AUGMENTING LATENT DIRICHLET ALLOCATION
AND
RANK THRESHOLD DETECTION WITH ONTOLOGIES

THESIS

Laura A. Isaly, Captain, USAF

AFIT/GCS/ENG /10-03

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.



The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the United States Air Force, Department of Defense, or
the United States Government.



AFIT/GCS/ENG,/10-03

AUGMENTING LATENT DIRICHLET ALLOCATION
AND
RANK THRESHOLD DETECTION WITH ONTOLOGIES

THESIS

Presented to the Faculty
Department of Electrical and Computer Engineering
Graduate School of Engineering and Management
Air Force Institute of Technology
Air University
Air Education and Training Command
In Partial Fulfillment of the Requirements for the

Degree of Master of Science

Laura A. Isaly, B.S.C.E.
Captain, USAF

March 2010

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.



AFIT/GCS/ENG,/10-03

AUGMENTING LATENT DIRICHLET ALLOCATION
AND
RANK THRESHOLD DETECTION WITH ONTOLOGIES

Laura A. Isaly, B.S.C.E.
Captain, USAF

Approved:

Maj Eric D. Trias, PhD (Chairman) date
Dr. Gilbert L. Peterson, PhD (Member) date
Maj Michael J. Mendenhall, PhD date

(Member)



AFIT/GCS/ENG,/10-03

Abstract

In an ever-increasing data rich environment, actionable information must be
extracted, filtered, and correlated from massive amounts of disparate often free text
sources. The usefulness of the retrieved information depends on how we accomplish
these steps and present the most relevant information to the analyst. One method
for extracting information from free text is Latent Dirichlet Allocation (LDA), a doc-
ument categorization technique to classify documents into cohesive topics. Although
LDA accounts for some implicit relationships such as synonymy (same meaning) it
often ignores other semantic relationships such as polysemy (different meanings), hy-
ponym (subordinate), meronym (part of), and troponomys (manner). To compensate
for this deficiency, we incorporate explicit word ontologies, such as WordNet, into
the LDA algorithm to account for various semantic relationships. Experiments over
the 20 Newsgroups, NIPS, OHSUMED, and IED document collections demonstrate
that incorporating such knowledge improves perplexity measure over LDA alone for
given parameters. In addition, the same ontology augmentation improves recall and

precision results for user queries.
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AUGMENTING LATENT DIRICHLET ALLOCATION
AND

RANK THRESHOLD DETECTION WITH ONTOLOGIES

I. Introduction

The usefulness of information often depends on the efficient extraction of relevant
information. In the area of intelligence analysis, data management systems often be-
come overwhelmed with source documents, in free text form, that are not labeled or
pre-assigned to specific topics. Automatic document modeling, document classifica-
tion and topic categorization algorithms are used to help solve this problem [7]. One
specific technique, Latent Dirichlet Allocation (LDA) [7], is a generative model that
assigns documents to discovered topics and words (or terms) to topics with some prob-
ability. However, due to English words having synonyms, this type of probabilistic

clustering can be misled, often resulting in misclassification of words to topics.

To help resolve the true semantics of a word from a document point of view,
its context must be taken into account. Moreover, other document information can
be saved, such as neighboring terms, to help determine its context [7]. However, to
improve performance, most automated systems assume word independence and use a
unigram approach, i.e., documents are assumed to be composed of an unrelated “bag
of words,” which relieve systems from maintaining a combinatorial representation of
related words. However, losing this context sacrifices the system’s ability to conduct

a more correct semantic analysis of each word in each document.

One way to maintain word semantic relationships is to develop a persistent se-
mantic ontology to maintain groups of concepts and their relationships among other
concepts. One such worldwide open-source project is called the WordNet ontol-
ogy [46]. This thesis shows how ontologies can be used to augment and improve

document modeling algorithms. Specifically, we investigate the benefits of incorpo-



rating WordNet into the LDA algorithm. LDA is a probabilistic topic model that
can infer a topic distribution based on word content for each document in a corpus.
This inference capability is extended by highlighting semantic relationships that may
be concealed, i.e., having low word probability, and thereby discounted by LDA. Fa-
vorable results conclude that the LDA with WordNet (LDAWN) algorithm generated
lower perplexity results over LDA alone suggesting that ontology augmentation is

beneficial for document modeling refinement.

LDAWN also incorporates a query model for information retrieval purposes. The
returned documents are ranked according to their relevance to a given query by com-
bining the Dirichlet smoothing document model with the LDA model as proposed by
Wei and Croft [48]. Previous work by Millar [36] combined LDA with Self-Organizing
Maps (LDA-SOM), which rank document relevance to a query independent of whether
or not the query terms appeared in the document. More importantly, Wei and Croft’s
model and LDA-SOM overlook query terms that do not explicitly co-occur and are
discounted by LDA. In LDAWN, WordNet is used to rank documents based on the
query terms including any of its synsets to leverage terms that co-occur. Further-
more, LDAWN is used to automatically locate and label the relevancy threshold in

the ranked documents.

The LDAWN process exposes hidden semantic relationships resulting in im-
proved document modeling, document classification and topic categorization over
LDA alone. For any given document, term frequencies are incremented for all terms
in the document with matching terms in WordNet synsets. Then, the resulting term-
document matrix is incorporated into the LDA model to compute the topic distribu-
tion. LDA estimates the per-document topic distribution and per-topic word distri-
bution and outputs the probabilities for each topic distribution. Then we compare the
performance of LDAWN against LDA alone by training 90% for each of four corpora.
After this unigram classification training, the held-out test set is used to measure the
perplexity of each collection over several numbers of topics. These tests were repeated

over five randomized versions of each corpus. Our results show that LDAWN achieved



lower perplexity values than basic LDA, i.e., LDAWN provides a better generalization

of unseen documents.



II. Background

Tools used for document modeling face difficult challenges dealing with an overwhelm-
ing amount of unstructured or semi-structured data in diverse formats, e.g., webpages
represent petabytes of unstructured and semi-structured data [2]. In addition, docu-
ments and reports from specialized communities are constructed in their own native
formats. Therefore, correlating and integrating diverse document collections has be-
come a challenge and spurred research potentials in the area of knowledge discovery
and data mining. For example, suppose a website stores blog posts as documents. A
new blogger would like to search for a specific topic by formulating a query based on
their information need. Based on the query the documents returned are the answer
set. The blogger then sifts through all the documents in the answer set for their
desired topic. Due to potential for enormous result sets and semantic ambiguities
of words, this is an impractical solution and therefore a probable reason information
retrieval (IR) techniques have become a popular research focus. This chapter reviews
existing techniques regarding common information retrieval methods, relevance and
retrieval evaluation, term categorization, ontology’s, and various clustering techniques

that when combined may provide these unique solutions.

2.1 Information Retrieval Models

The field of information retrieval aims to return documents in ranked order based
on relevance of a document to a submitted query. The organization of the data in IR is
usually unstructured, using natural language text and may be semantically ambiguous
[4]. For example, the 20 Newsgroups data set is a collection of newsgroup documents
containing unstructured natural language text and contains semantic ambiguities. To
illustrate, suppose the term plane appears in the wood working newsgroup and plane
also appears in the airplane newsgroup. The ambiguity is that others can refer to
plane for wood working and others as to fly in a plane, requiring the pronoun to be
resolved. Therefore, exploring the various IR models might be helpful in the retrieval

of unstructured information. This section describes common IR models that have



been used to help solve some IR issues, such as the Vector Space, Boolean, Extended
Boolean, Probabilistic, Latent Semantic Indexing Analysis(LSI/A), probabilistic LSI
(pLSI) and Latent Dirichlet Allocation(LDA) models.

2.1.1 Vector Space Model (VSM).  The Vector Space Model is an algebraic
way of representing a document as vectors of term frequency counts. The documents
are represented as vectors of term frequencies based on terms in the collection. Thus,
each document contains terms which can be considered as dimensions in a multi-

dimensional hyperplane which make mathematical comparisons much easier.

This is important so the similarity measures can be calculated. A query can also
be represented as a vector of terms. Since the query is often short, the query vector
will be extremely sparse. Given these two vector representations, we can measure
their similarity using mathematical operations such as the cosine between the two

(document and query).

Although straightforward in implementation, some adjustments are required to
normalize terms and consequently weigh their importance in the document and the
entire collection. A common method in VSM is to measure the frequency of terms
or keywords k; in document d; from a corpus D. The normalized term frequency is

depicted as
f reqt,d
max(freqeq)

tf(d,t) = (2.1)

where max, is the largest term frequency in d; and the frequency of deD where D
is the set of all documents in the corpus and ¢ €7 where 7 is the set of all terms
occurring in D [21]. A term that appears too frequently may be obsolete in terms of
its relevance, so we determine the inverse term frequency to depict the importance of
the term. For example, if a collection contains documents that are about cats, the
animal, and the query term is dozer, the equipment, we want the documents that
contain dozer to rank higher than those about cats. In this case, the term cat is

obsolete since it will appear too frequently in the collection. So, we use the inverse



term frequency idf defined as

D
idf = log - (2.2)

where d; is the number of documents that the term ¢; appears [4].

Using VSM, the document vector can be defined as c@:(wm, Wy j,...wy ;). There-
fore, for a given term 7 appearing in document j, the term weights w; ; are calculated

by multiplying the term and inverse term frequencies to discount common terms.

/ reqtd

—maxg(fT‘GQg’(O X idf (2.3)

w/[’ 7j =

Similarly, the term weights w; , in the query q are weighted similar to the documents.
Thus, the query vector can be defined as ¢ = (wy 4,wa,...wt,), Where each term of

the vector can be calculated using [4]

fTth,q

Wia = 00N ) (Fregey)

(2.4)

This representation creates #dimensional vectors where their cosine angle can be

treated as their similarity score and can be calculated as [4]

_ d; - q
sim(d;, q) = —>——, (2.5)
|dj| > 1]
D =1 Wij X Wig (2.6)

- ¢ ¢ ’
\/Zi:l wiQ,j X \/Zi:l wz‘%q

After the document and query vector representations are calculated, various IR
models can be used to determine relevance ranking for queries over a given corpus.
Using the vector space model, the cosine of the angle between the query vector and
each document vector are calculated. This angle corresponds to how close the vectors
are within the range of 0 to 1 where 0 means that the vectors are orthogonal, and

1 means they are “identical.” The vector model has been compared to alternative



ranking methods and the consensus was that the vector model is either superior or

almost as good as the alternatives [4] by producing higher precision and recall values.

2.1.2  Boolean and Fxtended Boolean Model. =~ The Boolean Model is designed
to provide retrieval methods based on set theory and Boolean algebra [4]. The term
weights are all binary where the term ¢ appearing in document %, w;; € 0,1, For in-
stance, if a term from the query exists in the document the similarity of a document
d; and query ¢ would be assigned 1, declaring the document as relevant and 0, other-
wise. The query must express a Boolean expression which is not easy to translate from
English into an information requirement. The Boolean model has greater precision
in the area of data retrieval due to the binary decision, the data is there or it is not,
based on relevance or non-relevance to the query. There are no criterion to determine
a partial match based on the query. For example, for the query ¢ = k; A (k;V k;) and
a document vector d_;:(O,l,l), the document will be considered non-relevant based
on the query. This is because the query contains an and (A) operator between the
first and second term therefore the document’s first and second term must both be
1’s for it to be a relevant document. In this case the first term of the document is a
0 and the second term is a 1 and is deemed as non-relevant. The simplicity of this
model, i.e., neglecting partial matching, leads to the retrieval of too few or too many

documents.

The Extended Boolean attempts to refine the Boolean model by fractional
weighting the terms and accounting for partial matches to retrieve a larger num-
ber of relevant documents [4]. Extended Boolean combines Boolean logic with VSM

to improve retrieval performance and ranking over the Boolean model alone.

The similarity of a document d; and query ¢ are given by

(2} + 25+ ...+ b)) 1/p
m

sim(qor, dj) = (



and

— P — b))+ .. — P 1/p
R T

stm(Qand, dj) = 1 — ( -
, where q,, is the or query and ¢,,q is the and query. The p-norm model introduces
p-distances where 1< p < oo, by varying p between one and infinity the model changes

the ranking from a vector ranking to a Boolean ranking.

A more generalized similarity formula can be applied recursively without regard
to the number of AND/OR operators. For example, for a query ¢ = x1 AND x5 OR x5

the similarity between a document and query can be computed as

P 1/p

(1 _ ((l—xl)f’—;—(l—mg)l’)l/p) n 5(;]3)

sim(q,d) = 5 . (2.9)

The parameter p can have multiple values within the same query although the prac-

tical impact of this functionality are not known [4].

2.1.3 Probabilistic Model. — The Probabilistic Model works from different set
of assumptions, as only the user query and a set of documents deemed the relevant
documents are compared [4]. These are referred to as the ideal answers, i.e., the query
process entails specifying the properties, qualities in a document that relate to the
query, of the ideal set [4]. The issue with this approach is that data properties of the
corpus are not known, therefore, a guess or estimate is used to retrieve the first set of

documents.

Once the results are given from the initial guess, the user reviews the retrieved
documents, which can be a manual or automated process, and decides which docu-
ments are relevant and not relevant. This process is repeated numerous times until
it is highly probable that the current set of documents becomes closer to the true

desired document set.



The principle of the probabilistic model is that given a user query ¢ and a
document d;, the model tries to estimate the probability that the user will find the
document relevant. This probability is based on the query term and its relevant
documents, which are a subset of documents from the collection that are relevant to

the query term.

In the probabilistic model, the index term weights are binary where w; ; € 0,1
and w;, € 0,1, depending on whether or not the term appeared in the document
or query, respectively. The query ¢ is a subset of index terms and R is the set of
documents known to be relevant and R is the set of non-relevant documents. The
probability that the index term k; is present in the document randomly selected from
R is P(k; | R) and the probability that it is not is given by P(k; | R). Therefore,

measuring similarity is accomplished as [4]

P(ki|R) - PU%@))

¢
im(d;. q) ~ ; ; log —— 77 + log ————— 21
sim(dy, q) izlwz,q X Wij X (og 1 — P(k;|R) s P(ki|R) 210

Since P(k;|R) and P(k;|R) are initially unknown, they can be approximated

where
P(k;|R) = 0.5 (2.11)
and
P(k|R) =4 (2.12)
(A - N .

where N is the total number of documents and n; is the number of documents in
which k; appear. Once the initial subset of relevant documents V and V; are known,
where V is the subset in which the term k; appears, a baseline is estimated for the
probabilities and new probability equations with an adjustment factor can be used [4]

Vi+
V+1’

z2

P(ki|R) = (2.13)



PUIR) =

(2.14)

The probabilistic model ranks the documents in decreasing order of probability
of relevance of a document to the users need. The drawbacks of the model are the ini-
tial guess required for R and R, the unaccounted term frequencies within documents,

and the assumption that the index terms are independent.

