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AFIT/GAE/ENY/10-M11 

Abstract 
 

Currently fielded electric-powered small unmanned aircraft systems (UAS) lack 

the endurance desired by warfighters, while their internal combustion engine (ICE) 

driven counterparts generate mission compromising acoustic and thermal signatures.  

Parallel hybrid-electric propulsion systems would meet the military’s needs by combining 

the advantages of hydrocarbon and electric power systems.  Three distinct parallel 

hybrid-electric system designs, each with three unique battery discharging profiles, were 

analyzed and compared using a constrained static optimization formulation based upon 

traditional aircraft design equations.  Each system combined an ICE sized for cruise 

speed with an electric motor sized for endurance speed.  The nine hybrid variations were 

compared using a typical five hour intelligence, surveillance and reconnaissance mission 

profile for a UAS with a maximum gross takeoff weight of 13.6 kg (30.0 lbf).  A detailed 

analysis determined that the most suitable design for the baseline mission used a clutch-

start configuration and a charge sustaining battery discharging strategy.  The hybrid 

design enabled a 1.225 kg (2.701 lbf) payload capacity while providing fuel savings of 

30.5% compared to a similarly sized, conventional ICE powered aircraft.   
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ANALYSIS OF HYBRID-ELECTRIC PROPULSION SYSTEM DESIGNS FOR 
SMALL UNMANNED AIRCRAFT SYSTEMS 

 

I. Introduction 

1. Background 

Unmanned aviation emerged in the nineteenth century as aviation pioneers 

modeled their ideas for a practical means of manned flight.1  The first viable unmanned 

aircraft, including Charles Kettering’s Liberty Eagle Aerial torpedo, were possible 

following the development of the first inertial guidance systems in 1909.2  However, the 

primitive guidance technology continued to hamper unmanned aviation’s effectiveness 

for several more decades.   In the latter stages of World War II, radar guidance systems 

provided primitive attack drones a more capable means of navigation, but still did not 

provide the results sought by the military.  In the mid 1950s during the Cold War, the 

United States (US) Army showed an interest in using unmanned aircraft for surveillance.  

After a successful test flight by the SD-1 drone, the US military finally witnessed the 

tremendous potential of unmanned aviation.1,2   

Over the next 50 years, the use of unmanned aircraft would rise exponentially.  

The Vietnam Conflict saw the first widespread use of unmanned aircraft, which were 

used for surveillance and surface-to-air missile (SAM) detection.  During Operations 

Desert Shield and Desert Storm, the Iraqi army learned to fear the sound of the small-

unmanned aircraft as it preceded devastating attacks by the US Air Force (USAF) and 

Navy (USN).2  Other US government agencies such as the Department of Homeland 

Security and the National Oceanic and Atmospheric Administration (NOAA) followed 
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suit with their own platforms.  Even the civilian sector has adopted unmanned aircraft for 

precision agriculture, commercial fishing and surveillance for urban traffic and wildfires.     

In the past several years, the advanced military capabilities afforded by 

Unmanned Aircraft Systems (UAS) have created a further explosion in their employment.   

Daily UAS combat air patrol missions have increased from 21 in 2007 to about 36 in 

2009 with a goal of 54 by 2011.3  The Air Force’s most heavily used UAS, the MQ-1 

Predator, reached 250,000 flight hours in June 2007 after 12 years of flying.  Just over 

two years later in September 2009, the aircraft had already exceeded 600,000 hours.4  

Unmanned aircraft have rapidly become mission critical to current Global War on 

Terrorism (GWOT) operations in Iraq and Afghanistan. 

Today’s combatant commanders have an insatiable appetite for persistent 

intelligence, surveillance and reconnaissance (ISR) provided by UAS.  In a recent survey, 

all levels of military command listed reconnaissance as the number one priority for all 

classes of unmanned systems.5  Additionally, the 2006 Quadrennial Defense Review 

emphasized persistent surveillance as a key mission need.  As UAS capabilities develop, 

combatant commanders are broadening the scope of their application.   

  The intrinsic characteristics of UAS are unmatched by their manned 

counterparts.  “The attributes of persistence, efficiency, flexibility of mission, 

information collection and attack capability have repeatedly proven to be force 

multipliers across the spectrum of global Joint military operations.”6  In the asymmetric 

warfare of GWOT, the abilities of UAS have proven to be mission essential.  The Air 

Force is currently posturing itself to develop and harness unmanned system capabilities to 

maximize current and future contributions to the Joint Force.   
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2. Motivation 

Since the fall of Saddam Hussein’s regime in May 2003, the primary threat to the 

United States military has been the improvised explosive device (IED).  As the nightly 

news and morning papers continually remind, the weapon dominates fighting in both the 

Iraq and Afghanistan theaters.  While the Taliban and al Qaeda still fight with small 

arms, IEDs are clearly their weapon of choice.  Over the past six years, US forces have 

become increasingly more adept at locating and destroying IEDs, but in recent months 

the Taliban in particular have been building simpler bombs from hard-to-detect 

nonmetallic materials.7  Consequently, US forces need a better method of locating the 

insidious low-tech devices. 

In February 2006, Department of Defense (DoD) Directive 2000.19E permanently 

established the Joint Improvised Explosive Device Defeat Organization (JIEDDO) to lead 

“all Department of Defense actions in support of Combatant Commanders and their 

respective Joint Task Forces efforts to defeat improvised explosive devices as weapons of 

strategic influence”.8  JIEDDO funds and develops the critical tools needed for counter 

IED operations.  Several key JIEDDO programs provide warfighters increased situational 

awareness through persistent tactical ISR capabilities for counter IED operations.   

Unmanned aircraft systems are daily becoming a more significant component of 

the counter IED effort and other ISR-related missions as they take over flying the “dull, 

dirty and dangerous” missions from human pilots.10  According to US Army Lieutenant 

General Rick Lynch, there are immediate applications for unmanned vehicles for route 

clearance and surveillance.  He added that, “We’re going to be fighting this war on terror 

for the next 10 years and the enemy’s weapon of choice is the IED.  It is today and it will 
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be in the future.”9  Unmanned systems can monitor IED hotspots for extended periods to 

detect insurgent activity or locate the IEDs themselves.  Without the persistent stare 

capability afforded by UAS, our nation’s warfighters would be even more susceptible to 

IED attacks.   

Small UAS are poised to provide a solution to the IED problem while bringing 

unique capabilities to all ISR missions.  During peacetime, the majority of ISR missions 

use “stand-off” techniques to satisfy political sensitivities and mitigate risk of exposing 

high value platforms.  The long endurance manned aircraft designed for these missions 

are limited in their ability to measure weak signals and record very high-resolution 

images.  Small UAS could be deployed at much closer ranges for greater success in these 

areas.  During “overflight” missions, small UAS are able to fly much lower then their 

manned counterparts to see “under the weather.”  Finally, dangerous “denied access” 

missions are best suited to UAS.  Manned aircraft, like the U-2, have a huge disadvantage 

due to high potential for aircrew loss and associated diplomatic tensions resulting from 

capture.  Small stealthy UAS can provide “denied access” ISR with a low risk of 

detection.  Both the 2003 Defense Science Board and the Air Force Scientific Advisory 

Boards observed that the DoD needs a UAS capable of unwarned collection.10  “Being 

able to surveil hostile areas while maintaining a degree of covertness is highly 

desirable.”5  The inherent risks of all three ISR mission categories lead towards small 

UAS being the best option in many cases to meet the military’s needs.   

In order to fulfill the aforementioned ISR missions, an aircraft must be designed 

for both endurance and stealth.  The practice of aircraft design can be a delicate balance 

between mission requirements.  Building a small stealthy aircraft capable of long 
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endurance is counter to natural aerodynamic tendencies.  To provide long endurance, an 

aircraft must possess a highly efficient aerodynamic shape and propulsion system.  

However, as the Reynolds number declines and the size of airfoils and power plants 

decrease, aerodynamic and thermodynamic efficiencies also drop.  Combining this fact 

with the intricacies of stealth design leads to a highly complex optimization problem.  

Stealth attributes are easily achieved by reducing aircraft size, acoustic signatures and 

infrared (IR) signatures.  The latter two can be accomplished with electric propulsion 

systems.  Electric propulsion has many advantages, but brings an immense weight and 

endurance penalty to an aircraft due to the relatively poor specific energy of batteries.  By 

combining the endurance capabilities of engine propulsion with the stealthy capabilities 

of electric power, a small, optimized UAS could meet the ISR mission objectives set 

forth by the DoD.   

3. Problem Statement 

Unmanned aircraft have proven to be highly effective for traditional ISR and 

counter IED surveillance missions.  However, currently fielded aircraft lack the 

endurance and/or the stealth attributes desired by warfighters.  According to the 

Unmanned Aircraft Systems Roadmap (2005-2030), the DoD must invest in improved 

propulsive efficiency through alternative propulsion power sources for endurance and 

unwarned ISR.10  Internal combustion engine (ICE) driven aircraft possess adequate 

endurance for most ISR missions, but are loud enough to alert those being monitored.  

Electric propulsion systems are nearly silent and lack the strong thermal signatures 

associated with combustion.  However, electric systems suffer from dismal endurance 
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times due to relatively low energy densities of current battery technology.  Each system 

possesses desired mission attributes, but neither can meet the end goal.   

At the dawn of the jet age, piston power supplemented turbine power just to get 

an aircraft off the ground.  The cutting-edge jet engine designs could not meet the entire 

spectrum of the day’s aircraft propulsion needs.  Today, the same is true of electric 

power; battery power alone cannot fulfill an aircraft’s power demands.11  Hybrid-electric 

propulsion provides a promising solution to that problem.  Theoretically, a hybrid-electric 

propulsion system could both decrease the fuel consumption and reduce the noise 

signature of an aircraft, as has been demonstrated in the automotive industry.  By 

combining the advantages of carbon-based power and an electric power source, an 

advanced propulsion system could provide the endurance required for the counter IED 

mission, while possessing a potentially game-changing, near-silent covert capability.   

The Unmanned Systems Roadmap (2007-2032) suggests that ISR missions with 

high endurance requirements “will require more sophisticated energy systems, such as 

fuel cells and hybrid systems.”5  Additionally, the DoD is seeking to “develop and field 

reliable propulsion alternatives to gasoline-powered internal combustion engines” and  

“develop common, high-energy-density power sources… for unmanned systems that 

meet their challenging size, weight, and space requirements.” 5  These goals are met 

through hybrid-electric propulsion, by combining the high-energy-density power of 

hydrocarbon fuels with the reliability of electric power.   

4. Research Objective 

This research focused on three variations of a parallel hybrid-electric propulsion 

system design for a small UAS.  Three distinct battery discharge strategies were proposed 
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for each hybrid configuration for a total of nine unique designs.  The author developed a 

threefold objective to analyze that set of propulsion system designs.  The initial goal was 

to validate and expand an existing UAS hybrid-electric propulsion system design code.   

Then using the updated design code, the nine unique hybrid-electric system designs 

would be optimized and compared to determine the most suitable design for a typical ISR 

mission.  The author hypothesized that each of the designs possesses unique advantages 

that should be tailored to specific missions.  The final objective of the effort was to 

determine which types of missions would be best suited for each design.   

5. Research Scope 

The conceptual designs created by this effort are the result of a static optimization 

algorithm to size the components for various hybrid-electric propulsion system designs.  

In reality, aircraft design is a highly complex, multidisciplinary effort.  Without a 

predetermined aircraft design, the effort assumed typical aerodynamic characteristics for 

similarly sized aircraft.  In sizing the propulsive components, the aircraft’s structural 

requirements such as strength, shape and volume were ignored.  The design code 

assumed a traditional wing cross section with a rectangular planform area for certain 

calculations.  Additionally, flight dynamics and control issues are not analyzed.  The 

results of the process could be used as the basis for a new UAS design.  The effort 

specifically focused on small UAS, but the underlying theory could be applied to larger 

systems.   
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6. Methodology 

The author implemented traditional aircraft performance and design equations in a 

constrained static optimization formulation to construct each hybrid-electric propulsion 

system design.  By setting the endurance power as the cost function and allowing the 

design components to vary, the author was able to compare the effect of the hybrid 

propulsion design on the design of a “rubber” aircraft.  The aircraft size was restricted to 

the Group 2 (small) UAS category as defined by the United States Air Force UAS Flight 

Plan (2009-2047).6  The UAS will be limited to maximum gross weight takeoff of 21-55 

lbf and a normal operating altitude below 3,500 feet AGL.  The category appropriately 

defines the aforementioned small UAS mission required by the US military.   

7. Thesis Overview 

Chapter II of this thesis will review applicable theory from seminal and 

contemporary literature.  Chapter III discusses specific propulsion system designs and 

optimization algorithms developed by this author.  Chapter IV provides analysis and 

results of all testing performed throughout the research.  Chapter V discusses the results 

and communicates conclusions and recommendations for future research. 
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II. Literature Review 

1. Chapter Overview 

Significant research and development by the automotive industry has led to 

hybrid propulsion technology, which drastically reduces fuel consumption and harmful 

emissions.  The aviation community has begun to leverage the technology to capitalize on 

potential fuel savings and improved endurance.  Military unmanned aircraft systems, in 

particular, could benefit from additional benefits of hybrid technology such as reduced 

acoustic and infrared signatures.  However, significant research must be performed to 

optimize the technology for specific aircraft missions in order to benefit from the 

technology’s inherent capabilities.  This chapter begins by briefly outlining the 

background of hybrid-electric propulsion through its various configurations and current 

applications.  The author will then analyze each component within a proposed set of 

hybrid configurations.   

2. Hybrid-Electric Propulsion Background 

2.1. Configurations 

Hybrid technology combines the advantages of two or more power sources to 

create a more efficient propulsion system for a vehicle.  While many variants of hybrid 

systems are available today, most derive from three basic categories: series, parallel and 

power-split.  While most systems utilize an internal combustion engine as the primary 

power source, others use fuel cells or turbine engines.  Each system has unique 

advantages and disadvantages adaptable to the specific needs of a vehicle.   
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In a series hybrid configuration, the primary propulsion source is an electric 

motor (EM).  Typically, an internal combustion engine drives a generator, which then 

provides power to the motor and an energy storage system.  Because the ICE is not 

mechanically linked to the driveshaft, it is able to operate at its optimum torque and speed 

range independent of power demand.  As seen in Fig. 1, excess energy from the generator 

may be stored in a battery, capacitor or flywheel for high demand operation.12 While the 

system provides a higher wells-to-wheels efficiency than a conventional ICE propulsion 

system, the vehicle suffers from a lower mechanical efficiency and a large weight penalty 

since the motor must be sized for maximum power output.  For the series configuration to 

be viable, the system must possess a high overall power efficiency to compensate for the 

relatively high weight.  Accordingly, large vehicles, like buses and locomotives, are the 

most common use for the configuration.13  

 

Figure 1:  Typical series hybrid system 

A parallel hybrid system combines two or more power sources through a 

mechanical linkage to provide power to a single shaft, as shown in Fig. 2.14  Unlike its 

series counterpart, the parallel configuration allows the ICE and the EM to individually or 

jointly power a vehicle through a clutch.  Parallel configurations are classified further 

http://en.wikipedia.org/wiki/File:Hybridpeak.pn�
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into mild, power assist and dual mode configurations.  Mild parallel systems utilize a 

small EM to provide extra power during acceleration and recharge during deceleration 

through regenerative braking.  Power assist systems are similar to mild systems, but use a 

larger EM for a higher degree of hybridization.  The larger motor and associated battery 

pack enable a short duration of electric-only operation not possible with a mild system.  

Dual mode systems incorporate electric drive components having power fractions of 

greater than 30% of the total system power.  The larger electric drive system enables an 

extended electric-only range as high as 60 miles on some automobiles.13  The dual mode 

system has the greatest efficiency of the parallel configurations at the expense of system 

cost and complexity.     

 

Figure 2:  Typical parallel hybrid system 

The third hybrid type is a combination of the former two.  The power-split (or 

series-parallel) configuration lacks a driveline clutch, but uses a system of planetary 

(epicyclic) gears to transfer power from the ICE and the EM to the wheels, as shown in 

Fig. 3.15  The engine delivers torque to the wheels for propulsion after splitting a portion 

to a generator for conversion to electricity.  The electric power recombines with engine 

mechanical power at the planetary gear.12  Since the ICE power and speed are decoupled 

http://en.wikipedia.org/wiki/File:Hybridpar.pn�
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from the overall propulsive demand, the engine is able to run at or near optimal 

conditions.  Many power-split applications can therefore use the more efficient Atkinson 

cycle rather than the more common, power dense Otto cycle engine.  A controller ensures 

that the ICE operates within its efficiency island when needed for charging or propulsion.  

The power-split system weighs more than the parallel version and requires the most 

complex controller, but provides the most efficient hybrid platform.   

 

Figure 3:  Typical power-split configuration 

2.2. Applications 

The automotive industry has clearly led the charge for hybrid propulsion 

technology.  In late 1999, Honda introduced the United States to its first production 

gasoline-electric hybrid car, the Insight.16  The Insight featured Honda’s Integrated 

Motor Assist technology, which combined an EM with an ICE in a mild parallel 

configuration.  Since the arrival of the Insight, nearly every major automotive 

manufacturer has released its own hybrid model.  The Toyota Prius, released to the US in 

2001, has dominated the hybrid marketplace with US sales topping 1,000,000 in March 

2009.17  The Prius features a power-split hybrid system enabling use of an Atkinson 

cycle gasoline engine and electric-only operation, unlike the Insight.  While today’s ICE 

http://en.wikipedia.org/wiki/File:Hybridcombined.pn�
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powered hybrids provide a substantial increase in fuel economy, the end goal of the auto 

industry is a fleet powered by fuel cells to improve overall efficiency and virtually 

eliminate environmentally harmful emissions.   

While automotive hybrid-electric technology is rapidly maturing, the aircraft 

industry has begun to tap into its capabilities.  At the 2009 EAA AirVenture Oshkosh, 

German aircraft builder Flight Design displayed a one-of-a-kind hybrid-electric motor for 

a light-sport aircraft.  A battery-powered 40 hp electric motor provides approximately 

five minutes of boost power to a 115 hp Rotax 914 engine for takeoff and climbing (Fig. 

4).18  Like automotive hybrids, the aircraft utilizes a form of regenerative braking by 

charging its battery pack through propeller wind-milling as the aircraft descends.  The 

hybrid system allowed the manufacturer to down-size the engine from a 160 hp model to 

a more efficient 115 hp engine.18  This power-assist parallel hybrid configuration also 

allows the pilot to stretch a glide with electric power in the event of engine failure.  While 

there are limited applications for hybridized manned aviation, the demand for persistent 

ISR has created tremendous opportunity for hybrid technology in unmanned aviation. 

 

Figure 4:  Flight Design hybrid propulsion system 

http://www.wired.com/images_blogs/autopia/2009/07/flight_design_hybrid02.jp�
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Prominent aircraft and engine developers are currently pursuing a variety of 

radical hybrid designs.  AeroVironment is combining a hydrogen-burning piston engine 

with an electric drive system to turn eight propellers on its high altitude long endurance 

(HALE) Global Observer, which is scheduled to fly in early 2010.11  Aurora Flight 

Sciences is developing a concept that utilizes a small turbo-diesel engine with an electric 

generator between the exhaust-driven turbine and compressor in the turbocharger, 

allowing the turbine and compressor to run at different speeds.  The concept would 

simplify designing small diesel engines, which are highly desired by the Pentagon and 

military logisticians.19  Engine giant Rolls-Royce is exploring combinations of their 

proven turbine engines with various electric drive components for both HALE and 

Unmanned Combat Aerial Vehicle (UCAV) applications.20  Startup company Bye 

Aerospace has a different approach for its HALE UAS.  Bye’s Silent Sentinel will use a 

turbofan for primary propulsion and use thin-film solar arrays and lithium-ion batteries to 

provide multi-day endurance loitering.11  Each design pushes aviation propulsion 

technology, once dominated by hydrocarbon fueled rotating engines, towards a greater 

degree of electrification or hybridization.   

As the technology advances, the aircraft industry is also leaning more towards 

utilizing fuel cells as a viable means of propulsion and eliminating the need for 

hydrocarbon fuels.  Fuel cells can provide much higher propulsive efficiencies than 

internal combustion engines with negligible acoustic and infrared signatures and without 

harmful emissions.  However, fuel cells lack the specific energy of ICEs, which greatly 

hampers their effectiveness for aviation propulsion.  Great improvements have been made 

in recent years leading to pioneering efforts by the industry.   



 

15 

Perhaps the most promising adaptation is AeroVironment’s Puma.  Under a small 

business innovation research (SBIR) contract with AFRL, the battery-only Puma was 

modified with a fuel cell hybrid energy storage system, tripling its flight endurance time 

from three to nine hours.21  The increased performance could expand the variety of 

missions that the Puma can perform.  In April 2008, Boeing demonstrated straight and 

level manned flight using a hybrid system comprised of a fuel cell and lithium-ion 

batteries on a modified Diamond Aircraft Dimona motor glider.22  While Boeing will not 

pursue the technology for manned applications, the defense industry giant intends to 

apply the collected data toward unmanned aircraft.  In July 2009, the experimental 

Antares DLR-H2 became the world’s first manned vehicle to take-off under fuel cell 

power.23  The Helios Prototype, developed under NASA’s Environmental Research 

Aircraft and Sensor Technology (ERAST) project, demonstrated world record altitudes 

for a HALE UAS in 2001 with a hybrid system of solar cells and batteries.  NASA plans 

to replace the batteries with a fuel cell to reduce weight and improve performance for the 

production vehicles.24  

Fuel cell hybrid aircraft have shown promising results, but researchers at the 

Georgia Institute of Technology argue that hybridizing fuel cells with batteries may not 

always be advantageous.25  The research team demonstrated that an optimized fuel cell 

alone would provide greater endurance than a fuel cell-battery combination in which the 

battery’s state of charge was maintained.  By instead allowing the battery to charge 

deplete and provide surge power when needed, the system may improve the overall 

performance of a hybridized fuel cell aircraft over a fuel cell only aircraft.  Decoupling 

the fuel cell from more power demanding maneuvers like climbing enables the fuel cell 
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to be sized for the cruising power required.  The smaller power requirement could 

significantly improve the overall endurance of an aircraft.   

Various organizations have demonstrated non-hybridized fuel cell-driven UAS. In 

August 2006, Georgia Tech flew the largest (22 ft wingspan) UAS to fly on a proton 

exchange membrane (PEM) fuel cell.26  The USN Ion Tiger uses a 500 W polymer fuel 

cell to fly nearly 24 hours.27  Many other ICE powered UAS have been retrofitted and 

tested with fuel cells such as Insitu’s ScanEagle.  As fuel cell systems increase in specific 

energy, their practicable application to aircraft will expand.    

The remainder of this paper will focus on internal combustion engine driven 

parallel hybrid-electric systems and will closely follow the conceptual design and 

simulation process for a small UAS developed by Harmon, et al, at the University of 

California-Davis.28  This author’s goal is to design a hybrid system with commercial-off-

the-shelf (COTS) products that are readily available and supportable in the US military 

theater of operations.  Fuel cells are possibly the way of the future; however, in current 

operations diesel fuel and gasoline are much more accessible than fuel cell reactants such 

as hydrogen and oxygen.  Other researchers at AFIT are developing conceptual design 

tools for fuel cell-based systems.29  Research by Harmats and Weihs concluded that series 

configurations were not effective for UAS due to large power losses.30  Therefore, series 

hybrid configurations were not examined within the framework of this study due to their 

large associated weight penalties.  Parallel and power-split configurations require much 

more complex controllers, but are more suitable to small aircraft.   
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3.  Hybrid System Components 

The proposed parallel hybrid-electric propulsion systems consist of an internal 

combustion engine, an electric motor, a rechargeable battery pack and a propeller.  

Various combinations of the components will be simulated and compared.  Each 

component must be analyzed in detail to determine the appropriate individual 

specifications and overall hybrid system design to formulate a feasible static optimization 

problem.   

3.1. Internal Combustion Engines 

An internal combustion engine converts chemical energy into mechanical energy 

through fluid expansion by combusting fuel with an oxidizer.  The effectiveness of this 

process is called the fuel conversion efficiency (ηf) shown in Eq. 1.31  The efficiency of 

an engine is related to the heating value of the fuel and the specific fuel consumption.  

The heating value (QHV) of a fuel is the amount of thermal energy released by the fuel 

during combustion.  Typically, the lower heating value (QLHV) of a fuel is used in the 

equation, indicating all water products remain as vapor.32  The specific fuel consumption 

(SFC), a measure of how efficiently an engine uses fuel to produce work, is the fuel flow 

rate ( ) per unit power output (P), as seen in Eq. 2.   

       (1) 

    (2) 

Reciprocating ICEs convert fluid pressure on a piston into rotating mechanical 

power on a driveshaft.  Most reciprocating engines operate on a four-stroke (Otto) cycle.  

As the name implies, the cycle consists of four strokes of a piston: an intake stroke, a 
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compression stroke, a power stroke and an exhaust stroke.  As shown in Fig. 5, the four-

stroke engine requires two complete crankshaft revolutions for each power stroke.31 The 

two-stroke engine was developed to obtain a higher power-to-weight ratio (Fig. 6).31  By 

also using the piston as the inlet and exhaust valve, a two-cycle engine only needs one 

crankshaft revolution for each power stroke.  By using this simplified fluid control 

method, the weight of the engine is reduced creating high power in a lightweight 

package.  While the two-stroke is superior to the four-stroke in power-to-weight ratio, the 

four-stroke compensates with greater fuel conversion efficiency and emission control.    

 

 

Figure 5:  Four-stroke operating cycle 
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Figure 6:  Two-stroke operating cycle 

Power (P) and torque (T) are the most common descriptors of engine 

performance.  These specifications are very useful, but are dependent on engine size.  A 

useful relative performance measure is mean effective pressure (MEP), which is the work 

per cycle divided by the volume displaced per cycle.31  Equation 3 also shows MEP in 

terms of the fuel conversion and volumetric efficiencies (ηv), the fuel heating value, the 

ambient air density (ρ∞) and the fuel-to-air ratio (F/A).  Equations 4 and 5 show torque 

and power respectively in terms of MEP, the displacement volume (Vd), number of crank 

revolutions per power stroke (nR) and the crankshaft rotational speed (N). 

