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2. Objectives

Original objective: “We propose to use surface plasmons to enhance the emission rate and efficiency from
optically active erbium ions, embedded in silicon. Final goal is to demonstrate room temperature operation
of erbium-doped silicon surface plasmon LEDs with enhanced modulation rate and efficiency.”

Over the course of the program the project has been expanded to include three other topics:

- developing cathodoluminescence imaging spectroscopy as a novel tool to study the
propagation, confinement and dampling of surface plasmons.

- developing focused ion beam milling as a new technique to fabricate photonic nanostructures.

- demonstration of plasmonic negative-index materials

3. Status of effort:

We have developed a general methodology to model spontaneous emission enhancements of
optical emitters by plasmonic nanoparticles. The results are of importance for the development of
Si-based light sources (lasers, LEDs) that operate at visible or infrared frequencies. Novel theory
was developed for ellipsoidal particles, that serve as a model system for anisotropic particles in
general. We experimentally demonstrated plasmon-enhanced emission from optically active
erbium ions (emission at 1.5 pm) and Si quantum dots (emission 600-1000 nm). We demonstrated
for the first time control and tuning of the Si quantum dot spontaneous emission spectrum using
plasmonic coupling and as well as polarization controlled emission from Si quantum dots.
Finally, we demonstrated a Si-based plasmon-enhanced LED based on Si quantum dot emission.
Throughout this MURI program the project was expanded to include the development
cathodoluminescence imaging spectroscopy as a mnovel tool to study the propagation,
confinement and damping of surface plasmons and the development of focused ion beam milling
as a technique to fabricate photonic nanostructures. We studied dispersion of isolated coaxial
plasmonic nanostructures, in which we discovered optical modes with negative refractive index.
This then led to the development of the first single-layer wide-angle negative index metamaterial
at visible frequencies.

4. Accomplishments/New Findings

Plasmons are collective oscillations of the free electrons in a metal or an ionized gas. Plasmons
dominate the optical properties of noble-metal nanoparticles, which enables a variety of
applications including electromagnetic energy transport at nanoscale dimensions, single-
molecule Raman spectroscopy, and photothermal cancer therapy. Plasmons also affect the
spontaneous emission dynamics of optical emitters positioned in the vicinity of metal
nanoparticles. The luminescence intensity can either be enhanced or quenched, depending on the
geometry. Since the associated enhancements can potentially be several orders of magnitude,
plasmon-enhanced luminescence is the subject of intense research. This project focused on
plasmon-enhanced luminescence of silicon quantum dots (Si QDs) and optically active erbium
ions. Both these emitters are compatible with silicon processing technology, and are therefore of
great technological interest.

In the first part of the project we developed three fabrication methods of Ag nanoparticles. First,
electron beam lithography was developed to fabricate Ag nanoparticles with well defined sizes
and shapes on insulating substrates. This technique is later applied in the experiments on
plasmon-enhanced luminescence. Subsequently, we present a method, based on a sequential
Si/Ag/Si electron-beam evaporation process, to fabricate metal nanoparticles that exhibit
plasmon resonances in the infrared. Furthermore, we discuss the fabrication of small Ag
nanoparticles by a sequence of Na+ < Ag+ ion exchange and ion irradiation of Na+-containing
glass. In particular, we consistently derive the Ag-nanocrystal depth profile and the
corresponding refractive index depth profile by combining multiple characterization techniques.
In the second part of the project we showed that the photoluminescence intensity of Si QDs can
be enhanced in a spectrally selective way by coupling to Ag nanoparticles. The observed
luminescence enhancements range between a factor 2 and a factor 6. In addition, we demonstrate



that the luminescence enhancement is polarized for elongated Ag nanoparticles. Based on both
the spectral selectivity and the polarization selectivity, we conclude that the observed
luminescence enhancement is due to coupling of the Si QD emission dipoles to plasmon modes,
rather than due to an enhanced excitation rate. As a consequence, the concept of plasmon-
enhanced luminescence could also be applied to enhance the luminescence intensity of
electrically driven light sources. This possibility is explored by integrating Ag nanoparticles in
prototype Si QD light-emitting devices fabricated using processing facilities at Intel Inc. The Si
QD electroluminescence intensity of these devices has been enhanced by up to a factor 2.5. We
developed several mechanisms that could explain this enhancement.

By engineering extremely anisotropic Ag nanoparticles, we demonstrated in the third part of the
project that the photoluminescence intensity of optically active Er3* ions positioned in close
proximity to these nanoparticles is significantly enhanced if the nanoparticles support plasmon
modes that are resonant with the erbium emission at 1.5 ym. Also for these systems, the
enhancement is polarized corresponding to the plasmon resonances of the nanoparticles. These
results indicate the opportunities of Ag nanostructures for the reduction of quench processes of
erbium in a wide range of materials. Plasmon-enhanced luminescence of erbium may for
example enable the realization of efficient light sources based on erbium-doped silicon. In
addition, we describe an experiment in which we study the interaction of Er3+ ions with Si
nanoparticles by cavity ring-down spectroscopy. We demonstrate that the silicon nanoparticles
incorporated in Si-rich oxide do not enhance the peak absorption cross section of the Er3* 4[15» —
4[13 transition by 1 — 2 orders of magnitude, contrary to what has been reported in earlier work.
This conclusion has implications for the design of compact planar optical amplifiers on silicon.