2.1.4 Latent Semantic Indexing (LSI).  Latent semantic indexing is a pro-
cess similar to VSM which approximates a term-document matrix by one of lower
rank using Singular Value Decomposition (SVD) [13]. The low-rank approximation
of the matrix gives a new representation for the documents in the collection. The
queries are cast into a low-rank representation which enables more efficient compu-
tation of the documents similarity score. Unlike the VSM, LSI addresses two major
problems with VSM to include synonymies and polysemies. A synonymy refers to two
words that have the same meaning such as dog and canine and a polysemy refers to
a single word that has multiple meanings such as bank. Using the VSM to calculate
the document and query vectors for a synonymy, for example dog and canine, the
query vector g would contain dog and the document vector d would contain dog and
canine. The problem lies in the calculation of the vector space which underestimates
the true similarity of dog and canine. This is also true for polysemies where the VSM
overestimates the similarity of bank [13]. Like VSM, LSI uses the cosine similarity to
calculate the similarity of the document and query term but after SVD rank reduc-
tion which brings co-occurring terms closer together and thereby reducing the matrix

dimensionality.

Singular value decomposition is a matrix decomposition method which produces
matrices that are used in LSI with the end product being a low-rank approximation
to the term-document matrix. SVD is the process of factoring a square matrix into
the product of matrices which are derived from their eigenvectors. In SVD non-square

matrix A is an M x N matrix where M is the number of terms in the corpus and N

10



is the number of documents in the corpus. Matrix A is then decomposed into three
matrices U, Sand V. The columns of U are the orthogonal eigenvectors of AAT, S'is
the singular value matrix of A containing the principle components and the transpose
of V, VT whose columns are the orthogonal eigenvectors of ATA where A can be
expressed by [13]:

A=USVT (2.15)

In equation(2.15), U is a term by term matrix that depicts the relationships between
the terms to include synonymies and polysemies where V is a document by docu-
ment matrix that depicts the shared terms among the documents. S is a symmetric
matrix containing the eigenvalues of U and V on its diagonal representing the term
co-occurrences. Figure 2.1 depicts an example of the SVD matrices and their com-
puted values with 3 documents and 3 terms where A is the term by document matrix,
U is the term by term matrix, S is the co-occurrence matrix, and V is the document

by document matrix.

Dimensionality reduction in LSI is done through a low-rank approximation of
the SVD matrices where k is the value of the reduced rank. To truncate the full
SVD matrices, the first k£ columns of U, the first k rows of Vp, and the first & rows
and columns of S are kept, which are arranged in decreasing order. This truncation
removes the noise by reducing dimensionality to expose the effect of the largest k
singular values of the original SVD matrices. The reduced SVD in Figure 2.2 shows
the matrices reduction where the shaded areas indicate the area of the matrix that is
left after the k rows and columns are removed. After the reduction is complete, the
new matrix Ay is computed by taking the product of Uy, Sk, and V;I' which is the

reduced rank approximation matrix.

The value of & should be chosen so as to minimize the Frobenius norm or Eu-

clidean distance [34] which reduces the length of the vectors in matrix A. To approx-

11



SingularValue
Decomposition
1.0000 2.0000 3.0000
= 4.0000 5.0000 6.0000
7.0000 8.0000 9.0000
U= -0.4797 -0.7767 -0.4082
-0.5724 -0.0757 0.8165
-0.6651 0.6253 -0.4082
s 16.8481 0.0000 0.0000
0.0000 1.0684 0.0000
0.0000 0.0000 0.0000
-0.2148 0.8872 0.4082
V= -0.5206 0.2496 -0.8165
-0.8263 -0.3879 0.4082
1.0000 2.0000 3.0000
4.0000 5.0000 6.0000
U*sS*VT= 7.0000 8.0000 9.0000

Figure 2.1:  SVD example.

R
< U
— <

™

Figure 2.2:  Reduced SVD or Rank k£ Approximation
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imate the best value for k& with the smallest error use

where A and A;, are both M x N matrices and F'is the Frobenius norm. Therefore,
using SVD for a given k, this approximation will yield the lowest possible Frobenius

error.

The query will undergo SVD as well to produce a low-rank approximation that
can be used in computing the document similarity scores. The original query vector

¢ will be mapped to its LSI representation by reducing to kdimensions and using
G =%, ' UL 4. (2.17)

Since the query ¢ is just a vector of terms, new documents can be added to the col-
lection by computing only ¢ without recomputing the LSI representation. According
to Garcia [13], the quality of the LSI matrices will degrade if too many documents
are added since the co-occurrence of terms among documents will be ignored and
recomputing the LSI representations is computationally expensive. Therefore, the
original query vector ¢ can be used in the cosine similarity measure since a query in

the original space will be close to the documents in the k -dimensional space.

The computational cost of SVD is large, therefore LSI on a very large collection
may not be feasible. Using a subset of a large collection and adding the remaining
documents in is a work around but as the number of documents added increases, the
quality of LSI decreases. In addition, LLSI can be viewed as soft clustering due to the
interpretation of each dimension in the reduced space as a cluster and the value of a

document on that dimension as membership to that cluster.

2.1.5 Probabilistic Latent Semantic Indexing (PLSI).  Probabilistic Latent
Semantic Indexing (PLSI) is an automated indexing information retrieval model [20].

It is based on a statistical latent class model which is derived from LSI, making it
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a sounder probabilistic model. PLSI was introduced in 1999 by Jan Puzicha and
Thomas Hofmann [20]. Unlike LSI, PLSI uses a statistical foundation that is more
accurate in finding hidden semantic relationships [20]. The model uses factor analysis
of count data, number of times an event occurs from a collection which is fitted from
a training set of that collection. An Expectation Maximization (EM) algorithm solves
the model to effectively find synonymy and polysemy relationships within a specific

domain.

PLSI is based on the likelihood principle which is a principle of statistical infer-
ence which asserts that all of the information in a sample is contained in the likelihood
function [20]. The statistical generative model called the Aspect Model is the basis of
PLSI. The model is composed of the following probabilities

e select a document d with probability P(d ),
e pick a latent class z with probability P(z|d),
e generate a word w with probability P(w|z).

The observed pair P(d, w) is the result of the generative model where the latent class

z is discarded [20]. The observed pair is then given by a joint probability composed
of

P(d,w) = P(d)P(w|d) (2.18)

P(w|d) =Y P(w|2)P(z|d). (2.19)

z€Z

The Aspect Model makes an independence assumption with the observed pair
and conditional probabilities on the latent class z, where the words w are generated
independently of the documents d. The latent class z is a variable that is used in
predicting w conditioned on d where the word distributions are obtained by a convex
combination of the aspects or factors P(w|z). The mixture of factor weights are

characterized by the P(z|d) which offers greater modeling power. Using Bayes’ rule a
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new version of the joint probability model is given by

P(w|d) =Y P(z)P(w|z)P(d|z) (2.20)

z€Z

which is just a reformatted version of the generative model.

To reduce word perplexity, model fitting must be accomplished through maxi-
mum likelihood estimation. The EM algorithm which involves two steps, the E-step
and the M-step, is a standard procedure for maximum likelihood estimation [20]. The
E-step computes the posterior probabilities of the latent variable z and the M-step
updates the posterior probabilities computed in the E-step. The equation used in the

E-step with a control parameter 3 is

P(2)[P(d|2)P(w,2)]”
32 P()[P(d]2') P(w, zrrime)]?,

Ps(z|d,w) = (2.21)
The M-step equations are a convergent procedure that approaches a local max-

imum of the likelihood where the re-estimation equations are

> _qn(d, w)P(z|d, w) (2.22)

Pl = @ Pl w)

Y wn(d, w)P(z|d, w)
5 g 1, w) P(2Id ) (2:23)

=5 Z (d,w)P(z|d,w), R Zn(d, w). (2.24)

d,w

P(d]z) =

PLSI uses query folding to incorporate queries into the Aspect Model. A repre-
sentation of the query is computed in the EM iteration, where factors are fixed so that
the mixing proportions P(z]q) are adapted in each maximization step. The results are
the probabilities and mixing proportions will have an affect on the term weights and

the query will have a higher probability of matching the factors.
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Query folding is the process of adding documents or queries that were not com-
puted with the original training collection. This is done by fixing the P(w|z) parame-
ters and calculating the new query P(z]q) by EM or Tempered EM. TEM is a model
fitting algorithm that is closely related to deterministic annealing [20]. It is designed
to solve the problem of over-fitting where noise overshadows the model relationships.
If TEM is not used the model will perform less well on a folded-in query than on the

data set used for training.

Similar to VSM and LSI, PLSI uses the cosine similarity metric to find the
similarity between document vector representations to score the documents in the
collection with regards to the query. The aspect vector for a query is generated by
treating the query as a new document. The query is added to the model and the
weights for the query are trained with the TEM algorithm. According to Hofmann,
PLST outperforms LSI with a precision increase of around 100% from the LSI baseline

120].

2.1.6 Latent Dirichlet Allocation (LDA).  In 1990, de Finetti [7] established
that any collection of exchangeable random variables has a representation as a mixture
distribution, in general an infinite mixture. Thus, if we wish to consider exchangeable
representations for documents and words, we need to consider mixture models that

capture the exchangeability of both words and documents [7].

Latent Dirichlet Allocation (LDA) like PSLI is a generative probabilistic model
for collection of discrete data such as a text corpora [7]. LDA is a three-level hier-
archical Bayesian model where an item in a collection is modeled as a finite mixture
over a set of latent topics. Topics are characterized by a distribution over the words
in the corpus. The topics are then modeled as a finite mixture over a set of topic
probabilities. The topic probabilities provide a reduced dimension representation of

documents in a given collection.

The basic idea is that documents are represented as random mixtures over latent

topics, where each topic is characterized by a distribution over words [7]. LDA uses the
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Figure 2.3:  Graphical model of LDA.

following process for each document d in the corpus D where we choose N~Poisson(§)

and we choose O~Dir(«). For each of the N words w,,, n=1...N:

1. Choose topic z, Multinomial(8).

2. Choose a word w,, from P(w,|z,, (), a multinomial probability conditioned on

topic z,.

There are several assumptions that are taken into account such as the dimensionality
k of Dirichlet distribution is assumed to be known and fixed, the probabilities are
parameterized by a k x V matrix § where (3 is estimated by ;= P(w'=1|7=1).
Also, N is independent of all other data variables 6 and z. The k dimensional Dirichlet
random variable # takes values in the (k-1)-simplex and is given by the following

density function [7]:
P i)

PO = T T

gt ot (2.25)

where the parameter « is a k-vector with components «a; > 0.

The probabilities of the entire corpus where the marginal probabilities of single

documents are summed over the entire collection is given by:

Pl ) =TT [ PO Pleanlo) Plwalcan )b (226)
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It has been shown that LDA outperforms other probabilistic models, such as
the unigram, mixture of unigram and Probabilistic Latent Semantic Indexing (pLSI)
models, for several document collections [7]. Latent Dirichlet Allocation is a gener-
ative probabilistic model for a collection of discrete data such as a text corpus. As
shown in Figure 2.1.6, LDA is a three-level hierarchical Bayesian model where a doc-
ument in a collection is modeled as a finite mixture over a set of latent topics K with
a Dirichlet prior. Topics are characterized by a distribution over the words W in the
corpus. The topics are then modeled as a finite mixture over sets of word-topic ¢ and
document-topic 6 probabilities. The topic probabilities provide a reduced dimension

representation of the documents in the collection.

The plates/boxes represent repeated learning operations to obtain the various
distributions. The variables o and 3 are parameters having a uniform Dirichlet prior
representing the per-document topic distribution and the per-topic word distribution,
respectively. Given a document 4, 6; represents its topic distribution. For each j*
word in document i, z; represents its topic assignment. Note that w;; is the only
observable variable (shaded) and the rest are latent variables. Thus, inference of the
various latent distributions is done using repeated Gibbs sampling—N times for each

word in each document and M times for each document in the collection.

2.2 Document Preprocessing

Information retrieval methods require preprocessing of the documents to condi-
tion the date such as, eliminate non-essential data such as stopwords (common words),
removal of suffixes and identifying index terms and/or keywords. It is sometimes im-
portant to remove unneeded punctuation, normalize numbers as well as date/time

formats. All of these text preprocessing techniques are optional.

2.2.1 Lexical analysis.  Lexical analysis is the process of turning a stream of
text into a stream of words. Spacing, punctuation and some abbreviations are deemed

as non-essential in some IR arenas, therefore their removal may improve IR efficiency.
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However, there are several instances when removal may deteriorate the context of the
words. These cases are hyphens, certain digits (date and time), case of letters and

punctuation. Therefore, their removal should be considered on a case-by-case basis.

Numbers are usually discarded as index terms, for example a query such as
“boats that sank in 2005” with index terms boats, sank, 2005 could retrieve more
documents related to 2005 and not the boats that sank. In this case, the year 2005
would not be considered a good index term. However, when the numbers are inter-
leaved such as A.D. 200, the number is important to the text. Also, numbers such as
social security numbers, bank accounts or credit card numbers may be relevant and
therefore should not be removed. The removal of numbers must be considered on a
case by case basis and in the context of the collection. Finally, date and time should

be normalized to the same format.

2.2.2  Stopword Remowal. The focus of IR is to find the discriminatory
words that will retrieve the most relevant documents. Stopwords are the frequent
terms such as articles, prepositions and conjunctions are normally filtered as potential
index terms. The removal of these terms minimizes the indexing structure and vector

dimensions for a more streamline process.

The list of stopwords can be specialized to include verbs, adverbs and adjectives
providing further index compression by eliminating uninteresting words. Although
the goal may be to compress the index terms, this reduction can reduce the number
of relevant documents retrieved. For example, if a user that is looking for documents
containing the phrase “to be or not to be” and all the remains after stopword elimi-
nation is “be” it is impossible to properly recognize the documents that contain the
specified phrase [4]. Most web search engines have opted for a full text index as to

avoid ambiguities caused from stopword removal [4].

There are several common stopword lists that are available. The entire stopword
list used in this thesis can be found in Appendix 1, however a comparison of two such

lists are shown in Figure 2.1. Here the first column is a list containing 429 words
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Table 2.1: ~ Comparison of Large and Small Stopword Lists.

List1 List2
a a

- a’s

- able
about about
b b
back -
backed | -
backing | -
backs -

be be

and a second column is a list that is larger containing 571 words, the dashes indicate
where the listings differ. Depending on the context in which the stopword list is used
may dictate which list is appropriate, therefore editing the lists based on the domain

is recommended.

2.2.3 Stemming.  Stemming is a procedure designed to reduce all words to
their root by stripping each word of its derivational and inflecational suffixes [32]. This
process is useful when counting word frequency, matching words with suffixes is often
less successful than finding matching stemmed words. In the areas of computational,
information retrieval, and mathematical analysis, word stemming is essential in the

evaluation of terms and keywords [32].

