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ABSTRACT

We consider the problem of simultaneous power and code-channel allocation of a secondary transmit-

ter/receiver pair coexisting with a primary code-division-multiplexed (CDM) system. Our objective is to

find the optimum transmitting power and code sequence of the secondary user that maximizes the signal-

to-interference-plus-noise ratio (SINR) at the output of the maximum SINR linear receiver while, at the

same time, the SINR of all primary users at the output of their max-SINR receiver is maintained above a

certain threshold. This is an NP-hard non-convex optimization problem. In this paper, we propose a novel

feasible suboptimum solution using semidefinite programming. Simulation studies illustrate the theoretical

developments.

I. INTRODUCTION

Recent experimental studies [1] indicate that most of the licensed radio spectrum experiences low utilization.

Cognitive radio (CR) [2] emerged as a promising technology that improves spectrum efficiency and utilization

by allowing the secondary users/networks to share the spectrum that is licensed by primary users. As licensees,

the primary users have always higher priority to use the spectrum [3]. The underlying challenge of this

technology is to guarantee the Quality-of-Service (QoS) requirements of the primary system yet to maximize

QoS for the secondary users [4]-[7]. Power control for cognitive CDM systems was considered in [8] where
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the proposed method does not take full advantage of signal processing at the receiver end, and thus restricts

the throughput of secondary users. Joint beamforming and power allocation algorithms for cognitive radio

networks were presented in [9], [10], while auction mechanism for power control were developed in [11].

In this paper, we consider a secondary system with a code division multiplexed (CDM) mode coexisting

with a primary CDM system. We study the problem of designing a power and code-channel allocation scheme

for the secondary user that maximizes the output SINR of the maximum-SINR linear receiver filter under

SINR QoS constraints for all primary users and a peak transmission power constraint for the secondary user.

This is a non-convex NP-hard problem. In this paper, we propose a novel, realizable suboptimum solution

using semidefinite programming.

The rest of the paper is organized as follows. Section II is devoted to CR system model specifics and the

formulation of the optimization problem. In Section III, we present our proposed solution while in Section IV

we propose an iterative procedure based on semifinite programming solution, which converges to a suboptimal

feasible solution. The performance of the proposed scheme is evaluated through simulations in Section V. A

few concluding remarks are drawn in Section VI.

II. SYSTEM MODEL AND PROBLEM STATEMENT

We consider a primary CDM network with K users and processing gain (code sequence length) L. We

also consider a secondary system (with CDM mode of operation) in the uplink spectrum band of the primary

system (Fig. 1). For simplicity in presentation, we assume that all signals propagate over a plain (no multipath)

additive white Gaussian noise channel. We denote by hi and qi, i = 1, 2, . . . , K, the path coefficients from

user i to the base station and the secondary receiver, respectively. The path coefficients from the secondary

transmitter to the base station and to the secondary receiver are denoted by hs and qs, respectively. All path

coefficients are modeled as Rayleigh distributed random variables that are independent across user signals

and remain constant during several symbol intervals (quasi-static fading). After chip-matched filtering and
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sampling at the chip rate, the received signal at the primary base station can be represented as

r =
K∑

i=1

√
Eihisibi +

√
Eshsssbs + np, (1)

while the secondary received signal is

y =
K∑

i=1

√
Eiqisibi +

√
Esqsssbs + ns, (2)

where Ei, bi and si denote the bit energy, the information bit, and the normalized signature vector of the

primary user i, respectively; Es, bs and ss denote the bit energy, the information bit and the normalized

signature vector of the secondary user, respectively; np and ns represent AWGN N (0, σ2I) at the base

station and at the secondary receiver, correspondingly.

The linear filters at the base station and secondary receiver, which exhibit maximum output SINR, can be

represented, respectively, as

wMSINR,i = cR−1si, k = 1, 2, . . . , K

wMSINR,s = c̃R̃−1ss,

where R = E{rrT }, R̃ = E{yyT }, c, c̃ > 0 and E{·} denotes statistical expectation. The output SINR of

primary user i at the base station and the secondary user at the receiver can be expressed as in (4) and (5)

at the top of the following page, where R/i and R/s are the “exclude i” or “exclude s” data autocorrelation

matrix, defined as

R/i
4
=

K∑

k=1,k 6=i

Ekh
2
ksksT

k + Esh
2
ssssT

s + σ2I

R/s
4
=

K∑

k=1

Ekq
2
ksksT

k + σ2I.

