
AFRL-RV-PS- AFRL-RV-PS- 
TP-2010-1001  TP-2010-1001 
  
      

Interference Effects In A Photonic Crystal Cavity 
 
 
 
P.M. Alsing and D.A. Cardimona 
 
 
 
 
 
 
20 January 2010 
 
 
 
 
 
Interim Report 
 
 
 
 
 
 

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED. 

 
 
 

AIR FORCE RESEARCH LABORATORY 
Space Vehicles Directorate 
3550 Aberdeen Ave SE 
AIR FORCE MATERIEL COMMAND 
KIRTLAND AIR FORCE BASE, NM 87117-5776 

 

  



 

 

 
DTIC COPY  

 
NOTICE AND SIGNATURE PAGE 

 
Using Government drawings, specifications, or other data included in this document for  
any purpose other than Government procurement does not in any way obligate the U.S.  
Government. The fact that the Government formulated or supplied the drawings,  
specifications, or other data does not license the holder or any other person or corporation;  
or convey any rights or permission to manufacture, use, or sell any patented invention that  
may relate to them.  
 
 
 
 
Qualified requestors may obtain copies of this report from the Defense Technical  
 Information Center (DTIC) (http://www.dtic.mil). 
 
 
 
 
AFRL-RV-PS-TP-2010-1001 HAS BEEN REVIEWED AND IS APPROVED FOR PUBLICATION IN 
ACCORDANCE WITH ASSIGNED DISTRIBUTION STATEMENT. 
                                                                  

 
 
 
 
                                            
//SIGNED//                                          //SIGNED//  
DAVID CARDIMONA                                                         WILLIAM A. SCHUM, Lt Col, USAF 
Program Manager                                                           Deputy Chief, Spacecraft Technology Division 

Space Vehicles Directorate 
 
 
 
 
 
 
 
 
This report is published in the interest of scientific and technical information exchange, and its 
publication does not constitute the Government’s approval or disapproval of its ideas or findings.  



 

 i

REPORT DOCUMENTATION PAGE 
Form Approved 

OMB No. 0704-0188 
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the 
data needed, and completing and reviewing this collection of information.  Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing 
this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA  22202-
4302.  Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently 
valid OMB control number.  PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 
1. REPORT DATE (DD-MM-YYYY) 
20/01/2010 

2. REPORT TYPE
Interim Report 

3. DATES COVERED (From - To)
 09/01/2008 – 07/01/2010 

4. TITLE AND SUBTITLE 
Interference Effects In A Photonic Crystal Cavity 

5a. CONTRACT NUMBER 
 

 
 

5b. GRANT NUMBER 
 

 5c. PROGRAM ELEMENT NUMBER 
62601F 

6. AUTHOR(S) 
P.M. Alsing, D.A. Cardimona 

5d. PROJECT NUMBER 
4846 

 5e. TASK NUMBER 
CR 

 5f. WORK UNIT NUMBER
406527 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
 

8. PERFORMING ORGANIZATION REPORT   
    NUMBER 

 
Air Force Research Laboratory 
Space Vehicles Directorate 
3550 Aberdeen Ave., SE 
Kirtland AFB, NM  87117-5776 

 
 
 
 
 

AFRL-RV-PS-TP-2010-1001
 
 

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)
  AFRL/RVSS 
  
  11. SPONSOR/MONITOR’S REPORT 
        NUMBER(S) 
  
12. DISTRIBUTION / AVAILABILITY STATEMENT 
Approved for Public Release; Distribution is Unlimited. (Clearance #377 ABW-2009-1628) 
 
 
 

13. SUPPLEMENTARY NOTES 
������
 

14. ABSTRACT 
At the Space Vehicles Directorate of the Air Force Research Laboratory we are interested in 
the use of detectors in space for surveillance and situational awareness missions.  Our 
primary interests are in observations of objects both on earth and in space, each of which 
has very different background requirements.  In addition, the space environment itself is 
especially demanding of any sensor system that will be expected to work continuously for long 
periods of time in such a challenging environment. In this talk we investigate quantum 
interference and classical interference effects when a three-level system interacts with both 
a cavity field mode and an external driving field mode, within the confines of a photonic 
crystal material.  