Several algorithms are used to perform stemming, each with its own benefits.
Stemming algorithms may have semantical implications and therefore should be used
with caution. Sometimes suffixes provide clues to the grammatical context of words
and should not be removed. For example, the word cardiology could be stemmed to
cardio which could have several possible suffixes such as cardiology, cardioprotectant,
cardiopulmonary/ cardiovascular. Stemming these words to the root cardio may not

be a good idea since there are many word forms in very different domains. Therefore,
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selecting the appropriate stemming algorithm for the collection is important, but most

IR algorithms do not use stemming for these reasons [32].

According to Yates [4], there are four types of stemming algorithm; affix removal,
table lookup, successor variety and n-grams. Table lookup stores a table of all index
terms and their stems, so terms from queries and indexes could be stemmed very
fast. The successor variety determines word and morpheme boundaries and using one
of the following methods cutoff, peek/plateau or complete method to find the stem
word. N-grams uses the identification of diagrams and trigrams as its basis and then
association measures are calculated between pairs of terms based on shared unique
diagrams. N-grams stemming is more of a clustering algorithm using matrix to store

similar words and then uses a single link clustering method.

Affix removal stemming is the simplest and can be implemented efficiently,
Porter’s algorithm is the most common affix removal stemming algorithm. The Porter
algorithm uses a suffix list and applies a series of rules to the suffixes of the words in

the text [4]. An example of one of the rules is

s — & (2.27)

which converts plural forms to their singular forms by substituting s by nil, ¢. Fur-

thermore, applying the following rules

sses — s (2.28)

5§ — ¢ (2.29)

to the word possesses yields the stem word possess.

2.2.4 Identify index terms or keywords. Index terms or keywords are the
unique words that remain after the text pre-processing is complete. The terms remain-

ing are usually nouns due to the elimination of verbs, adverbs, adjectives, connectives
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articles and pronouns during pre-processing. During the parsing process several nouns
that appear near each other can be grouped into a topic. The topics formed are called
noun groups. The distance between the nouns is a predefined measure, usually the
number of words between the nouns. These noun groups can be used as the index

terms.

In some cases full-indexing is used which incorporates the entire vocabulary.
For specialized domains the index terms may be pared down by a subject matter
expert to narrow the index term scope. The process of selecting index terms can
be accomplished manually for specialized areas but automating term selection is a

common practice.

The vocabulary ultimately defines a thesaurus of index terms. The thesaurus
consists of a pre-compiled list of important words in a given domain of knowledge and
for each word in this list a set of related words [4]. The purpose of the thesaurus is
to provide a standard vocabulary for indexing and searching and to assist users with
identifying query terms and for query reformulation. A thesaurus may be used in
query reformulation. A user determines the information that they requires and an IR
system can provide a thesaurus to narrow the search terms based on conceptualizing
the query. Since a user may not select the correct terms for searching based on a lack
of experience, the IR system can assist the user by providing related terms based on
the query. On the other hand, a thesaurus can be used with the initial query but
this requires expensive processing time since the thesaurus has not been tailored to a
query. Therefore, a thesaurus may not be computationally efficient especially in IR

systems where the user expects fast processing.

2.3 Query Operations

A query operation is a precise request for information from a collection. The
query can be composed of free text such as web search engines or in a computer

language for databases or other information systems.
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Initial query formulation is usually done with little knowledge of the collection
therefore it may be difficult for users to describe a well-formed query for effective
retrieval. This idea implies that users spend the majority of their retrieval time
reformulating queries. Furthermore, relevance feedback can assist users in query re-

formulation, query expansion and reweighting query terms.

2.3.1 Query Ezxpansion and Term Reweighting. Ad-hoc retrieval relies on
the user’s query to provide a variety of terms and varying term frequencies to differ-
entiate term importance [27]. There are two stages in the ad-hoc retrieval process,
the first is the initial user query and the second is the expansion of the query based

on the relevant documents retrieved using the initial query.

The initial retrieval of n best-ranked documents are regarded as relevant without
user interaction. They are then used to train the initial query term weights and expand
the query. The expanded query is used in a second retrieval attempt can give better
results than the initial query if the initial results are reasonable and has some relevant
documents within the best n. The process will work properly only if the initial query

contains a variety of terms and term importance is evident.

This is where term weighting can improve retrieval results by calculating a
modified query ¢,,. The three classic methods to calculate the modified query ¢,

based on relevance feedback are

Standard_Rochio : ¢,, = af + |l§ | Z d; — |1ij | Z d; (2.30)
" vdjeD, " vd;eD,
Ide Regular : G = @+ 8 Y dj = (NSyicp.d; (2.31)
Vd;eDy
Ide_Dec_Hi : ¢, = aqg+ 3 Z d_; — (V)Tnaxnon—relemm(d;‘) (2.32)
vd; €Dy

-

where maz,on—relevant (d;) is a reference to the highest ranked non-relevant document.

The documents in D, and D,, are those that the user deemed as relevant or non-
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relevant. The current understanding is that the three techniques yield similar results,

however in the past, Equation (2.32) was considered slightly better [4].

2.3.2  Query FExpansion Through Local Clustering. In IR, clustering is the
practice of grouping common documents into subsets so further analysis can be ac-
complished on their relationships [4]. Clustering is another common way to expand
queries. This technique uses association matrices to quantify term correlations such
as term co-occurrence and to use those terms to expand the query. The problem with
the association matrices is that they do not adapt well to the current query. Several
local clustering techniques may be used to alleviate this issue by optimizing the cur-
rent search. There are three techniques discussed to include association, metric and

scalar.

Association clustering [4] uses an association matrix composed of co-occurring
terms within the documents. The association comes from the notion that co-occurring
terms inside documents tend to have synonymity association. Therefore, a matrix §
is developed using the terms as the s; rows and the documents d; as columns where
the matrix values represent the co-occurring frequency of the terms. Then they are
clustered by taking the u-th row of the matrix § and returns the set S,(n) of n largest
values of s, ,, where u and v (us#v) are the values in the matrix, v varies over the set

of local terms. S,(n) is then a local association cluster around the term s, [4].

Second is the metric clustering technique [4] which takes into account where
the terms occur in the documents not just their co-occurrences. The distance s(k;,
k;) between terms k; and k; are the number of terms that are between them. Metric
clustering is similar to association clustering but uses distance s(k;, k;) for the values
in the matrix. They are clustered by taking the u-th row of the matrix s and returns
the set S,(n) of n largest values of s,,, where u and v (u#v) are the values in the
matrix, v varies over the set of local terms. S,(n) is then a metric correlation cluster

around the term s, [4].
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Lastly, scalar clustering [4] is similar to association clustering where it finds
synonymy relationships between terms using term neighborhoods. This is done by
using term neighbors, where terms with similar neighbors are most likely to have
a synonymy relationship. To quantify the relationship the terms are split into two
vectors where §, and 3, (u#v) are correlated terms values. The cosine angle between
the vectors is used to induce a similarity value. Like the last two clustering methods
the set S,(n) of n largest values of s,, where v and v (u#v) are the values in the

vectors and is a scalar cluster around s, [4].

The clusters produced from these techniques are the terms that are used in the
expanded query ¢,,. There are a couple of ways to do this which are adding the terms
in the clusters to the original query or replacing the original query with the clustered
terms. Either option will provide an expanded query to retrieve relevant documents

based on these clustering techniques.

2.3.8  Relevance Feedback.  Relevance feedback [4] is a very important tool,
especially if a collection is unlabeled. The initial results a query returns may not reflect
the desired output this is where user feedback comes in handy. This can be done using
two relevance feedback methods which are global and local. Global methods expand
the user query or reformulates the query terms based on the initial result set. These
methods may include the incorporation of a thesaurus, the generation of a thesaurus,

or spelling correction [34].

Local methods adjust the query based on initial returned documents. The local
methods include relevance feedback, pseudorelevance feedback and indirect relevance
feedback. According to Yates, relevance feedback (RF) is the most used and most

successful approach to improve IR results [34].

Relevance feedback involves the user to improve the relevancy of the returned

documents in the initial results set. The RF process proceeds as follows:

1. User issues query.
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2. System returns an initial set of results.

3. User marks returned documents as relevant or nonrelevant.

4. System retrieves a better set of results based on the user input.
5. System displays a new set of relevant documents.

This process can be repeated several times where relevancy may be improved with

each iteration.

A common algorithm for implementing RF is the Rocchio algorithm [34]. Roc-
chio uses the vector model and combines it with the relevance feedback information
provided by the user. The goal of the algorithm is to maximize the similarity of
relevant documents while minimizing the similarity of non-relevant documents. The

optimal query vector is the equation on which the Rocchio algorithm is based:
Gopt = arg max|[sim(q, C, — sim(q, Cny)] (2.33)
q

where ¢ is the query vector and C, are the relevant documents and C,,, are the non-

relevant documents.

The problem with the optimal query vector is that the full set of relevant docu-
ments is not known. This is where Rocchio’s algorithm modifies the query vector ¢,
with weights attached to each term. and D, the relevant documents and D,,, are the

non-relevant documents. Therefore, ¢, is given by:

CIm:OéCIo-FﬁW Z dj_7|D | Z dj. (2.34)
Jje nr

D, d;€ Dy

2.4 Relevance Retrieval Evaluation

The final step in any information retrieval process is to evaluate the results and
determine their usefulness. There are several measures to determine if the results are

useful such as user feedback, precision and recall. This section discusses methods for
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improving relevancy results through user feedback as well as the measures of relevancy,

namely precision and recall.

2.4.1 Precision and Recall.  The goal in any IR system is to maximize both
precision and recall. Precision is the percentage of retrieved documents which are
relevant and recall is the percentage of relevant documents retrieved. Let R be a set
of relevant documents and A be an answer set to a retrieval request I and Ra be the

number of documents in the intersection of R and A. Precision is then calculated by:

| Ral

Precision = —— 2.35
recision = — (2.35)

and recall is calculated by:

Recall = ”;“' . (2.36)

Figure 2.4 is an example of a recall and precision graph from the Trec08 conference
[45]. The graph shows the concave shape where the area under the curves represent the
average precision. Moving the curves up and out to the right depicts the improvement
of both precision and recall, making the average precision increase. These measures
assume that the relevant documents are known, which may not be the case. Therefore,
variations of these equations such as F-measure and R-precision are used to determine
the true curve of precision versus recall. This comparison is created by averaging the
results over various queries. However, this does not paint a clear picture of the results

of individual queries or the algorithms used in the IR system.

A common single value measure is called the R-Precision method where a single
value summary of the ranking is used. This is done by computing the precision at the
R-th position in the document ranking where R is the number of relevant documents
int the collection for a given query. R-precision can also be averaged over the entire

set of queries.

R-Precision is a useful single value measure to compare various IR algorithms

and determine which method outperforms the rest. Creating an average recall ver-
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Figure 2.4:  Typical Precision and Recall graph

sus precision evaluation strategy for IR systems are used extensively in IR retrieval

literature [4].

2.4.2 Perplexity. Perplexity, a common metric for evaluating natural lan-
guage processing models [25], is used to evaluate the models. The perplexity value
computed on the held-out test data indicates how well the model is able to generalize
the unseen data. The lower the perplexity the better the model is able to generalize.

The following equation is used for computing perplexity:

S log p(wq) }

2.37
Eg/ir]vd ( )

perplexity(Dyest) = exp {—

where D;.,; is the set of test documents held out from the collection, M is the number
of documents in the collection, p(wy) is the probability of the words in document d,
and N, are the number of words in document d. Notice that the numerator, is the

entropy of the collection, given p(wy), for each document [7].

28



2.5 Text Categorization and Ontologies

An ontology is a formal representation of a set of concepts within a domain
and the relationships between those concepts. Ontologies are used in the information
retrieval domain to model lexical and domain knowledge and for information extrac-
tion. The common ontologies used in natural language processing are WordNet and

the Web Ontology Language (OWL).

2.5.1 WordNet. WordNet is a lexical database that links English nouns,
verbs, adjectives, and adverbs to sets of synonyms called synsets which are then linked
by their semantic relations (Antonymy, Hyponymy, Meronymy, and Troponymy)
which determine word definitions [37]. Where the Web Ontology Language’s aim
is information organization, WordNet is used to provide semantic relationships by

linking words to their semantic counterparts, improving relevancy ranking [21].

WordNet uses language definitions as a set W of pairs (f,s), where fis a word
string and s is the set of meanings for that string where f can be used to express
a particular s [37]. Currently, there are 118,000 word forms, a string over a finite
alphabet, and more than 90,000 word senses, an element from a given meaning set,
with more than 166,000 (f,s) pairs [37]. The semantic relationships between word
forms or synsets are connected by pointers between word forms or (f;s) pairs. This
provides a link between a word and the various synonyms, antonyms, and various
other semantic relationships useful in defining a broader scope of semantic relations.
The additional relationship information provided by WordNet aids in the semantic
contexts that other IR methods fail to consider such as the troponomy march or
walk, the manner in which one moves. Incorporating WordNet with common IR
methods such as vector modeling or document clustering could be beneficial to the

IR community [37].

WordNet has been used in many areas as a reference ontology in the area of
information retrieval. For instance, Varelas et al. uses WordNet to detect similar-

ities that are semantically but not lexicographically related. They combined their
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approach with a novel IR method resulting in a better performance over other IR
methods [44]. Hearst devised a method for automatic discovery of WordNet relations
by searching for lexico-semantic relations shown to be useful in the detection of hidden
semantic relationships [18]. Several others have used WordNet for text classification
to include Rosso et al. [24], Chua and Kulathuramaiyer [11], and Mansuy and Hilder-
man [35]. Measuring concept relatedness is another area where WordNet has made
contributions, eg., automatically annotating text with cohesive concept ties [42] and
measuring relatedness of pairs of concepts [43]. WordNet has also been paired with
Roget’s and Corpus-based Thesauri to augment WordNet’s missing concepts [33].
Text clustering algorithms have been enhanced using WordNet as shown by Liu et
al. [30] and Hotho et al. [21]. These works have shown that ontology augmentation
is useful in identifying hidden semantic relationships and is worth investigating for

improving LDA results.

2.5.2  Web Ontology Language (OWL).  Information contained on the World
Wide Web, a corpus where there is less definable structure requires some concrete
organization to attain useful knowledge. One way that this can be done is to form
computational patterns that can be connected in such a way that meaningful infor-

mation can be extracted.

The Web Ontology Language (OWL) enables the mining of the massive amount
of unorganized data that would otherwise be meaningless [3]. OWL is a language that
makes use of ontologies. OWL is based on defining and instantiating Web specific
ontologies. Ontology is defined as “That department of the science of metaphysics
which investigates and explains the nature and essential properties and relations of
all beings, as such, or the principles and causes of being” [1]. In computer science
and information science ontology is a formal representation of a set of concepts within
a domain and the relationships between those concepts. In OWL, ontology’s define
classes, properties and their instances. Given such an ontology, the OWL formal

semantics specifies how to derive its logical consequences, or entailed from its seman-
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tics. These entailments may be based on a single document or multiple distributed

documents that have been combined using defined OWL mechanisms.

