Rapid Prototyping: Leapfrogging into Military Utility

Mr. Randy Walden
Air Force Rapid Capabilities Office
(SAF/RCO)

9th Annual NDIA Science & Engineering Technology Conference
16 April 2008
1. REPORT DATE
16 APR 2008

2. REPORT TYPE

3. DATES COVERED
00-00-2008 to 00-00-2008

4. TITLE AND SUBTITLE
Rapid Prototyping: Leapfrogging into Military Utility

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
SAF/RCO, Air Force Rapid Capabilities Office, Washington, DC, 20301

8. PERFORMING ORGANIZATION REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
Presented at the 9th Annual NDIA Science & Engineering Technology Conference, Apr 2008, Charleston, SC

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:
 a. REPORT
 unclassified
 b. ABSTRACT
 unclassified
 c. THIS PAGE
 unclassified

17. LIMITATION OF ABSTRACT
Same as Report (SAR)

18. NUMBER OF PAGES
27

19a. NAME OF RESPONSIBLE PERSON

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18
Rapid Prototyping Needed

- Asymmetric threat has a very short timeline for change
 - COTS timeline available to threats
 - WWW used by threat
- DoD Acquisition has relatively long timeline
 - Limited access to COTS
 - Budget process is multi-year
- Complex systems stress definition of requirements/architecture
 - Requirement trade-offs delay system
 - Only as fast as slowest element
SAF/RCO Rapid Prototyping

Objectives

- Rapidly develop new capabilities to counter the increasing pace of threat evolution
- Improve acquisition process; facilitate faster transition of S&T to warfighter
- Realistic definition of requirements & architectures for complex problems; prototype to innovate

Enablers

- Mindset: acceptance of 80% solution
- Team: leadership support, warfighter involvement, “A-team” executing
- Investments for the future: open architectures, etc.
- Experience: practice to improve
“Rapid Prototyping” in Commercial Industry

A tool for rapid design & manufacturing …

A way to rapidly get products to market …

A way to innovate …

Not a new idea; approaches well established in commercial industry
Outline

- Motivation / Objectives
- Air Force Rapid Capabilities Office
- Rapid Prototyping
 - Rapid capability development examples
 - Enablers to rapid development
 - Prototyping to innovate
- Summary
Air Force Rapid Capabilities Office

- Established April 2003

- Mission: Expedite development and fielding of select DoD systems
 - Leveraging defense wide technology development efforts and existing operational capabilities

- Reports directly to Board of Directors
 - SecAF, CSAF, SAF/AQ, and USD(AT&L) chairs
 - Responds to Combat Air Force (CAF) and Combatant Command (COCOM) requirements

- Rapid Prototyping Example: National Capital Region (NCR) IADS
 - Enhanced Regional Situational Awareness (ERSA)
 - Norwegian Advanced SAM System (NASAMS)
National Capital Region Airspace

ADIZ – Air Defense Identification Zone
FRZ – Flight-Restricted Zone
IAD – Dulles International Airport
DCA – Reagan National Airport
ADW – Andrews Air Force Base
National Capital Region Airspace

1300 beacon tracks within ADIZ for one hour time period

ADIZ – Air Defense Identification Zone
FRZ – Flight-Restricted Zone
IAD – Dulles International Airport
DCA – Reagan National Airport
ADW – Andrews Air Force Base
RCO Rapid Developments

Enhanced Regional Situational Awareness (ERSA)

- Integrated air defense system for National Capital Region (NCR) in 2 years
- Operational for Jan 2005 Presidential Inauguration
- Developed and Fielded
 - Tower Mounted Radars
 - Aircraft ID
 - Visual Warning

Norwegian Advanced Surface to Air Missile System (NASAMS)

- Developed & integrated system into NCR IADS
- 9 months from Chairman JCS tasking to IOC
Rapid Prototyping

Visual Warning System (VWS)

Visual Warning System developed by rapidly integrating COTS to create a new capability
Visual Warning System (VWS)

- Provide visual warning to errant pilots entering NCR airspace
- Eye safe system at aperture and beyond
- Precision pointing at single aircraft
- Special Flight Advisory has been published on meaning of lights
- Operational on 21 May 2005

• Warning Sequence with translucent covers on

• Nighttime aircraft view from 3 nm, 28 Jan 05
A NORAD spokesman cites the use of the Visible Warning System.

A small plane penetrated restricted air space and flew within six miles of the U.S. Capitol yesterday before being intercepted without incident, officials said.

When air-traffic controllers couldn't reach the pilot by radio, military personnel on the ground aimed red and green warning lights at the cockpit, said Maj. Brian Martin, a spokesman for the North American Aerospace Defense Command, or NORAD. That prompted the pilot to veer west, Martin said.

Two F-16 jets from Andrews Air Force Base and a Coast Guard helicopter escorted the plane to Leesburg airport, where the pilot was questioned by the Secret Service and the FAA, officials said. He was not considered a threat, they said.
12 March 2008 Events

- A Cessna 177 crosses the Air Defense Identification Zone (ADIZ) in violation of airspace rules

- NORAD warns pilot using the Visible Warning System

- The Cessna is escorted to Leesburg Airport by F-16 interceptors
NASAMS Integration Timeline

<table>
<thead>
<tr>
<th>FY04</th>
<th>FY05</th>
</tr>
</thead>
<tbody>
<tr>
<td>A M J J A S O N D J F M</td>
<td>Chairman JCS Direction ▲
AT&L funding ▲
Fire Control Cue Developed ▲
Integration with fire control unit ▲
Live Fire Tests ▲ ▲
NORAD Validation and Acceptance Testing ▲ ▲
NASAMS IOC in NRC ▲</td>
</tr>
</tbody>
</table>