15. SUBJECT TERMS   
Quantum interference, photonic crystals, cavity quantum electrodynamics 
 

16. SECURITY CLASSIFICATION OF: 
 

17. LIMITATION  
OF ABSTRACT 

18. NUMBER 
OF PAGES 

19a. NAME OF RESPONSIBLE PERSON
David Cardimona 

a. REPORT 
Unclassified 

b. ABSTRACT 
Unclassified 

c. THIS PAGE
Unclassified 

Unlimited
16 

19b. TELEPHONE NUMBER (include area 
code) 

 

 Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. 239.18 

sandoval
Typewritten Text

sandoval
Typewritten Text

sandoval
Typewritten Text

sandoval
Typewritten Text

sandoval
Typewritten Text

sandoval
Typewritten Text

sandoval
Typewritten Text

sandoval
Typewritten Text

sandoval
Typewritten Text

sandoval
Typewritten Text

sandoval
Typewritten Text
Government Purpose Rights.  Proceedings of SPIE Quantum Sensing and Nanophotonic Devices VII, 

sandoval
Typewritten Text
vol. 7608, pp 760817-1-11 (2010) 23 Dec 09



 

 ii

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(This page intentionally left blank) 



Interference Effects in a Photonic Crystal Cavity 
 

D. A. Cardimona and P. M. Alsing* 
Air Force Research Laboratory, Space Vehicles Directorate, 3550 Aberdeen Ave.,  

Kirtland AFB, NM  87117 
 

ABSTRACT 
 
We investigate quantum interference and classical interference effects when a three-level system interacts with both 
a cavity field mode and an external driving field mode, within the confines of a photonic crystal material. In free-
space, we found that under certain circumstances the cavity field evolves to be equal in magnitude to, but 180˚ out-
of-phase with the external pump field when the pump field frequency equals the cavity frequency. The better the 
cavity, the quicker this build-up occurs. When the cavity field reaches this out-of-phase condition, the resonance 
fluorescence from the atom in the cavity goes to zero. This is a purely classical interference effect between the two 
out-of-phase fields, with the resonance fluorescence going to zero at the same time as the two excited state 
populations go to zero. This is quite different from the quantum interference that occurs under the right 
circumstances, when the state populations are coherently driven into a linear combination that is decoupled from any 
applied field – and population is trapped in the excited states, thus allowing for a population inversion and an 
amplification of incoming optical signals. In this paper, we investigate the additional effects due to the presence of 
the altered photon density of states in a photonic crystal. 
 
Key Words: quantum interference, photonic crystals, cavity quantum electrodynamics 
 
 

1. INTRODUCTION 
 
Three-level systems have the ability to offer quantum interference effects due to the multiple transitions available, 
thereby allowing the spontaneous emission from such a system to be controlled. These quantum interference effects 
often result in coherent population trapping, which can be used for lasing without inversion or optical signal 
amplification. Quantum interference leading to field-induced transparency (FIT) was first described by Cardimona 
et al. in 1982 [1] for a system having two closely-spaced excited states each dipole-coupled to a common ground 
state(the so-called “V” system [see Fig. 1]). In FIT, an applied field tuned appropriately dresses the atom in such a 
way as to produce a dressed state that has a net-zero dipole moment. When this dressed atom undergoes spontaneous 
emission, the other two dressed states decay into the dipole-decoupled state, which in turn does not decay. Thus, 
population is trapped in this decoupled dressed state, and spontaneous emission ceases.  
 

 
 
 
 
 
 
 
 
 
 
 

FIG. 1. Quantized system considered in this paper. This is a V-type atom with two closely spaced excited states, each dipole 
coupled to a common ground state, with a pump field tuned between the two excited states. Here, ωp is the pump 
frequency, detuned from the 2-to-1 transition by Δp, and δg is the tuning of the photonic crystal band edge frequency 
(ωbe) from the 2-to-1 transition frequency. 
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In 1989, Harris described a similar effect in the so-called “Λ” system, which he called electromagnetically induced 
transparency (EIT) [2], in which a lower excited state is coupled to a higher excited state with a control field, and 
then the higher excited state is probed with another field coupling that excited state to the ground state. In this case, 
the control field dresses the system so that the excited state Rabi splits into an Autler-Townes doublet via the ac 
Stark effect. The probe field then sees a system very similar to the FIT case, with the two excited states now being 
the ac-Stark-split doublet and experiencing the same quantum intereference as described above.  
 