OWTL differs from other Web standard languages as it makes use of the semantics
to create a useful tool outside of its’ original function. For example, the Extensible
Markup Language (XML) is in a message format rather than a knowledge represen-
tation that OWL provides. Furthermore, OWL consists of three sub languages; OWL
Lite, OWL DL, and OWL Full. Each of these sub languages designed to provide

specific user requirements.

OWL Lite is designed for lite user’s, as the title expresses. Users that require
classification hierarchy and simple constraint features where cardinality can be ex-

pressed as 0 or 1. OWL Lite also provides swift migration from other taxonomies.

OWL Description Logic (DL) is for the user that requires the maximum compu-
tational completeness and are guaranteed to return a computation. DL provides all
the functions of the OWL language restricting type separation(classes and properties
can not be one in the same). OWL DL is designed to support the existing DL business

segment and has desirable computational properties for reasoning systems.

OWL Full, is designed for the user who is not concerned with computational
guarantees but are interested in strict expressiveness. Also, OWL Full allows an

ontology to augment the meaning of a predefined vocabulary.

The OWL structure is based on the formal syntax and semantics which are an
extension of the Resource Description Framework (RDF) [3]. RDF is an assertion
language on which OWL is based. It provides a means to express propositions using
precise formal vocabularies. OWL uses RDF to specify the specific vocabularies to
be used. An XML file with an RFD tag provides the necessary identifiers to provide
a meaningful and readable ontology. Figure 2.5 depicts the use of OWL to add

comments, version control, importing existing ontologies and labeling [3].

Since ontologies are like software they change over time which require version

control and OWL provides a version definition function to link versions together and
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<owl:Ontology rdf:about="" />
<rdfs:comment>An example OWL ontology</rdfs:comment>
<owl:priorVersion rdf:resource= “http://www.w3.org/TR/2003/PR-owl-guide-20031215/wine” />
<owl:imports rdf:resource= “http://www.w3.org/TR/2004/REC-owl-guide-20040210/food” />
<rdfs:label>Wine Ontology</rdfs:label>

Figure 2.5:  Example of Owl Structure

track history of an ontology. This along with other functions that OWL provides
enable users to create ontologies that are easily linked and make searching the Web

that much easier [3].

The data described by an OWL ontology is interpreted as a set of “individuals”
and a set of “property assertions” which relate these individuals to each other. An
OWL ontology consists of a set of data types which place constraints on sets of
individuals that make up classes and the types of relationships permitted among two
objects. These data types provide semantics by allowing systems to infer additional

information based on the data explicitly provided.

OWL is a useful tool in the area of information retrieval, by using the relation-
ship data provided by OWL ontologies. The use of OWL strives to create organization
that provides a means to obtain useful information from complex relationships which
would otherwise be overlooked. The use of software agents with an unorganized
ontology provides suboptimal results. Using OWL or another ontology language to
organize data and creating domain specific ontologies which may improve information

retrieval results since information will have a defined structure.

2.6 Document Clustering and Visualization

The document clustering hypothesis states that documents within the same
cluster behave similarly with respect to relevance to some information needs [34].
Therefore, a cluster with a document that is relevant to the search criteria may also
contain other documents that are relevant, which is the sole purpose of document

clustering, gathering documents with similar terms. Document clustering is a form
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of unsupervised learning, i.e, where no human expert has labeled or assigned the
documents to classes [34]. In this way, the learned algorithm and corpus will deter-
mine which clusters the documents appear. The clustering algorithms used to create
clusters use a distance measure often a Euclidean distance, which is the distance of
documents from their cluster centers. There are two common clustering algorithms,
k-means and hierarchical clustering, which are briefly discussed in the following sub-

sections.

2.6.1 K-means Clustering.  K-means clustering is a flat clustering algorithm
whose objective is to minimize the average squared Euclidean distance from a given
cluster w having centroid g where Z is the length normalized documents [34]. The
centroid is given by:

ii(w) = %' > (2.38)

Each cluster in K-means should be a sphere with the centroid at the center of
gravity and the clusters should not overlap [34]. To measure the effectiveness of the
K-means clustering the residual sum of squares(RSS) is calculated. RSS is the squared
distance from each centroid summed over all of the vectors, which is formulated as

follows:

RSSy = |7 — filwy)[*. (2.39)

Few
The objective function of K-means is RSS and minimizing it is equivalent to

minimizing the average squared distance. This gives a measure of how well the cen-

troids represent their documents [34].

2.6.2 Hierarchical Clustering.  Hierarchical clustering provides a structured
output which is more informative than other clustering algorithms [34]. As opposed to
K-means the hierarchical clustering algorithms do not require specifying the number
of clusters ahead of time. Although hierarchical algorithm are deterministic, their

efficiency is less desirable having a complexity of at least quadratic compared to K-
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means which is linear. Therefore, these trade offs must be considered when choosing

a clustering algorithm.

Hierarchical clustering algorithms are either top-down or bottom-up. Bottom-
up treats each document as a singleton and merges pairs of clusters until all documents
are in a single cluster. Top-down splits the clusters until individual documents are

reached. Bottom-up is more frequently used in IR [34].

There are four common hierarchical clustering algorithms: single-linkage, complete-
linkage, group-average, and centroid. Single-linkage is the similarity of two clusters
by their most similar members and where the two clusters are closest together which
is a local criteria. The clusters are merged based on the two closest pairs and then
by the next closest pair. A single-linkage clustering side-effect called chaining occurs,
where documents are added to the cluster and can create a chain effect. This chaining
effect can produce a straggling cluster which can be extended for long distances, an

undesirable side-effect.

Complete-linkage based clustering solves the issues that single-linkage based
clustering creates but produce other structure irregularities caused by outliers. Complete-
link based clustering is the similarity of two clusters by their most dissimilar mem-
bers. The merge criteria are non-local and take into account the cluster structure and

thereby reduce the chain-effect that is produced by single-linkage clustering.

Group-average clustering is another approach that takes into account all sim-
ilarities between documents which elevates the problems that arise with single and
complete-linkage clustering algorithms. The group-average clustering algorithm aver-
ages the similarity of all the pairs of documents to include those in the same cluster

but self-similarities are not included in the average.

The final hierarchical clustering algorithm is the centroid clustering algorithm.
The similarity of two clusters is based on the similarity of their centroids [34]. This is
similar to the group-average algorithm except that centroid clustering excludes pairs

that are in the same cluster. Centroid clustering is more commonly used because it
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is simpler to calculate the similarity of two centroids than to calculate the pairwise

similarity in group-average clustering.

2.6.3 Self-Organizing Maps (SOM). Self-organizing maps is a type of ar-
tificial neural network that is trained using unsupervised learning to produce a low-
dimensional (typically two-dimensional), discretized representation of the input space
of the training samples, called a map. SOM’s consist of a fixed lattice where multi-
dimensional data is represented in a 2D space. Self-organizing maps are different than
other artificial neural networks in the sense that they use a neighborhood function to

preserve the topological properties of the input space [26].

A self-organizing map consists of components called nodes or neurons known
as processing elements. Associated with each node is a weight vector of the same
dimension as the input data vectors and a position in the map space. The usual
arrangement of nodes is a regular spacing in a hexagonal or rectangular grid. The
procedure for placing a vector from data space onto the map is to find the best-
matching unit in a vector to the vector taken from the data space and to assign the
map coordinates of this node to the vector. The best-matching unit can be found
using

¢ = argmin;||x — mg| (2.40)

where c is the index of the best-matching unit, z is an input from the input sample,
and m; is the vector associated with the processing element 4, and ||.|| is the distance

metric.

After ¢ has been calculated, ¢ and all of the m;’s with a certain geometric

distance in the map space (physically the grid) can be updated using

mi(t+ 1) = my(t) + a(t)he(t)[x(t) — my] (2.41)

where t > 0 is a discrete coordinate, «(t) is a monotonically decreasing learning

rate and h; is a neighborhood function. In order for convergence to occur h.; must
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Figure 2.6:  SOM Cluster Map. [36]

approach zero with increasing time and acts as a smoothing kernal over the SOM

lattice to ensure the converged map is ordered [26].

Self-organizing maps naturally cluster so that the data with similar features
are mapped to the same or nearby processing elements [36]. The topology of the
input space is preserved on the lattice, i.e, relationships between samples in the
high-dimensional input space are preserved on a low-dimensional mapping [26]. This
preservation makes the SOM a great visualization tool to map multi-dimensional data

to a 2D representation, as seen in Figure 2.6.
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III. Augmenting LDA and Rank Threshold Detection using
WordNet

In an ever-increasing data rich environment, actionable information must be ex-
tracted, filtered, and correlated from massive amounts of disparate often free text
sources. The usefulness of the retrieved information depends on how we accomplish

these steps and present the most relevant information to the analyst.

It has been shown by Blei et al. that LDA outperforms other probabilistic
models such as the unigram, mixture of unigram and Probabilistic Latent Semantic
Indexing models, for several document collections [7]. Latent Dirichlet Allocation is
a generative probabilistic model for collection of discrete data such as a text corpus.
LDA is a three-level hierarchical Bayesian model where an item in a collection is
modeled as a finite mixture over a set of latent topics. Topics are characterized by
a distribution over the words in the corpus. The topics are then modeled as a finite
mixture over a set of topic probabilities. The topic probabilities provide a reduced

dimension representation of documents in a given collection.

Figure 3.1 depicts the general document modeling process, where the collection
is encoded to include text processing, use of ontologies and query introduction. After
encoding, the modeling process can be accomplished with various modeling algorithms
to include LDA, SOM, LSI, PLSI, Vector or Boolean. Finally, the results are presented
to depict the output of the modeling algorithm. This model is tailored later for
LDAWN in Section 3.2.

3.1 Process Overview

The principle advantages of generative models, such as LDA, include their mod-
ularity and their extensibility. They are easier to modify and study; for example, us-
ing an alternative sampling method from Gibbs Sampling as used in finding scientific
topics [15] to Random Sampling used in face recognition [23]. It is also possible for
LDA to be embedded in complex models as well as extending LDA by introducing

background knowledge to improve word and topic distributions, as we do here.
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Figure 3.1:  General document modeling process.

Recent work in this area include clustering and visualization using LDA and Self-
Organizing Maps (SOM) [36], document modeling using probabilistic topic models [7],
and a comparison of probabilistic topic models [41]. Both Blei’s et al. and Styvers’
and Griffiths” work aim to analyze the contents of documents and the meaning of
words using probabilistic topic models. Their results show that LDA outperforms
other probabilistic models. Additionally, Millar et al. [36] work shows how LDA and
SOM’s can be used together to cluster and visualize topic distributions, their results
on the 20 Newsgroups and NIPS collections showed good behavior. However, they
pointed out a couple of challenges such as setting LDA hyperparameters and choosing
a reasonable topic number. Our approach to LDA will not differ, but the novelty of our
approach comes with the incorporation of WordNet into the LDA document modeling

process.

WordNet has been used in many areas as a reference ontology in the area of
information retrieval. For instance, Varelas et al. [44] uses WordNet to detect simi-
larities that are semantically but not lexicographically related. They combined their

approach with a novel IR method resulting in a better performance over other IR
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methods [44]. Hearst devised a method for automatic discovery of WordNet relations
by searching for lexico-semantic relations shown to be useful in the detection of hidden
semantic relationships [18]. Several others have used WordNet for text classification
to include Rosso et al. [24], Chua and Kulathuramaiyer [11], and Mansuy and Hilder-
man [35]. Measuring “concept relatedness’ is another area where WordNet has made
contributions, i.e., automatically annotating text with cohesive concept ties [42] and
measuring relatedness of pairs of concepts [43]. WordNet has also been paired with
Roget’s and Corpus-based Thesauri to augment WordNet’s missing concepts [33].
Text clustering algorithms have been enhanced using WordNet as shown by Liu et
al. [30] and Hotho et al. [21]. These works have shown that ontology augmentation is

useful in identifying hidden semantic relationships and is worth investigating.

3.2 Augment LDA using WordNet (LDAWN)

Tools used in document modeling face difficult challenges dealing with data
management and data diversity compounded with the overwhelming amount of un-
structured or semi-structured data. As an example, web pages represent petabytes [2]
of unmanageable amount of semi-structured data. In addition, various documents and
reports from specialized communities are constructed in these formats. As a result,
many research activities are flourishing in the area of knowledge discovery and data

mining of various document collections.

3.2.1 LDAWN Problem Definition. In the area of Knowledge Discovery
and Data Mining (KDD), data management systems often become overwhelmed with
source documents, in free text form, that are not labeled or pre-assigned to specific
topics. The usefulness of the retrieved information depends on how we accomplish

these steps and present the most relevant information to the analyst.

3.2.2 LDAWN Goals and Hypothesis. ~ One method for extracting informa-
tion from free text is Latent Dirichlet Allocation (LDA), a document categorization

technique to classify documents into cohesive topics. Although LDA accounts for some
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implicit relationships such as synonymy (same meaning) it often ignores other seman-
tic relationships such as polysemy (different meanings), hyponym (subordinate), and
meronym (part of). To compensate for this deficiency, we incorporate explicit word
ontologies, such as WordNet, into the LDA algorithm to account for various semantic

relationships.

The benefit of supplementing the LDA algorithm with WordNet synsets is to
introduce semantic relationships LDA is not designed to discover such as polysemes,
hyponyms, meronyms, troponomys etc. For example, a document about dog may
not be related to a document about cat by the LDA algorithm but their semantic
ties with animal can reveal their hidden relationships. To avoid further complicating
the LDA algorithm as it reduces the term-document matrix to a much smaller word-
topic categorization, any enhancement should not increase the dimensionality of the

problem space. LDAWN;, achieves both of these objectives.

The LDAWN algorithm increases document term frequencies by incrementing
terms by the number of new entries for WordNet terms appearing in the same doc-
ument. This is a similar strategy to the “add strategy” used by Hotho et al. [21],
where a term that appears in WordNet as a synset is accounted for at least twice but
could be accounted for more often due to terms having more than one synset. As a
result, term frequencies are increased for words contained in a document that have
semantic relationships with other words contained in the same document. This in
turn increases the LDA word-topic distribution probabilities for a given word with
semantic relations that have affected its term frequency count. The term frequency
directly affects the LDA probability for p(w|z), where each topic z is characterized
by a distribution over the words w. This alters the distribution so that some words
are more probable than others, therefore identifying words that are related and that
better fit the word-topic distribution. For example, if the word dog appears twice
in a document and the term canine appears once in the same document, the term
frequencies for those terms are incremented by the number of occurrences. Therefore,

the term frequency for dog and canine are both three for that document. This method
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Table 3.1:  LDAWN and LDA word-topic distributions for dog and canine.