                    (3) 

      (4) 

       (5) 

In order for an engine to be effective within a hybrid propulsion system, it must 

operate at or near its peak efficiency.  To optimize fuel efficiency, an engine should run 
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at its minimum SFC.  By plotting MEP against engine speed (RPM), a “performance 

map” is created showing lines of constant SFC.  As shown in Fig. 7, the minimum SFC 

occurs at a partial throttle load. 31  The upper limit of the map demonstrates the full-

throttle performance curve.  The goal of a hybrid system should be to maintain engine 

operation within the “efficiency island” created by the minimum SFC contour line.  

During periods of high engine demand, a controller must calculate the maximum SFC 

gradient between the desired and current states.  The controller will then ramp up the 

engine and/or motor throttle input to provide the required power in the most efficient 

manner.   

 

Figure 7:  Typical four-stroke engine performance map 

Currently, most small unmanned aircraft use two-stroke gasoline engines.  The 

engines provide significant capability per dollar, but tend to have low endurance from 

high SFCs.  Four-stroke gasoline engines provide lower SFCs at the expense of power-to-
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weight.  Theoretically, small diesel cycle engines could double the endurance of an 

aircraft with a two-stroke engine.10  Significant advances must be made, however, for 

diesel engines to approach the power-to-weight ratios of gasoline engines.  The high 

cylinder pressures and compression ratios required for the diesel cycle require materials 

not presently found in small ICEs.  Weight reductions in ancillary components like 

turbochargers and cooling systems must also be achieved for use in aviation.   

Since small UAS typically fly at low speeds and altitudes, several simplifying 

assumptions about engines are made.  Power is reasonably constant with freestream air 

velocity due to negligible ram pressure at low airspeeds.  For the same reason, SFC is 

also reasonably constant with freestream air velocity.   SFC is also relatively insensitive 

to altitude changes associated with small ICE powered UAS.33  Power, on the other hand, 

is directly affected by altitude change.  As altitude increases, the shaft power output of an 

ICE decreases based on the approximation shown below, where P0 and ρ0 are sea level 

shaft output power and density respectively.33 

             (6) 

Despite the technological challenges, DoD is aggressively pursuing heavy fuels 

like diesel and JP-8 for all military engines.  DoD Directive 4140.25 and NATO Standard 

Agreements (STANAGs) require using JP-8 (also known as F-34) as the common 

battlefield fuel.34  Automotive and aviation gasoline are logistically difficult and 

expensive to support.  Gasoline has a lower flashpoint than heavy fuels, which makes it 

more susceptible to explosion.  Since most military vehicles use JP-8, the logistical cost 

of supporting a secondary and more dangerous fuel are very high.  AFRL and other 

military laboratories are researching cycle conversion technologies.  By converting small 
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ICEs to run on heavy fuels, the engines will be more logistically supportable even though 

the SFCs may not improve.  The author has chosen to investigate both commercially 

available heavy fuel and gasoline engines for the hybrid design.  Heavy fuel engines are 

the ultimate goal for the DoD, but may not be presently viable.    

3.2. Electric Motors 

Electric motors produce mechanical energy through the interaction of magnetic 

fields and current carrying conductors.  In a brushed direct current (DC) motor, brushes 

contact a commutator on a rotor to form a circuit between the electrical source and the 

motor’s armature coil windings.  In a brushless DC motor, the electromagnets are 

permanent and do not rotate.  Instead of a brush-commutator system, brushless motors 

employ a controller to distribute power with a solid-state circuit.  With fewer moving 

parts, brushless motors are more efficient and reliable.  Brushless motors are typically 

more expensive to build and more difficult to control.  Most electric motors may also be 

used as generators.  For this case, a torque will be applied to the motor’s shaft which will 

rotate the internal casing and generate electricity.   

The physical configurations of the coil and magnets within brushless motors may 

take several forms.  For the inrunner configuration, permanent magnets are mounted 

directly on the spinning rotor and are surrounded by the stator windings.  The outrunner 

configuration uses the stator coils as the center of the motor, while the permanent 

magnets spin on a rotor that surrounds the coil center.  Inrunner motors provide 

extraordinary rotational speed, but lack torque.  In order to be viable for a propeller 

system, the inrunner motor must be geared down to reduce speed and increase torque.  

Outrunner motors spin much slower than inrunners and provide tremendous torque for 



 

23 

their size.  Many radio control (R/C) aircraft use outrunner motors as direct drive motors 

to eliminate the need for a gearbox.   

As demonstrated by Drela, the equivalent circuit shown in Fig. 8 provides a first-

order model of a DC electric motor.35, 36  The motor’s shaft torque (Qm) is proportional to 

the supplied current over the motor’s torque constant (KQ) (Eq. 7).   The shaft’s rotational 

speed (Ω) is simply the product of the motor’s internal back-EMF voltage (vm) and the 

speed constant (KV) (Eq. 8).  Shaft power (Pm) is the torque times rotational speed (Eq. 9).  

The efficiency of the motor (ηm) is the ratio of the output shaft power to the input 

electrical power (Pe) (Eq. 10).  For the case of a generator, the efficiency (ηg) will be the 

inverse of the motor efficiency proportionality (Eq. 11).   

 

Figure 8:  Equivalent circuit for a DC electric motor         

    (7) 

                 (8) 

                    (9) 

                              (10) 

  (11) 
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3.3. Rechargeable Batteries 

Rechargeable batteries are electrochemical devices that convert chemical energy 

from stored inactive materials into electrical energy.  The energy output of a battery is 

expressed by power integrated over time, where power is current times voltage, as shown 

by Eqs. 12 and 13.  The theoretical specific capacity of a battery is solely dependent on 

the chemical composition of the material.  Equation 14 shows the dependence of specific 

capacity on the number of electrons stored per mole of material (n), the molecular weight 

(MW) and the Faraday constant (F) (96,485 C/mol).37  A common descriptor of battery 

performance is specific energy (Ee), which is the ratio of energy to mass (Eq. 15).  The 

actual specific capacity (C) and energy of a battery must also include the mass of 

electrolyte, binders and packaging, which do not contribute energy.  Therefore, the actual 

performance of a battery is drastically lower than the theoretical capacity, particularly for 

small applications.   

                (12) 

           (13) 

   (14) 

         (15) 

Table 1 compares specifications for common rechargeable batteries.38,39  

Arguably, the most important battery characteristic for aviation purposes is a high 

specific energy.  Correspondingly, most electric UAS use lithium-ion (Li-Ion) or lithium-

polymer (Li-Po) batteries.  Older battery technologies, like nickel cadmium (Ni-Cd) and 

nickel-metal-hydride (NiMH), have excellent stability characteristics, but have relatively 

poor specific energies and suffer from high self-discharge rates.  A highly promising 
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battery chemistry, lithium-sulfur (Li-S), has a tremendous specific energy, but suffers 

from poor cycle durability.    

Table 1:  Comparison of common rechargeable batteries 

 
Ni-Cd NiMH Li-Ion Li-Po Li-S 

Specific Energy (Wh/kg) 45-80 60-120 90-200 130-240 250-600 
Cycle Durability 1500 300-500 300-1000 500-1000 100 

Nominal Voltage (V) 1.25 1.25 3.3-3.8 3.7 2.1 
 

Unlike some older battery technologies, lithium-based battery chemistries have a 

very specific charging profile.  The charging time will not accelerate by supplying extra 

current.  The charge (or discharge) current of a battery is defined by the “C-rate.”  A 

battery specified to hold 500 mAh of energy would provide 500 mA of current for 1 hour 

at a 1C rate or 1 A for 30 minutes at a 2C rate.  Typically, lithium batteries must charge at 

a 1C rate for about three hours for a full charge.  A 70% state of charge may be reached 

after about one hour of charging.  The charging and discharging characteristics of the 

lithium cells play a significant role in the design of a propulsion system’s battery pack.   

3.4. Propellers 

Propellers are essentially airfoils oriented vertically to the longitudinal axis of an 

airplane.  Like any airfoil, propellers create friction, form, induced and wave drag.  The 

drag on a propeller causes an efficiency loss on the propulsion system of an aircraft.  The 

net power available (PA) to the freestream air from propeller is the product of the power 

supplied by the driveshaft (P) and the efficiency of the propeller (ηp) (Eq. 16).33  The 

efficiency is a function of a dimensionless quantity, the advance ratio (J), which is the 
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ratio of freestream velocity (V∞) to the number of propeller revolutions per second (N) 

and propeller diameter (D) (Eq. 17).33   

               (16) 

 (17) 

The coefficients of thrust (CT) and power (CP) are two other significant propeller 

parameters shown in Eqs. 18 and 19. 40,41  The power coefficient determines the amount 

of power that a propeller may impart to the freestream air for propulsion (P) or absorb 

from as a windmill (Pw) by Eqs. 19 and 20 respectively.  The non-dimensional parameters 

are typically used to compare experimental data of geometrically similar propellers.  The 

propeller efficiency may also be expressed in terms of the thrust and power coefficients 

and advance ratio (Eq. 21).  Figure 9 demonstrates the relationship between efficiency 

and advance ratio with data collected by AFRL and NASA at the Basic Aerodynamics 

Research Tunnel (BART) for a Graupner 10”x8” (diameter x pitch) propeller.42  The 

results show that the highest efficiency for this small propeller is only about 80%.  

Clearly, the performance of an aircraft propulsion system is largely dependent on the 

efficiency of its propeller.   

    (18) 

   (19) 

     (20) 

 (21) 
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Figure 9:  Efficiency for Graupner 10"x8" propeller 

In order to optimize a propeller driven system, the propeller and its power supply 

most both operate at or near their peak efficiencies.  Since many electric motors operate 

most efficiently at higher RPMs than propellers, gearing is commonly used to reduce the 

shaft speed to better line up with the propeller’s demand.  Gearing adds more weight to 

an aircraft so a better approach may be to search for a different motor-propeller 

combination.  As with any design procedure, the optimization is a careful tradeoff 

process.   

Drela demonstrates the tradeoff between a well-matched and a poorly-matched 

motor-propeller pair in Fig. 10.36  The well-matched pair operates within a small degree 

of the peak efficiency for each component.  The poorly-matched system, on the other 

hand, wastes an exorbitant amount of power to provide the same thrust as the well-

matched system.  Drela’s program QPROP provides a method of predicting the 

performance of a propeller-motor combination to ensure a well-matched system.43   
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Figure 10:  Well-matched and poorly-matched motor and propeller pairs 

The preceding figure reveals why a hybrid-electric system designer must take 

great care when selecting the individual components.  Without a robust selection process 

based on the underlying theory, a poor hybrid system design may combine the 

disadvantages of each component rather than the desired advantages.  The subsequent 

chapter will outline one such process to select well-matched components for an optimized 

hybrid-electric propulsion system for an unmanned aircraft system.    
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III. Methodology 

1. Chapter Overview 

Like all engineering disciplines, aircraft design is a highly iterative process.  By 

incorporating a hybrid propulsion system, the complexity level increases further.  Chapter 

3 outlines the methodology used by the author to develop a conceptual design for a small 

hybrid-electric unmanned aircraft system.  The chapter begins by outlining three different 

parallel hybrid configurations and three unique battery discharging strategies.  The 

chapter closes with a discussion of the basic aerodynamic equations and optimization 

sequence utilized for each of the nine variations.   

2. Hybrid Configurations  

As previously mentioned, three distinct parallel hybrid-electric propulsion 

configurations are proposed.  Each configuration consists of an internal combustion 

engine, an electric motor, a rechargeable battery pack and at least one propeller.  The 

differences in the systems lie with the mechanical energy transfer mechanisms utilized by 

each design.  Despite the mechanical variations, each system is based on the following 

regimes of operation as outlined by Harmon: 44 

• Take-off power provided by the ICE or the ICE and EM. 

• Climbing power provided by the ICE or the ICE and EM. 

• Maximum speed (dash) power provided by the ICE and EM. 

• Cruise power provided by the ICE. A margin is needed to recharge the 

batteries during charge-sustaining operation. 

• Endurance power provided by the EM for near-silent operation. 
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• Missed approaches and emergency power provided by the ICE and EM. 

The first configuration, originally proposed by Harmon, is shown in Fig. 11. 28, 44  

This system uses an electromagnetic clutch to transfer power from the ICE to the 

propeller drive shaft.  During endurance operation, a controller shuts down the ICE while 

the clutch allows the drive shaft to spin freely without turning the ICE.  To restart the ICE 

for recharging or the return cruise, the controller activates the clutch, which causes the 

EM powered driveshaft to turn and start the ICE.  Since the ICE and EM are aligned on 

the same shaft, the EM rotor will spin during all modes of operation.  Rather than wasting 

the inertial and friction forces placed on the ICE by a freely rotating shaft, the EM is 

utilized as a generator to power the avionics, flight control systems and sensors.  During 

this phase of operation, the propulsion system mirrors typical ICE powered UAS or 

automotive drive-trains where an alternator powers all electronics.  Battery-power is only 

used by the hybrid system when additional propulsion power is required or during 

endurance operation.  This configuration is the lightest option, but possesses the greatest 

mechanical inefficiency of the proposed options.  The remaining options incorporate 

escalating weight penalties to decrease the associated mechanical losses.   

 

Figure 11:  Clutch-start parallel hybrid-electric configuration 
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By adding a small electric starter, the second configuration of Fig. 12 provides a 

mechanically simpler option.  Rather than relying on a clutch and matching the EM and 

ICE torques for starting purposes, a small, lightweight starter is attached to the ICE and 

powered by the main battery pack.  Like the previous configuration, the electric-start 

configuration links the ICE and the EM to a single propeller driveshaft.  Therefore, the 

avionics, flight control system and sensors are powered by the generator during cruise 

flight.  Again, the battery pack is only used to provide excess propulsion power and 

endurance operation.  By eliminating the clutch, this configuration provides a more 

reliable and efficient option for a small weight penalty.   

 

Figure 12:  Electric-start parallel hybrid configuration 

The final option uses an innovative dual-propeller propulsion system in a 

centerline-thrust configuration as shown in Figs. 13 and 14.45  The relatively heavy ICE 

powers the front propeller to ensure adequate cooling and aircraft stability, while the EM 

and battery pack power the rear propeller through a second driveshaft.  Since the power 

sources are decoupled, the propeller utilizes the freestream air like a windmill to turn the 

generator.  The ICE is sized such that it is able to provide sufficient power for cruising, 

while overcoming the drag induced by the wind-milling rear propeller.  Each propeller is 

able to fold rearward to minimize drag during different mission segments.  When the 
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rear-propeller is folded to reduce drag, the battery pack must provide power to the 

avionics, flight control system and ISR sensors.  Like the previous configuration, the 

centerline-thrust model also utilizes a small electric starter.  By decoupling the ICE and 

EM, the aircraft possesses an advanced survivability through redundant power sources.  

This configuration is potentially the heaviest and least efficient, but provides innovative 

capabilities not seen in the previous options or existing aircraft.  The configuration is 

expected to be the best option for missions that utilize a charge-depletion strategy.   

 

Figure 13:  Centerline-thrust hybrid configuration 

 

 

 

Figure 14:  Centerline-thrust hybrid-electric UAS conceptual design  
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3. Battery Discharging Profiles 

In addition to the three hybrid propulsion configurations, three different battery 

discharging profiles are simulated.  Each strategy possesses unique advantages and 

disadvantages adaptable to specific mission needs.  The strategies begin simplistically 

and escalate in complexity to provide differing capabilities.   

The first and simplest profile utilizes a charge depletion strategy in which battery 

recharging does not occur.  This strategy allows the aircraft to use a smaller ICE since the 

engine size is optimized for the cruise flight power required only.  The aircraft may use 

the battery pack to assist with climbing or dashes above cruising velocity, but will not 

recharge to full capacity and thus will reduce the endurance phase.  The batteries are 

sized to provide the power necessary for steady-level flight, the flight control system and 

the payload during the specified endurance phase.  The charge depletion strategy 

provides the option to use primary batteries, which can possess higher energy densities 

than secondary (rechargeable) batteries despite an increased logistics footprint.    

By enabling the propulsion system to charge the battery pack, the charge 

sustaining strategy ensures the battery pack will be at or near a 100% state of charge to 

begin endurance operation.  This second strategy sustains the battery pack at or near full 

capacity to maximize the energy available for electric-only loitering.  The engine for the 

second strategy is optimized to power cruise flight, the flight control system, the ISR 

sensor payload and a specified margin for battery charging.  The aircraft could feasibly 

be launched below full battery capacity and recharge on the way to the target area.   

The final battery discharging strategy copies the optimization strategy of the 

previous method, but modifies the mission profile.  Rather than providing a continuous 
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loitering period, the endurance flight is segmented to allow time to recharge the batteries.  

Since carbon-based fuels are approximately 75 times more energy dense than 

rechargeable lithium batteries, the strategy trades fuel mass for battery mass to increase 

the overall energy capacity of the propulsion system.  The aircraft provides the same 

overall time for all-electric operation, but will add a specified number of recharging 

cycles.  This methodology also allows the aircraft to provide geographically 

discontinuous surveillance.  The UAS can provide ISR coverage in one area then 

recharge while traveling to another.  Clearly, the segmented charge sustaining method 

requires the most complex controller, but significantly reduces the required battery pack 

mass.  The segmented ISR strategy may not be sufficient for all mission types, but could 

provide dramatically increased performance on specialized missions with multiple ISR 

target locations.   

4. Aircraft Design Process  

The aircraft design process has been well defined by authors like Anderson and 

Raymer.33,46  The highly iterative design method set forth by these authors is adapted and 

solved using the process described in Fig. 15.  User specified mission and performance 

requirements, battery discharge strategy and hybrid configuration type are gathered and 

passed to the subsequent phase.  The inputs are utilized by a series of functions in 

MATLAB to optimize the power required by the aircraft and perform various sizing 

calculations.  The user is able to validate performance parameters such as propeller and 

motor efficiencies for the resultant component data using QPROP.  Efficiency 

discrepancies are manually passed back to the optimization block until the resultant 

motor sizes, efficiencies and QPROP models match.  The final output of the program 
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may not suit the mission needs of the user.  For example, the output may indicate that the 

payload of the conceptual design is less than required for the ISR sensor platform.  At 

this time, the user must iteratively adjust mission or performance requirements until the 

output matches the requirement and an acceptable design is reached.   

 

 

Figure 15:  UAS hybrid-electric propulsion design process 

5. Fundamental Aerodynamics 

Fundamental aerodynamic equations form the foundation for all of the 

calculations performed within this research effort.  By maintaining a simplistic approach, 
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the resulting code is easily adaptable to a wide variety of scenarios.  The subsequent 

equation set may be found in any introductory aerodynamics text; however, the form will 

closely follow the syntax employed by Anderson.33   

The source of aerodynamic lift and drag on a body are the pressure and shear 

stress distributions integrated over the body.  The fundamental nature of the aerodynamic 

forces leads to dimensionless coefficients that describe the components of lift and drag.  

For example, the lift coefficient (CL) is simply the ratio of the lifting force (L) to the 

dynamic pressure (q∞) and the wing planform area (S) as shown in Eqs. 22 and 23.  The 

coefficient of drag (CD) is most commonly described by the drag polar equation (Eq. 24), 

where drag is related to the sum of the drag at zero-lift (CD,0) and the induced drag (CD,i) 

for subsonic flight.  The zero-lift drag coefficient results from the parasitic effects of 

friction and flow separation over the aircraft’s body.  As shown by Eqs. 25 and 26, the 

induced drag is related to lift squared and a proportionality constant (K), where e is the 

Oswald span efficiency factor and AR is the aspect ratio of a wing.33      

   (22) 

               (23) 

       (24) 

    (25) 

   (26) 

Several key assumptions help to simplify the process further.  First, all situations 

assume steady, level flight, thereby neglecting dynamic flight conditions.  Second, thrust 

is aligned with the freestream direction, meaning thrust equals drag (T=D) and lift equals 
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weight (L=W).  Finally, only flight regimes associated with small UAS are considered.  

Therefore, the aircraft will experience both low Reynolds and Mach numbers thus 

eliminating compressibility effects.  Additionally, the UAS will experience relatively 

small changes in altitude. 

Since the ultimate goal of the project is to size a propulsion system, the power 

required from each component must be determined.  The power required (PR) for an 

aircraft to maintain steady, level flight is shown in Eq. (27).33  By determining the lift and 

drag coefficients for a specific flight condition, such as endurance, the power required to 

maintain that condition is easily calculated.  The power required from each propulsive 

component shall be determined from the power required at various flight conditions.   

                (27) 

6. Optimization  

In order to maximize the endurance of any aircraft, the power required for flight is 

minimized to allow the optimal usage of its propulsive energy source.  For the proposed 

hybrid-electric UAS, the most critical mission segment is the all-electric ISR loiter.  

Therefore, the cost function for the UAS propulsion optimization is the power required at 

the endurance speed.28,44  The minimized endurance power ensures the minimum battery 

pack mass when allowing for an ISR sensor payload and a specified maximum takeoff 

weight.  The cost function (Jend) is shown in Eq. 28 as the power required at endurance 

speed (PR,end).  Propeller driven aircraft minimize the power required when the aircraft is 

flying such that the ratio  is maximized.33  The ratio, also known as the endurance 
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parameter (Eq. 29), is applied to the cost function and rearranged by Harmon as shown in 

Eq. 30. 28,44   

                              (28) 

            (29) 

Rearranging, the cost function is: 

                 (30) 

The cost function must be constrained to ensure that the optimization process 

converges on a minimum value.47   The four necessary constraint equations are borrowed 

from Harmon’s derivations.28,44   Based on a “rubber” aircraft approach six variables for 

the cost function and constraint equations were selected as follows:  wing loading (W/S), 

aspect ratio (AR), maximum lift coefficient (CL,max), stall velocity (Vstall), endurance 

velocity (Vend), and ICE power (PICE).28,44  Equation 30 defines the power required for 

cruising by combining Eqs. 16, 24 and 27.  The equation, as originally derived by 

Harmon, included a scale factor of 125% to provide a margin for avionics, payload and 

charging power.28,44  Rather than scaling the cruise power, the power required from the 

generator (Pgen) is incorporated as an additive term when calculating the ICE power 

shown in Eq. 32.  The propeller efficiency (ηprop, x) applied to the power generation (Pgen) 

varies depending on the configuration.  For single propeller designs, the term equals 1.0 

meaning no efficiency loss.  For the dual propeller design, the term is equal to the product 

of the cruise speed efficiencies of both propellers.  The cruise power required term is 

divided by the propeller efficiency (ηprop, 1) to reflect the ICE shaft power required to 
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reach cruise speed.  The equation also includes a term (Pw) for the power required to 

overcome the drag associated with the wind-milling propeller for power generation in the 

center-line thrust configuration.  Equation 33 shows the power required for generation as 

the sum of the power for the flight control system and avionics (PFCS), the ISR sensor 

payload (Ppay) and battery charging (Pcharge) divided by the efficiency of the generator 

(ηgen).  By applying Eqs. 31 and 33 to Eq. 32, the first constraint equation (Eq. 34) shows 

the ICE power required for cruising flight and electric power generation.  The next 

constraint (Eq. 35) rearranges Anderson’s equation for the velocity at the optimal 

endurance condition to demonstrate the effect of variable aspect ratio (AR).  Next, Eq. 36 

solves Eq. 21 for the wing loading (W/S) variable at stall conditions.  Finally, Eq. 37 

places a fixed margin on the difference between the stall and theoretical endurance 

velocities.  Based on preliminary research, it was determined that the theoretical 

endurance velocity calculated by the process would never exceed the stall velocity.  

Equation 37 specifies the margin between the two to prevent the optimization process 

from forcing the endurance velocity towards zero.  During real world operations, the 

actual velocity flown by the aircraft must be an additional margin above the stall speed to 

maintain safety of flight.  The safety factor will be set to 5 knots above stall speed for the 

purposes of this project.     

                             (31) 

                        (32) 

                    (33) 
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Constraint Equations: 

  (34) 

                                          (35) 

      (36) 

             (37) 

The system of equations is solved using MATLAB’s optimization function 

fmincon.   The function utilizes the sequential quadratic programming (SQP), quasi-

Newton method.  The SQP method approximates second-order derivative information 

using first-order information.  By including an approximation of the cost functions 

curvature, the search direction determination’s accuracy improves, which in turn 

improves the convergence rate of the algorithm.47  The gradient of the Lagrange function 

at two points provides an approximation update to the Hessian (second-order) of the 

Lagrange function.  This approximation provides the information necessary to update the 

search direction.  Once fmincon converges upon a solution, the minimized cost function 

and six variables are returned.   

The resultant data are employed to determine the physical size of the aircraft’s 

propulsion system.  The mass of the ICE is determined based on typical power to weight 

ratios and component efficiencies.  For charge depletion and sustaining profiles, the 

electric motor is simply sized for the shaft power required for the actual endurance speed.  

For the segmented ISR profile, the EM is sized is to maximize its power generation 

capability.  For single propeller designs, the electric motor power output is determined by 

Eq. 38, which is the sum of the power required to charge the battery for a specified time 



 

41 

(tcharge) and the power for the payload and avionics.  The power required to charge the 

battery is the ratio of the battery’s capacity (Cbatt) in Watt-hours and the charging time.  

The EM for the dual propeller configuration is sized to provide power sufficient for the 

maximum of either the power required to sustain endurance flight or the windmill power 

generation during cruise speed (Eq. 20).  By selecting the maximum, the EM will be able 

to meet each requirement.   

                            (38) 

Equation 39 shows the gross takeoff weight (W0) as a function of weight fractions.  

The fuel weight fraction (Wf /W0) is determined by calculating the weight fraction for 

each mission segment (Wx/W0) and adding a conservative 6% margin for reserve and 

trapped fuel, as shown by Eq. 40.46  Equation 40 shows the cruise segment fraction from 

the Breguet range equation for propeller driven aircraft, where r signifies the segment 

range.  The next equation (Eq. 41) shows the derived weight fraction for a climb using 

the change in energy height (Δhe).48  Previously, the code used Raymer’s historical climb 

fuel fraction of 0.985, which may not be applicable to small aircraft performing at 

relatively low altitudes.46  Since the aircraft is not burning fuel during the endurance 

segment, the corresponding weight fraction is 1.   