In this paper we investigate quantum interference and classical-interference effects when quantized three-level systems 
(e.g., atoms, quantum dots, semiconductor quantum well heterostructures) in a photonic crystal (PhC) cavity interact 
with both a cavity-field mode and an external driving field mode. In Ref. [3], we found that under certain 
circumstances the cavity field evolved to be equal in magnitude to, but 180° out of phase with, the external pump 
field when the pump-field frequency was equal to the cavity frequency. The better the cavity, the quicker this buildup 
occurred. When the cavity field reached this “out-of-phase” condition, the resonance fluorescence from the atom in the 
cavity went to zero. This was a purely classical-interference effect between the two out-of-phase fields, with the 
resonance fluorescence (proportional to the susceptibility of the system) going to zero at the same time as the two 
excited state populations go to zero. This is quite different from the quantum interference that occurs under the right 
circumstances when the state populations are coherently driven into a linear combination that is decoupled from any 
applied field, and population is trapped in the excited states.  
 
In this paper we investigate how the effects of a PhC medium will affect these results (see Ref. [4] for an 
investigation of quantum interference near a PhC band edge). In a series of papers during the 1990s, John and 
collaborators [5], introduced a simple model of a 3D periodic dielectric material with an exact analytical expression 
(in terms of a transcendental equation) for the photon dispersion relation [6]. In the vicinity of the photonic band 
edge (PBE), the dispersion relation can be expanded in a Taylor series to second order in wavevector, without a 
linear contribution, resulting in:  
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where 

! 

"be  is the band edge frequency of the PBG and 

! 

"g  is the frequency width of the bandgap. In this model, the 
presence of the PBE modifies the density of states from that of the usual free space form of 

! 

" #( ) ~ # 2  to  
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(see Fig. 2) where 

! 

" # $#be( )  is the Heaviside step function (which equals 1 for 

! 

" #"be( ) > 0  and equals 0 
elsewhere).  
 
 
 
 
 
 
 
 
 
 
 
 

FIG. 2. Density of states [Eq. (2)] for the dispersion relation in Eq. (1), valid near the PBE of frequency 

! 

"be  and PBG of 
width 

! 

"g . 
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In this work we present a straightforward density matrix approach which allows us to analyze spontaneous emission 
and quantum interference effects in the vicinity of a PBE for arbitrary probe and driving field strengths. We develop 
the density matrix equations by returning to the well-developed theory of spontaneous emission in the Heisenberg 
picture and rearranging the formulation so that the non-Markovian convolution integrals between the atomic and 
field degrees of freedom can be dealt with beyond the Wigner-Weisskopf pole approximation for the model of the 
PBG introduced by John and co-workers and discussed above.  
 
 
2. GENERAL FORMULATION FOR A MULTI-LEVEL SYSTEM IN A PHOTONIC CRYSTAL 

CAVITY 
 
The Hamiltonian for the system under consideration, an atom interacting with multiple fields, is the sum of the atom, 
field, and interaction Hamiltonians [see Ref. 3]: 
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Here 
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" jj  are the Heisenberg-picture atomic state population operators, 
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operators (with k,s = p for the single-mode external pump field, k,s = c for the single-mode internal cavity field, 
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for the spontaneous field modes that leak out through the mirrors of the cavity),   
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) 

d  is the atomic dipole moment 
operator, 
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E p  is the external pump field operator, 
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) 

E c  is the cavity field operator, 
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) 

E sp  is the operator for the 
spontaneous field emitted by the atom (atomic resonance fluorescence), 

! 

"  is the permittivity of the materials within 
the cavity, 

! 

