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Abstract-A wideband signal occupies a finite bandwidth that 
is significant compared to its carrier frequency inasmuch as 
when transmitted, its returns cause bandwidth dispersion 
across the antenna.  It is shown here that the effect of the finite 
bandwidth is to introduce a set of uncorrelated return signals 
for every physical scatter in the field. Further, each such 
uncorrelated return contains a set of coherent signals with 
different directional and Doppler components that result from 
a jittering effect both in angle and Doppler domain.  As a 
result adaptive clutter cancellation using traditional processing 
schemes don’t work well. Though in principle it is possible to 
correct these decorrelating effects by 3D space-time adaptive 
processing (STAP), the present day methods are quite costly 
and difficult to implement. In addition to the new wideband 
signal modeling framework mentioned above, we discuss a new 
hierarchical processing scheme which has the potential for 
dramatically reducing both processing and sample support 
burdens. 
 

I. INTRODUCTION 

In the context of target detection in a wideband 
transmit/receive environment, consider an N  element, M  
pulse array receiving signals from its field of view.  In the 
narrowband setup with oj te   representing the transmit signal, 
after down converting to base band the array output space-
time data vector ( )tx  from any range bin has the form 

 
 ( ) ( , ) ( )

kk k d
k

t t   x s n  (1) 

 
where 

k  represents the random scatter return from the thk  

bin in the cross-range (azimuth) domain.  Here  
 
 ( , ) ( ) ( )
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represents the 1MN   space-time steering vector with 
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representing the spatial steering vector along 

k  and  
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representing the temporal steering vector along the Doppler 
frequency 
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.
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k
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In (5), V  represents the platform speed, T  the pulse 
repetition interval and   the operating wavelength. 

In an uncorrelated clutter and noise scene, from (1), we 
get the space-time covariance matrix to be  
 
 2

x k k kP  R s s I  (6) 

 
and its properties are well documented [1].  Because of the 
angle-Doppler linear relationship in (5), in the narrowband 
case for a specific look direction, the adaptive space-time 
processor using (6) will null out clutter components induced 
along that direction thereby making target detection possible.  
 

II. WIDBAND STAP PERFORMANCE 

To obtain a similar understanding for the structure of the 
data and array output covariance matrix in the wideband 
case, assume that matched filtering and adaptive processing 
is employed in that case as well.  Consider a wideband 
signal ( )f t  with bandwidth 

oB  that is modulated by 

frequency 
o  to generate ( ) oj tf t e   which acts as the 

transmit signal.  When a wideband waveform is employed 
in the context of space time adaptive processing (STAP), 
the finite bandwidth dispersion across the antenna must be 
taken into account.  To understand the bandwidth dispersion 
issues, let oj te   and ( ) oj tf t e   refer to the transmit 

waveforms in the narrowband and wideband situation 
respectively across an N  element array employing M  
pulses.  Here (see Fig.  1) 
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Fig.  1 Narrowband and width band transmit signals. 

 
Let (1)

1 ( ) ( ) oj ty t f t e   represent the scattered return at the 

reference sensor due to the first pulse from a ground 
location at an azimuth angle 

k  for a specific range.  In that 

case, the thi  sensor output (suppressing the noise component) 
is given by  
 

    1( 1)( )
1 1( ) ( 1) , 1, 2,oj t iiy t f t i e i N         (8) 

 
where  
 

 
1

sin kd

c
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represents the interelement time delay corresponding to 
azimuth angle 

k . This gives the first pulse output across 

the array to be 
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Similarly, the received signal at the reference sensor due to 
the thn  pulse is given by 
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where 

kd  is as defined in (5) and 
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represents the interpulse delay for azimuth angle 

k .  After 

demodulation, the output at the thi  sensor is given by  
 

   1
( 1) ( 1)( )

2 1( ) ( 1) ( 1) ,

1, 2, , 1, 2, .

d k
j n j ii

nz t f t n i e e

i N n M

           

