochastic modeling of snow
• Dr. Jerry Johnson, UAF: snow mechanics and physics
• Professor Hans-Peter Marshall, Boise State University: snow mechanics and physics
• Professor Corina Sandu, Virginia Tech University: terrain topology, vehicle-terrain interaction
• Professor Zissimos Mourelatos, Oakland University: uncertainty modeling
Acknowledgements

• Arctic Region Supercomputing Center (ARSC).

• US Army TARDEC through the Simulation Based Reliability and Safety (SimBRS) research program.

• US Army TARDEC through the Automotive Research Center (ARC) led by the University of Michigan.

• US Army Cold Region Test Center (CRTC).