In a cognitive radio setup, the secondary transmitter has to guarantee the QoS of all primary users. Hence,

our objective is to find the transmission bit energy Es and the real-valued signature ss that maximize SINRs
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SINRi =
E{|wT

MSINR,i(
√

Eihibisi)|2}
E{|wT

MSINR,i(
∑K

k=1,k 6=i

√
Ekhkskbk +

√
Eshsssbs + np)|2}

= Eih
2
i s

T
i R−1

/i si, (4)

SINRs =
E{|wT

MSINR,s(
√

Esqsbsss)|2}
E{|wT

MSINR,s(
∑K

k=1

√
Ekqkskbk + ns)|2}

= Esq
2
ss

T
s R−1

/s ss. (5)

under the constraints that SINRi, i = 1, 2, . . . , K, are above a certain threshold α, i.e.

max
Es,ss

EssT
s R−1

/s ss (3)

subject to Eih
2
i s

T
i R−1

/i si ≥ α, i = 1, 2, . . . , K

sT
s ss = 1, Es ≤ Emax

where Emax denotes the maximum bit energy for the secondary user. The optimization problem in (3) is a

NP-hard nonconvex optimization problem. In the next section, we propose a novel realizable suboptimum

solution to this problem.

III. PROPOSED SCHEME

Using the matrix inversion lemma, we can express sT
i R−1

/i si as

sT
i R−1

/i si =
sT
i R−1si

1− Eih2
i s

T
i R−1si

, i = 1, 2, . . . , k. (6)

Then (4) and (6) imply that

sT
i R−1si ≥ α

Eih2
i + αEih2

i

4
= γi, i = 1, 2, . . . , K. (7)

Thus, the optimization problem in (3) can be written as follows:

max
Es,ss

EssT
s R−1

/s ss (8)

subject to sT
i R−1si ≥ γi, i = 1, 2, . . . , K

sT
s ss = 1, Es ≤ Emax.
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Using, once again, the matrix inversion lemma on R−1, i.e.

R−1 = R−1
p+n −

Esh
2
sR

−1
p+nsssT

s R−1
p+n

1 + Esh2
ssT

s R−1
p+nss

, (9)

and then combining (7) and (9), we can express the optimization constraints in (3) as explicit functions of

the code sequence of the secondary user ss, i.e.

sT
i R−1

p+nsi ≥
Esh

2
ssiR−1

p+nsssT
s R−1

p+nsi

1 + Esh2
ssT

s R−1
p+nss

+ γi, i = 1, 2, . . . , K. (10)

In (9), Rp+n is the autocorrelation matrix of the primary signals and noise at the base station, i.e.

Rp+n
4
= E{(

K∑

i=1

√
Eihisibi + np)(

K∑

i=1

√
Eihisibi + np)T }

=
K∑

i=1

Eih
2
i sisT

i + σ2I.

For notational simplicity, let us define the L× L matrix

Bi
4
= h2

sR
−1
p+nsisT

i R−1
p+n − βih

2
sR

−1
p+n

where βi
4
= sT

i R−1
p+nsi − γi. Then, the optimization problem (8) can be written as

max
x

xTR−1
/s x (11)

subject to xTBix− βi ≤ 0, i = 1, 2, . . . , K

xTx ≤ Emax

where x is the transmitted signal vector of the secondary user, i.e. x =
√

Esss. We note that Bi, i =

1, 2, . . . , K, is not positive semidefinite, and the problem in (11) is a nonconvex quadratically constrained

quadratic program (nonconvex QCQP).

We observe that if we use the property Tr{AB} = Tr(BA), we are able to represent the objective function

in (11) as

xTR−1
/s x = Tr{R−1

/s X}, (12)
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where X = xxT . Thus, the optimization problem in (11) can take the following form:

max
X

Tr{R−1
/s X} (13)

subject to Tr{BiX} ≤ βi, i = 1, 2, . . . , K

Tr{X} ≤ Emax, X º 0, rank(X) = 1,

where X º 0 denotes that the matrix X is positive semidefinite. To solve this problem, we propose to relax

the rank constraint in (13) and proceed by solving the following problem instead

max
X

Tr{R−1
/s X} (14)

subject to Tr{BiX} ≤ βi, i = 1, 2, . . . , K

Tr{X} ≤ Emax, X º 0.