  
(13) 

 
Notice that the time-delayed version of the baseband 
waveform in the return signal is characteristic of the 
wideband situation.  Using (11) - (12) with 

( ), 1, 2,nz t n M   representing the array output vector 

for the 1st , 2nd ,   thM  pulse, we get the space-time vector 
( )tz  due to a single scatter to be [2] (details omitted) 
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where 
 

 (1) (2) ( )( ) ( ), ( ), ( ) .
TN
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This gives 
 
 ( ) ( ) ( , )

kk k dt t  z f s  (16) 

 
where ( , )

kk d s  is as defined in (2) - (5) and   represents 

the element-wise (Schur-Hadamard) multiplication.  Here 
( )k tf  represents an 1MN   transmit signal dependent vector 

whose ( )thiN n  element is given by (see (13)) 
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Let 
 

  ( ) 0( ) ( )k k k
E t t  T f f  (18) 

 
represent the covariance matrix associated with the return 
wideband signal vector ( )k tf  in (16).  We will assume that 

the actual return signal components in (17) resulting from 
random scatter modulations are stochastic in nature with 
wide sense stationary behavior, such that its power spectrum 
coincides with the original wideband transmit signal 
spectrum in Fig.  1 (b).  This is a reasonable assumption, 
since the returns are inherently stochastic due to the physics 
of the problem, nevertheless their spectral content is 
assumed to be dictated by the transmit signal. As a result, 
the autocorrelation function ( )k T  in (18) is dictated by the 

inverse Fourier transform of the baseband version of the 
wideband signal power spectrum.   

Extending the summation over all scatterers in (16), the 
array output covariance matrix in the fully wideband case 
takes the form 
 
   2( ) ( )z k k k k

k

E Pt t   R T s s Iz z   (19) 

 
where (0)k kT T .  For example, a low pass power spectrum 

for the transmit signal gives 
 
  1 2 2 1 2 1( , ) sinc ( ) ( ) ( ) ( )k om n B n n k i i k    T  (20) 
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(a) Narrowband (b) Wideband
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where 

1n , 
2n , 

1i  and 
2i  satisfy 

 
 

1 1 2 2, .m i N n n i N n     (21) 

 
In the special case, such as when the azimuth spread 

generates only a small angular dispersion   due to a 
strong main beam pattern, the 

kT  in (19) may be replaced 

by a positive definite matrix T  that is valid for all k . In 
that case  (19) reduces to  
 

 
z xR T R  (22) 

 

where 
xR  represents the narrowband situation in (6). It is 

well known that even for moderate bandwidth the Schur-
Hadamard operation in (22) results in spreading the 
eigenvalue spectrum of 

xR  thereby increasing the clutter 

degrees of freedom [1].  This is shown in Fig.  2 for a 14 
sensor 16 pulse array with 40CNR dB  and 

kT  as in (20). 

 
Fig.  2 Clutter eigen spectra for narrowband and wideband cases. 

 
III. WIDEBAND ANALYSIS  

To fully understand the implication of the Schur-
Hadamard product operation in (16) - (19), let us consider a 
simplified version of (19), where the corresponding 
narrowband scatter set corresponds to a single scatter from 

o ; i.e., 

 
 ( , ) ( , )

o ox o o d o dP    R s s  (23) 

 
and hence from (19) 
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To make further progress, let 
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represent the eigen decomposition of 

oT  in (18).  

Substituting (25) into (24) we get  
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Observe that (26) represents a bunch of MN  uncorrelated 
returns, all of them associated with the single scatter located 
along 

o .  Interestingly, 
ks  in (26) represents a spatio-

temporally amplitude modulated steering vector associated 
with the Doppler frequency 

od  and location 
o . 