In the fourth part of the project we did a theoretical investigation of plasmon-enhanced
luminescence focusing on the modifications of the radiative and nonradiative decay rates of an
optical emitter positioned in close proximity to a noble-metal nanoparticle. First we analyze the
influence of a spherical nanoparticle by exact electrodynamical theory. We show that the optimal
sphere diameter for luminescence quantum efficiency enhancement associated with resonant
coupling to plasmon modes is in the range 30 — 110 nm, depending on the material properties.
The optimal diameter is found to be a trade-off between (1) emitter-plasmon coupling, which is
most effective for small spheres, and (2) the outcoupling of plasmons into radiation, which is
most efficient for large spheres. In addition, we show that the well-known Gersten and Nitzan
model does not describe the existence of a finite optimal diameter unless the model is extended
with the correction factor for radiation damping. With this correction and a correction for
dynamic depolarization, the Gersten and Nitzan model, which can be generalized to spheroids
much more easily than exact electrodynamical theory, is found to provide a reasonably accurate
approximation of the decay rate modifications associated with coupling to the dipole plasmon
mode. Based on the improved Gersten and Nitzan model, we subsequently analyze how much
the intensity emitted by an active layer of a light-emitting device can be enhanced by an array of
anisotropic Ag nanoparticles. For this analysis, the radiative decay rate enhancement associated
with emitter-plasmon coupling was calculated for emitters positioned in a plane below a two-
dimensional array of Ag nanoparticles. The in-plane-averaged radiative decay rate enhancement,
which is an upper limit of the enhancement of the intensity emitted by the active layer, is found
to be a factor ~10 at a distance of 10 nm from the array for the optimal nanoparticle size of ~100
nm. The distance at which the nanoparticles induce a substantial effect on the radiative decay rate
ranges to a few tens of nanometers. We also show that the radiative decay rate enhancement can
be up to three orders of magnitude close to a sharp tip of a metal nanostructure.

This results indicates that metal nanostructures can provide even larger improvements to
nanoscopic light sources, e.g. based on single nanowires or single quantum dots. Finally, we
study the radiative and nonradiative decay processes for emitters close to anisotropic
nanoparticles. We find a larger spectral separation between the radiative dipole plasmon mode
and the dark higher-order plasmon modes of a Ag nanoparticle for larger anisotropy. In the
vicinity of such an anisotropic Ag nanoparticle, the quantum efficiency of a low-quantum-



efficiency emitter (0.1%) can be enhanced by almost a factor 200, instead of a factor 60 for a
spherical nanoparticle. These results show that nanoparticle anisotropy does not only influence
the plasmon resonance wavelength, but also the ratio at which different plasmon modes are
excited by an emitter at short distance.

Altogether, the project provided significant and important insight in the fundamental aspects of
plasmon-enhanced luminescence, and correlates these to experiments on light emitters in
practical geometries. Specific insights in possible applications have been extensively discussed.
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7. Interactions/Transitions:

a. Participation/ presentations at meetings, conferences, seminars, etc.

We have held regular meetings and teleconferences with our collaborators at CALTECH and
presented our work at MURI progress meetings. We have given large number of invited talks at
international conferences on the topic of this MURI proposal.
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plasmonics and applications in nanotechnologies, Singapore, December 5-7, 2006

Ion beam synthesis of photonic nanomaterials (invited), International Conference on ion
beam modification of materials, Taormina, Italy, September 18-21, 2006

Silicon-based photonics (invited), European MRS Conference, Nice, May 29 - June 1, 2006
Silicon-based lasers and light sources (invited), MRS Spring Meeting, San Francisco, CA,
April 17-21, 2006

Silicon-based lasers and light sources, Surface plasmon nanophotonics (invited), Opto-
electronics winterschool, Pontresina, March 13-16, 2006

Scattering and sensitizing in erbium and silicon nanocrystal-doped toroidal microcavities
(invited), International Conference on Group-1V materials, Antwerp, September 2005

Ion beam shaping of nanomaterials (invited), Sixth international symposium on swift heavy
ions in matter, Aschaffenburg, Germany, May 28-31, 2005

Microcavity controlled emission from rare earth ions (invited), MRS Spring Meeting, San
Francisco, March 31, 2005

b. Consultative and advisory functions to other laboratories and agencies, especially Air



Force and other DoD laboratories. Provide factual information about the subject matter,
institutions, locations, dates, and name(s) of principal individuals involved.
e All through CALTECH (see Report Atwater)
c. Transitions.
e A computer code has been developed that calculates plasmon enhanced luminescence
effects for a range of metals, particle size, particle anisotropy, distance and polarization.
A script has been made available on the web: www.erbium.nl, and output files from the
calculations can be downloaded.
o  Other transitions through CALTECH (see report Atwater)
d. Device demonstrations
We demonstrated a plasmon-enhanced silicon quantum dots LED operating at room
temperature. A schematic and photographs of the device are shown below.

8. New discoveries, inventions, or patent disclosures.
e None

9. Honors/ Awards: List honors and awards received during the grant/contract period.
e Albert Polman: Appointed member, Royal Dutch Academy of Sciences (2009)

Appendix:
We list several graphs illustrating the outcome from this project


http://www.erbium.nl/

Analytical modeling of plasmon-enhanced luminescence
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Cu and Al are good plasmonic materials
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On-chip green silica upconversion microlaser
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three plasmonic geometries
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Near-Field Visualization of Strongly )
Confined Surface Plasmon Polaritons in
Metal—Insulator—Metal Waveguides
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Negative refraction in coaxial plasmonic waveguide
metamaterial
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A single-layer wide-angle negative index metamaterial at visible frequencies '
S.P. Burgos®, R. de Waele”, A. Polman, and H.A. Atwater, Nature Materials 9, in press (2010)