Then, (14) can be solved using semidefinite programming. Strictly speaking, we can solve (14) in polynomial

time only within an error ε from the optimum solution. More specifically, let fo
4
= Tr{R−1

/s X}|X=Xo
where

Xo is the optimum point, i.e. fo is the optimal value of the objective function in (14). Then for any given

ε > 0, semidefinite programming guarantees that we can converge in polynomial time (polynomial in the input

size L and in log 1/ε) to a solution that lies in (fo − ε, fo). In this paper, for the semidefinite programming

problem in (14), we propose to use a primal-dual interior-point method [12], [13]. In particular, we consider

the problem in (14) as the primal optimization problem, we create a differently parameterized equivalent

dual problem and then solve both problems iteratively in a coupled fashion. Then, each iterations can be

implemented in O(L3) and the algorithm converges after a small number of iteration to the matrix X∗ that

makes the objective function Tr{R−1
/s X} attain a value within (fo−ε, fo). The proposed method is outlined in

the appendix. We note that relaxing the rank constraint of the NP-hard problem in (13) leads to the optimization

problem in (14) that can be solved in polynomial time (by semidefinite programming methods) as described

in the appendix. However, because of the constraint relaxation itself, the objective function evaluated at the
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convergence point of the proposed method described above, Tr{R−1
/s X}, is just a lower bound on the optimal

value of the objective function in (13). To compute a good feasible solution for our problem in (11), we

propose to proceed with following randomization procedure.

Let X∗ be the convergence point of our proposed method described in the appendix. If we select x as a

Gaussian random vector with 0 mean and correlation matrix X∗, i.e. x ∼ fN (x)
4
= N (0,X∗), then x is the

optimum solution of the nonconvex QCQP in (11) “on average” over all possible distribution of x, i.e.

fN (x) = arg max
f(x)

E{xTR−1
/s x} (15)

subject to E{xTBix} ≤ βi, i = 1, 2, . . . , K

E{xTx} ≤ Emax,

where f(x) denotes the probability density function of x. Implementation wise, a “good” feasible vector

can be obtained by sampling x a sufficient number of times and then, among the feasible solutions (i.e. the

ones that satisfy the constraints in (15)) we simply choose the vector that maximizes the objective function

xTR−1
/s x. However, global optimality can be guaranteed only if x is sampled an infinite number of times,

which is not realistic. Our extensive studies indicate that if we sample x until we obtain the first feasible

point, then we can use this vector as the initial point of an iterative procedure that converges to a good feasible

solution. The iterative procedure is outlined below and its performance is evaluated by simulations in the next

section. First we express R/s as

R/s = SΣST + σ2I, (16)

where S
4
= [s1, s2, . . . , sK ] denotes the matrix that has the signatures of primary users as columns, and

Σ = diag(E1q
2
1, E2q

2
2, . . . , EKq2

K). Using the matrix inversion lemma, R/s can be expanded as

R−1
/s =

1
σ2

I− 1
σ4

S(Σ−1 + STS)−1ST . (17)
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Substitution of (17) into (11) leads to maximization of the following objective function

1
σ2

xTx− 1
σ4

xTQx, (18)

where the matrix Q
4
= S(Σ−1 + STS)−1ST . In (18), the first term 1

σ2 xTx is a convex function while the

second term − 1
σ4 xTQx is a concave function (the latter implies that 1

σ4 xTQx is convex). Based on the

first-order conditions of convex functions [14], we have

xTx ≥ 2x(0)Tx− x(0)Tx(0), (19)

where x(0) denotes an initial feasible vector. Then we combine (18) and (19) and form an optimization problem

that maximizes the following concave function

2
σ2

x(0)Tx− 1
σ4

xTQx− 1
σ2

x(0)Tx(0) (20)

that leads to a suboptimum solution for our original problem in (11). To solve (20) we restrict all nonconvex

constraints into convex sets (linearization). In particular, we consider the nonconvex constraints

xTBix− βi ≤ 0, i ∈ Inc, (21)

where Inc denotes the set of all indices where xTBix is a nonconvex function. Then we decompose the

matrix Bi into its positive and negative parts as

Bi = B+
i −B−

i (22)

where B+
i = h2

sR
−1
p+nsisT

i R−1
p+n and B−

i = βih
2
sR

−1
p+n are all positive semidefinite. Therefore, the original

constraints (21) can be written as

xTB+
i x− βi ≤ xTB−

i x, i ∈ Inc (23)

where both sides of the inequality are convex quadratic functions. Linearization of the right-hand side of (23)

around the vector x(0) leads to

xTB+
i x− βi ≤ x(0)TB−

i x(0) + 2x(0)TB−
i (x− x(0)), i ∈ Inc. (24)

7



In (24), the right-hand side is an affine lower bound on the original function xTB−
i x. It is thus implied that

the resulting constraints are convex and more conservative than the original ones, hence the feasible set of the

linearized problem is a convex subset of the original feasible set. Thus, by linearizing the concave parts of

all constraints, we obtain a set of convex constraints that are tighter than the original nonconvex ones. Now,

the original optimization problem takes the form

max
x

2
σ2

x(0)Tx− 1
σ4

xTQx− 1
σ2

x(0)Tx(0) (25)

subjec to xTB+
i x− x(0)TB−

i (2x− x(0))− βi ≤ 0, i ∈ Inc

xTBix− βi ≤ 0, i ∈ Inc

xTx ≤ Emax.