Let 
kd  represent the ordinary DFT vector associated with 

the eigenvector 
ke .  The entries in 

ke  correspond to a 

double sampling period of 
1  followed by 

2 .  As a result, it 

can be shown that  
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where ( )kd n  represents the thn  entry of 

id  and 
oc  is a 

normalization constant. Here  
ni  and 

nj  represent the 

unique solution to the equation ( 1)n nn j N i   , 

1, 2,nj M  , 1, 2,ni N  . 

Using (29) in (28) we get the modified steering vectors in 
(26) - (28) to be 
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where     
 

 2
, .

n o

n o n
n o d d

i c j

N M
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From (30) - (31), the amplitude modulated steering vector 

ks  in (26)-(28) represents a coherent sum of steering vectors 

originating from locations , 1n n MN    with Doppler 

components , 1
nd n MN    as in (31). Referring back to 

(26), for each scatter return, the effect of finite bandwidth is 
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to introduce an apparent jittering effect both on angle and 
Doppler domains so that a bunch of uncorrelated returns are 
generated.  Each such uncorrelated return contains a set of 
coherent returns with different directional and Doppler 
components as in (31).  This is illustrated in Fig.  3.  
Observe that the vector 

ks  in (30) contains several coherent 

returns, and it does not correspond to any physical steering 
vector.  As a result, the adaptive processor based on (26) 
will not be able to null out either the original return from 
location 

o  or any of the coherently combined vectors.  

From  (26), the wideband data ( )tz  in (16) can be 

equivalently expressed as 
 

 
1 1 1

( ) ( ) ( , )
n

MN MN MN

k i n d k k
k n k

t d n   
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   z s s  (32) 

 
and it represents MN  uncorrelated bunches, each bunch 
containing MN  coherent returns from various jittered 
locations around with 

o . 

 
Fig.  3 Narrowband returns and effective wideband returns. 

 
Fig.  4 shows the SINR loss of the adaptive processing 

with and without bandwidth dispersion.  From there, the 
clutter null is wider due to the wideband operation nature of 
problem. 

 
Fig.  4 Effect of wideband on clutter nulling performance. 

 
III. SUMMARY AND AREAS FOR FUTURE INVESTIGATION 

In summary, when traditional processing is employed in 
the wideband case a single scatterer appears to generate 
several isolated coherent bundles, thereby making clutter 
cancellation impossible. Thus, alternate processing schemes 
must be considered to fully resolve the wideband situation. 

Presently, there are only two basic classes of techniques 
that have been proposed to remedy the wideband STAP 
clutter cancellation problem: Subband based methods or 3D 
STAP [3]-[4]. The subbanding approach, as the name 
implies, attempts to transform the wideband processing 
problem into a parallel set of narrowband 2D (angle-
Doppler) STAP filters. Since a single 2D STAP processing 
thread is already a quite substantial processing burden, a 
bank of say L subband processors would represent an 

100%L  increase in processing burden!  
The situation for 3D STAP is even worse. “3D” here 

refers to including the fast-time (i.e., reciprocal of receiver 
bandwidth) or equivalently instantaneous frequency domain. 
In other words, the dimensionality of the STAP problem is 
increased from NM to NML, where N is the number of 
spatial degrees-of-freedom (DOFs), M is the number of so-
called “slow-time” or Doppler DOFs [1], and L is the 
number of fast-time or instantaneous DOFs. Since 
processing burdens are roughly on the order of 

2 3( ) ( )O k O k , 3D STAP can result in an 2 3L L -fold 

increase! 
The above processing burden increases are in addition to 

the many other practical difficulties associated with 
implementing such adaptive filtering schemes, such as 
sufficient sample support for weights calculation [1] – a 
problem which is already acute for 2D STAP. 

A practical framework for addressing the above issues is 
hierarchical processing in which an “energy preserving” 
lower resolution processing stage, to which 2D STAP could 
be applied, is followed by wideband processing only if a 
detection was obtained in the first stage. Even for the most 
stressing MTI applications, detections represent a very 
small fraction of all possible resolution cells—thus resulting 
in a substantially reduced wideband processing burden.  
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