LDA

Topic 53: | canine | allergens | supply seen responds | gmt relative | dogs
LDAWN

Topic 96: | dogs canine allergens | supply | seen responds | gmt relative

gives equal word probability for both dog and canine thereby explicitly defining their

semantic relationship.

This method directly affects LDA in terms of computing the posterior distribu-
tion of hidden variables, which is intractable. Therefore, using variational inferences
to formulate the computation of a marginal or conditional probability, a family of
distributions on the latent variables are obtained, making the computation tractable.
One of these distributions is the variational distribution which is a conditional distri-
bution, varying as a function of w, where w are the words in the distribution. Since
the variational distribution is explicitly dependent on w, increasing the probability’s
in w directly affects the variational distribution which in turn influences the word-
topic distribution. To show how the word-topic distribution is affected by LDAWN a
comparison of the LDAWN and LDA distributions show the affects of incorporating
an ontology. The LDAWN distribution should have higher probabilities for semanti-
cally related terms than LDA for the topics they are assigned. Using a small collection
of documents pertaining to dogs, Table 3.1 are the LDAWN and LDA word-topic dis-
tributions for the words dog and canine in order of word probability, from greatest to

least.

The LDAWN word-topic distribution in Table 3.1 has higher probabilities for
the terms dog and canine than LDA. These increased probabilities for those terms

create the explicit semantic relationship, LDA alone is unable to define.

As discussed in Section 2.5.1 each set of synsets, has a unique index organized
into hierarchies. Each hierarchy level expands further to reveal a myriad of synsets,
expanding the synsets excessively may cause term frequencies to be incremented un-

realistically. Therefore, LDAWN only expands the first level synsets of the hierarchy
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Figure 3.2:  Graphical depiction of WordNet Synsets for dog and canine.

which avoids traversing too far into the ontology network causing unnecessary compu-
tation and unmanageable relationship tracking. This level captures the most prevalent
word semantic relationships. However, restricting the number of hierarchy levels could
cause LDAWN to overlook important semantic relationships. Further study can in-
vestigate if additional levels yields better results. Figure 3.2 is a graphical depiction

of the first level synsets for the terms dog and canine.
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Figure 3.3:  The LDAWN Process.

The LDAWN process is shown in Figure 3.3 and described in the following steps:

1. Parse and remove stopwords (stemming not used).
2. Store documents and terms in the collection.

3. Parse and build vocabulary.

4. Pre-process and encode data as term frequencies.

5. Find semantically related terms in the vocabulary and weight them using Word-

Net.

6. Use repeated Gibbs sampling and LDA algorithm for 200 iterations or until

convergence.

7. Output the per-document topic distribution # and per-topic word distribution
o.

3.2.8  Ezxperimental Design.  LDA and LDAWN are trained on four text cor-
pus to compare the generalization performance of these models. The first collection

is 20 Newsgroups which is a collection of pre-categorized newsgroups into 20 topic
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areas [29]. OHSUMED is a set of references from MEDLINE, classified into topics
where documents can belong to multiple topics. MEDLINE is an on-line medical in-
formation database, consisting of titles and abstracts from 270 medical journals over
a b-year period from 1987-1991 [19]. Also, the NIPS collection are the abstracts from
the “Neural Information Processing Systems” conference containing the abstracts of
the submitted papers over a 5-year period from 2000-2005 and are unlabeled [14]. Fi-
nally, experiments are conducted using a collection of unlabeled classified improvised

explosive device (IED) reports.

Using the four corpora listed above, 90% of the documents are trained for each
data set on LDA and LDAWN models. LDA is allowed to run up to 200 iterations or
until convergence, as discussed in Blei et al. [7]. The model parameters taken from the
output during training are fixed and used on the test set. These inputs include the
topic-distribution 6, o, and . According to Steyvers and Griffiths, good values for «,
and ( are a=50/T and (3=0.01 based on the number of topics T and the vocabulary
size [41]. Keeping 6 learned from the training set, the remaining documents are used
as a test set to calculate the perplexity for specified number of topics. The models are
evaluated for 10 topic values from 10 to 100 in increments of 10. Figure 3.4 depicts

the experiment design with LDA at the top of the figure and LDAWN at the bottom.

Further experiments are conducted on the four collections using independent
and pseudorandom training and testing sets for each experiment. There are a total of
five experiments per collection to include previous experiments. As before 90% of the
collection used in training and 10%held out for testing. This is to ensure collection
biasing is avoided. To find the best model parameters additional experiments are
conducted where the values of o and (8 and varying topic numbers are explored to see
how the LDA and LDAWN models react and if document modeling can be further
improved. Experiments on the 20 Newsgroups and IED collections are conducted
with «=50/T at topics numbers 50, 100 and 200. The § parameter is varied from
0.01, 0.02 and 0.05.
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Figure 3.4:  Experimental Design for LDA (Top) and LDAWN (Bottom).

The evaluation metric perplexity, see Equation 2.37 in Chapter 2, a common
metric for evaluating natural language processing models [25], are used to evaluate
the models. The perplexity value computed on the held-out test data indicates how
well the model is able to generalize unseen data. The lower the perplexity the better
the model is able to generalize. Four experiments were conducted to thoroughly
compare the performance of LDAWN against that of LDA. Experiment one consisted
of training and testing over all four copora. Experiment two consisted of obscuring
two of the collections from their pre-categorized state, OHSUMED and 20 Newsgroups
collections. Experiment three is the mean perplexity values over all experiments
and include standard deviation error bars. Experiment four explored the results of
adjusting the prior parameters o and (3 for the per-document topic distribution 6 and

the per-topic word distribution ¢.
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3.3 Rank Threshold Detection with LDAWN

LDA-SOM clusters documents based on the self-organizing map after document
modeling with the Latent Dirichlet Allocation algorithm and topic selection are com-
plete. LDA-SOM leverages the word-topic distribution output of LDA to produce
a visualization of those document clusters. The LDA-SOM process is similar to the
LDAWN process in that initial preprocessing of documents are parsed and stopwords
are removed, with no stemming. The vocabulary for the collection is created and data

is encoded as term frequencies in a term-document matrix.

The documents are ranked according to their relevance to a given query by
combining the Dirichlet smoothing document model P(w|D) with the LDA model [48].

This combination is given by the following equation:

Nd Nd
Py (w|D) + (1 —
N, 4wl P) (1=

P(w|D) = A ( M)PML(w\coll)) + (1 = \)Pgaw|D

(3.1)
where P, is the probability from original document model and P4, is the probability
from the LDA model. The parameters A and p are set at u=1000 and A=0.7, which
achieve the best results according to Wei et al. [48]. The hybrid probabilistic query
model differs in one area, Py (w|coll) is changed to Py (w|C), where C'is the cluster
containing the document [36].

N, N,
Parn(w|D) + (1 —
Ny el D)+ (1=

PulD) = P (wlC)) + (1= N PiulD (3:2)

This change gives the retrieval process a distinct advantage of assigning probability
to document that are relevant to the query in which the query terms to not explicitly
appear in the documents [36]. The following steps and Figure 3.5 depict the LDA-
SOM process:

1. Use LDA to classify the words and documents into topics.

2. Look at the topics that emerge and decide which of the topics are relevant to

the the user.
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Figure 3.5:  LDA-SOM IR Process
. Take the documents and put them in a SOM using the probabilities for the
relevant topics as the dimensions of the data.

. Cluster the SOM and determine the largest cluster. This is the one that has

low probability for all dimensions (i.e., topics).

. Discard the documents associated with the largest cluster.

. Take the remaining documents and run LDA on them to generate new topics.
. Run SOM using the remaining documents and the new topics.

. Cluster the SOM.

. Use the clusters and the LDA topics to rank documents to user defined queries

using the hybrid probabilistic query model Equation 3.2.

3.3.1 Threshold Problem Definition. Previous work by Millar [36], LDA-

SOM, rank document relevance to a query independent of whether or not the query

terms appeared in the document. More importantly, his implementation overlooks

query terms that do not explicitly co-occur and is discounted by LDA. In LDAWN,

WordNet is used to supplement the rank documents based on the query terms includ-

ing any of its synsets to leverage terms that co-occur. In addition, since all remaining
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Figure 3.6:  LDAWN IR Process

documents are ranked and returned to the user a rank threshold of relevancy should

be automatically defined.

3.3.2  Threshold Goals and Hypothesis.  Equation 3.2 bases the relevancy of
documents to a query independently of whether the query terms appear in a document
or not, therefore WordNet can be leveraged by finding those documents that the
query terms appear and any of its WordNet synsets. Also, a rank threshold can be
automatically detected by determining the point at which the query terms or their
synsets no longer appear in the documents. This provides the user a point at which
documents are no longer relevant without searching the entire ranked documents list.
The LDAWN IR process is depicted in Figure 3.6 the only difference from the LDA-

SOM IR process is the incorporation of ontologies.

Experiments were conducted on the 20 Newsgroups collection using Millar’s
LDA-SOM algorithm and LDAWN algorithm with equation 3.2 and the following
parameters, a=>50/T, $=0.01, u=1000 and A=1000. Both algorithm’s are allowed to
run 200 iterations and the ranked document list contains the automatic threshold,

indicated by a T in the document list. The comparison metric is precision and recall,
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where the 20 Newsgroups are in categories and the query can be assigned to a specific

category, therefore can be treated as a semi-labeled collection.
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IV. Results and Analysis of LDAWN and Rank Threshold

Detection

4.1 LDAWN Proof of Concept

Test results for the first experiment compared the four collection perplexity val-
ues, see Figures 4.1 through 4.4, show that LDAWN garnered less (better) perplexity
values in a great majority of topic values. Figure 4.1 is the 20 Newsgroups collection,
which is pre-categorized into 20 topic areas. Pre-categorization can be inferred since
the LDA and LDAWN models are consistently similar in their perplexity values at
each topic increment. In Figure 4.2 the perplexity values for the LDAWN model are
lower at each topic increment than the LDA model, which means the LDAWN model
is able to generalize unseen data better than the LDA model alone. Figure 4.3 are
the OHSUMED collection, here the documents have been obscured from their labeled
topics. The perplexity values on the training set and again the LDAWN model has
a lower perplexity at each topic increment. In Figure 4.4, the IED reports collection
prove LDAWN is able to generalize unseen data better than LDA in the majority of
test cases. However, in the IED collection at topic numbers 30 and below LDAWN’s
perplexity increases dramatically which could be due to the held-out set composition.
If the test set contained a higher number of words that did not appear in the training
set and WordNet did not find their synsets, their probabilities would be lower thereby

increasing the perplexity.

The overall improvement, reduction in perplexity, at 100 topics are 9.8% for 20
Newsgroups, 19% for NIPS, 15% for OHSUMED, and 28% for IED. The results for
the NIPS, OHSUMED, and IED collections show that the LDAWN model when faced
with a previously unseen document which may contain words that did not appear in
the training documents are able to generalize those words better than the LDA model.
These words most likely have smaller probabilities which make the perplexity of the
unseen documents increase in the LDA model. Since the LDAWN model is able to
find semantically related words in these documents, those word probabilities increase

which decrease the perplexity for those unseen documents. However, as seen in the
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Figure 4.1:  Perplexity results on the 20 Newsgroups collection.
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Figure 4.3:  Perplexity results on the OHSUMED collection.
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Figure 4.4:  Perplexity results on the IED collection.
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Table 4.1:  LDA and LDAWN Models Training Times.

20 Newsgroups | OHSUMED | NIPS IED

(33 MB) (60.1 MB) (35.8 MB) | (12.2 MB)
LDA 37 min 195 min 43 min 64 min
LDAWN | 110 min 250 min 94 min 137 min

IED collection at topic numbers 30 and below, LDAWN’s perplexity indicates that
there are a number of terms that do not have synsets and do not occur frequently and
therefore have low probabilities. This could also be a collection anomaly requiring

further testing.

A drawback of using the LDAWN model for document modeling is the increased
runtime in searching through the synsets and incorporating the additional words. Our
experiments show that it takes approximately twice as long to run the LDAWN model.
Table 1 shows the associated runtime for each collection with the corresponding model.
These runtimes are also associated with the size of the collection. The OHSUMED
collection is the largest of the three and therefore takes the longest to run for both
models. System memory for these tests is 3 GB of RAM and a 2.7 GHZ processor,

increasing system memory and processor speed may reduce the training runtime.

4.1.1 Analysis.  These experiments show significant improvements over pre-
vious work using LDA to model documents by incorporating the WordNet ontology
to help uncover hidden semantic relationships. For any given document, we incre-
mented term frequencies for all terms in the document matching terms in the synsets
of WordNet. Then, we incorporated this enhanced term-document matrix into the
LDA model to compute the topic distribution. LDA estimated the per-document
topic distribution and per-topic word distribution and output the probabilities for

each topic distribution.
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Figure 4.5:  Perplexity results on the 20 Newsgroups obscured collection.
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4.2 LDAWN Randomized Collections

A majority of each collection are trained using the LDAWN model to classify
the documents into topics. The 10% held-out set is used to test and measure the
perplexity, using perplexity Equation 2.37 as discussed in Chapter 2, of each collection
for several numbers of topics. Results show that augmentation of LDAWN, fared
better than LDA alone, i.e., LDAWN achieves a better generalization of documents

in each collection.

Test results for experiment two are the obscured (mixed-up) 20 Newsgroups
and OHSUMED collections and test if the collection categorization affect perplexity
values, see Figures 4.5 and 4.6. Figure 4.5 is the 20 Newsgroups collection, where the
documents were obscured from their pre-categorized topics. LDAWN outperforms
LDA at all topic values in the obscured collection where the perplexity’s were similar
along most topic values in experiment one. Figure 4.6 is the obscured OHSUMED
collection where the documents are not in their predefined state as classified topics.
Again, LDAWN outperforms LDA at all topic values in the obscured collection where

the perplexity’s were similar along most topic values in experiment one.

4.2.1 Analysis.  During this experiment the results for the OHSUMED and
20 Newsgroups collections are different from the topic categorized findings in exper-
iment one. These results are due to obscuring the OHSUMED and 20 Newsgroups
collection from their original topic category’s. This experiment shows that collec-
tions that are labeled or pre-categorized pose similar perplexity’s at all topic values
for LDAWN and LDA although LDAWN’s values are slightly lower. This fact tells
us that the LDAWN model it most helpful when collections are not categorized or

labeled, which is the case when document and topic modeling are the most useful.
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4.3 LDAWN Confidence Testing

Experiment three mean perplexity values over five experiments on all four col-
lections, see Figures 4.7 through 4.10, shows the mean perplexity values for the 20

Newsgroups, NIPS, OHSUMED and collections.