" c  is the volume of the cavity, Tc is the transmissivity of the cavity mirrors, 
  

! 
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E csp
 is the cavity leakage 

field operator (cavity fluorescence). The field operators are given by:  
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where 

! 

Vp , 

! 

Vk , and 

! 

Vkc
 are the quantization volumes for the pump, atomic fluorescence field, and the cavity leakage 

field, respectively. Here the complex field polarization vectors are represented by 

! 

" p , 

! 

" c , 
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" r 

k s , and 
  

! 

" r 

k c s , again for 
the pump, cavity, atomic fluorescence, and cavity leakage fields. The dipole moment operator is given by: 
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with 
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d ij  equal to the transition dipole moment between atomic states 

! 

i  and 

! 

j  and 
  

! 

) 
" ij  are the Heisenberg-picture 

atomic transition operators.  
 
For the time dynamics of this system, we find the time derivative of any operator   

! 
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X (t)  by using the commutation 
relation:  
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Note that in Eq. (14) we treat the pump as a constant classical external field (anticipating making the pump a 
coherent state), and therefore drop the 

  

! 

) 
a p (t),

) 

H int[ ]  term. In this approximation we assume that the atom adding a 
photon or two to the classical pump will not change it. The interaction of the pump on the atom is still accounted for 
in Eq. (13) in the complete sum over all field modes k,s.  
 
Formally solving the two spontaneous field equations (15) and (17) results in:  
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where we have dropped rapidly oscillating terms in 
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(t)  [in anticipation of invoking the Rotating Wave 

Approximation (RWA) in the future]. Substituting Eq. (19) back into Eq. (16), and using the adiabatic 
approximation for 

  

! 

) 
a c (t ' ) ,  

 
 

  

! 

) 
a c (t ' ) " ) 

a c (t)e#i$ c (t# t' )          (20) 
 
in the integral that arises on the right side of the resulting equation, we find (with the reminder that the 
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with 

! 

"c =#be $#c  and “P” stands for “principal part” integral. For the free-space density of states result, the first 
term is the cavity spontaneous decay constant (

! 

" ), and the second (imaginary) term is the cavity “Lamb shift” (

! 

Scav , 
which we will ignore in this work).  
 
We note that the adiabatic approximation assumes that the atom-field interaction is weak. Formally this 
approximation is invalid near the photonic band edge 

! 

"be  where the density of states diverges. However, we can 
avoid this divergence by introducing a level-broadening parameter based on the long, but constant average finite 
lifetime 

! 

"  of the field modes in any realistic PhC. The density of states would then be given by 
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The constant, finite density of states for 

! 

"be <" <"be +1 #  allows us to invoke the adiabatic approximation. [4] In 
the following we ignore this technical detail for the most part and treat 

! 

"  as infinite, since all sums over modes and 
integrals over time can be computed exactly in this limit. 
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Now we formally integrate Eq. (21) and note that in the RWA for the FIT atom in Fig. 1, only terms that oscillate 
like 

! 

e
"i# p t  (since 

! 

" p # "c) will survive. Therefore, in anticipation of invoking the RWA later, we use the adiabatic 
approximation for the atomic transition operators in the form 
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Recall that we are ignoring the finite lifetime 

! 

"  of the PhC field modes, so we will stay away from the 

! 

"be ="c  
limit; thus 
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"c #c  will not diverge. The 
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"PhC #1 $ ). In order to continue to ignore the effects of the 
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steady-state limit. 
 
Substituting these solutions back into Eq. (13) for the atomic transition operators, taking expectation values of these 
transition operators to get the density matrix elements (
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) 

* 
+ 

, 
+ 
+ 

  (29b) 

 

 
  

! 

Kklmn (t " t' ) # lim
Vk $%

2&'k

hVk

d kl •( r 

k s( ) d mn •( r 

k s
*( )e"i ' k +'mn( ) t" t'( )

r 
k ,s
)     (30a) 

 

  

! 
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 2
3hc
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1
$
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%
& 
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( 

) 

* 
+ 

, 
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. 