                          (39) 

                     (40) 

                        (41) 

                       (42) 
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The final piece of the propulsion system, the battery pack, is sized using typical 

specific energy values for commercially available products.  As shown in Eq. 43, the 

battery pack mass is a function of the power required, the time required, and the specific 

energy.  For the nine hybrid variations there are two possible battery sizing equations.  

The first and simplest equation (Eq. 44) calculates the battery mass during charge 

sustaining missions whether or not they are segmented.  If the endurance loiter is 

segmented, the endurance time (tendure) in the Eq. 44 represents the time for the first 

segment.  The duration of the remaining n segments is based on the charging rate of the 

battery pack.  The final equation (Eq. 45) sizes the battery pack for charge depletion 

missions.  The charge depletion battery must also provide payload and avionics power 

during the cruise segment and provide boost power as necessary for climbing (Pclimb).   

        (43) 

                             (44) 

           (45) 

The weight fractions for each mission segment and propulsion component are 

critical to the comparison of the nine propulsion system designs.  Since the weight 

fractions for each design are normalized by the same maximum gross takeoff weight, the 

results provide a simple, direct means of comparison.  The results, shown in the 

subsequent chapter, demonstrate the merits of each design, particularly through battery 

weight, fuel consumption and payload capacity.  A comprehensive listing of the 

equations utilized in the MATLAB file is shown in Appendix A.   
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IV. Analysis and Results 

1. Chapter Overview 

The chapter begins by disclosing the input data used in the code and a justification 

for their selection.  The results of the MATLAB optimization code are then displayed in 

nine sets of data for three unique hybrid configurations each having three different 

battery discharging strategies.  After analyzing and comparing the results, the chapter 

closes with recommended mission profiles for each design.     

2. Input Data 

A great level of effort was required to determine the appropriate input parameters.  

Like any modeling and simulation project, the outcome was dependent on the specific 

inputs.  Slight deviations could potentially cause dramatically different results.  In order 

to provide a level means of comparison, each of the nine designs began with the same set 

of input data.  Since the data were selected from a wide variety of sources, both the 

English and SI measurement systems were used initially.  The input parameters are 

displayed in both systems in this section, but the MATLAB code exclusively uses the SI 

system for simplicity.  The remainder of this section elaborates on the justification behind 

the selection of each parameter.   

The first step in aircraft design should always be to define a mission need.  The 

size, shape and performance characteristics of the vehicle are ultimately driven by this 

first step.  After conversations with the US Army’s Maneuver Center of Excellence, the 

mission need was defined as providing stealthy ISR coverage for three hours starting 
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within one hour after a cruise distance of at least 40 nautical miles.  The Army’s current 

all-electric UAS platforms are only able to fly for a fraction of this defined ISR coverage 

need.   

Ideally, the Army or Air Force would provide an initial capabilities document 

(ICD) to outline the specific requirements sought by the end users.  Without further war-

fighter guidance, the author further defined more specific mission and performance 

requirements as found in Table 2.  Preliminary simulation results indicated that a three 

hour endurance time may not be feasible for all test cases due to the weight of the 

batteries.  The requirement was held at three hours to determine which designs, if any, 

could meet the Army’s need.  The cruise velocity, maximum velocity and rate of climb 

requirements were chosen to compete with those advertised for similar fielded aircraft 

such as Insitu’s ScanEagle and AAI’s Aerosonde Mark 4.4, as displayed in Table B-1 in 

the Appendix.  

The altitudes were selected based on current USAF operations.  The elevation of 

Bagram Airfield, Afghanistan is 1492 meters (MSL), whereas the elevation of Joint Base 

Balad, Iraq is only 49 meters (MSL).49  By setting the takeoff altitude to a worst case 

scenario of 1500 meters (MSL) and the mission altitude to 300 meters (AGL), the UAS 

should be able to perform out of nearly any USAF forward operating location.  The 

baseline mission requirements may not be the ideal solution for any of the designs, but 

provide a level means to compare the nine hybrid design variations. 
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Table 2:  Baseline mission requirements 

Description MATLAB 
Variable 

English SI 

Value Units Value Units 

Endurance time (tendure) perf_tendure 3 hr 3 hr 

One-way cruise time (tcruise) perf_tcruise 1 hr 1 hr 

Cruise velocity (Vcruise) perf_Vcruise 40 kts 20.5 m/s 

Max velocity (Vmax) perf_Vmax 60 kts 30.9 m/s 

Rate of climb (ROC) perf_ROC 400 ft/min 2.03 m/s 

Takeoff altitude MSL (hTO) h_TO 4921 ft 1500 m 

Mission altitude AGL (h) h_AGL 984 ft 300 m 

 

The detailed aircraft design parameters are spelled out in Table 3.  The initial set 

of parameters was taken directly from Harmon and updated to better reflect current 

technology.28, 44  The maximum takeoff weight of 30 lbf remains unchanged from 

Harmon’s optimum design.  The data for the ISR sensor payload are conservatively based 

upon the Alticam 400 Series camera used by the ScanEagle, which requires only 6 W and 

weighs only 1.38 lbf.50  The value for the flight control system power is a conservative 

figure based upon the Kestrel Autopilot, which requires less than 5 W with a negligible 

weight (0.017 kg).51  The wing area and aspect ratios are also directly from Harmon’s 

design, but are only used on a comparison basis within the MATLAB results display.  

The final wing area and aspect ratios of the UAS are calculated by the optimization 

formulation.  The empty weight fraction was originally selected by Harmon to closely 

approximate existing aircraft (Table B-1); the value is used to compare the hybrid-electric 

design to an ICE-powered UAS.  The actual empty weight fraction of the hybrid-electric 

UAS is calculated by the program.  The original values for the zero-lift drag coefficient 

and span efficiency factors were 0.036 and 0.85 based on the form factor method and 

existing aircraft data.  Finally, the fuel weight fractions for warm-up/takeoff and landing 
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were set to 0.999 and 0.9975, respectfully.  The aircraft design assumed a catapult launch 

so the corresponding fuel requirement is very low.  The value for landing was originally 

approximated by Raymer’s historical value of 0.995.  However, the low altitudes and the 

gliding capability of the UAS would require substantially less fuel for an approach and 

landing.    

Table 3:  Aircraft design parameters 

Description MATLAB 
Variable 

English SI 

Value Units Value Units 

Max gross takeoff weight/mass des_uas_m 30 lbf 13.6 kg 

Payload weight/mass des_pay_m 5 lbf 2.27 kg 

Payload power (Ppay) des_pay_P 0.034 hp 25 W 

Avionics/flight control system power (PFCS) des_fcs_P 0.013 hp 10 W 

Original Wing area (S) des_uas_S 15.9 ft2 1.48 m2 

Original Aspect ratio (AR) des_uas_AR 14.6   14.6   

Original empty weight fraction (We) WF_empty 0.63   0.63   

Zero-lift drag coefficient (CD,O) uas_Cdo 0.036   0.036   

Oswald span efficiency factor (e) uas_e 0.85   0.85   

Warm-up and Takeoff Weight Fraction WF_TO 0.999  0.999  
Landing Weight Fraction WF_landing 0.9975  0.9975  

 

The next set of input parameters describes the propulsion system components.  

Table 4 shows the results of a market survey for R/C aircraft components.  The details for 

ICE’s and EM’s are shown in Table B-2 and Table B-3 in Appendix B.  The EM 

efficiency value of 85% is a conservative estimate based on values claimed by 

manufacturers for outrunner motors.  After discussions with several manufacturers, the 

generator efficiency was set to 75%.  Each manufacturer claimed their outrunner motors 

were able to function as generators, but did not have efficiency testing data.  

Additionally, the motors would require a custom controller.  The EM power-to-weight 
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ratio and EM over-torque factor were conservatively based on market averages.  The 

efficiency for each hybrid configuration was notionally based on their mechanical 

complexity.   

Small engine manufacturers are notorious for overinflating their advertised power 

and fuel consumption data.  Therefore, the author took an overly conservative approach 

when analyzing ICE specifications.  Ultimately, the power-to-weight ratio was chosen to 

be 0.75 hp/lbf, which is roughly 33% less then commercially advertised.  Additionally, 

the author recognizes that the engine’s most efficient point will not be at its peak power 

setting.  The engine must be rated higher than the required cruise power to run efficiently 

during that condition.  Since reliable specific fuel consumption data was not advertised 

for any of the engines, the author borrowed testing data on the OS-91 engine from the 

AFRL Propulsion Directorate.52  Alternatively, given an engine efficiency value and fuel 

type, the code was designed to calculate specific fuel consumption.  This feature will not 

be utilized for this project since SFC was provided.   

The masses for the clutch, electric starter and propeller were all selected from 

commercially available items.  The electromagnetic clutch, rated at 1 Nm dynamic and 

1.5 Nm static torque, was from RM Hoffman.  The FEMA On-Board Starter from Hobby 

Lobby, Inc. was designed for R/C engines larger than 0.40 cc.53  The propeller mass was 

found to be typical for the 20x8 size.  Since R/C motor controllers typically weigh 50 

grams or less and all other figures are overly conservative, the controller mass was 

ignored.   

Table 1 in Chapter 3 shows typical specific energy ranges for COTS batteries.  

Like the other components, a market survey was performed to refine the ranges down to a 
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realistic value.  Manufacturers of lithium chemistry batteries, such as LG Chem and Amit 

Industries, advertised specific energy values as high as 230 Wh/kg for their lithium-ion 

polymer cells.  Ultimately, a more conservative value of 175 Wh/kg was used for lithium-

ion polymer (Li-Po) batteries.  Producers of the cutting edge lithium-sulfur (Li-S) 

batteries were much more difficult to find.  Sion Power claimed 350 Wh/kg, but a more 

conservative 300 Wh/kg was used.39, 54  Sion’s Li-S batteries have not yet reached mass 

production levels, but should be available in the foreseeable future.  Since one goal of the 

design was to use current COTS products, the baseline mission used the Li-Po battery 

value.  The dramatic performance gain associated with Li-S technology will be 

demonstrated in later sections.   

Table 4:  Propulsion component specifications 

Description MATLAB 
Variable 

English SI 

Value Units Value Units 

EM efficiency (ηEM) EM_eff 0.85   0.85   

EM generator efficiency (ηGEN) EM_eff_gen 0.75   0.75   

EM over-torque factor EM_overtrq 1.75   1.75   

Mech efficiency for clutch-start  (ηmech) mech_eff 0.95    0.95   

Mech efficiency for electric-start (ηmech) mech_eff 0.98   0.98   

Mech efficiency for centerline-thrust (ηmech) mech_eff 0.995   0.995   

EM power-to-weight ratio EM_PW_ratio 2 hp/lbf 3288 W/kg 

ICE power-to-weight ratio ICE_PW_ratio 0.75 hp/lbf 1233 W/kg 

Cruise specific fuel consumption (SFC) SFC_cruise 1.0 lbf/hp/hr 1.66E-06 N/Ws 

Endurance specific fuel consumption (SFC) SFC_endure 1.5 lbf/hp/hr 2.49E-06 N/Ws 

Clutch mass (mclutch) start_m 0.33 lbf 0.15 kg 
Electric starter mass (mstarter) start_m 0.66 lbf 0.30 kg 

Propeller mass (mprop) prop_m 0.37 lbf 0.17 kg 

Li-Po Battery Specific Energy (E) bat_ED 271 Btu/lbf 175 Wh/kg 

Li-S Battery Specific Energy (E) bat_ED 464 Btu/lbf 300 Wh/kg 
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The original propeller efficiency value implemented by Harmon was a constant 

75% for all flight conditions.  Based upon further research and preliminary simulations 

with QPROP, the efficiency value was split into flight regime categories: climb, cruise 

and endurance.  The QPROP results, shown in Table B-4, demonstrated propeller 

efficiencies for both cruise and endurance speeds approaching 80% for the tested motor-

propeller combinations.  In most test cases, the cruise efficiency exceeded the endurance 

efficiency.  Theoretically, by reducing the pitch of the propeller, the efficiency at lower 

speeds should improve while diminishing the efficiencies at higher speeds.  While not all 

tested reduced pitch propeller-motor arrangements verified this premise, those with an 

8x6 propeller did show the trend.  The author postulated that a reduced pitch, longer 

diameter blade, such as 20x8 or 16x6, matched to an appropriately sized EM would 

provide the propeller efficiencies shown in Table 5.  Unfortunately, geometry files for 

these propeller sizes were not available to model in QPROP.  In the end, the clutch-start, 

electric-start and the second (rear) centerline-thrust propeller are sized for optimal 

efficiency (80%) during endurance speed.  The front propeller for the centerline-thrust 

configuration is sized for cruising speed since it is mated to the ICE.  In all cases, the 

climbing efficiency is assumed to be relatively poor at 60%.   
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Table 5:  Propeller efficiencies 

Configuration Condition Efficiency 

Clutch-Start 

Climb 0.60 

Cruise 0.78 

Endurance 0.80 

Electric-Start 

Climb 0.60 

Cruise 0.78 

Endurance 0.80 

Centerline-Thrust                    
Prop #1 

Climb 0.60 

Cruise 0.80 

Endurance 0.78 

Centerline-Thrust                    
Prop #2 

Climb 0.60 
Cruise 0.78 

Endurance 0.80 

 

The final inputs, shown in Table 6, are the upper and lower bound limits placed 

upon the optimization variables.  As before, the bounds were chosen based on a survey of 

existing aircraft and preliminary simulation results.  Logically, by creating a highly 

aerodynamically efficient aircraft the cost function (endurance power required) will be 

minimized.  Therefore, the optimization routine should tend toward a glider-like design.  

Consequently, the wing loading constraint is expected to be active on the lower limit.   

The lower limit was carefully selected to reflect a practical structural design and closely 

approximate the wing loading of the glider-like battery-powered Pointer UAS.  The 

maximum lift coefficient bounds were selected from a survey of traditional wing cross 

section data and assumed high-lift devices like flaps would not be used.  The upper bound 

on CL,max should act as an active constraint on the system allowing the aircraft to fly at the 

slowest possible speed.  The remaining variables (AR, Vstall, Vendure, and PICE) are bounded 
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by typical ranges for small UAS.  The final optimized values for the four variables are 

not expected to be limited by these bounds.      

 

Table 6:  Optimization variable bounds 

Optimization Variable Lower 
Bound 

Upper 
Bound SI Units 

Wing loading (W/S) 90 200 N/m2 

Aspect ratio (AR) 8 20   

Max lift coefficient (CL,max) 1 1.25   

Stall velocity (Vstall) 5 20 m/s 

Endurance velocity (Vendure) 5 30 m/s 

ICE power (PICE) 300 3000 W 

 

3. Baseline Mission Results 

3.1. Optimization and Aircraft Conceptual Design Results 

The results from the optimization routine are listed in Table 7 for the 

aforementioned baseline mission profile.  This set of results applies to each of the nine 

hybrid variations.  As expected, the wing loading was the lowest permitted value and the 

aspect ratio indicates a glider-like aircraft design.  The wing loading result was used 

along with the calculated aspect ratio and specified takeoff weight to define the geometry 

for a rectangular wing.  The cross-section for the wing can be chosen from any typical 

design (i.e. NACA, Selig, Eppler, or MH) meeting the calculated maximum lift 

coefficient requirement of 1.25.  The theoretical endurance, stall and actual endurance 

speeds were also determined and are later used to size the electric motor.    
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Table 7:  Optimization and aircraft conceptual design results 

Parameter Value Units 

Wing loading (W/S) 90.00 N/m2 

Aspect ratio (AR) 14.42 - 

Max lift coefficient (CL,max) 1.25 - 

Stall velocity (Vstall) 11.84 m/s 

Theoretical endurance velocity (Vendure, theo) 9.27 m/s 

Actual endurance velocity (Vendure, act) 14.41 m/s 

Wing planform area (S) 1.48 m2 

Wing span (b) 4.62 m 

Wing chord (c) 0.321 m 
 

As previously stated, preliminary simulations indicated that the theoretical 

endurance speed would occur below the stall speed of the aircraft.  The predictions were 

realized as shown by Table 8 and Fig. 16.  The power required curve shows the 

theoretical endurance speed as the minimum required power.  The actual endurance speed 

was set to 5 kts above stall and was a modest increase in power (37 W) above the 

theoretical endurance speed.  The climb power required was calculated based on the 

power required to maintain endurance speed relative to the ground while providing the 

required rate of climb.  The cruise and maximum velocities are simply calculated with the 

respective speed requirements.  The power requirements shown reflect only the 

aerodynamic power required from the propeller to maintain the indicated speed.  At this 

point, the payload, flight control system and charging power requirements and energy 

losses are not incorporated.  These issues varied between each of the nine designs and 

will be evidenced in the following section.    
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Table 8:  Power required results 

Mission Segment PR (W) V (kts) 

Theoretical Endurance 87.4 18.0 
Stall 96.8 23.0 

Actual Endurance 124.2 28.0 
Climb 367.9 28.0 
Cruise 265.7 40.0 

Max Velocity 828.1 60.0 
 

 

Figure 16: Power required curve 

 

3.2. Charge Depletion Strategy 

The charge depletion strategy traded power generation capability for weight 

savings.  By reducing the size of both the engine and motor/generator, the aircraft was 

able to carry a greater proportion of batteries.  The results of the three individual hybrid 

variations are analyzed and compared below.   
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3.2.1. Clutch-Start Configuration 

The first three figures portray the results for the charge depletion clutch-start 

configuration alongside the “original” or ICE-only powered aircraft with the same 

aerodynamic parameters.  While the original empty aircraft weighed only 63% of the 

maximum takeoff value, the hybrid empty weight accounted for just over 89% despite 

nearly halving the fuel requirement.  The all-electric endurance loiter enabled fuel 

savings of 0.428 kg.  Each aircraft consumed the same amount of fuel for the remaining 

mission segments.  The batteries comprised approximately 31% of the aircraft’s weight 

leaving only 7% or 0.960 kg for the payload capacity, which does not meet the 

requirement of 2.27 kg (5 lbf).   

 

Figure 17:  Charge depletion, clutch-start aircraft component weight fractions 
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Figure 18:  Charge depletion, clutch-start propulsion component weight fractions 

 
Figure 19:  Charge depletion, clutch-start mission segment fuel weight fractions 

 

 

3.2.2. Electric-Start Configuration 
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Figures 20 through 22 for the electric-start configuration describe very similar 

results to the previous hybrid design.  In this case, the hybrid empty weight accounted for 

just over 90%.  The reduced mechanical efficiency afforded by eliminating the clutch was 

not enough to overcome the increased weight of the electric starter.  Again, the endurance 

phase allowed the aircraft to substantially reduce the fuel consumed over the entire 

mission.  Due to the batteries comprising 31% of the aircraft’s weight and the additional 

starter weight, only 6% or 0.816 kg remained for the payload.  The charge depleting 

electric-start configuration also did not meet the payload requirement.   

 

 

Figure 20:  Charge depletion, electric-start aircraft component weight fractions 
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Figure 21:  Charge depletion, electric-start propulsion component weight fractions 

 

 

Figure 22:  Charge depletion, electric-start mission segment fuel weight fractions 
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3.2.3. Centerline-Thrust Configuration 

The centerline-thrust configuration provided the most energy efficient aircraft 

design for a charge depleting strategy.  The mechanical inefficiencies of a clutch and the 

motor and engine sharing a single shaft were all removed and the propeller efficiency 

during cruise was improved.  The greater propeller efficiency and battery-powered loiter 

led to fuel savings of 0.439 kg.  The added weight of the second propeller and the 

electric-starter caused a relatively high empty weight fraction of 92%.  The payload 

capacity of only 0.648 kg provided only 29% of the requirement.   

 

 

Figure 23:  Charge depletion, centerline-thrust aircraft component weight fractions 
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Figure 24:  Charge depletion, centerline-thrust propulsion component weight fractions 

 

 

Figure 25:  Charge depletion, centerline-thrust mission segment fuel weight fractions 
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3.2.4. Comparison 

The performance results obtained for the three hybrid variations for charge 

depleting were very similar as shown in Figs. 26 and 27.  Since the aircraft lacked any 

power generation capability, the electric motor was sized for the power required for the 

endurance flight only, which was equivalent in each case.  The ICE’s were sized for the 

cruise power required, which differed slightly due to varying mechanical and propeller 

efficiencies.  The dual propeller design required the smallest engine and burned the least 

fuel thanks to its more efficient design.  The lack of power generation required that the 

battery packs be sufficiently large to power the three hour endurance segment, the 

payload and avionics throughout the entire mission, and any boost power needed for 

climbing.  The relatively small engines required additional power from the motors to 

climb at the specified rate.  Since the engine sizes varied slightly, the boost power 

required for climbing also varied slightly.  Consequently, the resulting battery storage 

capacities varied in proportion to the engine sizes.  In the end, none of the designs met 

the payload requirement of 2.27 kg.  The closest design to the requirement was the 

clutch-start design due to the lowest propulsion system weight.  The dual propeller design 

was the most fuel-efficient but provided the smallest payload capacity resulting from its 

heavier propulsion system.   

Table 9:  Propulsion system component specifications 

Charge Depletion: 
         

Hybrid Type PICE 
(W) 

PEM 
(W) 

CBATTERY 
(Wh) 

mICE 
(kg) 

mEM 
(kg) 

mBATTERY 
(kg) 

mPAY 
(kg) 

mFUEL 
(kg) 

mEMPTY 
(kg) We 

Clutch-Start 438.9 155.2 730.0 0.356 0.047 4.171 0.960 0.496 12.14 0.89 
Electric-Start 429.9 155.2 730.3 0.349 0.047 4.173 0.816 0.496 12.29 0.90 

Centerline-Thrust 406.5 155.2 731.3 0.330 0.047 4.179 0.648 0.485 12.47 0.92 
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Figure 26:  Charge depletion aircraft component weight fraction comparison 

 

 

Figure 27:  Charge depletion propulsion component weight fraction comparison 
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3.3. Charge Sustaining Strategy 

The previous strategy accepted a larger battery pack for smaller propulsion 

components by ignoring power generation.  The charge sustaining strategy utilized the 

power generation capability of the ICE-EM combination to decrease the demand on the 

battery pack.  The results for this strategy are described below.   

 

3.3.1. Clutch-Start Configuration 

Figures 28 through 30 depict the results for the charge sustaining clutch-start 

configuration alongside an ICE-only powered aircraft.  In this case, the hybrid empty 

weight accounted for about 87% of the takeoff weight, a slight improvement over the 

charge depletion model.  The original UAS required the ICE to be sized for both climbing 

and maximum speed.  Since the hybrid required only that the ICE provide power for 

cruising and the generator, the engine sized decreased by 47% over the original.  The all-

electric endurance loiter enabled fuel savings of 0.370 kg or 30.5% compared to the 

original UAS.  The batteries comprised 27% of the aircraft’s weight leaving only 9% or 

1.225 kg for the payload, which does not meet the requirement of 2.27 kg (5 lbf).  The 

power generation capability increased the payload capacity by 0.265 kg over the charge 

depletion version, but required slightly more fuel (58 grams).   
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Figure 28:  Charge sustaining, clutch-start aircraft component weight fractions 

 

 

Figure 29:  Charge sustaining, clutch-start propulsion component weight fractions 

Glider Propulsion Empty Fuel Payload
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Aircraft Component

W
ei

gh
t F

ra
ct

io
n

 

 
Original
Hybrid

Fuel ICE Batteries EM Other
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Propulsion Component

W
ei

gh
t F

ra
ct

io
n

 

 
Original
Hybrid



 

64 

 

Figure 30:  Charge sustaining, clutch-start mission segment fuel weight fractions 
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decreased 48% from the original.  The mechanical advantage achieved by eliminating the 

clutch allowed a slightly smaller ICE than the clutch-start variation.  The design provided 

the same fuel savings of 0.370 kg as the previous variation when compared to the 

original.  The batteries also comprised 27% of the aircraft’s weight, but the greater 

overall propulsion system weight left only 1.085 kg for the payload.   

 

Warm-up/TO Climb Cruise Endurance Landing
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

Mission Segment

W
ei

gh
t F

ra
ct

io
n

 

 
Original
Hybrid



 

65 

 

Figure 31:  Charge sustaining, electric-start aircraft component weight fractions 

 

 

Figure 32:  Charge sustaining, electric-start propulsion component weight fractions 
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Figure 33:  Charge sustaining, electric-start mission segment fuel weight fractions 

3.3.3 Centerline-Thrust Configuration 
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charging ability.  Since the generator is decoupled from the ICE and connected to a 
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Figure 34:  Charge sustaining, centerline-thrust aircraft component weight fractions 
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Figure 35:  Charge sustaining, centerline-thrust propulsion component weight fractions 

Glider Propulsion Empty Fuel Payload
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Aircraft Component

W
ei

gh
t F

ra
ct

io
n

 

 
Original
Hybrid

Fuel ICE Batteries EM Other
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Propulsion Component

W
ei

gh
t F

ra
ct

io
n

 

 
Original
Hybrid



 

68 

 

Figure 36:  Charge sustaining, centerline-thrust mission segment fuel weight fractions 
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payload of 2.27 kg.  The clutch-start model provided the best alternative with a payload 

of 1.225 kg.  By reducing the empty weight fraction from 87% to 79%, the payload 

requirement could be met.  Sections 4 and 5 of this chapter disclose potential methods to 

meet this goal. 