4.3.1 Analysis. Test results over the five experiments per collection with
the perplexity mean and standard deviation, shown in Figures 4.7 through 4.10, show
that LDAWN garnered less (better) perplexity values in a great majority of topic
values. Figure 4.7, is the 20 Newsgroups collection, which is pre-categorized into
20 topic areas. This pre-categorization can be inferred since the LDA and LDAWN
models are consistently similar in their perplexity values at each topic increment,
meaning that the documents in each pre-labeled topics categories belong in similarly
inferred topics. Overall, the perplexity values for the LDAWN model are lower at
each topic increment than the LDA model, which means the LDAWN model is able
to categorize the new documents better than the LDA model alone. Figure 4.8, is
the NIPS collection, LDAWN consistently outperforms LDA at every topic number.
Figure 4.9 bottom left, is the OHSUMED collection perplexity values on the training
set and again the LDAWN model has a lower perplexity at each topic increment. In
Figure 4.10, the IED reports collection prove, once again, that LDAWN is able to
generalize unseen data better than LDA in the majority of test cases. However, in
the IED collection at topic numbers 30 and below, LDAWN’s perplexity increases
dramatically which could be due to the held-out set composition. If the test set
contained a higher number of words that did not appear in the training set and
WordNet did not find their corresponding synsets, their probabilities would be lower
thereby increasing the perplexity. This can occur at a lower number of topics when

the collection is diverse.

The results for the NIPS, OHSUMED, and IED collections show that the
LDAWN model when faced with a previously unseen document, which may contain

words that did not appear in the training documents, are able to generalize those
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words better than the LDA model. These words most likely have smaller probabili-
ties which result in the perplexity of the unseen documents to increase in the LDA
model. Since the LDAWN model is able to find semantically related words in these
documents, those word probabilities increase which decrease the perplexity for those
unseen documents. However, as seen in the IED collection at topic numbers 30 and
below, LDAWN’s perplexity indicates that there are a number of terms that do not
have synsets and do not occur frequently and therefore have low probabilities. This

may also be a collection anomaly requiring further testing.

Figures 4.7 through 4.10 also shows the standard deviation depicted by the
error bars, black for plain LDA and gray for LDAWN, among the four collections
over five experiments. The variances at 10 topics consistently have a large spread,
on the OHSUMED, 20 Newsgroups and IED collections, due to more outliers or
increased perplexities at low topic numbers. This is reasonable because it is more
difficult to construct topic models at low topic numbers because the document model
is generated by first picking word distributions over the topics. Therefore, if the
number of topics is low then the word distribution is severely restricted causing a
high variance. Alternately, LDAWN has a smaller variance than LDA in all the

collections.

4.4 Determining Best o and 3 Parameters

To empirically determine the best a and (3 to use, experiments on the 20 News-
groups and IED collections are conducted with a=50/T at topics numbers 50, 100
and 200. The g parameter is varied from 0.01, 0.02 and 0.05 depicted in Figures
4.11 through 4.13. Figure 4.11 is the 20 Newsgroups collection, at 50 topics, top left,
with =0.01 the LDAWN perplexity decreases drastically as it approaches 50 topics
as well as LDAWN outperforming LDA at most topic numbers. This is also true
with LDAWN and 100 topics Figure 4.12, with parameter =0.01 perplexity steadily
decreases and is lower than the perplexity at =0.02 and 0.05. LDAWN still outper-
forms LDA at each topic number. Figure 4.13 at 200 topics and $=0.02, there is a
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noticeable decline in the perplexity. LDAWN consistently has a lower perplexity than
LDA with =0.01 and a=0.25 but at larger topic numbers such as 200, better results
are achieved with 5=0.02.

As with the 20 Newsgroups, the IED collection showed similar results with the
varying values for a and 3. Figure 4.14 through 4.16 is the IED collection, at 50
topics, Figure 4.14, with $=0.02 the LDAWN perplexity decreases as it approaches
50 topics as well as LDAWN outperforming LDA at most topic numbers. This is
also true with LDAWN at 100 topics Figure 4.15, with parameter 5=0.02 perplexity
steadily decreases and is lower than the perplexity with 5=0.01 and 0.05. LDAWN
still outperforms LDA at each topic number. Figure 4.16 with 200 topics and 5=0.01,
there is a noticeable decline in the perplexity. LDAWN consistently has a lower
perplexity than LDA with 5=0.02 and a=0.25 but at larger topic numbers such as
200, better results are achieved with 3=0.01.

4.4.1 Analysis.  These experiments were designed to test the best parameters
for the document models. As proposed by Steyvers and Griffiths [41], we also found
the values of «=50/T and (3=0.01 produced the best overall results. However, these
values are best fit for an unlabeled collection like the IED collection. When the model
is faced with a categorized/semi-labeled collection such as 20 Newsgroups (=0.02
fared better with large topic numbers. So when determining the best parameters, the

collection and desired number of topics should be considered when choosing o and J3.

4.5 Rank Threshold Detection Using WordNet

LDAWN also incorporates a query model for information retrieval purposes. The
documents are ranked according to their relevance to a given query by combining the
Dirichlet smoothing document model with the LDA model as proposed by Wei and
Croft [48].
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4.5.1 LDAWN Threshold Detection Results. — Table 4.2 are the LDAWN top
50 results on the query term bike. The value of true is given to a document that
contains the query term or its WordNet sysnet. Notice that a value of true does not
appear until three quarter of the way down the list. This is unusual since most IR
system results would rank the documents with the query term much higher. In order
to increase the score of the documents that contain the query term a multiplier must
be used. Therefore, a multiplier is applied to the rank score of each document in
the ranked list that contains the query term or its WordNet synset. The multiplier
moves the documents that contain the query term or its WordNet synset closer to the
top, these results are shown in Table 4.3. After the multiplier is applied the last true
value is found and the threshold is drawn as seen in Table 4.4, these are ranked 650-
700. The threshold was found at document 1441 indicated by the T for the suggested
threshold, at rank 653, which is about the halfway point of the total 1497 documents.

To further evaluate the performance of LDAWN, precision and recall metrics
are calculated for both LDA and LDAWN. The OHSUMED collection was used since
it includes labeled queries, i.e., subject matter experts determined which documents
in the collection are relevant to the queries. Table 4.5 and 4.6 are the precision and
recall results from the OHSUMED collection for labeled query’s Q1 through Q15.

Note: Q8 and Q14 have no relevant documents.

Figure 4.17 depicts the average recall versus precision at 11 levels of recall
for the two algorithms averaged across the 13 queries. Like Figure 4.17, typically
these graphs slope downward from left to right, enforcing the notion that as more
relevant documents are retrieved (recall increases), the more non-relevant documents
are retrieved (precision decreases). Therefore curves closer to the the upper right
corner of the graph, e.g., closest to 100% precision and recall, perform better. Since
LDAWN garnered higher precision and recall for every query over LDA and is closer
to the upper right corner, LDAWN’s performance is superior to LDA. Therefore, we
conclude that incorporating WordNet into the query process is also beneficial for

information retrieval performance.
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Table 4.2:  Top 50 Results for bike LDAWN without multiplier.

Rank IO Doz 10 Score Contains Query Term
1 871|0.54251 FALSE
z 1167|0.09532 FALSE
3 920)0.0903E FALSE
4 1154(0.07435 FALSE
5 E97|0.06502 FALSE
E SE7|0.06386 FALSE
T 1270(0.05045 FALSE
g EIEI?|D.05842 FALSE
=] 13EIEI|EI.I3551? FALSE

10 1DZZ|D.DE&E? FALSE
11 1139(0.05178 FALSE
12 I71|0.0491E FALSE
13 1122(0.04853 FALSE
14 TTE|0.047593 FALSE
15 1318(0.04EEE FALSE
1B 242 0.0449 FALSE
17 TT50.04424 FALSE
18 Ta80.04328 FALSE
19 1308'0.042-‘15 FALSE
20 ES?lD.DdZSE FALSE
21 520/0.04221 FALSE
22 T470.04191 FALSE
23 992)0.0418%8 FALSE
24 843)0.041459 FALSE
25 1267(0.04144 FALSE
ZE 792)0.04059 FALSE
27 109E(0.04055 FALSE
28 1280 0.0404 FALSE
29 817)0.033955 FALSE
20 110:4{0.03355 FALSE
21 224)0.03278 FALSE
32 5230.03875 FALSE
33 1358|D.I33835‘- FALSE
24 1231|0.38316 TRUE
35 934|0.0380% FALSE
36 1381|0.03806 FALSE
a7 1249|0.037ES FALSE
28 1243(0.03712 FALSE
29 204)0.03707 FALSE
40 1197|0.03674 FALSE
41 9220.0367 FALSE
42 835)0.03579 FALSE
43 E50)0.03505 FALSE
A4 95958 0.035 FALSE
45 1087|0.03484 FALSE
45 1110(0.034 74 FALSE
47 121D|D.DS¢1?2 FALSE
48 1128'0.03&49 FALSE
49 EI?ZlEI.DdeB FALSE
a0 ] 15?;]&,@4? EALSE
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Table 4.3:  Top 50 Results for bike LDAWN with multiplier.

| Fank D | DoclD | Score | Contsins Guery Term
1 271 0.5425 FALSE
2 1268) 0.23176 TRUE
4 213[ 0.2052 TRUE
5 1072 0.21849 TRLUE
E 12380 0217 TRELUE
7 1123) 01942 TRUE
2 1186) 01873 TRUE
g Foo| 0174 TRUE
10 1182 0155 TRELUE
11 TEO[ 01452 TRUE
12 Ed4d| 01432 TRLUE
13 1325 013396 TRUE
14 1097 01378 TRUE
15 1208 0.1354 TRUE
16 7T 01217 TRLUE
17 1167 0.0953 FALSE
18 S20[ 0.0904 FALSE
18 965 0.0533 TRUE
20 42| 0.07E9 TRUE
21 TET| 00748 TRELUE
22 1154) 0.0744 FALSE
23 1200) 0.0723 TRLUE
24 913 0.0724 TRUE
25 1328 00723 TRUE
2B 41 00714 TRUE
27 T250 0.0704 TRLUE
28 058 007 TRUE
29 E41] 0.0637 TRUE
20 £92| 0.0535 TRUE
21 Z80[ 0.0Es TRUE
32 24 00579 TRELUE
a3 1173 Q0BT TRUE
24 78| 0.06E2 TRLUE
] 97| 0.0EE FALSE
1] 259| 00657 TRUE
7 1431 0.0856 TRUE
38 417| 00655 TRLUE
] 14324 0.0855 TRUE
40 120] 00853 TREUE
41 1404) 0.0851 TRUE
42 957| 0.0643 TRUE
43 S36[ 0.0542 TRUE
44 12445) 0.0E4 TRUE
45 267 0.0523 FALSE
48 20| 00538 TRUE
47 1001) 00833 TRUE
45 93 00521 TRUE
45 G2 00624 TRLUE
&0 424| 00523 TRLUE

66



Table 4.4:

50 Results for bike LDAWN that include threshold.

Rank ID DoclD Score | Contains Query Term
632 238 0.01939 TRUE
633 1161 0.01939 FALSE
634 140 0.01@ TRUE
635 44)  0.01938 TRUE
636 248 0.01937 TRUE
637 741 0.01936 FALSE
6338 955 0.01936 FALSE
639 251 0.01935 TRUE
640 422  0.01935 TRUE
641 97]  0.01934 TRUE
642 1367 0.01923 FALSE
643 1130, 0.01919| FALSE
644 389  0.01914 TRUE
645 94  0.01911 TRUE
646 1215, 0.01908 FALSE
647 961 0.01905 FALSE
643 962 0.01896 FALSE
649 98]  0.01894 TRUE
650 854  0.01889 FALSE
651 743 0.01888 FALSE
652 695 0.01884 FALSE
654 796 0.0188 FALSE
655 1351 0.01867| FALSE
656 1410,  0.01867| FALSE
657 1116 0.0186 FALSE
658 1349  0.01859) FALSE
659 953 0.01856 FALSE
660 1117 0.01852 FALSE
661 1354 0.01851 FALSE
662 1075 0.0185 FALSE
663 1357  0.01837| FALSE
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Table 4.5:

LDA-SOM and LDAWN Recall for OHSUMED.

Q1

Q2

Q3

Q4

Q5

Q6

Q7

LDA-SOM

0.0004

0.0002

0.0015

0.0001

0.00004

0.0006

0.00004

LDAWN

0.0004

0.0002

0.0017

0.0001

0.0002

0.0008

0.00007

Q9

Q10

QL1

Q12

Q13

Q15

LDA-SOM

0.0002

0.00

0.00008

0.0001

0.00008

0.0002

LDAWN

0.0002

0.00004

0.00008

0.0001

0.0001

0.0002

Table 4.6:

LDA-SOM and LDAWN Precision for OHSUMED queries.

Q1

Q2 | Q3

Q4

Q5 | Q6

Q7

LDA-SOM

0.64

0.57 | 0.62

1.00

0.17 | 0.68

0.50

LDAWN

0.64

0.71 | 0.80

1.00

0.83 | 0.95

1.00

Q9

Q10 | Q11

Q12

Q13 | Q15

LDA-SOM

0.57

0.00 | 0.50

1.00

0.67 | 0.80

LDAWN

0.86

0.50 | 0.50

1.00

1.00 | 0.80

4.5.2  Analysis.

give the user an estimate of the point at which the documents are no longer relevant
to the query. This method is still in its infancy stage but far outperforms a manual
binary search of the physical documents. Therefore, there is plenty of room for further
explorations and possible improvements. Additional results can be found in Appendix

2, where the threshold is detected for the query terms battery, motorcycle, tire and

ride.

As indicated in the both Tables 4.5 and 4.6 LDAWN has higher precision and
recall results for a majority of the queries which means LDAWN retrieves the most
relevant documents with respect to the query. Figure 4.17 also shows LDAWN has a
higher precision at all 11 levels of recall which validates that LDAWN retrieves more

This automatic threshold detection method is designed to

relevant documents than LDA.
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V. Conclusions

Latent Dirichlet Allocation (LDA) with WordNet (LDAWN) exposes hidden semantics
relationships resulting in improved document modeling, document classification and
topic categorization over LDA alone. This technique benefits the e-intelligence /counter-
intelligence community by enabling intelligence analysts to quickly extract more rele-
vant information from massive amounts of disparate data, e.g., IED incident reports.
For any given document, term frequencies are incremented for all terms in the docu-
ment with matching terms in WordNet synsets. Then, the resulting term-document
matrix is incorporated into the LDA model to compute the topic distribution. LDA
estimates the per-document topic distribution and per-topic word distribution and
outputs the probabilities for each topic distribution. After unigram classification
training over each of the four corpora, a held-out test set is used to measure the
perplexity of each collection over several numbers of topics. Our results show that
augmentation of LDAWN, fared better than basic LDA, i.e., LDAWN achieves a bet-

ter generalization of documents in each collection.