/ 
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1 
1 
 2 (t # t' ) ,  3 "( ) ~ " 2

 
"kl  "mn "be "g d kl • d mn( )

12$ 3 / 24hc
3

e
#i $ / 4 + "be #"nm( )(t# t' )[ ]
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, 

- 

. 

. 

/ 

0 

1 
1 
 ,  3 "( ) ~

5 " #"be( )

" #"be

 ,

6 

7 

8 
8 8 

9 

8 
8 
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  (30b) 

 
with 

! 

"nm =#be $#nm , and all of the effects of the cavity are accounted for in 
 

 

! 

" cklmn
=

gkl gnm
*

K c (#c ) + i $c %$ p( )
 ,         (31a) 

 

 
  

! 

gij "
2#$c

h% c

d ij •& c  .          (31b) 

 
Once again, the “principal part” integral in Eq. (30b) is the natural Lamb shift that we will ignore in this work. The 
atom/cavity coupling constant 

! 

gij  represents how well the atom is coupled to the cavity. Yet again, we have ignored 
the finite PhC lifetime 

! 

" , so we will stay well away from the 

! 

"be ="nm  limit, and 

! 

"klmn  will not diverge. 
 
In Eq. (29b), when 

! 

"be <"nm  the n-m transition lies in the allowed propagating frequency region of the PhC. Then 

! 

" klmn  can be thought of as a spontaneous decay rate modified by the structured vacuum near the PBE. For the 
opposite limit 

! 

"be >"nm  the frequency 

! 

"nm  lies completely in the PBG (nonpropagating photon region). The 
modified decay ceases and 

! 

" klmn  acts instead as a dispersive term – i.e., the well-known frequency shifts induced by 
the PBE [7]. 
 
 

3. THREE-LEVEL ‘FIT’ ATOM IN A PHOTONIC CRYSTAL CAVITY 
 
Specializing Eqs. (27) to the three-level atomic system of Fig. 1 [where the two excited states are very closely-
spaced (

! 

"31 # "21), each excited state is dipole-coupled to a common ground state, and the single external pump 
field is tuned near these excited states], and using the slowly-varying density matix elements defined by 

! 

r11 = 1" r22 " r33  , 

! 

r22 = "22  , 

! 

r33 = "33  , 

! 

r32 = "32 , 

! 

r21 = "21e
i# p t  , 

! 

r31 = "31e
i# p t  , we find what we will call the FIT 

equations [1] 
 

 

! 

dr31
dt

= " # 3 " i $ p "%32( )[ ]r31 " # 32r21 +&2r32 + 2&3r33 +&3r22 "&3  ,     (32) 

 

 

! 

dr21
dt

= " # 2 " i$ p( )r21 " # 23r31 +%3r23 +%2r33 + 2%2r22 "%2  ,      (33) 

 

 

! 

dr32
dt

= " # 3 + # 2
*

+ i$32( )r32 "%2
*
r31 "%3r12 " # 23

*
r33 " # 32r22  ,      (34) 

7



 

 

! 

dr33
dt

= " # 3 + # 3
*( )r33 "$3

*
r31 "$3r13 " # 32

*
r32 " # 32r23  ,      (35) 

 

 

! 

dr22
dt

= " # 2 + # 2
*( )r22 "$2

*
r21 "$2r12 " # 23r32 " # 23

*
r23  ,      (36) 

 
plus the complex conjugates of the above. Here, 

! 

" 3 = " 3113 , 

! 

" 2 = " 2112 , 

! 

" 32 = " 3112, 

! 

" 23 = " 2113 , 

! 

" p =# p $#21, 

and the pump field Rabi frequencies are 
  

! 

"m =
d m1 •# p

h
#p , m = 2,3. With the damping/frequency-shift terms 

defined as above [Eqs. (28) to (31)], the steady-state effects of the cavity field are automatically included as 
additional damping terms. The cavity field Rabi frequencies themselves are given in steady state by 
 

 

  

! 

"cm = gm1
) 
# c =

gm1 g21
*

r21 + g31
*

r31( )
K c ($c ) + i %c & % p( )[ ]

 , m = 2,3,      (37) 

 
where 

  

! 