 

Table 10:  Propulsion system component specifications 

Charge Sustaining: 
         

Hybrid Type PICE 
(W) 

PEM 
(W) 

CBATTERY 
(Wh) 

mICE 
(kg) 

mEM 
(kg) 

mBATTERY 
(kg) 

mPAY 
(kg) 

mFUEL 
(kg) 

mEMPTY 
(kg) We 

Clutch-Start  584.9 155.2 652.8 0.474 0.047 3.730 1.225 0.554 11.82 0.87 
Electric-Start  572.9 155.2 652.8 0.465 0.047 3.730 1.084 0.554 11.96 0.88 

Centerline-Thrust  832.0 155.2 652.8 0.675 0.047 3.730 0.407 0.830 12.36 0.91 

 

 

Figure 37:  Charge sustaining aircraft component weight fraction comparison 
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Figure 38:  Charge sustaining propulsion component weight fraction comparison 
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3.4.1 Clutch-Start Configuration 

The following three figures (Figs. 39 through 41) present the weight fraction 

results for the clutch-start configuration with the charge sustaining, segmented ISR loiter 

approach.  The shortened battery-power only time tremendously diminished the empty 

weight fraction of the aircraft to 71% compared to 87% during the non-segmented 

mission.  This hybrid design was the only one of nine within single digit percentage 

points of the original aircraft’s empty weight fraction.  The battery weight fraction 

decreased from 27% to 11% by segmenting the endurance time.  For the first time, the 

hybrid design met the payload requirement by carrying 2.655 kg.   

The overall mission length extended from five to seven hours due to two one hour 

long recharging cycles.  As a result of the extra ICE power for battery charging, the fuel 

burn increased for the first time above that required by the original UAS.  As shown by 

Fig. 41, the segmented mission caused the aircraft to burn fuel during the endurance 

phase while the previous strategies did not.  While the aircraft could feasibly be traveling 

to separate locations during recharging, the fuel burned during this phase was included 

with the endurance segment.  The aircraft flew at the endurance speed rather than the 

cruise speed while recharging to maximize the charging power available from the ICE to 

transfer to the generator.     
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Figure 39:  Segmented loiter, clutch-start aircraft component weight fraction 

 

Figure 40:  Segmented loiter, clutch-start propulsion component weight fractions 
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Figure 41:  Segmented loiter, clutch-start mission segment fuel weight fraction 

 

3.4.2 Electric-Start Configuration 

Figures 42 through 44 show that the results for the electric-start configuration 

were once again similar to the clutch-start configuration.  The empty weight fraction 
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The overall mission length was also extended from five to seven hours due to two one 

hour long recharging cycles.  The fuel burn increased 36% (0.330 kg) above that used by 

the original UAS and 121% (0.687 kg) above the non-segmented charge sustaining 

strategy.   
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Figure 42:  Segmented loiter, electric-start aircraft component weight fractions 

 

Figure 43:  Segmented loiter, electric-start propulsion component weight fractions 
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Figure 44:  Segmented loiter, electric-start mission segment fuel weight fractions 

 

3.4.2 Centerline-Thrust Configuration 

As with the charge sustaining strategy, the results shown in Figs. 45 through 47 

for the centerline-thrust configuration reinforce its stigma of poor charging performance.  

The segmented loiter concept was able to reduce the aircraft’s battery pack weight, but 

with a relatively enormous fuel consumption.  This configuration was the only one of the 

nine to possess a fuel weight in excess of its battery weight.  The inefficient charging 

methodology also caused the recharging time to last 128 minutes for a total mission time 
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Figure 45:  Segmented loiter, centerline-thrust aircraft component weight fractions 

 

Figure 46:  Segmented loiter, centerline-thrust propulsion component weight fractions 
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Figure 47:  Segmented loiter, centerline-thrust mission segment fuel weight fractions 
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As previously stated, the weight fraction results of the clutch and electric-start 
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payload capacity for the same fuel expenditure.  Each of the two models far exceeded the 

performance of the centerline-thrust model.  The centerline-thrust design was the only of 
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Table 11:  Propulsion system component specifications 

Charge Sustaining with Segmented ISR Loiter: 
     

Hybrid Type PICE 
(W) 

PEM 
(W) 

CBATTERY 
(Wh) 

mICE 
(kg) 

mEM 
(kg) 

mBATTERY 
(kg) 

mPAY 
(kg) 

mFUEL 
(kg) 

mEMPTY 
(kg) We 

Clutch-Start  584.9 307.0 272.0 0.474 0.093 1.554 2.655 1.254 9.69 0.71 
Electric-Start  572.9 307.0 272.0 0.465 0.093 1.554 2.514 1.254 9.83 0.72 

Centerline-Thrust  832.0 162.7 272.0 0.675 0.049 1.554 1.617 1.793 10.19 0.75 

 

Table 12:  Loiter charging statistics 

Hybrid Type Recharging 
Cycles 

Recharge 
Time 
(min) 

Primary 
Loiter Time 

(min) 

Secondary 
Loiter 

Time (min) 

Total 
Mission 

Length (hr) 

Fuel 
Increase 

(kg) 

Battery 
Reduction 

(kg) 

Clutch-Start  2 60.0 75.0 52.5 7.00 0.687 2.18 
Electric-Start  2 60.0 75.0 52.5 7.00 0.687 2.18 
Centerline-

Thrust  2 127.8 75.0 52.5 9.26 0.965 2.18 

 

 

Figure 48:  Segmented loiter aircraft component weight fraction comparison 
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Figure 49:  Segmented loiter propulsion component weight fraction comparison 
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charging was eliminated.  Despite performance failures of the design during the 

simulations, the centerline-thrust configuration possesses unprecedented qualities like 

survivability that were not necessarily captured by the mathematical models.  Therefore, 

the centerline-thrust configuration was chosen as the hybrid design of choice for the 

charge depletion strategy, avoiding its severe electric power generation handicap.   

The COTS products chosen for the design are listed in Table 13.  The first 

component, Enya’s 0.7 hp 41-4CD diesel engine, was selected to meet the DoD’s heavy 

fuel requirement while meeting the calculated power required (Table 14).62  Next, the 

NEU 1240-975 outrunner motor rated at 300 W continuous and 550 W surge power was 

mated to nine Amicell 23,000 mAh lithium-ion polymer batteries manufactured by Amit 

Industries Ltd.69, 70  The cells would be aligned in a 3x3 series-parallel configuration to 

provide 69 Ah at 11.1 V.  AeroNaut folding, carbon fiber propellers of the 14x7 and 14x9 

inch variety were matched to the motor and engine based on recommended sizes by the 

ICE and EM manufacturers and to optimize for endurance and cruise speeds respectively.  

Finally, the electric-start design utilizes a FEMA On-Board Starter to provide the desired 

“air-start” capability.53 

The manufacturers’ advertised specifications are compared to those calculated 

within MATLAB in Table 14.  Each component was oversized based on the calculations 

to compensate for manufacturers’ tendencies to inflate their advertised numbers.  The 

payload weight of the UAS increased 0.766 kg to 1.414 kg because the Amicell specific 

energy was much higher than the conservative estimate used in the simulation.  The 

battery weight reduction enabled the empty weight of the aircraft to improve from 92% to 

86% of the maximum takeoff weight. 
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Table 13:  Notional COTS components for charge depletion strategy 

Component Manufacturer Model Features 

Engine Enya 41-4CD 0.7 hp, .40 in3, diesel 

Motor NEU 1240-975 300W cont, 550W surge 

Battery Amicell Li-Po 23,000 mAh  3.7 V, 230 Wh/kg, 9 cells 

Propellers AeroNaut 14x7,14x9 folding, carbon fiber 

Starter FEMA On-Board Starter 0.40 in3 engines or larger 

 

Table 14:  Notional charge depletion, centerline-thrust component specifications 

Specification Calculated 
Spec 

COTS 
Solution 

Advertised 
Spec 

PICE (W) 406.5 Enya Diesel         
41-4CD 

522.0 

mICE (kg) 0.330 0.420 

PEM (W) 155.2 NEU        
1240-975 

300.0 

mEM (kg) 0.047 0.040 

CBATTERY (Wh) 731.3 AmiCell 
23,000mAh 

(x9) 

279.7 

mBATTERY (kg) 4.179 3.330 

mPAY (kg) 0.648   1.414 

mEMPTY (kg) 12.47   11.70 

We 0.92   0.86 

 

3.5.2 Charge Sustaining Strategy 

The clutch-start configuration was selected for the charge sustaining strategy to 

best represent the ideal solution to the mission requirements.  The clutch-start design was 

the top performer in each category and the charge sustaining strategy was the closest to 

meeting the requirements without segmenting the required endurance time.  By 

improving the propulsive technologies or the aerodynamic design, the clutch-start, charge 

sustaining combination could one day meet the payload requirements.  The notional 

COTS components based upon the simulation results follow in Tables 15 and 16. 
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The engine selected was greatly oversized for the calculated ICE power 

requirement.  Competition R/C gas engine manufacturer BME has converted a 0.60 in3 

SuperTigre glow fuel engine to a pump-carbureted gasoline powered engine with 

electronic ignition.  The engine supposedly maintains the SuperTigre’s 2.5 hp power 

rating with a negligible increase in weight.65, 71  The NEU motor used for charge 

depletion was selected again for the charge sustaining strategy.  Nine 20,000 mAh 

Amicell Li-Po cells were chosen for a 3x3 series-parallel connection to provide 60 Ah at 

11.1 V.  The propeller was a Graupner CAM 14x6 inch rigid model.  Finally, the clutch 

was chosen as a 1.0 Nm dynamic, 1.5 Nm static electro-magnetic device from RM 

Hoffman.   

The weight savings of the Amicell batteries more than compensates for the 

additional weight of the oversized engine.  The payload capacity increased to 1.804 kg, 

which does not meet the required 2.27 kg, but would be able to carry the Alticam 400 

Series camera used by the ScanEagle and the Kestrel Autopilot.  Ultimately, the design is 

close to the requirements and reduced the calculated empty weight fraction to 83%. 

Table 15:  Notional COTS components for charge sustaining strategy 

Component Manufacturer Model Features 

Engine BME/SuperTigre 0.90ci 2.5 hp, 0.60 in3, gas conversion 

Motor NEU 1240-975 300 W cont, 550 W surge 

Battery Amicell Li-Po 20,000 mAh  3.7 V, 228 Wh/kg, 9 cells 

Propeller Graupner CAM 14x6 rigid 

Clutch RM Hoffman - 1.0 Nm Dynamic, 1.5 Nm Static 
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Table 16:  Notional charge sustaining, clutch-start component specifications 

Specification Calculated 
Spec 

COTS 
Solution 

Advertised 
Spec 

PICE (W) 584.9 
BME 0.90ci 

1864.0 

mICE (kg) 0.474 0.737 

PEM (W) 155.2 NEU        
1240-975 

300.0 

mEM (kg) 0.047 0.040 

CBATTERY (Wh) 652.8 AmiCell 
20,000mAh 

(x9) 

666.0 

mBATTERY (kg) 3.730 2.925 

mPAY (kg) 1.225   1.804 

mEMPTY (kg) 11.82   11.27 

We 0.87   0.83 

 

3.5.3 Charge Sustaining with Segmented ISR Loiter Strategy 

Arguably, the clutch-start configuration should be used regardless of the battery 

discharging strategy.  However, the electric-start configuration model was chosen for the 

segmented ISR loiter strategy based upon the theory that an electric starter could be more 

reliable than a clutch as it would be decoupled from the driveshaft.  A more reliable 

starting solution would be preferable since it would have to be utilized more often in this 

strategy.  Additionally, both the clutch and electric-start designs easily met the payload 

requirements under this strategy so either design would be acceptable.   

The BME 0.90ci engine was also used for the segmented charge sustaining 

strategy.  The larger power generation requirement called for a different electric motor.  

The Hacker A30-10XL was chosen for its advertised 650W peak capacity and estimated 

continuous power of 373 W.  Over-sizing the motor could potentially improve the 

charging time of the batteries while providing additional thrust capability.  Six 12,600 

mAh Amicell Li-Po batteries were selected for a 3x2 series-parallel combination.  The 
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battery pack combination would provide 25.2 Ah at 11.1 V.  The systems would use the 

FEMA starter and Graupner CAM 14x6 propeller used on the previous design.   

The selected components were able to meet the payload requirement while 

providing a substantial increase in power.  The payload capacity slightly decreased by 64 

grams, but the power rating of the engine tripled while the peak power of the motor 

doubled.  The excess power could enable the aircraft to fly above the specified 13.6 kg 

takeoff weight and/or fly at greater speeds.   

 

Table 17:  Notional COTS components for segmented loiter strategy 

Component Manufacturer Model Features 

Engine BME/SuperTigre 0.90ci 2.5 hp, .60 in3, gas conversion 

Motor Hacker A30-10XL 650 W peak, 900 k/V 

Battery Amicell Li-Po 12,600 mAh  3.7 V, 222 Wh/kg, 6 cells 

Propeller Graupner CAM 14x6 rigid 

Starter FEMA On-Board Starter 0.40 in3 engines or larger 
 

Table 18:  Notional segmented loiter, electric-start component specifications 

Specification Calculated 
Spec 

COTS 
Solution 

Advertised 
Spec 

PICE (W) 572.9 
BME 0.90ci 

1864.0 

mICE (kg) 0.465 0.737 

PEM (W) 307.0 Hacker     
A30-10XL 

373 (est) 

mEM (kg) 0.093 0.179 

CBATTERY (Wh) 272.0 AmiCell 
12,600mAh 

(x6) 

279.7 

mBATTERY (kg) 1.554 1.260 

mPAY (kg) 2.514   2.450 

mEMPTY (kg) 9.83   9.89 

We 0.72   0.73 
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The preceding six tables outlined potential propulsion system designs for the 

baseline mission and original set of input variables.  In order to proceed to advanced 

designs based on alternative missions, an analysis must be performed on the data to 

determine the best forward course of action.  The next section outlines one method of 

breaking down the impact of changing an individual variable. 

4. Sensitivity Analysis 

The overwhelming number of input variables required some method to determine 

which inputs were the most critical to the final performance of the aircraft.  In this case, 

the performance criterion was selected to be the payload mass of the hybrid-electric UAS 

design.  Previously, the cost function was set to minimize power required during 

endurance, which in turn minimized the mass of the battery pack.  Since the payload 

mass was the limiting factor during the baseline mission, a sensitivity analysis provides a 

method to systematically increase the payload capacity.  Additionally, the payload is 

susceptible to a broader range of variables than the battery mass.  Simple logic and a 

quick analysis of the underlying equations easily identifies how certain input values could 

be changed to improve payload capacity.  However, nonlinear effects require a detailed 

sensitivity analysis to determine the degree to which each input could change the final 

outcome.   

The method utilized for this analysis was adapted from Mattingly, et al.48  By 

slightly changing any of the input variables, a designer may determine which of the 

inputs has the greatest influence on the final solution (mpayload).  The parameter, Q, which 

generates the largest absolute slope from Eq. 46 would therefore be the most sensitive.  

By only slightly (<3%) adjusting each parameter, the sensitivity analysis should avoid 
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second order effects and point towards a local minimum.  A larger change could feasibly 

include higher order effects such as a rapid increase or decrease in slope.   

                     (46) 

The results of the sensitivity analysis are shown in Table 19 for the clutch-start 

hybrid configuration with a charge sustaining battery discharge strategy.  The data are 

specific to this design but are reflective of all nine variations.  The table depicts the 

relative sensitivity of each variable in descending order based upon the absolute value of 

the slope.  A positive slope indicates that increasing the variable value would improve the 

payload capacity; just as decreasing a variable with a negative slope would also improve 

the payload.   

By this logic, the most sensitive variable was the maximum lift coefficient.  By 

finding wing cross-sections with greater lift coefficients or adding high lift devices like 

flaps, the payload capacity could be dramatically improved.  Obviously, decreasing the 

endurance time would also boost the payload by reducing the battery mass.  Clearly, 

other variables like zero lift drag, EM efficiency and propeller efficiency have a strong 

effect.  However, these three variables are likely already near their peak performance 

potential.  Perhaps the most practical means of enhancing the payload capability would 

be to further investigate advanced battery technologies like lithium-sulfur.   

The negative values for ICE power to weight ratio (P/WICE) and cruise speed 

propeller efficiency (ηprop,cruise)  are counter to logical expectations.  Upon further 

examination, it was determined that the values are correct for the system of equations 

used to calculate the payload.  In reality, increasing each value would provide improved 

payload capacity.  The magnitude of the slope would remain the same, but the direction 
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would be reversed (positive slope).  The findings from this simple study facilitated the 

additional designs portrayed in the subsequent section.   

Table 19: Payload mass sensitivity analysis 

Initial Payload Mass (kg) = 1.2247       

Parameter Units Initial New Δ Normalized 
Δ 

mpayload 
(kg) ΔWf Slope 

CL,max - 1.25 1.24 -0.010 -0.008 1.1837 -3.1685 5.1 
Ee Wh/kg 175 172 -3.000 -0.017 1.1596 -3.1926 3.8 

tendure s 10800 10500 -300.00 -0.028 1.3283 -3.0239 -3.7 
ηprop, endure - 0.80 0.79 -0.010 -0.013 1.1845 -3.1677 3.2 
ηEM - 0.85 0.84 -0.010 -0.012 1.1874 -3.1648 3.2 
CD,O - 0.036 0.035 -0.001 -0.028 1.3108 -3.0414 -3.1 
W/S N/m2 90 89 -1.000 -0.011 1.2467 -3.1055 -2.0 

Vcruise m/s 20.5 20.0 -0.500 -0.024 1.2719 -3.0803 -1.9 
mTO kg 13.6 13.5 -0.100 -0.007 1.2110 -3.1412 1.9 

Vstall - Vendure, theo m/s 2.57 2.52 -0.050 -0.019 1.1998 -3.1524 1.3 
Vendure, act - Vstall m/s 2.57 2.52 -0.050 -0.019 1.2428 -3.1094 -0.9 

tcruise s 3600 3500 -100.00 -0.028 1.2381 -3.1141 -0.5 
Ppayload W 25 24.5 -0.500 -0.020 1.2343 -3.1179 -0.5 

SFCcruise N/Ws 1.658E-06 1.650E-06 0.000 -0.005 1.2269 -3.1253 -0.5 
ηmech - 0.95 0.94 -0.010 -0.011 1.2197 -3.1325 0.5 

P/WICE W/kg 1233 1200 -33.000 -0.027 1.2364 -3.1158 -0.4 
hTO m 1500 1475 -25.000 -0.017 1.2310 -3.1212 -0.4 

mclutch kg 0.15 0.148 -0.002 -0.013 1.2267 -3.1255 -0.2 
ηgen - 0.75 0.74 -0.010 -0.013 1.2228 -3.1294 0.1 

ηprop, cruise - 0.78 0.77 -0.010 -0.013 1.2258 -3.1264 -0.1 
P/WEM W/kg 3288 3200 -88.000 -0.027 1.2234 -3.1288 0.0 
ROC m/s 2.032 2.000 -0.032 -0.016 1.2246 -3.1276 0.0 

e - 0.85 0.84 -0.010 -0.012 1.2247 -3.1275 0.0 

 

5. Advanced Mission Analysis 

The results of the sensitivity analysis provided a means to investigate different 

options for improving the UAS’s performance.  At this point, the focus remained on the 

clutch-start, charge-sustaining configuration as the most practical option.  The aircraft, as 

specified by the input parameters designated in Section 2 of this chapter, was able to 
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carry the required payload of 2.27 kg (or 5 lbf) if the endurance time was reduced to 2 

hours and 9 minutes.  By slightly improving the maximum lift coefficient from 1.25 to 

1.30, the endurance time would extend 8 minutes to 2 hours and 17 minutes.  By 

achieving small gains in a number of areas, the craft might be able to achieve the 

requested 3 hour endurance time.   

Even though the improved lift coefficient was only a 4% increase, the possibility 

of such a gain is less likely than achieving improvements in battery capacity.  By setting 

the specific energy to 225 Wh/kg as advertised by Amit Industries and LG, the endurance 

time for a 5 lbf payload capacity improves to 2 hours and 46 minutes.  Better still, by 

using Sion Power’s Li-S batteries with an alleged 300 Wh/kg, the UAS would far exceed 

the requirement by flying on electric power for 3 hours and 42 minutes.  The Li-S 

batteries showed the potential to lengthen the endurance time by a tremendous 93 

minutes over the original results.  Clearly, the most advantageous improvement area was 

the battery technology.  As a general rule of thumb, each improvement of 25 Wh/kg in 

battery specific energy elongated the endurance time by 18 minutes for the single 

propeller charge sustaining designs.   

The most immediate application for the lithium-sulfur batteries would be the 

charge depletion strategy.  The largest drawback to the chemistry is relatively poor cycle 

durability.  By eliminating the recharging aspect of the mission, the number of charging 

cycles applied to the battery pack would drastically decrease.  The batteries could be 

charged on the ground using a dedicated charging system that would likely not be 

appropriate for mid-air charging.  In effect, the aircraft would be designed with primary 

batteries in mind.  The Li-S batteries or actual primary batteries could be rapidly replaced 
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on the ground by maintenance crews for quick sortie turnaround times.  Using Li-S or 

similar primary batteries with a specific energy of 300 Wh/kg would improve the 

centerline-thrust, charge depletion model’s endurance time by approximately 88 minutes 

to 3 hours and 10 minutes.  Using these batteries definitely strengthened the case for 

using the centerline-thrust model.  Until these improved batteries are available, the 

segmented charge sustaining model provides the greatest performance per battery mass.   

Until this point, the defined ISR mission was to provide three hours of counter-

IED surveillance. The segmented strategy would be the ideal candidate if the ISR mission 

was to provide a series of images rather than continuous video footage.  The UAS would 

be able to travel great distances while charging, and then switch to the stealthy all-electric 

mode to photograph select targets.   For example, one such mission is proposed in Table 

20 for the clutch-start hybrid configuration.  After a catapult launch from a safe location, 

the UAS would cruise for three hours to its first target and have about 31 minutes to 

provide still photography or video surveillance to the home base.  Next, the UAS would 

recharge its battery pack while cruising for an hour to its second target with 22 minutes of 

battery power available.  The process would repeat three more times for five total ISR 

targets.  Finally, the UAS would cruise home for three more hours.  The process might 

also be useful for taking chemical or biological agent readings over a large, contested 

area.  Either way, the UAS would be able to fly for over 12 hours while providing 2.55 

kg (5.62 lbf) of payload capacity.   
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Table 20:  Proposed segmented ISR mission profile 

Number Segment Time (min) 

1 TO/Climb 2.5 

2 Cruise Out 180 

3 ISR Loiter #1 31.6 

4 Cruise-Charge 60 

5 ISR Loiter #2 22.1 

6 Cruise-Charge 60 

7 ISR Loiter #3 22.1 

8 Cruise-Charge 60 

9 ISR Loiter #4 22.1 

10 Cruise-Charge 60 

11 ISR Loiter #5 22.1 

12 Return Cruise 180 

13 Approach/Land 2.5 

 

The segmented ISR strategy provides unprecedented flexibility to combatant 

commanders.  A single aircraft could be set up for both the segmented and non-

segmented charge sustaining missions by over-sizing the engine and motor.  Depending 

on the day’s Air Tasking Order (ATO) requirements, the UAS maintenance crew can add 

and subtract battery cells as needed.  Larger battery packs would be needed for sustained 

ISR surveillance, while smaller packs could be supplemented for segmented missions 

allowing a greater fuel capacity.  Certainly, the charge sustaining strategies enable 

versatility and flexibility never before seen in the combat theater.  
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V. Conclusions and Recommendations 

1. Conclusions of Research 

The United States military needs more efficient, stealthy propulsion technology 

for its small unmanned aircraft systems fleet.  Hybrid-electric technology combining the 

intrinsic capabilities of gasoline powered internal combustion engines with nearly silent 

battery powered motors would meet that need.  This research effort sought to determine 

the most appropriate means of combining the two propulsion energy sources for a small 

UAS.   

This effort focused on three variations of a parallel hybrid-electric propulsion 

system design for a small UAS.  Three distinct battery discharge strategies were proposed 

for each hybrid configuration for a total of nine unique designs.  Three objectives were 

set to analyze that set of propulsion system designs.   

The initial goal was to validate and expand an existing UAS hybrid-electric 

propulsion system design code created by Harmon.28,44  The original MATLAB code 

analyzed a clutch-start hybrid design with a charge sustaining battery discharge strategy.  

The objective was achieved by re-deriving the fundamental equations within the code and 

broadening their application to the intricacies of the eight other designs.  The resulting 

code remained sufficiently flexible so that it might be easily expanded for future designs 

or mission requirements.  The final product may be viewed in its entirety in Appendix C, 

while a comprehensive list of the equations is shown in Appendix A.   

With the updated design code in hand, the nine unique hybrid-electric system 

designs were optimized and compared to determine the most suitable design for a typical 

ISR mission.  The proposed mission consisted of a catapult takeoff from an elevation of 
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1500 m MSL, followed by a 300 m climb, a one-hour cruise, a three-hour endurance 

loiter and a one-hour return cruise.  In all cases, the clutch-start hybrid led the 

competition in payload capacity.  In both charge sustaining strategies, the design also 

consumed the least amount of fuel.  The centerline-thrust design showed a slight fuel 

consumption advantage during charge depletion missions thanks to its greater propeller 

efficiency.    

The final objective of the effort was to determine which types of missions would 

be best suited for each design.  A summary of the recommended missions is shown below 

in Table 21. The clutch-start design should be the primary choice for all missions when 

in-flight battery recharging is required.  If the electromagnetic clutch proves to be 

unreliable during testing, the electric-start design could replace the clutch-start as the 

primary choice despite a small weight penalty.   

Table 21:  Recommended mission summary 

  Hybrid Type  Battery Strategy  Mission Types  Comments  

1 Clutch-start  Depletion  Continuous loiter  Primary batteries  

2 Electric-start  Depletion  Continuous loiter  Primary batteries  

3 Centerline thrust  Depletion  High threat  
Least fuel  

Most survivable  

4 Clutch-start  Sustaining  Continuous loiter  Most suitable to 
proposed mission  

5 Electric-start  Sustaining Continuous loiter  Mechanically 
simpler option  

6 Centerline thrust  Sustaining Not recommended Poor charging  

7 Clutch-start  Segmented  Geographically 
separated targets  Largest payload  

8 Electric-start  Segmented Geographically 
separated targets  Largest payload  

9 Centerline thrust  Segmented Not recommended  Poor charging  

 

The centerline-thrust design proved to have advantages during the charge 

depletion strategy comparison.  None of the designs were able to meet the payload 
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requirements with the originally assumed battery capabilities.  However, when using a 

primary battery or an advanced Li-S rechargeable battery, all three designs exceeded the 

payload capacity requirement.   Because the centerline-thrust configuration possessed 

superior survivability and fuel efficiency, it was determined to be the best choice when 

implementing a charge depletion strategy.  The clutch and electric-start designs provided 

an edge on payload capacity, but when considering all factors, the dual propeller design 

provided a distinct advantage.   