The problem in (25) is a convex QCQP problem and can be solved efficiently by standard convex system

solvers [15] to produce a new feasible vector x(1) (the objective function in (11) evaluated at x(1) takes a

value that is larger than the value that is based on x(0)). Repeating the linearization method, we can obtain

a sequence of feasible vectors with non-decreasing values of the objective function in (11). This procedure

converges after few iterations. Our proposed scheme for power and code allocation for the secondary user is

outlined in Fig. 2.

V. SIMULATION STUDIES

We consider a primary DS-CDMA system with K synchronous users and a pair of secondary transmitter

and receiver with CDM mode, and the system processing gain is L = 16. At the base station, the transmitted

SNRs of K users are all equal to 10dB while the maximum transmitted SNRs for the secondary user is set to

8dB. All signatures for primary users are generated from the optimum binary signature set, which achieves

the Karystinos-Pados bound with the length L. The SINR threshold for primary users is set to 3dB. The

channel coefficients hn and qn, n = 1, 2, . . . , K, are considered as complex Gaussian random variables with

8



mean 0 and variance 1, while hs and qs are set to 0.9. In the randomized procedure, the Gaussian variable

is sampled 1000 times, and the first and best feasible vectors are denoted by x(0) and xmax, respectively. In

the linearization procedure, we pick x(0) as the initial vector, and the output convergence vector is denoted

by xout.

In Fig. 3, we plot secondary transmission percentage of the SDP solution X∗ with rank 1 and rank more than

1 as a function of the number of primary users. We observe that the total secondary transmission percentage

decrease as the number of primary users increases. Most secondary transmissions can be realized with the

SDP solution X∗ with rank 1, which means that the optimal vector x can be directly generated from the SDP

solution X∗ without the randomized and linearization procedure. The secondary transmissions achieved by

the linearization procedure are below 5%, especially almost zero when the number of primary users is greater

than 19. It means that most secondary transmissions can be realized without the linearzation procedure, then

the large complexity of linearization is avoided.

For comparison purposes, we evaluate the SINR loss, SINR(xR−OPT ) − SINR(x), of x = x(0), xmax

and xout, with respect to the SINR of the optimal real vector xR−OPT =
√

Emaxq1, where q1 denotes the

eigenvector of R−1
/s with the largest eigenvalue.

In Fig. 4, we plot the SINR loss of x(0), xmax and xout as a function of the number of primary users. Under

a limited number of samples, the linearized output vector xout has a less SINR loss than the “best” vector

xmax. We observe that the SINR losses of both xmax and xout are much better than x(0). The linearization

procedure improved the SINR performance from the initial point, and meanwhile realized the derandomization.

V. CONCLUSION

In this paper, we developed a power and code allocation for a secondary user that coexists with a primary

CDM network. First, we formulated the task as a NP-hard nonconvex constraint optimization problem (3).

Then relaxation of the rank-1 constraint led to a problem that can be solved by semidefinite programming.
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To do that, we proposed a primal-dual interior-point method that leads to a matrix solution (rank ≥ 1). A

subsequent randomization procedure made it possible to obtain a “good”, on average, feasible solution after

searching over several feasible sampled solutions. To reduce the computational complexity associated with the

randomization procedure, we developed an alternative method that iteratively solves the original nonconvex

optimization problem by restricting all nonconvex constraints into convex sets and by initializing itself at

any feasible solution of the randomized procedure (e.g. the first feasible sampled solution encountered in the

randomization process).

APPENDIX

Interior point algorithm

(i) Formulate the pair of primal and dual SDP problems:

Primal Dual

max
X

Tr{R−1
/s X} max

y,Z
bTy

subject to Tr{BiX} ≤ βi, i = 1, 2, . . . , K subject to
K∑

i=1

yiBi + yK+1I = R−1
/s + Z

Tr{X} ≤ Emax, X º 0 y ≥ 0, Z º 0.

(ii) Choose 0 ≤ δ < 1 and define µ = σ Tr{XZ}
L .

(iii) Determine ∆X, ∆y and ∆Z by the method in [13].

(iv) Using XZ method, replace ∆X by 1
2(∆X + ∆XT ).

(v) Choose steplengths α, β and update the iterates by

X ← X + α∆X

y ← y + β∆y

Z ← Z + α∆Z

10



(vi) Repeat (ii)-(v) until X is feasible for the primal, (y,Z) is feasible for the dual, and the primal and

dual objective values agree to a specified number.
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Fig. 1. System model
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Fig. 2. The flow chart of the proposed power and code allocation for the secondary user
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Fig. 4. SINR loss of x(0), xmax and xout versus the number of primary users.
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