) 
" c (t) =

) 
a c (t)ei# p t  is the slowly-varying amplitude of the cavity field operator and 

! 

"c =#c $#21. 
 
Specifically, for this FIT atom, the damping/frequency-shift terms are given by: 
 

 

! 

" 3 =

-i#3113 = $i
#

%g $&32

' -i#3  ,   &be >&31

                                           #3  ,   &be <&31

( 

) 
* 

+ 
* 

 ,     (38) 

 

 

! 

" 2 =

-i#2112 $ %i
#

&g

' -i#2  ,   (be >(21

                                 #2   ,   (be <(21

) 

* 
+ 

, 
+ 

 ,      (39) 

 

 

! 

" 32 =

-i#3112 = $i
#

%g

& -i#2  ,   'be >'21

                                 #2   ,   'be <'21

( 

) 
* 

+ 
* 

 ,     (40) 

 

 

! 

" 23 =

-i#2113 = $i
#

%g $&32

' -i#3  ,   &be >&31

                                          #3   ,   &be <&31

( 

) 
* 

+ 
* 

   ,     (41) 

 

 

! 

" cn11m
=

g
2

#c $g % &c + i (&c % & p )
  ,   'be <'c  ,     (42) 

 
where 

! 

"g =#be $#21, and we have taken the two transition dipole moments 
  

! 

r 
d 12  and 

  

! 

r 
d 13  to be parallel, equal, and 

real, and we have taken 

! 

"21 # "31 # " p # "c # "be  (unless they are subtracted from one another). With these 
approximations, we may also say: 

! 

g21 " g31 = g = g
*  and 

! 

"2 ="3 =" p =" p
* .  
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4. WEAK FIELD LIMIT 
 
We observe that for weak pumping, in which we set 

! 

r22 = r33 = r32 " 0 , the density matrix components 

! 

r21  and 

! 

r31  
form a closed set of coupled equations (coupled by the off-diagonal decay/frequency-shift terms 

! 

" 32 and 

! 

" 23). 
Solving these equations in steady state allows us to determine the steady-state susceptibility (which is proportional 
to the resonance fluorescence from the system) as 
 
 

! 

" #$2 Re r21 + r31[ ]  .         (43) 
 
In Fig. 3, we plot this susceptibility versus pump detuning (in units of 

! 

"32 ) in free space (i.e., we set 

! 

" 2 = " 3 = " 23 = " 32 = 0.05#32). It is hard to tell in this weak-field limit, but there is an exact zero in each of the 
curves at 

! 

" p =#32 2  due to quantum interference [

! 

" # (2$ p %&32)2]. The classical interference between the 
pump field and the 180˚-out-of-phase cavity field produces the deep dip at 

! 

" p = "c = 0  (dip proportional to the 
cavity damping constant 

! 

"c , where a larger decay constant implies a worse cavity and a cavity field that isn’t a 
perfect 180˚ out of phase).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIG. 3. Free-space (

! 

" 2 = " 3 = " 23 = " 32 = 0.05#32) susceptibility versus pump detuning. The dotted curve is for no cavity 
(

! 

g = 0). The solid and dashed curves are in a cavity (

! 

g = 0.3"32 ,  #c = #p = 0) with damping constants of 

! 

"c = 0.01#32  and 

! 

"c = 0.1#32 , respectively.  
 
 
In Fig. 4, we put our quantized system in a PhC with a band edge frequency below the 2-to-1 transition frequency 
(

! 

"be <"21). The cavity has coupling constant and frequency given by 

! 

g = 0.3"32 ,  #c = #p = 0 , and is taken to be 
relatively bad (

! 

"c = 0.1#32 ). The dotted curve is for a system in a cavity in free space with 

! 

" 2 = " 3 = " 23 = " 32 = 0.05#32. The solid and dashed curves are for a system in a PhC cavity with 

! 

" = 0.05#32 , and 

! 

"g = #0.6  and 

! 

"g = #0.1 , respectively. Note that when the pump frequency is tuned within the bandgap (

! 