If the mission includes a number of geographically separated ISR targets, the 

segmented charge sustaining strategy was the obvious choice.  The limiting weight of the 

battery pack radically diminished when sizing the pack for a fraction of the endurance 

time and allowing it to recharge.  The strategy provides a tremendous capability to travel 

long distances while charging and providing stealthy ISR coverage when and where 

desired.   

Until reliable COTS Li-S batteries are readily available, the aircraft must accept a 

performance tradeoff.  Segmenting the ISR mission to reduce the battery pack mass 

proved to be a more than capable compromise to meet or exceed all performance 

requirements.  If segmenting the ISR loiter is unacceptable, the UAS will suffer either a 

reduced all-electric endurance time, payload capacity or a combination of both.  The 

clutch-start, charge sustaining design provides a 90% solution to the requirements sought 

by the Army and could be built and tested today.  The complete solution will arrive with 

the release of improved battery technology from companies like Sion Power in the near 

future.  By the time the first hybrid-electric UAS prototype is built and flight-tested, the 

necessary batteries may be readily available to achieve a 100% solution.   
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2. Recommendations for Future Research 

The possibilities for future research in the hybrid-electric UAS arena are 

seemingly endless.  The technology has the potential to revolutionize UAS operations in 

both the private and defense sectors.  There are a number of realistic near-term projects 

and areas for improvement that could be broached by future students.   

First and foremost, a better defined set of key performance parameters is needed 

to more accurately analyze the problem at hand.  The requirements used in this project 

were from informal conversations with the Army’s Maneuver Center of Excellence and 

observations of similarly sized existing aircraft.  By involving organizations like Air 

Combat Command (ACC) or Air Force Special Operations Command (AFSOC), 

researchers might discover more appropriate mission profiles and payload requirements.   

 Using an updated or validated mission profile, dynamic models could better 

predict the performance of the system as a whole.  New tools developed for SIMULINK, 

recently acquired by AFIT, allow relatively simple dynamic modeling of hybrid 

powertrains.  Modeling performance maps for an engine with battery and motor models 

would help predict the behavior of a physical prototype.  The dynamic models would 

provide more accurate estimations of fuel and electric power consumption than the static 

optimization process used in this effort.  Additionally, missions including gliding, 

dynamic soaring and/or windmill descending could be analyzed to extend loiter 

durations.   

Lessons learned from SIMULINK testing would assist in the designs of a 

controller.  There are literally thousands of controllers available on the market for R/C 

engines and motors.  However, the HEUAS requires a customized controller for the 
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entire hybrid system.  The controller must meter fuel flow, shut down and restart the 

engine when necessary, apply the appropriate current and voltage to the motor and run 

the motor as a generator.  None of the COTS R/C brushless motor controllers offered by 

the manufacturers surveyed by the author were able to run the motor as a generator.   

Along with the mission requirements, many of the component performance 

specifications could use refinement.  Many R/C component manufacturers are known for 

overinflating or simply estimating their advertised performance data.  In order to provide 

more accurate static or dynamic models, individual component performance tests should 

be completed with a dynamometer.  In addition, AFRL has been conducting 

experimentation on advanced small engine designs to improve efficiency.52  These new 

engine technologies should ultimately be incorporated into the hybrid systems despite not 

being true COTS products.   

Along with the engines, motors and batteries, reliable data on propeller efficiency 

were not readily available.  The propeller models offered with the QPROP software were 

very limited.  In order to achieve more precise performance data on propellers, the 

XFOIL software program could be used to develop supplementary propeller files to use 

in QPROP.  Alternatively, the propellers could be tested in concert with the 

aforementioned dynamometer testing by adding a thrust measurement capability. 

Several unanswered questions arose when selecting the propeller sizes for the 

notional baseline mission designs.  Typically, R/C engine and motor manufacturers 

provide recommended propeller sizes for their products.  These recommendations may 

not be applicable to the aircraft size proposed in this project.  Aircraft between 30 to 40 

lbf generally use propeller diameters in the 17 to 20 inch range.  However, the hybrid 
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system design created a situation in which the final engine and motor sizes are much 

smaller than that of a conventionally powered UAS.  The recommended propeller sizes 

for the resulting components were only 13 or 14 inches in diameter.  Then uncertainties 

arise when determining whether the propeller should be selected based on the size of the 

aircraft or the propulsion components.  Alternatively, the propeller could be chosen to 

best match the electric motor rather than the engine or vice versa.  By compromising at a 

median diameter and pitch, the efficiencies of the engine and motor could be reduced.  A 

new optimization formulation should be created to determine the optimum propeller size 

for a given hybrid-electric system.  

Despite some questions about the legitimacy of the input parameters, the 

recommended components are more than sufficient to begin prototype testing.  Each 

input parameter and hybrid configuration was thoroughly researched by the author, but 

time constraints prevented physical testing.  The author recommends focusing on the 

clutch-start hybrid as the preferable design for testing as it outperformed its competition 

in every simulation.   

There are several questions about the mechanical configuration that are not likely 

to be answered by mathematical simulations.  First, the clutch-start design proposed by 

Harmon placed the EM and ICE on a single shaft separated by an electromagnetic 

clutch.28,44  Testing may show that a belt drive and secondary clutch separating the EM 

from the ICE driveshaft may be preferable to simplify torque and speed matching issues.  

Second, testing will determine whether or not the inertia and friction of a free spinning 

motor during non-charging operation requires an inordinate amount of ICE power to 

overcome.  If so, the clutch should be placed on a separate belt drive or a trickle charge 
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should always be pulled from the generator to benefit from the loss of mechanical power.  

Finally, single cylinder engines suffer from extreme torque ripple effects due to the 

varying force encountered with piston motion.  Multi-cylinder engines are able to 

mitigate transient torque effects through proper engine timing.  Some testing 

organizations have overcome some of the single cylinder effects by using torsionally 

flexible spider coupling devices.  Studies have shown that adding strategically timed EM 

torque to the engine driveshaft can balance out the torque through the engine’s cycle.73  

This procedure could prove advantageous to the proposed hybrid-electric systems and 

deserves recognition in the testing and controller design processes.   

The dual-propeller centerline-thrust design does provide unique advantages for 

the charge depletion model.  Further testing on the design could be performed in a wind 

tunnel to determine how effectively folding propellers might work during operation.  

Perhaps the folding propeller idea only works on paper.  Given a fuselage design, the 

effects on the rear, pusher propeller from the front prop-wash and fuselage boundary 

layer interactions could also be studied.  The performance degradation on the rear 

propeller might be too great to overcome and eliminate any advantages of the dual 

propeller design.   

Ultimately, there are many avenues of investigation for hybrid-electric aircraft 

propulsion.  The entire effort has focused on small unmanned aircraft systems using 

electric motors and internal combustion engines.  Future battery or fuel cell technologies 

may completely eliminate the need for hybrid-electric propulsion for both aircraft and 

automobiles.  Nevertheless, hybrid-electric technology provides the best solution to meet 

the advanced propulsion needs of today.   
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Appendix A:  MATLAB Code Equations 

 

“HEUASdesign” Function: 

 

 

 

 

 

 

 

 

“OptimizeUAS” Function: 

 

 

 

“SizeConstraint” Function: 
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 “SizeCost” Function: 

 

 

“PostProcess” Function: 
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Configuration Unique Equations

Charge Depletion Strategy: 
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Charge Sustaining Strategy: 

 

 

 

Single Propeller: 

 

Dual Propeller: 
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Charge Sustaining with Segmented ISR Loiter Strategy: 

 

 

 

 

 

 

 

 

Single Propeller: 

 

 

Dual Propeller: 

 

 

 

 



 

103 

Appendix B:  Sample Data 

Table B-1:  Market survey results for similar aircraft 

UAS Manufacturer Propulsion 
Type 

Gross 
Weight 

(kg) 

Wing 
Area (m2) 

Wing 
Loading 
(kg/m2) 

Aspect 
Ratio 

Empty 
Weight 

Fraction 

ScanEagle Insitu (Boeing) ICE 18.0 0.884 199.8 13.2 0.667 

SilverFox 
Advanced 
Cermanics 

Research (BAE) 
ICE 11.4 0.592 188.9 8.4 0.639 

Pointer AeroVironment Electric 4.54 0.553 80.5 13.5 0.500 

Aerosonde 
Mark 4.4 AAI ICE 14.0 0.550 249.7 15.2 0.607 

Harmon 
Optimum - Hybrid 13.6 1.48 90.0 14.6 0.630 

 

Sources: 28, 44, 55 - 59 

Table B-2:  Commercially available internal combustion engine data 

Manufacturer Model Cycle Fuel Power Rating 
(HP) 

Weight 
(lbf) 

P/W 
(hp/lb) 

3W 28i 2-Stroke Gasoline 3.4 2.67 1.27 
3W 55i 2-Stroke Gasoline 5.2 4.27 1.22 

Cosworth* AE1 2-Stroke Diesel 3.5 9.33 0.38 
Enya 61CX TN 2-Stroke Diesel 1.7 0.83 2.04 
Enya R155-4C 4-Stroke Glow 2.5 2.11 1.18 
Enya 41-4CD TN 4-Stroke Diesel 0.7 0.93 0.75 

Fuji-Imvac BT-24EI 2-Stroke Gasoline 2.2 2.95 0.75 
Fuji-Imvac BT-34EI 2-Stroke Gasoline 3.2 3.80 0.84 
Fuji-Imvac BF-25EI 4-Stroke Gasoline 1.6 4.23 0.38 
Fuji-Imvac BF-34EI 4-Stroke Gasoline 2.0 5.46 0.37 

OS 25FX 2-Stroke Glow 0.84 0.55 1.53 
OS 61FX 2-Stroke Glow 1.90 1.21 1.57 
OS FS-40S 4-Stroke Glow 0.65 0.78 0.83 
OS FS-91S II 4-Stroke Glow 1.6 1.43 1.12 

Super Tigre GS-40 2-Stroke Glow 1.2 0.82 1.47 
Super Tigre GS-45 2-Stroke Glow 1.5 0.83 1.82 

BME/Super Tigre 0.90ci 2-Stroke Gasoline 2.5 1.63 1.54 

     Avg. P/W = 1.12 

Sources: 60 - 65 

* Currently in development for the USN Ultra Endurance UAV program61 
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Table B-3:  Commercially available brushless electric motor data 

Manufacturer Model Type Kv 
(RPM/V) 

Weight 
(kg) 

Surge 
Power (W) 

Continuous 
Power (W) 

P/W 
(W/kg) 

P/W 
(hp/lbf) Overtorque Efficiency 

AXI 5325/16 Gold Outrunner 350 0.58 1806 1506 2619 1.59 1.20 0.85-0.90 
AXI 4130/16 Gold Outrunner 385 0.41 1187 831 2032 1.24 1.43 0.84-0.88 

Flyware LRK 350/10-12.5W Outrunner 2300 0.12 300 150 1250 0.76 2.00 0.84 
Flyware LRK 350/20-12.5W Outrunner 1220 0.20 650 400 2051 1.25 1.63 0.85 
Flyware LRK 350/25-12.5W Outrunner 990 0.24 750 500 2128 1.29 1.50 0.84 
Hacker A30-22S Outrunner 1440 0.07 250 144 2028 1.23 1.74 0.85-0.95 
Hacker A30-12M Outrunner 1370 0.10 350 227 2163 1.32 1.54 0.85-0.95 
Hacker A30-10XL Outrunner 900 0.18 650 373 2089 1.27 1.74 0.85-0.95 
Hacker A30-8XL Outrunner 1100 0.18 650 434 2429 1.48 1.50 0.85-0.95 
Hacker A40-10L Outrunner 500 0.35 1100 706 2024 1.23 1.56 0.85-0.95 
NEU 1210 Outrunner 1850 0.01 125 75 5398 3.28 1.67 0.93 
NEU 1215 Outrunner 1675 0.02 225 125 6123 3.72 1.80 0.93 
NEU 1220 Outrunner 1625 0.03 250 150 5569 3.39 1.67 0.93 
NEU 1230 Outrunner 1675 0.03 375 200 6003 3.65 1.88 0.93 
NEU 1240 Outrunner 1625 0.04 550 300 7558 4.60 1.83 0.93 
NEU 1105 Inrunner 6660 0.07 400 200 3067 1.87 2.00 0.80-0.85 
NEU 1107 Inrunner 3850 0.10 600 300 2860 1.74 2.00 0.80-0.85 
NEU 1110 Inrunner 8400 0.11 1000 400 3527 2.15 2.50 0.80-0.85 
NEU 1112 Inrunner 6500 0.13 1200 600 4503 2.74 2.00 0.80-0.85 
NEU 1115 Inrunner 5200 0.16 1400 700 4257 2.59 2.00 0.80-0.85 
NEU 1706 Inrunner 1900 0.16 1200 600 3779 2.30 2.00 0.90 

      Average  = 4786 2.13 1.77 0.86-0.90 
Sources: 66 - 69 

Note: Highlighted cell indicates estimated power specifications based on Eq. 9 
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Table B-4:  Sample QPROP results 

      APC 16x10e APC 14x10e APC 7x4 

Motor Condition Est ηProp PR (W) V (m/s) T (N) ηEM ηProp ηTotal ηEM ηProp ηTotal ηEM ηProp ηTotal 

Hacker A30-10XL 

Climb 0.50 378 14.4 26.3 0.74 0.66 0.49 0.79 0.59 0.47 0.92 0.38 0.35 

Cruise 0.60 295 20.5 14.4 0.78 0.80 0.62 0.82 0.77 0.63 0.89 0.57 0.51 

Endure 0.75 138 14.4 9.6 0.79 0.77 0.61 0.82 0.74 0.61 0.85 0.52 0.44 

               
               

      APC 16x10e APC 14x10e APC 7x4 

Motor Condition Est ηProp PR (W) V (m/s) T (N) ηEM ηProp ηTotal ηEM ηProp ηTotal ηEM ηProp ηTotal 

Hacker A30-8XL 

Climb 0.50 378 14.4 26.3 0.75 0.66 0.50 0.80 0.59 0.47 0.91 0.38 0.35 

Cruise 0.60 295 20.5 14.4 0.79 0.79 0.62 0.82 0.78 0.64 0.87 0.57 0.50 

Endure 0.75 138 14.4 9.6 0.79 0.77 0.61 0.82 0.74 0.61 0.82 0.52 0.43 

               
               
      APC 14x10e APC 16x10e APC 8x6 

Motor Condition Est ηProp PR (W) V (m/s) T (N) ηEM ηProp ηTotal ηEM ηProp ηTotal ηEM ηProp ηTotal 

NEU 1210-1850 

Climb 0.60 368 14.4 25.6 0.54 0.60 0.33 0.50 0.67 0.33 0.84 0.42 0.35 

Cruise 0.78 266 20.5 13.0 0.72 0.83 0.60 0.55 0.80 0.44 0.83 0.54 0.45 

Endure 0.80 124 14.4 8.6 0.66 0.75 0.50 0.60 0.78 0.46 0.89 0.59 0.52 

               
               
      APC 14x10e APC 16x10e APC 8x6 

Motor Condition Est ηProp PR (W) V (m/s) T (N) ηEM ηProp ηTotal ηEM ηProp ηTotal ηEM ηProp ηTotal 

Hacker A30-10XL 

Climb 0.60 368 14.4 25.6 0.79 0.60 0.48 0.75 0.67 0.50 0.91 0.42 0.38 

Cruise 0.78 266 20.5 13.0 0.82 0.79 0.64 0.79 0.80 0.63 0.87 0.59 0.51 

Endure 0.80 124 14.4 8.6 0.82 0.75 0.62 0.80 0.78 0.62 0.89 0.64 0.57 
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Appendix C: MATLAB Code 
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function []=HEUASdesign() 
% Algorithm for Sizing Hybrid-Electric UAS 
% Capt Ryan Hiserote (USAF) 
% Air Force Institute Technology  
% Master's Thesis: 'Analysis of Hybrid-Electric Propulsion Systems Designs 
%                          for Small Unmanned Aircraft Systems (UAS)' 
%                                    
% Last Updated: 17 Feb 2010 
% 
% Original code written by LtCol Fred Harmon (USAF) 
% University of California-Davis 
% References: 
% Anderson, Intro to Flight, 4th Edition 
% Anderson, Aircraft Performance and Design 
% Raymer, Aircraft Design:  A Conceptual Approach, 2nd Edition 
  
% Clear Workspace 
close all; clear all; clc; 
  
% Title and Date-Time Stamp 
timestamp = clock; 
disp('Hybrid-Electric UAS Sizing Program'); 
disp(['Date: ',date,'      Time: ',num2str(timestamp(4)),':', num2str(timestamp(5))]); 
disp(' '); 
  
% Declare Global Variables 
global uas_Cdo uas_e prop_m prop_n bat_ED EM_eff EM_eff_gen EM_overtrq EM_PW_ratio... 
       ICE_PW_ratio start_m SFC_cruise SFC_endure des_uas_m des_pay_m des_pay_P... 
       des_fcs_P des_uas_S des_uas_AR WF_empty perf_tendure perf_tcruise perf_ROC... 
       perf_Vcruise perf_Vmax sdmin safetyfactor g msec2kts kts2msec W2hp hp2W uas_W... 
       prop_W start_W h h_TO h_AGL rho rho_TO tclimb generator_P_W prop_drag_P_W... 
       chargetype hybridtype n_recharge prop_eff_x  
        
% User Specified Inputs 
    % Aerodynamic Parameters 
    uas_Cdo=0.036; % Zero-lift drag coefficient 
    uas_e=0.85; % Oswald efficiency factor 
     
    % Propulsion Component Specifications 
    % Electric Motor (EM): 
    EM_eff=0.85; % Typical outrunner EM efficiency 
    EM_eff_gen=0.75; % Typical EM efficiency as a generator 
    EM_overtrq=1.75; % EM over-torque Factor 
        % Note: Max Power = Continuous Power * Over-torque Factor 
        % Allows motor to provide surge power for approximately 30 seconds 
    EM_PW_ratio=3288; % Typical EM power-to-weight (3288 W/kg=2 hp/lb) 
      
    % Internal Combustion Engine (ICE): 
    ICE_PW_ratio=1233; % Typical ICE power-to-weight (1233 W/kg=.75 hp/lb) 
    % Specific Fuel Consumption (converted from lb/hp/hr to N/Ws) 
    SFC_cruise = 1.0*1.6576E-6;  % SFC @ cruise speed power 
    SFC_endure = 1.5*1.6576E-6;  % SFC @ endurance speed power 
     
    % Section provides capability to use engine efficiency values and vary 
    % fuel type instead of specifying SFC:   
        %LHV = 42.358/3600; % Lower heating value coverted to kWh/g  
                     % Reformulated gasoline = 42.358 MJ/kg 
                     % Conventional diesel = 42.791 MJ/kg 
                     % JP-8 = 43.147 MJ/kg 
                     % Fischer-Tropsch diesel = 43.247 MJ/kg                      
        %cruise_eff=0.091; % Engine efficiency during cruise  
        %endure_eff=0.068; % Engine efficiency during endurance 
        %SFC_cruise=1/(cruise_eff*LHV)*2.725E-9; % SFC (N/Ws)  
        %SFC_endure=1/(endure_eff*LHV)*2.725E-9; % SFC (N/Ws) 
                % Note: 2.725E-9 converts from kWh/g to N/Ws 
               
    % Starting Mechanism: 
    start_m_case1=0.15; % Clutch mass (kg) 
    start_m_case2=0.30; % Electric starter mass (kg) 
    start_m_case3=0.30; % Electric starter mass (kg) 
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    mech_eff_case1 = 0.95; % Mechanical efficiency for clutch-start 
    mech_eff_case2 = 0.97; % Mechanical efficiency for electric-start 
    mech_eff_case3 = 1.0; % Mechanical efficiency for centerline-thrust 
     
    % Propeller:  
    prop_n_case1 = 1; % Single prop design 
    prop_n_case2 = 1; % Single prop design 
    prop_n_case3 = 2; % Dual prop design 
    % Propeller efficiency variable form:  
     % [climb prop 1, cruise prop 1, endure prop 1;  
     %  climb prop 2, cruise prop 2, endure prop 2] 
    prop_eff_case1 = [0.6, 0.78, 0.80; 1, 1, 1];% Clutch-start     
    prop_eff_case2 = [0.6, 0.78, 0.80; 1, 1, 1];% Electric-start 
    prop_eff_case3 = [0.6, 0.80, 0.78; 0.6, 0.78, 0.80];%Centerline-thrust 
    % Note: Propeller #1 sized for cruise. Propeller #2 sized for endurance 
    prop_m=0.17; % Prop mass(kg) same propeller size (20x8) for all cases        
     
    % UAS Design Parameters 
    des_uas_m=13.6; % UAS mass (kg), 13.6 kg=>30 lbf 
    des_pay_m=2.27; % Payload mass (kg), 2.27 kg=>5 lbf 
    des_pay_P=25; % Payload Power (W) 
    des_fcs_P=10; % Flight control system (servos & avionics) power (W) 
    des_uas_S=1.48; % Wing area of original design (m^2) 
    des_uas_AR=14.6; % AR of original Design 
    WF_empty=0.63; % Weight fraction for the empty weight of original UAS 
                   % Empty weight fraction for HEUAS will be calculated 
                   % Reference: Anderson-P&D, pg 400 
  
    % Performance Parameters 
    perf_tendure=3*3600; % Time for endurance (s) 
    perf_tcruise=3600; % Time for cruise, one-way (s) 
    perf_ROC=2.032; % Rate-of-Climb (m/s), 2m/s=>120m/min=>400 ft/min 
                % Note: ScanEagle UAS max climb rate = 150 m/min 
    perf_Vcruise = 20.5; % Cruise Velocity (m/s) 20.5 m/s = 40 kts 
    perf_Vmax=30.9; % Max Velocity (m/s), 30.9 m/s=>60 kts 
    sdmin=2.57; % Minimum speed delta between stall and endurance speeds(2.57 m/s=>5 kts) 
                % Note: Parameter is for optimization constraint to ensure the stall   
                % speed remains within a reasonable range of the theoretical endurance   
                % speed. Preliminary results show stall will always exceed theoretical  
                % endurance speed 
    safetyfactor = 2.57;   
                % Safety factor for actual endurance speed (2.57 m/s=>5 kts) 
                % Note: Ensures the actual endurance speed will be a factor of safety  
                % greater than the calculated stall speed 
                % Actual Vendure=Theoretical Vendure +sdmin + safetyfactor  
  
             
% Select Altitude for the Calculations 
    h_TO=input('Enter takeoff altitude (meters AMSL):  '); 
    %Note: Bagram Airfield, Afghanistan = 1492m  
    %      Kandahar International Airport, Afghanistan = 1017m 
    %      Joint Base Balad, Iraq = 49m 
    %      Wright-Patterson AFB, OH = 251m 
    %      Source: WorldAeroData.com 
    h_AGL=input('Enter mission altitude (meters AGL):  '); 
    disp(' '); 
    h = h_TO + h_AGL; 
    [T_TO, a_TO, P_TO, rho_TO] = atmosisa(h_TO); 
    [T, a, P, rho] = atmosisa(h); 
    disp(['Mission Altitude Density (kg/m^3) = ', num2str(rho)]); 
    disp(' '); 
  
% Constants and Preliminary Calculations 
    g=9.81; % Acceleration due to gravity (m/s^2) 
    msec2kts=1.944; % Unit conversion (m/s->kts) 
    kts2msec=0.5144; % Unit conversion (kts->m/s) 
    W2hp=1.34/1000; % Unit conversion (W->hp) 
    hp2W=0.75*1000; % Unit conversion (hp->W) 
    uas_W=des_uas_m*g; % Weight of UAS (N) 
    prop_W=prop_m*g; % Prop weight (N) 
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    start_W=start_m*g; % Starter weight (N)  
    tclimb = h_AGL/perf_ROC; % Time to climb (s)     
  
    % Determine Power to Overcome Windmilling Propeller Drag During Cruise 
        prop_D=0.508;  % Propeller diameter (m), 20in=.508m 
        fuselage_D=0.1524; % Fuselage diamater (m), 6in=.15m 
        prop_A = pi*(prop_D^2-fuselage_D^2)/4; % Cross sectional area 
        prop_Cp = 0.35;  % Typical coefficient of performance 
                 
    prop_drag_P_W_case1=0; % Zero rear prop drag 
    prop_drag_P_W_case2=0; % Zero rear prop drag 
    prop_drag_P_W_case3=0.5*prop_A*prop_Cp*perf_Vcruise^3;  
        % Power (W) to overcome drag induced by rear propeller (windmill) 
         
% Select Battery Type 
    disp('Select Battery Type:'); 
    disp('  1:  Lithium-ion Polymer (175 Wh/kg)'); 
    disp('  2:  Lithium-Sulfur (300 Wh/kg)'); 
    disp(' '); 
    batterytype=input('Enter your selection:  '); 
    disp(' '); 
    switch batterytype 
        case 1 
            bat_ED=175; %Lithium-ion polymer battery specific energy (Wh/kg) 
        case 2     
            bat_ED=300; %Lithium-sulfur battery specific energy (Wh/kg)             
    end     
  