The threshold detection method using LDAWN is a way to automatically find
a threshold among relevant documents and non-relevant documents in a ranked list.
The goal of automation is met which requires no user interaction. In addition, the
user has the ability to view documents below the threshold causing no restriction to
the user. This method can be used with LDA, LDAWN and other modeling tools

that do not have a relevancy threshold detection method.

Results show that augmentation of LDAWN, fared better than basic LDA, i.e.,
LDAWN achieves a better generalization of documents in the collection by using

parameters a=50/T and =0.01 as suggested by Steyvers and Griffiths.

5.1 Future Work

Several avenues for future research can further advance this work. Future work
includes term reweighting, using domain specific ontologies and further experiments

on other labeled collections.
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5.1.1 Term reweighting.  Term reweighting will modify the term frequencies
and therefore modify the probability of the term, increasing the probability of the
original term and decreasing the probability of the synset term. This reweighting
scheme will be important during the information retrieval process, specifically during

document ranking and will give a fair weight to the synset terms. The documents

Currently, LDA-SOM weighs terms equally. To define a distinction between a
term and its synset, the synset term and the non-query terms need to be weighted
differently. The term weighting process is done during the LDA-SOM term-document
matrix generation where the term frequencies are collected. The proposed term
weighting scheme would give a term the full weight value of 1.0 if the term is contained
in the document. If the term is a synset of the term and both query term and synset
terms appears in the document then it would be given a term weight reduction to
0.80. If the term is a synset and appears in the document and the original term does
not then the weight would be reduced to 0.75. This term weighting process produces a
clear distinction of the term importance, where the original term receives the highest
term weight and therefore probability. LDA-SOM experiments for the term weighting
process are accomplished with the following parameters a=50/T, =0.01 and various

query’s tested on the 20 Newsgroups and IED collections .

5.1.2  Clustomized Ontologies. WordNet like ontologies can be created and
tailored for expected terms in the collection. The tailored ontologies will drastically
reduce the ontology size. This reduction in size would improve LDAWN runtime
performance and provide domain specific synsets, lowering perplexity. Additionally,

OWL (see Section 2.5.2) can be leveraged to generate such customized ontologies.

5.1.3  Fvaluate Labeled IED Data. The LDAWN favorable results could
be further validated if the IED collection included canned queries and the relevant
documents for those queries. Although, very labor intensive process, as the IED
collection is a large and dynamic collection, this would provide a validated baseline to

ensure LDAWN is the best model to gain insights into this collection. In addition, an
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IED subject matter expert should verify the automatic threshold detection process is
indeed finding the best possible threshold and if it will be a valuable tool for their

analysis.
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a
also
another
be

both

do

either
for
giving
here

is

km

may
most

nor
often
out
previously
resulting
show
since
that
there
thus
used
were
with

Appendiz A. Stop Word Listing

about after again all
although always among  an

any approximately are as
because  been before being
but by can could
does done due during
enough  especially etc followed
found from further  give

had hardly has have
how however if in

it its itself just
largely like made mainly
might min ml mm
mostly must nearly  neither
not now obtain  obtained
on only or other
over overall per perhaps
quite rather really regarding
same seem seen several
showed  shown shows significant
SO some such suggest
the their theirs them
these they this those

to under up upon
using various very was
what when whereas which
within without would
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Table B.1:

Appendiz B. Query Results for Threshold

20 Newsgroups Top 50 Results for tire LDAWN-QM without multiplier.

Rank 1D Ooc 10 Score Cortains Query Term
1 271 003315 FALSE
= 204, 001269 FALSE
i 14416 001531 FALSE
bl 1289 001048 FALSE
5 1070 0.01043 FALSE
5 9235 000371 FALSE
7 792 0.00331 FALSE
= 770 000315 FALSE
3 2E7|  0.002395 FALSE

108 265  0.00249 FALSE
11 255 000224 FALSE
1i 1247 I:I.I:II:IEll:Ii FALSE
14 Eda| 000705 FALSE
15 1237 0.00704 FALSE
15 1208 000831 FALSE
17 1322 0.00579 FALSE
18 10539  0.005859 FALSE
19 1327 0.00551 FALSE
20 299|0.0062459 FALSE
21 14417 0006224 FALSE
23 1218( 00061462 FALSE
23 963| 0.0061355 FALSE
2d B30 000553956 FALSE
25 27300057431 FALSE
25 1305 0.0055065 FALSE
27 1167 0.0053424] FALSE
258 T71|0.005307E FALSE
25 1486 0.0052317 FALSE
cln 1423000524583 FALSE
231 11339 0005112 FALSE
33 1242(0.0047 165 FALSE
23 1298 0.0044527 FALSE
24 12373 0.00444EH FALSE
25 924|0.0043473 FALSE
26 717|0.0043185 FALSE
237 12780 0.004 165 FALSE
28 932 0.0041277 FALSE
24 1311(0.0041183 FALSE
40 1270( 00040925 FALSE
41 270 0.004047 FALSE
43 223|0.0039228 FALSE
43 932|0.0033171 FALSE
44 SE2|0.0038727 FALSE
45 723 0.0025514) FALSE
45 1152 0.002334 55 FALSE
47 T22| 00037731 FALSE
45 ES0|0.00374523 FALSE
L 1119 0.003727H FALSE
S0 126100037211 FALSE
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Table B.2: 20 Newsgroups Top 50 Results for tire LDAWN-QM with multiplier.

Rank IO Doz 10 Score Contains Query Term
1 871 0.0331E66 FALSE
4 204 0.018632 FALSE
. 1416 0.015308 FALSE
4 1289) 0.010424 FALSE
5 1070 0010426 FALSE
= 935 000371 FALSE
T 78 0003301 FALSE
= F70[0.003154 FALSE
a SET[ 0.008351 FALSE

11 SES[ 0.003435 FALSE
12 255 000224 FALSE
1.3 1247 00028095 FALSE
14 1028 0.072541 TRUE
15 E45( 0.007034 FALSE
15 1237 0.007041 FALSE
17 1206 0008314 FALSE
15 1322 0008731 FALSE
19 13839 0.00E7SE TRUE
20 1053 0005693 FALSE
21 1327 0006513 FALSE
24 a9 0.00E246 FALSE
23 1417 0005224 FALSE
24 1218 0.00E14E FALSE
25 53 0.00E 136 FALSE
2H E20( 0.005237 FALSE
27 27l 00057449 FALSE
25 13056 0005507 FALSE
29 1167 0005342 FALSE
20 7 0005308 FALSE
21 1486 00052592 FALSE
a4 1423 00052458 FALSE
jcX 1133 0005142 FALSE
2 1242 0.00471E FALSE
a5 1296 0.004453 FALSE
2 1373 0004447 FALSE
a7 934( 0.004.347 FALSE
o FAF[ 00043215 FALSE
=4 1273 0.004 188 FALSE
40 932 0004125 FALSE
41 1214] 0004148 FALSE
44 1270 0004092 FALSE
43 870 0.004047 FALSE
44 283 0003323 FALSE
45 992 0.003917 FALSE
4 62 0003373 FALSE
47 T23 0003361 FALSE
45 1152 0003846 FALSE
44 S27[ 0.00:32301 TRUE
A0 22 0003773 FALSE
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Table B.3: 20 Newsgroups 50 Results for tire LDAWN-QM that include threshold.

Rank ID | Doc D Score Contains Query Term
120 255|  0.001984976 TRUE
121 773| 0.001931834 FALSE
123 1271 0.001896472 FALSE
124 098| 0.001854854 FALSE
125 1267|  0.001853723 FALSE
126 1306| 0.001844183 FALSE
127 909| 0.001833978 FALSE
128 1101 0.001757613 FALSE
129 1362|  0.001756074 FALSE
130 653| 0.001753169 FALSE
131 053] 0.001731787 FALSE
132 1134|  0.001727033 FALSE
133 1404|  0.001701206 FALSE
134 1329| 0.001664319 FALSE
135 1316|  0.001659924 FALSE
136 813 0.00164674 FALSE
136 272|  0.001637991 FALSE
137 380] 0.0016379971 FALSE
138 1222|  0.001597562 FALSE
139 857| 0.001554818 FALSE
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Table B.4: 20 Newsgroups Top 50 Results for ride LDAWN-QM without multiplier.

Rank ID Doc ID Probabhility Contains Query Term
1 871 0.186060441 FALSE
2 997 0.051509729 FALSE
3 1267 0.041896609 FALSE
4 659 0.038335711 FALSE
5 920 0.036671619 FALSE
6 1167 0.034976524 FALSE
7 906 0.031856524 FALSE
8 1104 0.031633455 FALSE
9 697 0.028778403 FALSE

10 1110 0.027113735 FALSE
11 1383 0.026841662 FALSE
12 650 0.02653452 FALSE
14 1154 0.021173054 FALSE
15 1413 0.02100343 FALSE
16 1366 0.020974831 FALSE
17 847 0.020647 366 FALSE
18 799 0.020207448 FALSE
19 1249 0.019873187 FALSE
20 879 0.019868319 FALSE
21 1270 0.019835712 FALSE
22 1318 0.019395965 FALSE
23 1305 0.019191009 FALSE
24 1022 0.018470458 FALSE
25 1168 0.017953555 FALSE
26 1290 0.017291717 FALSE
27 1268 0.017245711 FALSE
28 1087 0.016661759 FALSE
29 1278 0.016418529 FALSE
30 820 0.016267066 TRUE

N 1099 0.01623675 FALSE
3z 1122 0.016152947 FALSE
33 1007 0.016113107 FALSE
34 902 0.015946548 FALSE
35 71 0.015729584 FALSE
36 992 0.015299456 FALSE
7 1139 0.01519728 FALSE
38 1009 0.01506402 FALSE
39 1309 0.015029866 FALSE
40 1178 0.014952459 FALSE
4 1042 0.014946849 FALSE
42 ar7 0.014814756 FALSE
43 687 0.014484631 FALSE
44 776 0.014430382 FALSE
45 1308 0.013860994 FALSE
46 893 0.013802844 FALSE
47 972 0013777189 FALSE
48 867 0.013555228 FALSE
49 1262 0.013416542 FALSE
a0 842 0.013377748 FALSE
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Table B.5: 20 Newsgroups Top 50 Results for ride LDAWN-QM with multiplier.

Rank ID Doc ID Probabhili Contains Query Term
i 871 0.186060441 FALSE
3 820 0.162670664 TRUE
4 794 0.110861376 TRUE
5 816 0.097654596 TRUE
b 1256 0.092041269 TRUE
7 1225 0.074120896 TRUE
8 1430 0.07 1602667 TRUE
9 975 0.069736139 TRUE

10 980 0.060404707 TRUE
1 819 0.057359675 TRUE
12 997 0.051509729 FALSE
13 840 0.050928704 TRUE
14 961 0.046483136 TRUE
15 837 0.044719321 TRUE
16 821 0.042471929 TRUE
17 1267 0.041896609 FALSE
18 1319 0.040548607 TRUE
19 659 0.038335711 FALSE
20 920 0.036671619 FALSE
21 896 0.036026345 TRUE
22 1167 0.034976524 FALSE
23 994 0.034417739 TRUE
24 906 0.031856524 FALSE
29 1104 0.031633455 FALSE
26 982 0.030955756 TRUE
27 697 0.028778403 FALSE
28 1110 0.027113735 FALSE
29 1383 0.026841662 FALSE
30 650 0.02653452 FALSE
n 677 0.024933146 TRUE
32 1402 0.024258701 TRUE
33 698 0.022738164 TRUE
34 717 0.022579184 TRUE
35 1152 0.022497773 TRUE
36 1455 0.022435756 TRUE
37 584 0.022269541 TRUE
38 862 0.021938995 TRUE
39 656 0.021930943 TRUE
40 685 0.021325564 TRUE
iM 1154 0.021173054 FALSE
42 522 0.021084543 TRUE
43 1413 0.02100343 FALSE
44 1366 0.020974831 FALSE
45 1474 0.020736291 TRUE
46 847 0.020647366 FALSE
47 799 0.020207448 FALSE
49 971 0.020199335 TRUE
50 1476 0.020053485 TRUE
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Table B.6: 20 Newsgroups 50 Results for ride LDAWN-QM that include threshold.

Rank ID Doc ID Probabhility Contains Query Term
1235 18 0.007073184 TRUE
1236 79 0.006986029 TRUE
1237 63 0.006582291 TRUE
1238 71 0.006555134 TRUE
1239 a7 0.006500099 TRUE
1241 12 0.006130599 FALSE
1242 8z 0.004790993 FALSE
1243 32 0.0047 17674 FALSE
1244 75 0.004287192 FALSE
1245 7 0.003508338 FALSE
1246 11 0.003288017 FALSE
1247 68 0.002891067 FALSE
1248 a9 0.002830257 FALSE
1249 92 0.002747409 FALSE
1250 66 0.002740194 FALSE
1251 10 0.002714924 FALSE
1252 80 0.002394469 FALSE
1253 52 0.0022163 FALSE
1254 89 0.002202194 FALSE
1255 81 0.002196211 FALSE
1256 36 0.002179058 FALSE
1257 9 0.001848448 FALSE
1258 14 0.001833192 FALSE
1259 a3 0.001803524 FALSE
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Table B.7: 20 Newsgroups Top 50 Results for motorcycle LDAWN-QM without
multiplier.

RankID | DoclID Score Contains Query Term
1 871| D117176798 FALSE
2 804| D.062501071 FALSE
3 1416| 0.052940055 FALSE
4 1289| 0.036138009 FALSE
5 1070| 0.035528231 FALSE
] 867| 0.034383531 FALSE
7 935| 0.033191297 FALSE
8 865| 0.029586907 FALSE
9 798| D.028246779 FALSE

10 1247| 0.028212869 FALSE
11 855| 0.028010421 FALSE
12 770| D.027039503 FALSE
13 1237| 0.024510269 FALSE
14 1206| 0.023618162 FALSE
15 1059| 0.022875663 FALSE
16 1327 | 0.022266261 FALSE
17 648| D.021653294 FALSE
18 879| D.021293224 FALSE
19 889| 0.021180004 FALSE
20 680| 0.019922668 FALSE
21 1028| 0.019786048 FALSE
22 1167 | 0.019766919 FALSE
23 1218| 0.018841765 FALSE
24 771| D.0187056594 FALSE
25 1486 0.0178564 FALSE
26 1423| 0.017592129 FALSE
27 1139| 0.017447937 FALSE
28 1296| 0.016641601 FALSE
29 1242| 0.016095237 FALSE
30 932| 0.015388416 FALSE
N 1379| 0.01502117 FALSE
32 1311| 0.013816661 FALSE
33 860| 0.013751373 FALSE
34 1270| 0.013751318 FALSE
35 870| D.013653339 FALSE
36 659| 0.013514308 FALSE
37 888| D.013378781 FALSE
38 992 0.0133583 FALSE
39 1152| 0.01296575 FALSE
40 1305 0.01294397 FALSE
41 723| D.012816795 FALSE
42 722| 0.0172800078 FALSE
43 650| D.012762889 FALSE
44 1119| 0.012712224 FALSE
45 1261| 0.012688215 FALSE
46 934| 0.012686393 FALSE
47 1322| 0.012563995 FALSE
48 1356| 0.012346667 FALSE
49 1415 0.01294397 FALSE
50 256| D.012816795 FALSE
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Table B.8: 20 Newsgroups Top 50 Results for motorcycle LDAWN-QM with mul-
tiplier.