" p < #g ), 
the pump will not propagate in the PhC medium and the susceptibility is zero. Also note that decreasing the 

magnitude of 

! 

"g  increases the effective cavity damping constant 

! 

"c #g , thus decreasing the classical 
interference dip at 

! 

"c = "p = 0.   
 
In Fig. 5 we put our quantized system in a PhC with a band edge frequency between the 2-to-1 and 3-to-1 transition 
frequencies (

! 

"21 <"be <"31). Once again the cavity has coupling constant and frequency given by 
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! 

g = 0.3"32 ,  #c = #p = 0.2  (we have moved the cavity frequency so that 

! 

"be <"c), and is taken to be relatively bad 
(

! 

"c = 0.1#32 ). The dotted curve is again for a system in a cavity in free space with 

! 

" 2 = " 3 = " 23 = " 32 = 0.05#32. 
The solid curve is for a system in a PhC cavity with 

! 

" = 0.05#32  and 

! 

"g = 0.1 . The pump again turns on when it 
exits the bandgap (when 

! 

" p > #g ). Note that even though one of the transtion decay routes is turned off, there is still 
a quantum interference zero at 

! 

" p =#32 2 , but now 

! 

" # (2$ p %&32)  instead of the square. This ‘weaker’ quantum 
interference persists due to the fact that even though 

! 

" 32  has become a frequency shift (pure imaginary), 

! 

" 23  (pure 
real) still couples the two dipole moments off-diagonally.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIG. 4. Susceptibility versus pump detuning for quantized system in a cavity with 

! 

g = 0.3"32 ,  #c = 0 , and 

! 

"c = 0.1#32 . 
The dotted curve is for a system in a cavity in free space with 

! 

" 2 = " 3 = " 23 = " 32 = 0.05#32 . The solid and 
dashed curves are for a system in a PhC cavity with 

! 

" = 0.05#32 , and 

! 

"g = #0.6  and 

! 

"g = #0.1 , respectively.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIG. 5. Susceptibility versus pump detuning for quantized system in a cavity with 

! 

g = 0.3"32 ,  #c = #p = 0.2 , and 

! 

"c = 0.1#32 . The dotted curve is for a system in a cavity in free space with 

! 

" 2 = " 3 = " 23 = " 32 = 0.05#32 . The 
solid curve is for a system in a PhC cavity with 

! 

" = 0.05#32  and

! 

"g = 0.1 .  
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Finally, in Fig. 6, we put our quantized system in a PhC with a band edge frequency greater than the 3-to-1 
transition frequency (

! 

"be >"31). The cavity has coupling constant and frequency given by 

! 

g = 0.3"32 ,  #c = #p = 1.2  (once again moving the cavity frequency so that 

! 

"be <"c), and is taken to be relatively 
bad (

! 

"c = 0.1#32 ). The dotted curve is again for a system in a cavity in free space with 

! 

" 2 = " 3 = " 23 = " 32 = 0.05#32. The solid curve is for a system in a PhC cavity with 

! 

" = 0.05#32  and 

! 

"g = 1.1 . The 
pump again turns on when it exits the bandgap (when 

! 

" p > #g ). We note here that if we were to plot the 

suceptibility for the case in which there is no cavity in the PhC, the susceptibility would be identically zero (

! 

" # g
2) 

because both transitions are in the bandgap. Therefore, the presence of the cavity splits the upper level, pushing one 
level into the bandgap and one of of the gap. This allows for a substantial resonance fluorescence in spite of the fact 
that both dipole transistions are blocked by the PhC bandgap. This is because we have taken 

! 

"c >"be , in order to 
avoid a cavity with no real decay constant.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIG. 6. Susceptibility versus pump detuning for quantized system in a cavity with 

! 

g = 0.3"32 ,  #c = #p = 1.2 , and 

! 

"c = 0.1#32 . The dotted curve is for a system in a cavity in free space with 

! 

" 2 = " 3 = " 23 = " 32 = 0.05#32 . The 
solid curve is for a system in a PhC cavity with 

! 

" = 0.05#32 , and 

! 

"g = 1.1 .  
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