% Select Battery Discharge Method 
    disp('Select Battery Discharge Method:'); 
    disp('  1:  Charge Depletion'); 
    disp('  2:  Charge Sustaining'); 
    disp('  3:  Charge Sustaining with Segmented ISR Loiter'); 
    disp(' '); 
    chargetype=input('Enter your selection:  '); 
    disp(' '); 
    switch chargetype 
        case 1 
            % Battery pack state of charge (SOC) = 100% at takeoff/launch  
            % and will not recharge during mission 
            disp('Note: Battery Pack Will Not Recharge During Mission'); 
            charge_P_W=0; % Eliminate recharging power 
            generator_P_W=0; % Generator output power (W) required 
             
        case 2 
            % Battery recharges during cruise to SOC=100% for endurance leg 
            disp('Note: Battery Pack Charges to 100% for Endurance Leg'); 
            charge_P_W=50; % Excess ICE power for charging (W) 
            generator_P_W=des_pay_P+des_fcs_P+charge_P_W; % Generator output power (W)  
                  
        case 3 
            % Same as Case 2 with segmented loiter to recharge battery pack 
            disp(['Note: Aircraft Will Perform Complete ISR Loiter with'... 
                ,' Periodic Interuption for ICE Powered Recharging']); 
            disp(' '); 
            n_recharge=input(['Enter Number of Recharging Cycles for ',... 
                num2str(perf_tendure/3600),' hour loiter:  ']); 
            charge_P_W=50;  % Excess ICE power for charging (W) 
            generator_P_W=des_pay_P+des_fcs_P+charge_P_W; % Generator output power (W)  
                 
    end         
  
         
% Select Hybrid Design to Optimize 
    disp(' '); 
    disp('Select Hybrid Configuration for Optimization:'); 
    disp('  1:  Clutch-Start Parallel Hybrid'); 
    disp('  2:  Electric-Start Parallel Hybrid'); 
    disp('  3:  Centerline Thrust Hybrid'); 
    disp('  4:  Compare all of the Above'); 
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    disp(' '); 
    profile=input('Enter your selection:  '); 
    disp(' '); 
    disp('//////////////////////////////////////////////////////'); 
     
    switch profile 
        case 1 
            hybridtype = 'Clutch-Start'; 
            disp('Begin Calculations for:  Clutch-Start Parallel Hybrid'); 
            prop_eff = prop_eff_case1; % Prop efficiency 
            mech_eff = mech_eff_case1; % Mechanical efficiency 
            prop_n=prop_n_case1; % Number of propellers 
            prop_eff_x = 2; % Trigger to eliminate propeller efficiency during charging 
            prop_drag_P_W = prop_drag_P_W_case1; % Drag from prop windmill 
            start_m=start_m_case1; % Starting mechanism mass 
             
            [x,EM_P_W]=optimizeUAS(prop_eff, mech_eff);     
            [WF_component_org, WF_mission_org, WF_propulsion_org, WF_component,... 
                WF_mission, WF_propulsion, EM_P_W_act]= ...  
                postprocess(x,EM_P_W,prop_eff,mech_eff); 
            WFplot(WF_component_org, WF_mission_org, WF_propulsion_org, WF_component,... 
                WF_mission, WF_propulsion); 
            disp('////////////////////////////////////////////////////////'); 
             
        case 2 
            hybridtype = 'Electric-Start'; 
            disp('Begin Calculations for:  Electric-Start Parallel Hybrid'); 
            prop_eff = prop_eff_case2; % Prop efficiency 
            mech_eff = mech_eff_case2; % Mechanical efficiency 
            prop_n=prop_n_case2; % Number of propellers 
            prop_eff_x = 2; % Trigger to eliminate propeller efficiency during charging 
            prop_drag_P_W = prop_drag_P_W_case2; % Drag from windmilling prop 
            start_m=start_m_case2; % Starting mechanism mass 
             
            [x,EM_P_W]=optimizeUAS(prop_eff, mech_eff);     
            [WF_component_org, WF_mission_org, WF_propulsion_org, WF_component,... 
                WF_mission, WF_propulsion, EM_P_W_act]= ...  
                postprocess(x,EM_P_W,prop_eff,mech_eff); 
            WFplot(WF_component_org, WF_mission_org, WF_propulsion_org, WF_component,... 
                WF_mission, WF_propulsion); 
            disp('//////////////////////////////////////////////////////////'); 
             
        case 3 
            hybridtype = 'Centerline-Thrust'; 
            disp('Begin Calculations for:  Centerline-Thrust Hybrid'); 
            prop_eff = prop_eff_case3; % Prop efficiency 
            mech_eff = mech_eff_case3; % Mechanical efficiency 
            prop_n=prop_n_case3; % Number of propellers 
            prop_eff_x = 1; % Trigger to add propeller efficiency during charging 
            if (chargetype==1) % Generator power either 0 or compensated by windmill 
                prop_drag_P_W = 0; % Drag from windmilling prop 
            else 
                prop_drag_P_W = prop_drag_P_W_case3; % Drag from windmilling prop 
                generator_P_W=0; 
            end 
            start_m=start_m_case3; % Starting mechanism mass 
             
            [x,EM_P_W]=optimizeUAS(prop_eff, mech_eff);     
            [WF_component_org, WF_mission_org, WF_propulsion_org, WF_component,... 
                WF_mission, WF_propulsion, EM_P_W_act]= ...  
                postprocess(x,EM_P_W,prop_eff,mech_eff); 
            WFplot(WF_component_org, WF_mission_org, WF_propulsion_org, WF_component,... 
                WF_mission, WF_propulsion); 
            disp('////////////////////////////////////////////////////////'); 
             
        case 4 
            % Case runs three previous cases and utilizes a different plotting function  
            % to visually compare results 
             
            % Clutch-start design 
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            hybridtype = 'Clutch-Start'; 
            disp(' '); 
            disp('Begin Calculations for:  Clutch-Start Parallel Hybrid'); 
            prop_eff = prop_eff_case1; % Prop efficiency 
            mech_eff = mech_eff_case1; % Mechanical efficiency 
            prop_n=prop_n_case1; % Number of propellers 
            prop_eff_x = 2; % Trigger to eliminate propeller efficiency during charging 
            prop_drag_P_W = prop_drag_P_W_case1; % Drag from windmilling prop 
            start_m=start_m_case1; % Starting mechanism mass 
             
            [x1,EM_P_W1]=optimizeUAS(prop_eff, mech_eff); 
            [WF_component_org1, WF_mission_org1, WF_propulsion_org1, WF_component1,... 
                WF_mission1, WF_propulsion1, EM_P_W_act1]=... 
                postprocess(x1,EM_P_W1,prop_eff,mech_eff); 
            disp('////////////////////////////////////////////////////////'); 
             
            % Electric-start design 
            hybridtype = 'Electric-Start'; 
            disp(' '); 
            disp('Begin Calculations for:  Electric-Start Parallel Hybrid'); 
            prop_eff = prop_eff_case2; % Prop efficiency 
            mech_eff = mech_eff_case2; % Mechanical efficiency 
            prop_n=prop_n_case2; % Number of propellers 
            prop_eff_x = 2; % Trigger to eliminate propeller efficiency during charging 
            prop_drag_P_W = prop_drag_P_W_case2; % Drag from windmilling prop 
            start_m=start_m_case2; % Starting mechanism mass 
             
            [x2,EM_P_W2]=optimizeUAS(prop_eff, mech_eff);   
            [WF_component_org2, WF_mission_org2, WF_propulsion_org2, WF_component2,... 
                WF_mission2, WF_propulsion2, EM_P_W_act2]=... 
                postprocess(x2,EM_P_W2,prop_eff,mech_eff); 
            disp('////////////////////////////////////////////////////////'); 
             
            % Center-line thrust design 
            hybridtype = 'Centerline-Thrust'; 
            disp(' '); 
            disp('Begin Calculations for:  Centerline-Thrust Hybrid'); 
            prop_eff = prop_eff_case3; % Prop efficiency 
            mech_eff = mech_eff_case3; % Mechanical efficiency 
            prop_n=prop_n_case3; % Number of propellers 
            prop_eff_x = 1; % Trigger to add propeller efficiency during charging 
            if (chargetype==1) 
                prop_drag_P_W = 0; % Drag from windmilling prop 
            else 
                prop_drag_P_W = prop_drag_P_W_case3; % Drag from windmilling prop 
                generator_P_W=0; 
            end 
            start_m=start_m_case3; % Starting mechanism mass 
             
            [x3,EM_P_W3]=optimizeUAS(prop_eff, mech_eff);  
            [WF_component_org3, WF_mission_org3, WF_propulsion_org3, WF_component3... 
                , WF_mission3, WF_propulsion3, EM_P_W_act3]=... 
                postprocess(x3,EM_P_W3,prop_eff,mech_eff); 
            disp('////////////////////////////////////////////////////////'); 
             
            % Combine results into matrix form: 
            x = [x1, x2, x3];  
            EM_P_W_act = [EM_P_W_act1, EM_P_W_act2, EM_P_W_act3]; 
            WF_component = [WF_component1, WF_component2, WF_component3]; 
            WF_mission = [WF_mission1, WF_mission2, WF_mission3]; 
            WF_propulsion = [WF_propulsion1, WF_propulsion2, WF_propulsion3]; 
             
            % Plot weight fractions 
            Comparisonplot(WF_component, WF_mission, WF_propulsion, x, EM_P_W_act); 
     
            disp(' '); 
            disp('////////////////////////////////////////////////////////'); 
            disp(' '); 

             
    end      
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end 
  
  
% Function Performs Constrained Optimization Using FMINCON 
function [x,EM_P_W]=optimizeUAS(prop_eff, mech_eff) 
global uas_Cdo uas_e prop_m prop_n bat_ED EM_eff EM_eff_gen EM_overtrq EM_PW_ratio... 
       ICE_PW_ratio start_m SFC_cruise SFC_endure des_uas_m des_pay_m des_pay_P... 
       des_fcs_P des_uas_S des_uas_AR WF_empty perf_tendure perf_tcruise perf_ROC... 
       perf_Vcruise perf_Vmax sdmin safetyfactor g msec2kts kts2msec W2hp hp2W uas_W... 
       prop_W start_W h h_TO h_AGL rho rho_TO tclimb generator_P_W prop_drag_P_W... 
       chargetype hybridtype n_recharge prop_eff_x 
    
    % Intial guesses and variable bounds: 
    % [W/S, AR, CLmax, Vstall, Vendure, ICE power] 
    x0=[100; 15;  1.2;  10;   8;  1000]; % Initial values for x  
    lb=[90;  8;  1.0;   5;   5;   300]; % Lower Bound for variables 
    ub=[200; 20; 1.25;  20;  20;  3000]; % Upper Bound for variables 
     
    disp(' '); 
    disp('Minimizing EM Power, Optimizing W/S, AR, Clmax, Vstall, Vendure, ICE Power'); 
    disp(' '); 
    options=optimset('LargeScale','off','Display','final','MaxIter',15000,... 
        'MaxFunEvals',75000); 
    
[x,fval,exitflag,output]=fmincon(@SizeCost,x0,[],[],[],[],lb,ub,@SizeConstraint,options, 
uas_W,uas_Cdo,uas_e,prop_eff,perf_Vcruise,perf_Vmax,rho,sdmin,generator_P_W,prop_eff_x); 
     
    % Adjust ICE power(W) for density at altitude, Anderson P&D, Eqn 3.12: 
    x(6)=x(6)/(1.132*rho/1.225-0.132); 
    % EM Power(W) for Theoretical Endurance Speed 
    EM_P_W=fval/(prop_eff(1,3)*EM_eff*mech_eff);  
    disp(' '); 
    disp('Optimization Completed:'); 
    disp(['Exitflag (>0 if Converged, =0 if Max Iterations, <0 if No Convergence):  ',... 
        num2str(exitflag)]) 
    output 
    output.algorithm 
    disp(' '); 
    disp('Solution Computed from Optimization:'); 
    disp(['W/S (N/m^2):  ', num2str(x(1))]); 
    disp(['Aspect Ratio:  ', num2str(x(2))]); 
    disp(['Clmax:  ', num2str(x(3))]); 
    disp(['Vstall (m/s):  ',num2str(x(4))]); 
    %disp(['Vstall (kts):  ', num2str(msec2kts*x(4))]); 
    disp(['Theoretical Vendure (m/s):  ',num2str(x(5))]); 
    %disp(['Vendure (kts):  ',num2str(msec2kts*x(5))]); 
    disp(['ICE Power for Cruise (W):  ', num2str(x(6))]);  
    % Note: Cruise power includes power for electric generation 
    disp(['Power Required for Theoretical Endurance (W):  ', num2str(fval)]); 
    disp(['EM Power for Theoretical Endurance (W):  ', num2str(EM_P_W)]); 
    disp(' '); 
     
    
    % Function Provides Constraint Equations for Optimization 
function 
[c,ceq]=SizeConstraint(x,uas_W,uas_Cdo,uas_e,prop_eff,perf_Vcruise,perf_Vmax,rho,sdmin, 
generator_P_W,prop_eff_x) 
 
    % Constraints for Minimized Nonlinear Equation 
  
    % Variables 
    % x(1):  Wing Loading, W/S (N/m^2) 
    % x(2):  Aspect Ratio, AR 
    % x(3):  Clmax 
    % x(4):  Vstall (m/s) 
    % x(5):  Vendure (m/s) 
    % x(6):  Internal Combustion Engine Power (W) 
     
    % Nonequality Constraint 
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    c=[x(4)-sdmin-x(5)];  % Note: Constraint keeps stall within specified  margin of  
                          % theoretical endurance speed. This is NOT a safety margin.   
                          % Authors recognize that the stall must be greater than the  
                          % theoretical endurance speed based on preliminary results 
                                         
    % Equality Constraints  
    ceq=[2*x(1)/(rho*x(3))-x(4)^2; 
         2*x(1)/(rho*sqrt(3*uas_Cdo*pi*uas_e)*x(5)^2)-sqrt(x(2)); 
         
(0.5*rho*perf_Vcruise^3*uas_W*uas_Cdo/x(1)+2*uas_W*x(1)/(rho*perf_Vcruise*pi*uas_e*x(2))+
prop_drag_P_W)/prop_eff(1,2)+generator_P_W/(EM_eff_gen*prop_eff(prop_eff_x,2)*prop_eff(2,
2))-mech_eff*x(6)]; 
 
end 
  
% Function Provides Cost Function for Minimizing 
function f=SizeCost(x,uas_W,uas_Cdo,uas_e,prop_eff,perf_Vcruise,perf_Vmax,rho,sdmin, 
generator_P_W,prop_eff_x) 
 
    % Nonlinear Equation to Minimize (Power Required for Endurance) 
  
    % Variables 
    % x(1):  Wing Loading, W/S (N/m^2) 
    % x(2):  Aspect Ratio, AR 
    % x(3):  Clmax 
    % x(4):  Vstall (m/s) 
    % x(5):  Vendure (m/s) 
    % x(6):  Internal Combustion Engine Power (W) 
     
    % Function to Minimize=Power Required for Endurance 
    %                      (Anderson, P&D, Eqns 5.38 & 5.56) 
    f=(uas_W*sqrt(2*x(1)/rho)*4*uas_Cdo/(3*uas_Cdo*pi*uas_e*x(2))^0.75); 
end 
    
end 
  
  
% Function performs postprocessing to calculate size of propulsion components 
function 
[WF_component_org,WF_mission_org,WF_propulsion_org,WF_component,WF_mission,WF_propulsion,
EM_P_W_act]=postprocess(x,EM_P_W,prop_eff,mech_eff) 
 
global uas_Cdo uas_e prop_m prop_n bat_ED EM_eff EM_eff_gen EM_overtrq EM_PW_ratio... 
       ICE_PW_ratio start_m SFC_cruise SFC_endure des_uas_m des_pay_m des_pay_P... 
       des_fcs_P des_uas_S des_uas_AR WF_empty perf_tendure perf_tcruise perf_ROC... 
       perf_Vcruise perf_Vmax sdmin safetyfactor g msec2kts kts2msec W2hp hp2W uas_W... 
       prop_W start_W h h_TO h_AGL rho rho_TO tclimb generator_P_W prop_drag_P_W... 
       chargetype hybridtype n_recharge prop_eff_x 
    
    % Assign Variables 
    WLstall=x(1); % Wing Loading for Stall (N/m^2), Anderson-P&D, Eqn 8.26 
    uas_WL=WLstall; % Wing Loading (N/m^2) 
    uas_AR=x(2); % Aspect Ratio 
    uas_Clmax=x(3); % Max Cl during Cruise 
    Vstall=x(4);  % Stall Velocity (m/s) 
    Vendure=x(5); % Theoretical Endurance Velocity (m/s) 
    ICE_P_W=x(6); % ICE Power (W) 
         
% Aerodynamic Calculation Section 
   % Determine Wing Area and Wing Loading 
   % Calculated Wing Area of UAS based on Wing Loading for Stall (m^2):  
   uas_S=uas_W/WLstall;  
    if (uas_S>des_uas_S) 
        disp(' '); 
        disp(['S is larger than desired due to Wing Loading for Stall->',... 
            'Increase CLmax, Vstall, or S']); 
        disp(['Desired S (m^2):  ', num2str(des_uas_S)]); 
        disp(['Calculated S (m^2):  ', num2str(uas_S)]); 
    end 
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   % Wing Geometry Calculations 
        % Assumes rectangular wing 
    uas_wing_span=sqrt(uas_S*uas_AR); % Wing Span (m) 
    uas_wing_chord=uas_S/uas_wing_span; % Wing Chord (m) 
  
   % Calculate Endurance Parameter and L/D Ratio 
    uas_K=1/(pi*uas_e*uas_AR); % Drag Polar Constant 
    % Endurance Parameter (Cl^1.5/Cd), Anderson-Flight, Eqn 6.87 
    uas_Cl_15_Cd=(3*uas_Cdo/uas_K).^0.75/(4*uas_Cdo);  
    % Lift-to-Drag Ratio (Cl/Cd), Anderson-Flight, Eqn 6.85 
    uas_Cl_Cd=sqrt(uas_Cdo/uas_K)/(2*uas_Cdo);  
  
   % Check Margin Between Theoretical Vendure and Vstall, Sets Actual Vendure 
    stallmargin = Vendure-Vstall; % Should equal 'sdmin' from optimization 
    disp(' '); 
    disp(['Difference Between Endurance Velocity and Stall Velocity (kts):  ',... 
        num2str(msec2kts*(stallmargin))]); 
  
    if (stallmargin<0) % Note: Checking stall margin -- should always be < 0 
       Vendure_act=Vstall+safetyfactor;  % Calculates Actual Vendure 
       disp(['Actual Endurance Velocity (m/s) = ', num2str(Vendure_act)]); 
       disp(['Actual Endurance Velocity (kts) = ', num2str(msec2kts*(Vendure_act))]); 
    else 
       Vendure_act=Vendure; % Sets Actual Vendure to Theoretical Vendure 
    end 
  
% Power Required Calculation Section 
    % Note: PR=Power Required (Aerodynamic)  
    %       PS=Shaft Power Required         
    %       PR=PS/prop_efficiency 
     
  % Determine Power Required for Theoretical Endurance 
    Cl=uas_WL/(0.5*rho*Vendure^2); % Lift Coefficient for Endurance, Anderson-P&D Eq 5.11 
    Cd=uas_Cdo+uas_K*Cl^2; % Drag Coefficient for Endurance, Anderson-P&D Eq 5.10 
    uas_PR_Vendure=sqrt(2*uas_W^3*Cd^2/(rho*uas_S*Cl^3)); % Power for Vendure (W)  
                                                          %  Anderson-Flight, Eq 6.27 
    uas_PS_Vendure=uas_PR_Vendure/prop_eff(prop_n,3); % Shaft Power for Vendure (W)  
                                                      % Anderson Eq 3.13  
             
    % Determine Power Required for Actual Endurance Speed 
    Cl=uas_WL/(0.5*rho*(Vendure_act)^2); % Lift Coefficient for Endurance   
    Cd=uas_Cdo+uas_K*Cl^2; % Drag Coefficient for Endurance 
    uas_PR_Vendure_act=sqrt(2*uas_W^3*Cd^2/(rho*uas_S*Cl^3)); % Power for Vendure(W) 
                                                              % Anderson-Flight, Eq 6.27 
    uas_PS_Vendure_act=uas_PR_Vendure_act/prop_eff(prop_n,3); % Shaft Power for 
Vendure(W) 
                                                              % Anderson Eq 3.13   
                
        % Determine Size and Mass of EM for HEUAS  
        if (chargetype==1) % Charge Depletion  
            % EM Size (Power Output) based on actual endurance power (W) 
            EM_P_W_act = uas_PS_Vendure_act;  
        else 
            if (chargetype==2) % Charge Sustaining 
                % EM Size (Power Output) based on actual endurance power (W) 
                EM_P_W_act = uas_PS_Vendure_act; % Actual EM Size (Power Output) (W) 
                % Mass of batteries (kg) includes payload power endurance only: 
                bat_m=(uas_PS_Vendure_act/EM_eff+des_pay_P+des_fcs_P)*... 
                    perf_tendure/(bat_ED*3600); 
                bat_Wh = bat_m*bat_ED; % Battery storage (Wh) 
             
            else 
                % (chargetype==3) Charge Sustaining w/ Segmented ISR 
                % EM is sized for recharging not actual endurance power 
                if (prop_n==1) % Single Propeller Configurations 
                     
                    charge_t = 3600; % Time(s) to recharge batteries to 70% SOC (1C Rate) 
                    % Endurance flight time for 1st segment 
                    perf_tendure_segment_1 = perf_tendure/(1+0.7*(n_recharge));  
                    % Endurance flight time for other segments   
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                    perf_tendure_segment_n = perf_tendure_segment_1*0.70; 
                 
                    % Battery mass (kg) sized for 1st segment 
                    bat_m=(uas_PS_Vendure_act/EM_eff+des_pay_P+des_fcs_P)*... 
                    perf_tendure_segment_1/(bat_ED*3600);  
                 
                    % Reduction in battery mass (kg): 
                    bat_reduction_m=(uas_PS_Vendure_act/EM_eff+des_pay_P+des_fcs_P)*... 
                        perf_tendure/(bat_ED*3600)-bat_m; 
                     
                    bat_Wh = bat_m*bat_ED; % Battery storage (Wh) 
                 
                    % EM is sized to charge battery pack to 70% SOC in 1 hour (1C Rate) 
                    EM_P_W_act=(bat_Wh/charge_t*3600+des_pay_P+des_fcs_P);             
                                     
                    % Power available for charging (W) while 
                    % maintaining payload operation and endurance flight: 
                    charge_PA = EM_P_W_act-des_pay_P-des_fcs_P; 
  
                 else % (prop_n==2) Dual Propeller Configurations 
                    % EM sized for maximum of power available from rear propeller 
                    % through windmilling or power required for endurance 
                    EM_P_W_act=max(prop_drag_P_W*EM_eff_gen*prop_eff(2,2),... 
                         uas_PS_Vendure_act); 
                      
                    % Power available for charging (W) while 
                    % maintaining payload operation and endurance flight: 
                    charge_PA = EM_P_W_act-des_pay_P-des_fcs_P; 
                      
                    % Endurance flight time for 1st segment 
                    perf_tendure_segment_1 = perf_tendure/(1+0.7*(n_recharge));  
                    % Endurance flight time for other segments   
                    perf_tendure_segment_n = perf_tendure_segment_1*0.70; 
                     
                    % Battery mass (kg) sized for 1st segment 
                    bat_m=(uas_PS_Vendure_act/EM_eff+des_pay_P+des_fcs_P)*... 
                    perf_tendure_segment_1/(bat_ED*3600); 
  
                    bat_Wh = bat_m*bat_ED; % Battery storage (Wh) 
                 
                    charge_t=bat_Wh/charge_PA*3600; % Charge time 
                     
                    % Reduction in battery mass (kg): 
                    bat_reduction_m=(uas_PS_Vendure_act/EM_eff+des_pay_P+des_fcs_P)*... 
                         perf_tendure/(bat_ED*3600)-bat_m; 
                      
                 end            
            end 
        end     
        EM_m=EM_P_W_act/EM_PW_ratio; % Mass of EM (kg)  
        EM_W=EM_m*g; % Weight of EM (N)      
    
     
    % Determine Power Required to Meet ROC Requirement 
    V=[Vstall:0.5:perf_Vmax]; % Range of Velocities (m/s) 
    Cl=uas_WL./(0.5*rho*V.^2); % Lift Coefficient, Anderson-Flight, Eq 6.26 
    Cd=uas_Cdo+uas_K*Cl.^2; % Drag Coefficient, Anderson-Flight, pg 359 
    PR_SL=sqrt(2*uas_W^3*Cd.^2./(rho*uas_S*Cl.^3)); % PR(W) for steady level flight (S&L) 
                                                    % Anderson-Flight, Eq 5.56 
    PR_climb=perf_ROC*uas_W*ones(size(Cd))+PR_SL; % PR for Climb (W),  
                                                  % Anderson-Flight, Eq 6.50 
    uas_PRmin_climb=min(PR_climb); % PR min in PR_climb vector (W) 
    uas_PSmin_climb=uas_PRmin_climb/prop_eff(1,1);  % Shaft Power Required for climb (W) 
     
        % Determine if Electric Power Needed for Climb 
        % Note: This approach assumes that using the ICE for climb alone is 
        % more efficient (lighter) than using the EM and batteries 
        disp(' '); 
        disp(['Shaft Power Required for Min ROC (W):  ',num2str(uas_PSmin_climb)]); 
        if (uas_PSmin_climb>ICE_P_W) 
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            % Calculate additional power (W) needed for climb: 
            uas_climb_add=uas_PSmin_climb-ICE_P_W;  
            disp('ICE Alone Not Sufficient for Climb'); 
            disp(['Additional Power Needed (W):  ',num2str(uas_climb_add)]); 
  
            if (uas_climb_add>EM_P_W_act*EM_overtrq) 
                % EM provides maximum amount of power 
                uas_climb_elec=EM_P_W_act*EM_overtrq;  
                disp(['HEUAS Unable to Meet Min ROC Requirement by (W):  ',... 
                    num2str(uas_climb_add-uas_climb_elec)]); 
                % Calculate actual ROC based on max power: 
                ROC_act = (ICE_P_W+uas_climb_elec-PR_SL)/(uas_W*ones(size(Cd)));  
                disp(['ROC Reduced to (ft/min):  ',num2str(196.9*ROC_act)]); 
            else 
                % Calculate additional power needed from EM (W) 
                uas_climb_elec=uas_climb_add; 
                disp(['Min ROC Requirement Met by Adding Electric Power (W):  ',... 
                    num2str(uas_climb_elec)]); 
            end    
        else 
            uas_climb_elec=0; % ICE power sufficient for climb 
            disp(['ICE Alone Exceeds Power for Climb by (W):  ',... 
                num2str(ICE_P_W-uas_PSmin_climb)]); 
        end    
  