NASAMS developed, deployed and operational in nine months
NCR IADS

Key Attributes for Rapid Fielding

- Clear Charter with Clear Priorities
 - Schedule was #1; field ERSA by inauguration day 2005 (18 months)

- Senior DoD, Joint Staff, US Air Force, & US Army leadership buy-in
 - Short chain of command facilitated quick decisions

- Small, Focused, Empowered Team; 5 – Program Office, 7 Contractor, plus key external POC’s
 - Experienced, solution oriented, A-team type personnel
 - QRC focus – Long hours, 6 & 7 days/week were routine

- Recognition of Need for After-Fielding Clean Up
 - Formalized needed leases and MOAs/MOUs
 - Minor safety adds to installed equipment
 - Long-term transition planning
Outline

- Motivation / Objectives
- Air Force Rapid Capabilities Office
- Rapid Prototyping
 - Rapid capability development examples
 - Enablers to rapid development
 - Prototyping to innovate
- Summary
Enablers to Rapid Development

- Series of elements key to enabling rapid innovation, demonstration, prototyping, and fielding of critical military capabilities
Enablers to Rapid Development

- Series of elements key to enabling rapid innovation, demonstration, prototyping, and fielding of critical military capabilities
Open System Architecture

Advantages

- **Commonality allows lower cost ...**
 - Plug and play pieces reusable from system to system

- **Innovation enabler ...**
 - Allows entrance of “smaller” players, often with innovative ideas

- **Rapid development & rapid upgrades ...**
 - Open design allows replacement of individual components
 - Allows isolation of components that evolve technically at differing rates (e.g., rapid Moore’s Law advance in computing)
 - Upgrades vs. replace; more responsive to agile threats
Open Systems Support
“Leverage Adapt” Strategy

- Open Systems supports “leverage and adapt” strategy; allows DoD to leverage commercial industry’s investment
- Continuous upgrade/refresh possible to meet evolving threats and obsolescence

“Leverage & adapt”
- Good for rapidly changing technology
- Good for rapidly changing requirements
- Built-in refresh and improvements
- More difficult to manage

“Freeze & build”
- Freezes technology and builds to fixed design
- Acceptable for slow moving technologies
- Requires stable requirements throughout lifecycle
- Easier to manage with current acquisition strategy
Layered Open System Architecture Approach

- **OSA = Open System Architecture**
- **SOA = Service Oriented Architecture**
- **COI = Community Of Interest**

OSA Sensor Control SOAs
- **Open Radar Middleware**
 - AESA
 - RX/Exciter
 - Signal Processor
 - Control Processor
- **Open AMRAAM System**
- **Open EW Sensor System**

Avionics SOAs
- **Open Mission Computer**
- **Open System Mass Storage**
- **Comm Link (with Network Adapter)**
- **Open Display System**
- **Open Comm/Nav/ID**

Multi-INT Centers Ground Station SOAs
- **C2 Services**
- **Other Sensor Adapters**
- **Comm Link (bridge to GIG)**
- **ISR Tasking**

Global Network COI User SOAs
- **Global Information Grid (with NCES)**
 - Intel User
 - Intel Sensor Adapters
 - Exploitation App
 - Federated Search Service

- **Layered Open System Architecture Approach**
- **Extend SOA Concepts**
 - Change with technology and readily add new capabilities

NDIA 2008 Walden-Rapid Prototyping - 21
Outline

- Motivation / Objectives
- Air Force Rapid Capabilities Office
- Rapid Prototyping
 - Rapid capability development examples
 - Enablers to rapid development
 - Prototyping to innovate
- Summary
Prototyping Facilitates Innovation

“It is far easier for [users] to articulate what they want by playing with prototypes than by enumerating requirements.”†

- Key additional use of rapid prototyping is for innovation; “simulate to innovate” concept
Development Approaches

Linear / “Waterfall” Approach

Fixed Design

- Problem
- Design
- Build
- Use

- Assumes “design” can be accomplished apriori
- No developer / user co-design

Rapid Prototype Approach

Inherent Feedback

- Problem
- Use
- Prototype
- Design

- Build prototypes to explore “design” approach
- Iterate based on user feedback; design influenced by user response

- Get user feedback
- Define requirements through “play”
- Understand problem
- Generate idea
- Use prototype to understand better approach
Prototype to Innovate

National Capital Region IADS
- Integrated Air Defense for protection of the National Capital Region

Touch Table
- Vehicle for novel data extraction / representation and action

X-37B Orbital Test Vehicle
- Unmanned reusable vehicle test platform for new space technologies
Summary

- Rapid prototyping permits timely, cost effective military capability development
 - Strongly motivated by increasing pace of threat cycle

- Air Force Rapid Capabilities Office (SAF/RCO) established to expedite development of selected DoD systems
 - Number of successful projects (e.g., ERSA, NASAMS)

- Success of rapid developments dependent on variety of factors
 - 80% solution mindset, strong team, enabling investments (e.g., Open system architectures)

- Additional rapid prototyping role in innovating new military capabilities
 - Rapid prototyping cycle allows refinement of solution
Challenge to S&T Community

- Traditional “S&T Gap” still exists; greater warfighter interchange needed

- Apply rapid prototyping approach earlier in S&T development

 Early insertion of new technologies
 Faster innovation
 Discovery of new / advanced capabilities

Mr. Randy Walden / (703)696-2407 / safcroworkflow@pentagon.af.mil