   % Determine Power Required to Meet Max Velocity Requirement 
    Cl=uas_WL/(0.5*rho*perf_Vmax^2); % Lift Coefficient for Cruise, Anderson-P&D Eq 5.11 
    Cd=uas_Cdo+uas_K*Cl^2; % Drag Coefficient for Cruise, Anderson-P&D, Eq 5.10 
    uas_PR_Vmax=sqrt(2*uas_W^3*Cd^2/(rho*uas_S*Cl^3)); % Power Required for Vmax (W)  
                                                       % Anderson-Flight, Eq 6.27 
    uas_PS_Vmax=uas_PR_Vmax/prop_eff(1,2);  % Shaft Power Required for Vcruise (W) 
  
   % Determine Power Required to Meet Cruise Requirement 
     
    Cl=uas_WL/(0.5*rho*perf_Vcruise^2);%Lift Coefficient for Cruise, Anderson-P&D Eq 5.11 
    Cd=uas_Cdo+uas_K*Cl^2; % Drag Coefficient for Cruise, Anderson-P&D, Eq 5.10 
    uas_PR_Vcruise=sqrt(2*uas_W^3*Cd^2/(rho*uas_S*Cl^3));% Power Required for Vcruise (W)  
                                                         % Anderson-Flight, Eq 6.27 
    uas_PS_Vcruise=uas_PR_Vcruise/prop_eff(1,2);  % Shaft Power Required for Vcruise (W) 
  
   % Determine Power Required at Stall Conditions 
    Cl=uas_WL/(0.5*rho*Vstall^2); % Lift Coefficient for Stall  
    Cd=uas_Cdo+uas_K*Cl^2;  % Drag Coefficient for Cruise 
    uas_PR_Vstall=sqrt(2*uas_W^3*Cd^2/(rho*uas_S*Cl^3)); % Power Required for Vstall (W) 
                                                         % Anderson-Flight, Eq 6.27 
    uas_PS_Vstall=uas_PR_Vstall/prop_eff(prop_n,3); % Shaft Power Required for Vstall (W) 
  
   % Place Power Requirements into a Vector 
    % Shaft Power Required for the Mission Segments (W): 
    PS=[uas_PSmin_climb, uas_PS_Vcruise, uas_PS_Vendure, uas_PS_Vmax];  
    % Size of ICE to meet PR (W), includes payload power and generator efficiency: 
    ICE_P_W_org=max(PS)+ (des_pay_P+des_fcs_P)/EM_eff_gen;  
    ICE_P_hp_org=W2hp*ICE_P_W_org; % Size of ICE to meet PR (hp)  
    ICE_Size_in3_org=ICE_P_hp_org; % Size of ICE (in^3), assume 1 hp=1 in^3 
  
   % Plot Power Required Curve 
    V=[Vstall-2.57:0.5:perf_Vmax]; % Range of Velocities (m/s) 
    Cl=uas_WL./(0.5*rho*V.^2); % Lift Coefficient, Anderson-Flight, Eq 6.26 
    Cd=uas_Cdo+uas_K*Cl.^2; % Drag Coefficient, Anderson-Flight, pg 359 
    PR = sqrt(2*uas_W^3*Cd.^2./(rho*uas_S*Cl.^3)); 
    figure; 
    plot(msec2kts*V,PR,'k--'); hold on; 
    plot(msec2kts*Vendure,uas_PR_Vendure,'bo'); hold on; 
    plot(msec2kts*Vstall,uas_PR_Vstall,'ro'); hold on; 
    plot(msec2kts*(Vstall+sdmin),uas_PR_Vendure_act,'go'); hold on; 
    plot(msec2kts*perf_Vcruise,uas_PR_Vcruise,'mo'); hold on; 
    xlabel('Velocity (kts)','fontsize',10); ylabel('Power (W)','fontsize',10); 
    legend_PR=legend('Power Required','Theoretical Endurance','Stall',... 
        'Actual Endurance','Cruise','Location','NW'); 
    set(legend_PR,'fontsize',8); 
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    grid on 
    %title('Power Required to Meet Velocity Requirements'); 
  
  
% Section for Original UAS (non-hybrid) 
   % Mission Segment Weight Fractions for the Original Configuration 
    Wo=uas_W; % Desired UAS Weight (N) 
    WF_TO_org=0.999; % Weight Fraction for Warm up and TO 
                 % Assume catapult takeoff with no TO distance requirement  
    % Weight Fraction for Climb, Raymer-A/C Design Eq 17.97 
        % Assumes endurance speed, min climb power, density at highest altitude 
    WF_climb_org = exp(-SFC_endure*h_AGL/(1-(0.5*rho*Vendure_act^2*uas_S)*... 
        (uas_Cdo+uas_K*uas_Clmax^2)/(uas_PSmin_climb/Vendure_act)));  
    R=perf_Vcruise*perf_tcruise; % Range of UAS during one-way cruise (m) 
    % Lift coefficient for cruise, Anderson-P&D, Eq 5.11 
    Cl_cruise=uas_WL/(0.5*rho*perf_Vcruise^2); 
    % Drag coefficient for cruise, Anderson-P&D, Eq 5.10 
    Cd_cruise=uas_Cdo+uas_K*Cl_cruise^2;  
    % Weight Fraction for Cruise, Derived from Breguet Formula: 
    WF_cruise_org=exp(-R*SFC_cruise/(prop_eff(1,2)*(Cl_cruise/Cd_cruise))); 
    % Lift Coefficient for Endurance, Anderson-P&D, Eq 5.11: 
    Cl_endure=uas_WL/(0.5*rho*Vendure_act^2);  
    % Drag Coefficient for Endurance, Anderson-P&D, Eq 5.10: 
    Cd_endure=uas_Cdo+uas_K*Cl_endure^2; 
    % Weight Fraction for Endurance, Raymer, Section 3.4: 
    WF_endure_org=exp(-Vendure_act*perf_tendure*SFC_endure/(prop_eff(1,3)*... 
        (Cl_endure/Cd_endure)));  
    WF_landing_org=0.9975; % Weight Fraction for Landing, Raymer, Section 3.4 
    % Weight Fraction for Fuel, Raymer, Section 3.4 
    WF_fuel_org=1.06*(1-WF_TO_org*WF_climb_org*WF_cruise_org*WF_endure_org*... 
        WF_cruise_org*WF_landing_org);  
    pay_W_org=Wo*(1-WF_fuel_org-WF_empty); % Calculate Payload Weight (N) 
    pay_m_org=pay_W_org/g; % Payload Mass of Original UAS (kg) 
    WF_pay_org=pay_W_org/Wo; % Weight Fraction for the Payload 
    ICE_m_org=ICE_P_W_org/ICE_PW_ratio; % Engine Mass of Original UAS (kg) 
    fuel_m_org=WF_fuel_org*Wo/g; % Fuel mass of Original UAS (kg)  
    ess_m_org=0.25; % Mass of original Generator (or Battery Pack) (kg) 
    uas_empty_m_org=des_uas_m-fuel_m_org-pay_m_org; % Empty Mass of Original UAS (kg) 
    uas_glider_m=uas_empty_m_org-ICE_m_org-ess_m_org-prop_m;% Glider Mass of Original(kg) 
    propulsion_m_org=ICE_m_org+ess_m_org+prop_m;% Propulsion System Mass of Original(kg) 
    % Weight Fraction for Entire Propulsion System for Original UAS: 
    WF_propulsion_tot_org=propulsion_m_org*g/Wo;  
    % Create vector for mission weight fractions: 
    WF_mission_org = [WF_TO_org; WF_climb_org; WF_cruise_org;... 
        WF_endure_org; WF_landing_org];  
    % Create vector for propulsion system component weight fractions: 
    WF_propulsion_org = [WF_fuel_org; ICE_m_org/des_uas_m; ess_m_org/des_uas_m/2;... 
        ess_m_org/des_uas_m/2; prop_m/des_uas_m];  
    % Create vector for aircraft component weight fractions: 
    WF_component_org = [uas_glider_m/des_uas_m; propulsion_m_org/des_uas_m;... 
        uas_empty_m_org/des_uas_m; fuel_m_org/des_uas_m; pay_m_org/des_uas_m]; 
  
  
% Section for Hybrid-Electric UAS (HEUAS) 
        % Determine Mass and Storage Capacity of Batteries for HEUAS for Charge Depletion 
        if (chargetype==1) 
             
            % Mass of batteries (kg) includes payload/avionics power for entire mission 
                % Also includes electric power required for climbing 
            bat_m=(uas_PS_Vendure_act/EM_eff*perf_tendure+(des_pay_P+des_fcs_P)*... 
                (perf_tendure+perf_tcruise*2)+uas_climb_elec*tclimb)/(bat_ED*3600); 
             
            bat_Wh = bat_m*bat_ED; % Battery storage (Wh) 
            
        end 
        bat_W=bat_m*g; % Weight of Batteries (N) 
  
    % Determine Physical Size of ICE 
    ICE_P_hp=W2hp*ICE_P_W; % Size of ICE to meet PR (hp)  
    ICE_Size_in3=ICE_P_hp; % Size of ICE (in^3), assume 1 hp=1 in^3 
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    % Mission Segment Weight Fractions for HEUAS Configuration 
    Wo=uas_W; % Desired UAS Weight (N) 
    WF_EM=EM_W/Wo; % Weight Fraction of EM 
    WF_bat=bat_W/Wo; % Weight Fraction of batteries 
    WF_TO=WF_TO_org; % Weight Fraction for Warm up and TO 
                     % Assume catapult takeoff with no TO distance requirement        
    WF_climb=WF_climb_org; % Weight Fraction for Climb 
    if (chargetype==1) % Charge Depletion 
        WF_cruise=WF_cruise_org; 
        WF_endure=1; % Weight Fraction for Endurance, All-Electric (No Recharging) 
    else % Charge Sustaining (includes Segmented) 
        if (prop_n==1) % Single Prop 
            % Weight fraction for cruise = fuel required for cruise speed + 
            % excess fuel required to power generator 
            WF_cruise=WF_cruise_org*(1-SFC_cruise*(des_pay_P+des_fcs_P)/... 
                EM_eff_gen*perf_tcruise/Wo);  
        else % Dual Prop  
            % Weight fraction for cruise = fuel required for cruise speed + 
            % excess fuel required to power generator 
            WF_cruise=WF_cruise_org*(1-SFC_cruise*prop_drag_P_W*perf_tcruise/Wo);  
        end 
         
        if (chargetype==2) % Charge Sustaining Only 
            WF_endure=1; % Weight Fraction for Endurance, All-Electric (No Recharging) 
         
        else % (chargetype==3) Segmented Loiter 
            charge_fuel = SFC_cruise*(uas_PS_Vendure_act+EM_P_W_act/EM_eff_gen)*... 
                charge_t*(n_recharge); 
                % Fuel weight (N) required to recharge batteries (assume cruise SFC)  
            WF_endure = (Wo-charge_fuel)/Wo;    
                % Endurance weight fraction including fuel for recharging cycles 
        end 
    end 
    WF_landing=WF_landing_org; % Weight Fraction for Landing  
    % Weight Fraction for Fuel, Raymer, Section 3.4: 
    WF_fuel=1.06*(1-WF_TO*WF_climb*WF_cruise*WF_endure*WF_cruise*WF_landing);  
    ICE_m=ICE_P_W/ICE_PW_ratio; % Engine Mass of HEUAS (kg)  
    ICE_W=ICE_m*g; % ICE Weight (N) 
    WF_ICE=ICE_W/Wo; % Weight Fraction of ICE 
    WF_prop=prop_m*prop_n*g/Wo; % Weight Fraction of propeller(s) 
    fuel_m=WF_fuel*Wo/g; % Fuel mass of HEUAS (kg) 
    fuel_W=fuel_m*g; % Fuel Weight (N) 
    % Payload Mass of HEUAS (kg): 
    pay_m=des_uas_m-uas_glider_m-ICE_m-fuel_m-start_m-bat_m-EM_m-prop_m*prop_n;  
    pay_W=pay_m*g; % Payload Weight of HEUAS (N) 
    WF_pay=pay_W/Wo; % Weight Fraction for the Payload 
    uas_empty_m=des_uas_m-fuel_m-pay_m; % Empty Mass of HEUAS (kg) 
    propulsion_m=ICE_m+start_m+bat_m+EM_m+prop_m*prop_n;% Propulsion System for HEUAS(kg) 
    WF_propulsion_tot=propulsion_m*g/Wo; % Weight Fraction for Entire Propulsion System 
    % Create vector for mission weight fractions: 
    WF_mission = [WF_TO; WF_climb; WF_cruise; WF_endure; WF_landing];  
    % Create vector for propulsion system component weight fractions: 
    WF_propulsion = [WF_fuel; ICE_m/des_uas_m; WF_bat; WF_EM;... 
        (prop_m*prop_n+start_m)*g/Wo];  
    % Create vector for aircraft component weight fractions: 
    WF_component = [uas_glider_m/des_uas_m; propulsion_m/des_uas_m;... 
        uas_empty_m/des_uas_m; fuel_m/des_uas_m; pay_m/des_uas_m]; 
   
     
% Check Performance Requirements     
   % Check the ROC Requirement Requirement 
    % Max ROC (m/s), Anderson-P&D, Eqs 5.117 and 5.118 
    ROCmax=(ICE_P_W*prop_eff(1,1)-uas_PR_Vendure_act)/uas_W;  
    if (ROCmax>perf_ROC) 
        disp(['HEUAS ICE Alone Exceeds ROC Requirement by (ft/min):  ',... 
            num2str(196.9*(ROCmax-perf_ROC))]); 
    else 
        disp(['HEUAS ICE Alone Does Not Meet ROC Requirement by (ft/min):  ',... 
            num2str(196.9*(perf_ROC-ROCmax))]); 
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    end     
  
    % Check Max Speed Requirement 
    disp(' ') 
    if (ICE_P_W+EM_overtrq*EM_P_W_act)>(uas_PS_Vmax)  
        % Over-Torque EM for short periods of time (approx 30 seconds) 
        disp(['HE Propulsion System Meets Vmax Requirement by (W):  ',... 
            num2str((ICE_P_W+EM_overtrq*EM_P_W_act)-(uas_PS_Vmax))]); 
    else 
        disp(['HE Propulsion System Does not Meet Vmax Requirement by (W):  ',... 
            num2str((uas_PS_Vmax)-(ICE_P_W+EM_overtrq*EM_P_W))]); 
    end 
    %disp(['Actual Max Velocity for HEUAS (kts):  ']); 
    disp(' '); 
  
% Display Data 
disp(' '); 
disp('Aerodynamic Parameters:'); 
disp([' UAS Oswald Efficiency Factor:  ', num2str(uas_e)]); 
disp([' UAS Zero-Lift Drag Coefficient (Cdo):  ', num2str(uas_Cdo)]); 
disp([' Max Lift Coefficient (Clmax):  ', num2str(uas_Clmax)]); 
disp(' '); 
disp('Performance Parameters:'); 
disp([' Endurance Time (hr):  ', num2str(perf_tendure/3600)]); 
disp([' Rate-of-Climb (ft/min):  ', num2str(perf_ROC*60*3.28)]); 
disp([' Cruise Velocity (kts):  ', num2str(msec2kts*perf_Vcruise)]); 
disp([' Endurance Velocity-Theoretical (kts):  ',num2str(msec2kts*Vendure)]); 
disp([' Endurance Velocity-Actual (kts):  ',num2str(msec2kts*Vendure_act)]); 
disp([' Endurance Parameter-Actual (Cl^1.5/Cd):  ', num2str(uas_Cl_15_Cd)]); 
disp([' Stall Velocity-Actual (kts):  ',num2str(msec2kts*Vstall)]); 
disp([' Max Velocity (kts):  ', num2str(msec2kts*perf_Vmax)]); 
disp([' Payload + Avionics Power (W):  ', num2str(des_pay_P+des_fcs_P)]); 
disp(' '); 
disp('Aerodynamic Power Requirements: '); 
disp([' Power Required for Climb (W):  ', num2str(uas_PRmin_climb)]); 
disp([' Power Required for Cruise (W):  ', num2str(uas_PR_Vcruise)]); 
disp([' Power Required for Theoretical Endurance (W):  ', num2str(uas_PR_Vendure)]); 
disp([' Power Required for Stall (W):  ', num2str(uas_PR_Vstall)]); 
disp([' Power Required for Actual Endurance (W):  ', num2str(uas_PR_Vendure_act)]); 
disp([' Power Required for Max Velocity (W):  ', num2str(uas_PR_Vmax)]); 
disp(' '); 
disp('UAS Design Results:'); 
disp([' UAS Total Mass-Desired (kg):  ', num2str(des_uas_m)]); 
disp([' UAS Total Mass-Actual (kg):  ', num2str(Wo/g)]); 
disp([' Payload Mass-Desired (kg):  ', num2str(des_pay_m)]); 
disp([' Payload Mass-Actual for Original (kg):  ', num2str(pay_m_org)]); 
disp([' Payload Mass-Actual for HEUAS (kg):  ', num2str(pay_m)]); 
disp([' Original UAS Empty Mass (kg):  ', num2str(uas_empty_m_org)]); 
disp([' HEUAS Empty Mass (kg):  ', num2str(uas_empty_m)]); 
disp([' Wing Area-Desired (m^2):  ', num2str(des_uas_S)]); 
disp([' Wing Area-Actual (m^2):  ', num2str(uas_S)]); 
disp([' Aspect Ratio-Desired:  ', num2str(des_uas_AR)]); 
disp([' Aspect Ratio-Actual:  ', num2str(uas_AR)]); 
disp([' Wing Span (m):  ', num2str(uas_wing_span)]); 
disp([' Wing Chord (m):  ', num2str(uas_wing_chord)]); 
disp(' '); 
disp('Weight Fractions for Original Configuration:'); 
disp([' WF for Warm Up/Takeoff:  ', num2str(WF_TO_org)]); 
disp([' WF for Climb:  ', num2str(WF_climb_org)]); 
disp([' WF for Cruise:  ', num2str(WF_cruise_org)]); 
disp([' WF for Endure:  ', num2str(WF_endure_org)]); 
disp([' WF for Landing:  ', num2str(WF_landing_org)]); 
disp([' WF-Empty:  ', num2str(WF_empty)]); 
disp([' WF-Fuel:  ', num2str(WF_fuel_org)]); 
disp([' WF-Payload:  ', num2str(WF_pay_org)]); 
disp([' WF-Propulsion (ICE, Gen, Prop):  ', num2str(WF_propulsion_tot_org)]); 
disp(' '); 
disp('Propulsion Requirements for Original UAS'); 
disp([' ICE Size (W):  ', num2str(ICE_P_W_org)]); 
disp([' ICE Size (hp):  ', num2str(ICE_P_hp_org)]); 
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disp([' ICE Size (in^3):  ', num2str(ICE_Size_in3_org)]); 
disp(' '); 
disp('Weight Fractions for HEUAS:'); 
disp([' WF for Warm Up/Takeoff:  ', num2str(WF_TO)]); 
disp([' WF for Climb:  ', num2str(WF_climb)]); 
disp([' WF for Cruise:  ', num2str(WF_cruise)]); 
disp([' WF for Endure:  ', num2str(WF_endure)]); 
disp([' WF for Landing:  ', num2str(WF_landing)]); 
disp([' WF-Empty:  ', num2str(uas_empty_m/des_uas_m)]); 
disp([' WF-Fuel:  ', num2str(WF_fuel)]); 
disp([' WF-Payload:  ', num2str(WF_pay)]); 
disp([' WF-Propulsion (ICE, Starter, Batteries, EM, Prop):  ',... 
    num2str(WF_propulsion_tot)]); 
disp(' '); 
disp('Propulsion Requirements for HEUAS:'); 
disp([' ICE Size (W):  ', num2str(ICE_P_W)]); 
disp([' ICE Size (hp):  ', num2str(ICE_P_hp)]); 
disp([' ICE Size (in^3):  ', num2str(ICE_Size_in3)]); 
disp([' ICE Cruise SFC (lb/hp/hr):  ', num2str(SFC_cruise/1.6576E-6)]); 
disp([' Fuel Mass Required (kg):  ', num2str(fuel_m)]); 
disp([' EM Size (W):  ', num2str(EM_P_W_act)]); 
disp([' EM Size (kg):  ', num2str(EM_m)]); 
disp([' EM Efficiency (%):  ', num2str(100*EM_eff)]); 
disp([' EM Over-Torque Factor:  ', num2str(EM_overtrq)]); 
disp([' Battery Mass (kg):  ', num2str(bat_m)]); 
disp([' Battery Storage (Wh):  ', num2str(bat_Wh)]); 
disp(' '); 
    if (chargetype==3) 
        disp('Recharging Requirements:'); 
        disp(['  Electric Power Available to Recharge Batteries (W):  ',... 
            num2str(charge_PA)]); 
        disp(['  Endurance Time on Initial Charge (min):  ',... 
            num2str(perf_tendure_segment_1/60)]); 
        disp(['  Endurance Time after Recharge (min):  ',... 
            num2str(perf_tendure_segment_n/60)]); 
        disp(['  Time to Recharge Batteries (min):  ',num2str(charge_t/60)]); 
        disp(['  # Recharging Cycles:  ',num2str(n_recharge)]); 
        disp(['  New Mission Length (hrs):  ',... 
            num2str((perf_tendure_segment_1+perf_tendure_segment_n*n_recharge+... 
            perf_tcruise*2+charge_t*n_recharge)/3600)]); 
         
        disp(['  Total Fuel Required to Recharge Batteries (kg):  ',... 
            num2str(charge_fuel/g)]); 
        disp(['  Fuel Increase to Recharge Batteries (%):  ',... 
            num2str(fuel_m/(fuel_m-charge_fuel/g)*100-100)]); 
         
        disp(['  Battery Mass Reduction (kg):  ', num2str(bat_reduction_m)]); 
        disp(['  Battery Mass Reduction (%):  ', ... 
            num2str(bat_reduction_m/(bat_reduction_m+bat_m)*100)]); 
        disp(' '); 
    end 
     
    if (prop_n==2) 
       disp(['Cruise Power Required to Overcome Propeller Windmilling (W):  ',... 
           num2str(prop_drag_P_W)]); 
       disp(' '); 
    end 
     
% % Create tab-delineated output file for results     
% FID=fopen('heuasresults', 'a'); 
%         fprintf(FID,'%s \t %g \t %g \t %g \t %g \t %g \t %g \t %g \t %g \t %g \t %g...  
%            \t %g \t %g \t %g \t %g \t %g \t %g \t %g \t %g \t %g \t %g \t %g \t %g...  
%            \t %g \t %g \t %g \t %g \t %g \t %g \t %g \t %g \t %g \t %g \t %g \t %g... 
%            \t %g \t %g \t %g \t %g \n',... 
%        hybridtype, chargetype, h, h_AGL, bat_ED, uas_Cdo, uas_e, EM_eff, EM_eff_gen,...  
%        des_uas_m, des_pay_m, des_pay_P, des_fcs_P, perf_tendure, perf_tcruise,... 
%        perf_ROC, perf_Vcruise, perf_Vmax, uas_WL, uas_AR, uas_Clmax, Vstall,... 
%        Vendure, Vendure_act, uas_PRmin_climb, uas_PR_Vcruise, uas_PR_Vendure,... 
%        uas_PR_Vendure_act, uas_PR_Vmax, pay_m, uas_empty_m, uas_S, uas_wing_span,... 
%        uas_wing_chord, ICE_P_W, fuel_m, EM_P_W_act, bat_m, bat_Wh); 
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% fclose('all');   
     
end 
  
  
% Function plots weight fraction results 
function []=WFplot(WF_component_org, WF_mission_org, WF_propulsion_org, WF_component, 
WF_mission, WF_propulsion) 
  
figure; colormap('bone'); 
bar1=bar([WF_component_org(1) WF_component(1); WF_component_org(2) WF_component(2);... 
    WF_component_org(3) WF_component(3); WF_component_org(4) WF_component(4);... 
    WF_component_org(5) WF_component(5)],'group'); 
set(gca,'YGrid','on','XTickLabel',{'Glider';'Propulsion';'Empty';'Fuel';'Payload'},... 
    'fontsize',10); 
xlabel('Aircraft Component','fontsize',10); ylabel('Weight Fraction','fontsize',10); 
set(bar1(1),'FaceColor',[0.1098 0.1804 0.3098]); 
set(bar1(2),'FaceColor',[0.8706 0.9294 1]); 
legend1=legend('Original','Hybrid'); 
set(legend1,'fontsize',8); 
%title('Weight Fractions, Normalized to UAS Weight'); 
  
figure; colormap('bone'); 
bar2=bar([1-WF_mission_org(1) 1-WF_mission(1); 1-WF_mission_org(2) 1-WF_mission(2);... 
    1-WF_mission_org(3)^2 1-WF_mission(3)^2; 1-WF_mission_org(4) 1-WF_mission(4);... 
    1-WF_mission_org(5) 1-WF_mission(5)],'group'); 
set(gca,'YGrid','on','XTickLabel',{'Warm-
up/TO';'Climb';'Cruise';'Endurance';'Landing'},... 
    'fontsize',10); 
xlabel('Mission Segment','fontsize',10); ylabel('Weight Fraction','fontsize',10); 
set(bar2(1),'FaceColor',[0.1098 0.1804 0.3098]); 
set(bar2(2),'FaceColor',[0.8706 0.9294 1]); 
legend2=legend('Original','Hybrid'); 
set(legend2,'fontsize',8); 
%title('Fuel Weight Fractions'); 
  
figure; colormap('bone'); 
bar3=bar([WF_propulsion_org(1) WF_propulsion(1); WF_propulsion_org(2) 
WF_propulsion(2);... 
    WF_propulsion_org(3) WF_propulsion(3); WF_propulsion_org(4) WF_propulsion_org(4);... 
    WF_propulsion_org(5) WF_propulsion(5)],'group'); 
set(gca,'YGrid','on','XTickLabel',{'Fuel';'ICE';'Batteries';'EM';'Other'},'fontsize',10); 
xlabel('Propulsion Component','fontsize',10); ylabel('Weight Fraction','fontsize',10); 
set(bar3(1),'FaceColor',[0.1098 0.1804 0.3098]); 
set(bar3(2),'FaceColor',[0.8706 0.9294 1]); 
legend3=legend('Original','Hybrid'); 
set(legend3,'fontsize',8); 
%title('Propulsion System Weight Fraction Comparison'); 
  
end 
  
  
% Function plots comparison results 
function []=Comparisonplot(WF_component,WF_mission,WF_propulsion,x,EM_P_W) 
  
global bat_ED des_uas_m 
  
figure; colormap('bone'); 
bar1=bar([WF_component(1,1) WF_component(1,2) WF_component(1,3);... 
    WF_component(2,1) WF_component(2,2) WF_component(2,3);... 
    WF_component(3,1) WF_component(3,2) WF_component(3,3);... 
    WF_component(4,1) WF_component(4,2) WF_component(4,3);... 
    WF_component(5,1) WF_component(5,2) WF_component(5,3)],'group'); 
set(gca,'YGrid','on','XTickLabel',{'Glider';'Propulsion';'Empty';'Fuel';'Payload'},... 
    'fontsize',10); 
xlabel('Aircraft Component','fontsize',10); ylabel('Weight Fraction','fontsize',10); 
set(bar1(1),'FaceColor',[0.1098 0.1804 0.3098]); 
set(bar1(2),'FaceColor',[0.3569 0.5961 0.9647]); 
set(bar1(3),'FaceColor',[0.8706 0.9294 1]); 
legend1 = legend('Clutch-Start','Electric-Start','Centerline-Thrust'); 
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set(legend1,'fontsize',8); 
%title(['Weight Fractions, Normalized to UAS Weight (',num2str(des_uas_m),' kg)']); 
  
figure; colormap('bone'); 
bar2=bar([WF_propulsion(1,1) WF_propulsion(1,2) WF_propulsion(1,3);... 
    WF_propulsion(2,1) WF_propulsion(2,2) WF_propulsion(2,3);... 
    WF_propulsion(3,1) WF_propulsion(3,2) WF_propulsion(3,3);... 
    WF_propulsion(4,1) WF_propulsion(4,2) WF_propulsion(4,3);... 
    WF_propulsion(5,1) WF_propulsion(5,2) WF_propulsion(5,3)],'group'); 
set(gca,'YGrid','on','XTickLabel',{'Fuel';'ICE';'Batteries';'EM';'Other'},'fontsize',10); 
xlabel('Propulsion Component','fontsize',10); ylabel('Weight Fraction','fontsize',10); 
set(bar2(1),'FaceColor',[0.1098 0.1804 0.3098]); 
set(bar2(2),'FaceColor',[0.3569 0.5961 0.9647]); 
set(bar2(3),'FaceColor',[0.8706 0.9294 1]); 
set(legend,'fontsize',8); 
legend2 = legend('Clutch-Start','Electric-Start','Centerline-Thrust'); 
set(legend2,'fontsize',8); 
%title(['Propulsion System Weight Fraction Comparison for ',num2str(des_uas_m),... 
%' kg UAS']); 
  
disp(' '); 
disp('Hybrid Component Comparision:'); 
disp(' '); 
disp('Hybrid Type         ICE(W)    Fuel(kg)    EM(W)    Battery(Wh)    Payload(kg)'); 
disp('-----------------------------------------------------------------------------'); 
disp(['Clutch-Start       ',num2str(x(6,1)),'   ',num2str(WF_propulsion(1,1)*... 
    des_uas_m),'   ',num2str(EM_P_W(1)),'    ',num2str(WF_propulsion(3,1)*... 
    des_uas_m*bat_ED),'    ',num2str(WF_component(5,1)*des_uas_m)]); 
  
disp(['Electric-Start     ',num2str(x(6,2)),'   ',num2str(WF_propulsion(1,2)*... 
    des_uas_m),'   ',num2str(EM_P_W(2)),'    ',num2str(WF_propulsion(3,2)*... 
    des_uas_m*bat_ED),'    ',num2str(WF_component(5,2)*des_uas_m)]); 
  
disp(['Centerline-Thrust  ',num2str(x(6,3)),'   ',num2str(WF_propulsion(1,3)*... 
    des_uas_m),'   ',num2str(EM_P_W(3)),'    ',num2str(WF_propulsion(3,3)*... 
    des_uas_m*bat_ED),'    ',num2str(WF_component(5,3)*des_uas_m)]); 
  
end 
 

 

 



 

123 

Bibliography 

1Newcome, L. R., Unmanned Aviation: A Brief History of Unmanned Aerial Vehicles, 
AIAA, Reston, VA, 2004. 

2Zaloga, S., Unmanned Aerial Vehicles: Robotic Air Warfare 1917-2007, Osprey 
Publishing Ltd., Westminster, MD, 2008. 

3Kaplan, F. “Attack of the Drones,” Newsweek, 28 September 2009. 

4“Predator Passes 600,000 Flight Hours,” Air Force News Service, 30 September 2009.  
URL: http://www.af.mil/news/story.asp?id=123170356 [cited 7 October 2009]  

5Office of the Secretary of Defense, “Unmanned Systems Roadmap (2007-2032),” 10 
December 2007. 

6Headquarters United States Air Force, “USAF Unmanned Aircraft Systems Flight 
Plan (2009-2047),” 18 May 2009. 

7Scarborough, R., “Taliban Makes IEDs Deadlier,” Washington Times, 15 September 
2009,   p. 1. 

8Joint Improvised Explosive Device Defeat Organization. URL: 
https://www.jieddo.dod.mil/about.aspx [cited 24 August 2009] 

9Lefkow, C. “US General Pushes for Unmanned Vehicles”, Google News (AFP), 12 
August 2009.  

10Office of the Secretary of Defense, “Unmanned Aircraft Systems Roadmap (2005-
2030),” 4 August 2005. 

11Warwick, G., “Hybrid-Electric UAVs Under Development,” Aviation Week & Space 
Technology, 20 July 2009, p 38. 

12Van den Bossche, P. “Structure of a series hybrid-electric vehicle with peak power 
unit,” Wikipedia, URL: http://en.wikipedia.org/wiki/File:Hybridpeak.png [cited 24 
September 2009] 

13Miller, J. M., Propulsion Systems for Hybrid Vehicles, IEE Power & Energy Series, 
IEE, London, UK, 2004, Chaps. 1, 2. 

14Van den Bossche, P. “Structure of a parallel hybrid vehicle,” Wikipedia, URL: 
http://en.wikipedia.org/wiki/File:Hybridpar.png [cited 24 September 2009] 

15Van den Bossche, P. “Structure of a combined hybrid vehicle,” Wikipedia, URL: 
http://en.wikipedia.org/wiki/File:Hybridcombined.png [cited 25 September 2009] 

http://www.af.mil/news/story.asp?id=123170356�
https://www.jieddo.dod.mil/about.aspx�
http://en.wikipedia.org/wiki/File:Hybridpeak.png�
http://en.wikipedia.org/wiki/File:Hybridpar.png�
http://en.wikipedia.org/wiki/File:Hybridcombined.png�


 

124 

16Honda, Inc.,  “Insight Heritage,” URL: http://automobiles.honda.com/insight-
hybrid/heritage.aspx [cited 23 September 2009] 

17Garrett, J. “Toyota and Ford Reach Hybrid Milestones,” New York Times, 11 March 
2009.   

18Paur, J., “Hybrid Power Comes to Aviation,” Wired.com, 28 July 2009, URL: 
http://www.wired.com/autopia/2009/07/hybrid-aviation/ [cited 2 October 2009] 

19Warwick, G., “Aurora Working on New Hybrid Engine for UAVs,” Aerospace Daily 
& Defense Report, 10 April 2009, p 4. 

20Wall, R., “New Engine Concepts Emerge for UAVs and UCAVs,” Aviation Week & 
Space Technology, 3 March 2008, p 24.   

21Gitlin, S. and Boyer, M., “AeroVironment Puma Small UAS Achieves Record Flight 
of Over Nine Hours Using Fuel Cell Battery Hybrid System,” AeroVironment, Monrovia, 
CA, 6 March 2008.   

22Mecham, Michael. “Boeing Fuel Cell Points to UAVS,” AviationWeek.com, 3 April 
2008, URL:  http://www.aviationweek.com/aw/generic/story.jsp?id=news/CELL04038. 
xml&headline=Boeing%20Fuel%20Cell%20Flights%20Point%20To%20UAVs&channe
l=defense#  [cited 17 September 2009] 

23Toensmier, P., “The Cutting Edge: Fuel Cell Powers Manned Flight,” Defense 
Technology International, Vol. 3, No. 8, September 2009.  

 
24National Aeronautics and Space Administration, “Helios Prototype: The forerunner 

of 21st century solar-powered ‘atmospheric satellites,’” URL: 
http://www.nasa.gov/centers/dryden/news/FactSheets/FS-068-DFRC.html [cited 6 
October 2009] 

25Bradley, T. H., Moffitt, B. A., Parekh, D. E., Fuller, T. F., and Mavris, D. N., 
“Energy Management for Fuel Cell Powered Hybrid-Electric Aircraft,” presented at 
AIAA 7th International Energy Conversion Engineering Conference, AIAA Paper 2009-
4950, Denver, CO, August 2009. 

26Becker, T. J., “Flying on Hydrogen: Georgia Tech Researchers Use Fuel Cells to 
Power Unmanned Aerial Vehicle,” Georgia Tech Research News, Atlanta, GA, 28 
August 2006.   

27Anderson, M., “At a Glance: Ion Tiger,” Office of Naval Research Program Code 
332, March 2009.   

28Harmon, F. G., Frank, A. A., and Chattot J. J., “Conceptual Design and Simulation 
of a Small Hybrid-Electric Unmanned Aerial Vehicle,” Journal of Aircraft, Vol. 43, No. 
5, Sept-Oct 2006, pp 1490-1498. 

http://automobiles.honda.com/insight-hybrid/heritage.aspx�
http://automobiles.honda.com/insight-hybrid/heritage.aspx�
http://www.wired.com/autopia/2009/07/hybrid-aviation/�
http://www.aviationweek.com/aw/generic/story.jsp?id=news/CELL04038.%20xml&headline=Boeing%20Fuel%20Cell%20Flights%20Point%20To%20UAVs&channel=defense�
http://www.aviationweek.com/aw/generic/story.jsp?id=news/CELL04038.%20xml&headline=Boeing%20Fuel%20Cell%20Flights%20Point%20To%20UAVs&channel=defense�
http://www.aviationweek.com/aw/generic/story.jsp?id=news/CELL04038.%20xml&headline=Boeing%20Fuel%20Cell%20Flights%20Point%20To%20UAVs&channel=defense�
http://www.nasa.gov/centers/dryden/news/FactSheets/FS-068-DFRC.html�


 

125 

29Hrad, P. M., “Conceptual Design Tool for Fuel-Cell Powered Micro Air Vehicles,” 
Master’s Thesis, Dept. of Aeronautics and Astronautics, Air Force Institute of 
Technology, Wright-Patterson AFB, OH, March 2010.  

30Harmats, M. and Weihs, D., “Hybrid-Propulsion High Altitude Long-Endurance 
Remotely Piloted Vehicle,” Journal of Aircraft, Vol. 36, No. 2, 1999, pp 321-331. 

31Heywood, J. B., Internal Combustion Engine Fundamentals, McGraw-Hill, New 
York, NY, 1988, Chaps. 1, 2, 15.  

32Turns, S. R., An Introduction to Combustions: Concepts and Applications, 2nd ed., 
McGraw-Hill, Boston, MA, 2000, Chap. 2.  

33Anderson, J. D., Jr., Aircraft Performance and Design, McGraw-Hill, Boston, MA, 
1999, Chaps. 2, 3, 5.  

34USD(AT&L). DoD Management Policy for Energy Commodities and Related 
Services (DOD4140.25). U.S. Department of Defense, April 2004. 

35Drela, M., “QPROP Documents: First-Order DC Electric Motor Model,” QPROP, 
Version 1.21, Massachusetts Institute of Technology, February 2007.   

36Drela, M., “QPROP Documents: DC Motor/Propeller Matching,” QPROP, Version 
1.21, Massachusetts Institute of Technology, 3 March 2005.   

37Stux, A. M. and Swider-Lyons, K., “Survey of Commercial Small Lithium Polymer 
Batteries,” Naval Research Laboratory, NRL/MR/6110--07-0973, Washington, DC, 19 
September 2007. 

38Buchmann, I., “What’s the best battery?” BatteryUniversity.com, November 2006. 
URL: http://www.batteryuniversity.com/partone-3.htm [cited 15 October 2008] 

39Mikhaylik, Y., “Fundamental Chemistry of Sion Power Li/S Battery,” presented at 
IBA-HBC 2006, Waikoloa, HI, 9-12 January 2006. 

40Gur, O. and Rosen, A., “Comparison Between Blade-Element Models of Propellers,” 
Technion Israel Institute of Technology, Haifa 32000, Israel.  

41Department of the Air Force, Department of the Navy, and Department of 
Commerce, ANC-9 Bulletin: Aircraft Propeller Handbook, 1st ed., U.S. Government 
Printing Office, September 1956. 

42Ol, M., Zeune, C., and Logan, M., “Analytical-Experimental Comparison for Small 
Electric Unmanned Air Vehicle Propellers,” presented at 26th AIAA Applied 
Aerodynamics Conference, AIAA Paper 2008-7345, Honolulu, HI, 18-21 August 2008. 

http://www.batteryuniversity.com/partone-3.htm�


 

126 

43Drela, M., “QPROP User Guide,” QPROP, Version 1.21, Massachusetts Institute of 
Technology, 6 July 2007.   

44Harmon, F. G., “Neural Network control of a Parallel Hybrid-Electric Propulsion 
System for a Small Unmanned Aerial Vehicle,” Ph.D. Dissertation, Dept. of Mechanical 
and Aeronautical Engineering, University of California-Davis, Davis, CA, 2005. 

45Hiserote, R. M., Hrad, P. M., Sabat, J. W., and Wilson, C. W., “AERO 685: Aircraft 
Design Final Report,” Dept. of Aeronautics and Astronautics, Air Force Institute of 
Technology, Wright-Patterson AFB, OH, 2009.  

46Raymer, D. P., Aircraft Design: A Conceptual Approach, 4th ed., AIAA Education 
Series, Reston, VA, 2006.  Chaps. 3, 6, 17.  

47Arora, J. S. Introduction to Optimum Design, 2nd ed., Elsevier Academic Press, New 
York, NY, 2004, Chaps. 4, 11. 

48Mattingly, J. D., Heiser, W. H. and Pratt, D. T., Aircraft Engine Design, 2nd ed., 
AIAA Education Series, Reston, VA, 2002. Chap. 3. 

49World Aeronautical Database, URL: http://worldaerodata.com/ [cited 18 January 
2010] 

50Lim, H. L., “Network Payload Integration for the Scan-Eagle UAV,” Master’s 
Thesis, Dept. of Mechanical and Aeronautical Engineering, Naval Postgraduate School, 
Monterey, CA, December 2007. 

51Procerus Technologies, Kestrel Autopilot.  URL: http://www.procerusuav.com/ 
productsKestrelAutopilot.php [cited 25 January 2010] 

52Wilson, C. W., King, P. I., Hoke, J. L., and Schauer, F. R., “The Effects of Varied 
Octane Rating on a Small Spark Ignition Internal Combustion Engine,” presented at 48th 
AIAA Aerospace Sciences Meeting, AIAA paper 2010-482, Orlando, FL, 4-7 January 
2010. 

53Hobby Lobby International, Inc., “On-Board Starter for 90-120 RC Engine,” URL: 
http://www.hobby-lobby.com/fema.htm [cited 26 January 2010] 

54Sion Power, “Unmanned Systems,” URL: http://www.sionpower.com/ 
unmanned.html [cited 26 January 2010] 

55Insitu, Inc. URL: http://www.insitu.com/scaneagle [cited 4 June 09] 
 
56Aerosonde, Inc. URL: http://www.aerosonde.com/products/gallery.html [cited 25 

Aug 09] 
 

http://worldaerodata.com/�
http://www.procerusuav.com/%20productsKestrelAutopilot.php�
http://www.procerusuav.com/%20productsKestrelAutopilot.php�
http://www.hobby-lobby.com/fema.htm�
http://www.sionpower.com/%20unmanned.html�
http://www.sionpower.com/%20unmanned.html�
http://www.insitu.com/scaneagle�
http://www.aerosonde.com/products/gallery.html�


 

127 

57Manson, K., Jane’s Unmanned Aerial Vehicles and Targets, Issue 29-2007, pp 242-
245. 

58Advanced Ceramics Research, Inc. URL: http://www.acrtucson.com/UAV/ 
silverfox/index.htm [cited 25 Jul 09] 

 
59AeroVironment, Inc. URL: http://www.avinc.com/uas/adc/pointer/ [cited 25 Jul 09] 
 

603W Modellmoteren GmbH, Rödermark, Germany, URL: http://www.3w-
modellmotoren.com/katalog/motoren-3.html  [cited 12 January 2010] 

61Cosworth, Torrance, CA, URL: http://www.cosworth.com/Default.aspx?id=1095228 
[cited 12 January 2010] 

62Enya Metal Products Co., Miyoshi-Machi, Saitama Prefecture, Japan, URL: 
http://www.enya-engine.com/catalogueE_top.html [cited 13 January 2010] 

63Hobbico, Inc., Fuji-Imvac, Champaign, IL, URL: http://www.fuji-imvac.com/ [cited 
12 January 2010] 

64Hobbico, Inc., OS Engines, Champaign, IL, URL: 
http://osengines.com/engines/airplane.html [cited 12 January 2010] 

65Hobbico, Inc., Super Tigre, Champaign, IL, URL: 
http://www.supertigre.com/engines/index.html [cited 12 January 2010] 

66Model Motors, Ltd., AXI Gold Line, Pardubice, Czech Republic, URL: 
http://www.modelmotors.cz/ [cited 12 January 2010] 

67A2Tech, FlyWARE, Peschiera, Italy, URL: http://www.flyware.it/eng/FlyWare-
Products001.html [cited 13 January 2010] 

68Hacker Motor GmbH, Ergolding, Germany, URL: http://www.hacker-motor.com/ 
[cited 12 January 2010] 

69Castle Creations, Inc., NEU Motors, Olathe, KS, URL: 
http://neumotors.com/Site/Motors.html [cited 12 January 2010] 

70Amit Industries Ltd., “Unmanned Systems Battery Packs, Smart Chargers”, 
Conference Brochure, Ashdod, Israel. 

71BME Engines, BME .90ci, South Hutchinson, KS, URL:  
http://www.bmeengine.com/engines.htm [cited 7 February 2010] 

72RM Hoffman Company, Sunnyvale, CA, URL: 
http://www.rmhoffman.com/contact.html [cited 8 February 2010] 

http://www.acrtucson.com/UAV/%20silverfox/index.htm�
http://www.acrtucson.com/UAV/%20silverfox/index.htm�
http://www.avinc.com/uas/adc/pointer/�
http://www.3w-modellmotoren.com/katalog/motoren-3.html�
http://www.3w-modellmotoren.com/katalog/motoren-3.html�
http://www.cosworth.com/Default.aspx?id=1095228�
http://www.enya-engine.com/catalogueE_top.html�
http://www.fuji-imvac.com/�
http://osengines.com/engines/airplane.html�
http://www.supertigre.com/engines/index.html�
http://www.modelmotors.cz/�
http://www.flyware.it/eng/FlyWare-Products001.html�
http://www.flyware.it/eng/FlyWare-Products001.html�
http://www.hacker-motor.com/�
http://neumotors.com/Site/Motors.html�
http://www.bmeengine.com/engines.htm�
http://www.rmhoffman.com/contact.html�


 

128 

73Davis, R. I. and Lorenz, R. D., “Engine torque ripple cancellation with an integrated 
starter alternator in a hybrid-electric vehicle: implementation and control,” IEEE 
Transactions on Industry Applications, Vol. 39, Issue 6, Nov. – Dec. 2003, pp. 1765-
1774. 

 
  



 

129 

Vita 

Captain Ryan M. Hiserote graduated from Cherokee High School in Marlton, NJ 

in 2000.  He completed his Bachelor of Science in Mechanical Engineering (B.S.E.) 

degree at Messiah College, Grantham, PA, in 2004.  He received his United States Air 

Force commission on August 12, 2005 after completing Officer Training School at 

Maxwell AFB, AL.   

His first Air Force assignment was at the Theater Battle Management Core 

Systems (TBMCS) Unit Level System Program Office (SPO) at Hanscom AFB, MA, 

where he served as the Chief of Fielding.  Starting in July 2007, he served as the TBMCS 

International Programs Chief, where he managed foreign military sales cases with 

Australia, Canada and the United Kindom, while also serving as the focal point for the 

program’s interoperability efforts with NATO.  In September 2008, he entered the 

Graduate School of Engineering and Management at the Air Force Institute of 

Technology.  Upon completion of a Master’s degree in Aeronautical Engineering in 

March 2010, he will be assigned to the Air Force Research Laboratory’s Propulsion 

Directorate, Power Generation Branch at Wright-Patterson AFB, OH. 

 

 



 

 

REPORT DOCUMENTATION PAGE 
Form Approved 
OMB No. 074-0188 

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data 
sources, gathering and maintaining the data needed, and completing and reviewing the collection of information.  Send comments regarding this burden estimate or any other 
aspect of the collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information 
Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA  22202-4302.  Respondents should be aware that notwithstanding any other 
provision of law, no person shall be subject to an penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.   
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 
1. REPORT DATE (DD-MM-YYYY) 

25-03-2010 
2. REPORT TYPE  

Master’s Thesis  
3. DATES COVERED (From – To) 

Sept 2008 – Mar 2010 
4.  TITLE AND SUBTITLE 
Analysis of Hybrid-Electric Propulsion System Designs for 
Small Unmanned Aircraft Systems 
 

5a.  CONTRACT NUMBER 

5b.  GRANT NUMBER 
 
5c.  PROGRAM ELEMENT NUMBER 

6.  AUTHOR(S) 
 
Hiserote, Ryan M., Captain, USAF 
 
 

5d.  PROJECT NUMBER 
09ENY259 
5e.  TASK NUMBER 

5f.  WORK UNIT NUMBER 

7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(S) 
  Air Force Institute of Technology 
 Graduate School of Engineering and Management (AFIT/ENY) 
 2950 Hobson Way, Building 640 
 WPAFB, OH 45433-8865 

8. PERFORMING ORGANIZATION 
    REPORT NUMBER 
 
     AFIT/GAE/ENY/10-M11 

9.  SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 
 Dr. Fred Schauer  (frederick.schauer@wpafb.af.mil) 
   Air Force Research Laboratory 
   1950 Fifth Street 
   WPAFB, OH 45433-7251 

10. SPONSOR/MONITOR’S 
ACRONYM(S) 
AFRL/RZTC 
11.  SPONSOR/MONITOR’S REPORT 
NUMBER(S) 

12. DISTRIBUTION/AVAILABILITY STATEMENT 
       
        APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 

 
13. SUPPLEMENTARY NOTES  
 
 
14. ABSTRACT  

Currently fielded electric-powered small unmanned aircraft systems (UAS) lack the endurance desired by 
warfighters, while their internal combustion engine driven counterparts generate mission compromising acoustic and 
thermal signatures.  Parallel hybrid-electric propulsion systems would meet the military’s needs by combining the 
advantages of hydrocarbon and electric power systems.  Three distinct parallel hybrid-electric system designs, each 
with three unique battery discharging profiles, were analyzed and compared using a constrained static optimization 
formulation based upon traditional aircraft design equations.  Each system combined an internal combustion engine 
sized for cruise speed with an electric motor sized for endurance speed.  The nine variations were compared using a 
typical intelligence, surveillance and reconnaissance (ISR) mission profile.  The analysis determined the most 
suitable design for the baseline ISR mission and provided recommended missions for the remaining designs. 

15. SUBJECT TERMS 
      Hybrid-electric, Propulsion, Unmanned, Optimization, Power 

16. SECURITY CLASSIFICATION 
OF: 

17. LIMITATION 
OF  
     ABSTRACT 
 
 

UU 

18. 
NUMBER  
      OF 
      PAGES 
 

148 

19a.  NAME OF RESPONSIBLE PERSON 
Frederick G. Harmon, Lt Col, USAF 

a. 
REPORT 
 

U 

b. 
ABSTRACT 
 

U 

c. THIS 
PAGE 

 
U 

19b.  TELEPHONE NUMBER (Include area code) 
DSN 786-3636 x7478 
(frederick.harmon@afit.edu) 

   Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Std. Z39-18 


	I. Introduction
	1. Background
	2. Motivation
	3. Problem Statement
	4. Research Objective
	5. Research Scope
	6. Methodology
	7. Thesis Overview

	II. Literature Review
	1. Chapter Overview
	2. Hybrid-Electric Propulsion Background
	2.1. Configurations
	2.2. Applications

	3.  Hybrid System Components
	3.1. Internal Combustion Engines
	3.2. Electric Motors
	3.3. Rechargeable Batteries
	3.4. Propellers


	III. Methodology
	1. Chapter Overview
	2. Hybrid Configurations 
	3. Battery Discharging Profiles
	4. Aircraft Design Process  
	5. Fundamental Aerodynamics
	6. Optimization  

	IV. Analysis and Results
	1. Chapter Overview
	2. Input Data
	3. Baseline Mission Results
	3.1. Optimization and Aircraft Conceptual Design Results
	3.2. Charge Depletion Strategy
	/
	3.3. Charge Sustaining Strategy
	/
	3.4. Charge Sustaining with Segmented ISR Loiter Strategy
	3.5. Notional Designs for Baseline Mission

	4. Sensitivity Analysis
	5. Advanced Mission Analysis

	V. Conclusions and Recommendations
	1. Conclusions of Research
	2. Recommendations for Future Research
	Appendix A:  MATLAB Code Equations
	Appendix B:  Sample Data
	Appendix C: MATLAB Code
	Bibliography