Rank 1D Doc ID Score Contains Query Term
1 871 0.117176798 FALSE
2 1422| 0.082752853 TRUE
3 804| 0.062501071 FALSE
4 1416| 0.052940055 FALSE
5 914| 0.038032234 TRUE
b 1289 0.036138009 FALSE
7 1070| 0.035528231 FALSE
8 867 0.034383531 FALSE
9 935) 0.033191297 FALSE

10 865) 0.029586907 FALSE
11 798| 0.028246779 FALSE
12 1247| 0.028212869 FALSE
13 855 0.028010421 FALSE
14 770) 0.027039503 FALSE
15 1237| 0.024510269 FALSE
16 1206 0.023618162 FALSE
17 1059| 0.022873663 FALSE
18 1327| 0.022266261 FALSE
19 648| 0.021653294 FALSE
20 879) 0.021293224 FALSE
21 889) 0.021180004 FALSE
22 680) 0.019922668 FALSE
23 1028| 0.019786048 FALSE
24 1167 0.019766919 FALSE
25 1218 0.018841765 FALSE
26 771 0.018705694 FALSE
27 1486 0.0178564 FALSE
28 1423 0.017592129 FALSE
29 1139 0.017447937 FALSE
30 1296| 0.016641601 FALSE
N 1242| 0.016093237 FALSE
32 932| 0.015388416 FALSE
33 1379 0.01502117 FALSE
34 559) 0.014282359 TRUE
35 1276 0.014232525 TRUE
36 661 0.014222617 TRUE
37 933| 0.014222617 TRUE
38 1032 0.01419301 TRUE
39 1451  0.01419301 TRUE
40 958) 0.01419301 TRUE
41 1193 0.014173368 TRUE
42 565) 0.014144049 TRUE
43 793 0.014134314 TRUE
44 121 0.014134314 TRUE
45 1157 0.014124598 TRUE
46 332| 0.014124595 TRUE
47 689) 0.014124598 TRUE
48 1109 0.014095564 TRUE
49 986) 0.014057114 TRUE
50 4 0.014038 TRUE
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Table B.9: 20 Newsgroups 50 Results for motorcycle LDAWN-QM that include
threshold.

Rank ID Doc ID Score Contains Query Term
265 276| 0.00457768 FALSE
267 1444| 0.00454923 FALSE
268 719 0.00452278 FALSE
269 961| 0.00450029 FALSE
270 835 0.00449955 FALSE
271 716| 0.0044845 FALSE
272 704| 0.00448392 FALSE
273 1072| D.00447425 FALSE
274 229| 0.00445212 FALSE
275 1064 | 0.00445026 FALSE
276 1354| 0.00444029 FALSE
277 653| 0.00441557 FALSE
278 1324| 0.00439023 FALSE
279 1373| 0.00439011 FALSE
280 837| 0.00438833 FALSE
281 1052| D.00438476 FALSE
282 1186| D.00437225 FALSE
283 1243| 0.00432614 FALSE
285 621| 0.00428369 FALSE
286 820| 0.00426182 FALSE
287 1294| 0.00419063 FALSE
288 1362| 0.0041457 FALSE
289 1150| 0.00414112 FALSE
290 1129| 0.00413235 FALSE
i) 951| 0.00412867 FALSE
292 1132| 0.00412767 FALSE
293 833| 0.00411506 FALSE
294 688 0.00410878 FALSE
295 1331| 0.00410722 FALSE
296 273| 0.00408832 FALSE
297 1373| 0.00408512 FALSE
298 640| 0.00408117 FALSE
299 1240| 0.00408016 FALSE
300 1138 0.00407834 FALSE
am 359| 0.00407813 FALSE
302 1016| 0.00407782 FALSE
303 631 0.00407072 FALSE
304 726| 0.00405278 FALSE
305 1096| 0.00393794 FALSE
306 70] 0.00390375 FALSE
307 906| 0.00390125 FALSE
308 88| 0.00389169 FALSE
309 326| 0.00388987 FALSE
400 963| 0.00385878 FALSE
40 1205| 0.00383286 FALSE
402 756| 0.00382452 FALSE
403 1082| 0.00381066 FALSE
404 1182| 0.00380587 FALSE
405 915| 0.00380058 FALSE
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Table B.10: 20 Newsgroups Top 50 Results for battery LDAWN-QM without mul-
tiplier.

Rank ID Doc ID Score Contains Query Term
1 14868 0.052216124 FALSE
2 252|  0.020199892 FALSE
3 150  0.0194338001 FALSE
4 1444|  0.014386422 FALSE
b 300| 0.009542432 FALSE
6 472|  0.009292006 FALSE
Fi 62|  0.008992184 FALSE
8 65| 0.007724998 FALSE
9 1468  0.007003791 FALSE

10 1247|  0.006582145 FALSE
11 1453  0.0064659551 FALSE
12 803| 0.006285569 FALSE
13 1176|  0.006186287 FALSE
14 348| 0.006094796 FALSE
15 1229|  0.006078649 FALSE
16 113|  0.005716533 FALSE
17 245  0.005548136 FALSE
18 1141 0.005522173 FALSE
19 1470|  0.005095251 FALSE
20 242  0.004940127 FALSE
21 1490  0.004895259 FALSE
22 17| 0.004875446 FALSE
23 525|  0.004834639 FALSE
24 484|  0.004722107 FALSE
25 612|  0.004502292 FALSE
26 1477  0.004497616 FALSE
27 437 0.00442602 FALSE
28 830| 0.004418234 FALSE
29 1186  0.004301852 FALSE
30 1475|  D.004281498 FALSE
E) 1437  0.004266579 FALSE
32 593|  0.004258088 FALSE
33 1473|  D.004246195 FALSE
34 187  0.004204766 FALSE
35 35|  0.003992296 FALSE
36 648 0.003974289 FALSE
37 LR 0.003959037 FALSE
38 1069 0.00391493 FALSE
39 12|  0.003835613 FALSE
40 537| 0.003770945 FALSE
41 406| 0.003740028 FALSE
42 375  0.003694628 FALSE
43 1411 0.003645722 FALSE
44 228|  0.003547504 FALSE
45 596| 0.003546984 FALSE
46 1441 0.003470017 FALSE
47 305| 0.003389613 FALSE
48 134| 0.003330222 FALSE
49 174 0.00324128 FALSE
50 516 0.003112821 FALSE
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Table B.11: 20 Newsgroups Top 50 Results for battery LDAWN-QM with multiplier.

RankID | DoclID Score Contains Query Term
1 1488 0.052216124 FALSE
i 1034 0.026558529 TRUE
3 252 0.020199892 FALSE
4 150 0.0194380M1 FALSE
b 687 0.019206325 TRUE
6 876 0.017169668 TRUE
7 1444 0.014386422 FALSE
8 987 0.012699838 TRUE
9 1233 0.01218218 TRUE

10 508 0.01203805 TRUE
11 640 0.011251489 TRUE
12 180 0.010081401 TRUE
13 894 0.010030106 TRUE
14 300 0.009542432 FALSE
15 472 0.009292006 FALSE
16 2 0.0092181 TRUE
17 62 0.008992184 FALSE
18 M3 0.008852188 TRUE
19 1100 0.00875712 TRUE
20 7h 0.008132286 TRUE
21 226 0.008052981 TRUE
22 65 0.007724998 FALSE
23 768 0.007713826 TRUE
24 14 0.007584395 TRUE
25 532 0.007294821 TRUE
26 592 0.007185885 TRUE
27 1468 0.007003791 FALSE
28 3 0.006731796 TRUE
29 1247 0.006582145 FALSE
30 1453 0.006465551 FALSE
k) itk 0.00630454 TRUE
32 803 0.006285569 FALSE
33 1420 0.00624071 TRUE
34 1176 0.006186287 FALSE
35 348 0.006094796 FALSE
36 41 0.006085924 TRUE
7 1229 0.006078649 FALSE
38 1319 0.005877533 TRUE
39 113 0.005716533 FALSE
40 245 0.005548136 FALSE
4 1141 0.005522173 FALSE
42 1470 0.005095251 FALSE
13 242 0.004940127 FALSE
44 1490 0.004895259 FALSE
45 17 0.004875446 FALSE
16 525 0.004834639 FALSE
7 484 0.004722107 FALSE
18 402 0.004720664 TRUE
49 415 0.004649911 TRUE
50 612 0.004502292 FALSE
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Table B.12: 20 Newsgroups Results for battery LDAWN-QM that include threshold.

Rank 1D | Doc ID Score Contains Query Term
215 910 0001474952 FALSE
216 551 0.001472451 FALSE
217 638 0001464582 FALSE
218 137 0.001463649 FALSE
219 94 0.001455787 FALSE
220 1449 0.001455787 FALSE
221 21 0.001453438 FALSE
222 862 0.001444799 FALSE
223 1184 0.001440893 FALSE
224 663 0.001433002 FALSE
225 512 0.0014157 27 FALSE
226 643 0.001402661 FALSE
227 3 0.001401204 FALSE
278 260 0.001386278 FALSE
229 554 0.001387688 FALSE
230 466 0.001387688 FALSE
23 624 0.001381635 FALSE
232 256 0.001380915 FALSE
233 1044 0.001380908 FALSE
234 315 0.001380908 FALSE
235 145 0001380727 FALSE
236 1077 0.001380008 FALSE
237 1194 0.001379829 FALSE
238 401 0001377539 FALSE
240 1266 0.001377365 FALSE
241 461 0.001371682 FALSE
242 278 0.001369303 FALSE
243 581 0.001366545 FALSE
244 489 0.001363311 FALSE
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Table B.13:  NIPS Results for Bayes LDAWN-QM without multiplier.

Rank ID Doc ID Score Contains Query Term
1 207 0.61727945 FALSE
2 120 0330365764 FALSE
3 247 0.28132891 FALSE
4 345 0.180628114 FALSE

| 5 337 0174045685 FALSE
7 277 0.171644593 FALSE
] 114 1656974304 TRUE
9 26 0.162346557 FALSE
10 167 0.1614067 FALSE
1 150 0.15654235 FALSE
12 308 0.15524306 FALSE
13 213 0.154092282 FALSE
14 27 0.152999172 FALSE
15 281 0.147494736 FALSE
16 149 0147031095 TRUE
17 348 0.140448695 FALSE
18 50 0.135807865 FALSE
19 392 0122525616 FALSE
20 27 0122757842 FALSE
21 356 0.115059607 FALSE
22 166 0115141304 FALSE
23 239 0.112123961 FALSE
24 28 0.10925041 FALSE
25 134 0107525884 FALSE
26 230 0107377274 FALSE
27 262 0.1071092 FALSE
28 4 0.1056333859 FALSE
29 83 0.105005367 FALSE
30 169 0.099350174 FALSE
i 242 0.093183323 TRUE
32 322 0.092966828 FALSE
33 228 0.086678106 FALSE
34 137 0.08487155 TRUE
35 139 0.082242785 TRUE
36 288 0.08136031 FALSE
3T 47 0.079453263 FALSE
38 254 0.075420086 TRUE
39 165 0.075353783 FALSE
40 62 0.77848299 TRUE
41 3T 0.077668305 FALSE
42 265 0077598796 TRUE
43 94 0.075952491 FALSE
44 59 0.074358732 FALSE
45 15 0.06914799 FALSE
46 355 0.069028807 FALSE
47 226 0.065503801 FALSE
48 284 0067756393 FALSE
49 244 0.067367185 FALSE
50 257 0_065738686 FALSE
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Table B.14:  NIPS Results for Bayes LDAWN-QM with multiplier.
Cantairis Qisery Tefm

1. 655074304
149] 1470310847
242] 0931833226
5 137] 0848715495
3 138) 0822427845
T 254 0 784200862
8| Ez_l 0.77648295|
| 2651 0 775987956
10] I65] 0654048207
li 399‘ 0.637457802
12 207 0 51rz'r'm|
13| 298] 0 572386389]
14 54| 05685425098
15 3T 0470205358
16 T 0445110273
7 m‘ 0437756748
18] 341 0434836597
19] 347] 0431972855
20 258] 0418376326
P 157) 0357198316
F7] 78] 0.396BITEE
Fx] 145] 038507426
24 40| 0 362230288
25 120] 0330385765
2% 6] 031090788
FIi 231 0290854401
28| 247 02813289
7| 283 o TRUE
30 75| 0255307912 TRUE
E]] 199 0 zzz_;sizra| TRUE
7] 44| 0272557846 TRUE
13| 35| 0218302563 TRUE
ET) 21| 0208848634 TRUE
35 IT4] 0206232976 TRUE
35 156] 0154420006 TRUE
7 80| 0 104282521 TRUE
33 30| 0187062308 TRUE
3| 3700 0.183T9T166 TRUE
40 318] 0181370208 TRLUE
41 545‘ 0180628114 FALSE
42 102] 0180071478 TRUE
43 J3[I 0174045685 FALSE
44 2771 0171644503 FALSE
45 q 0171381588 TRUE
*'E! 70168093522 TRUE
470 369 0 1E243TE4S TRUE
43 26| 0 162]4BEET FALSE
T 167 0. 1614067 FALSE
500 150] __0.15658238] FALSE
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Table B.15:  NIPS Results for Bayes LDAWN-QM that include threshold.

Rank ID Doc D Score Contains Query Term
246 63| 0.018220736 FALSE
247 194 0.01811%5 TRUE
243 6 0.01794103 FALSE
249 323]  0.017928973 TRLUE
250 314] 0017909591 FALSE
251 136]  D.017814952 FALSE
252 35|  0.017428103 FALSE
253 32| 0.017285932 FALSE
254 110 0.017019882 FALSE
255 168|  0.016942715 FALSE
256 245| 0016841418 FALSE
257 42| 001571478 FALSE
258 327| 0016625765 FALSE
259 152  0.016515702 FALSE
260 196  0.016287481 FALSE
261 172|  0.016248705 FALSE
262 330| 0.016030835 FALSE
263 M7 0015977615 FALSE
264 25 0.01537702 FALSE
265 17 0.01535203 FALSE
266 177]  0.015847622 FALSE
267 65| 0.015346216 FALSE
268 153  0.015176747 FALSE
269 375  0.0148957044 FALSE
270 131)  0.094850257 FALSE
2n 198  0.014906954 FALSE
272 316  0.014695864 FALSE
273 87| 0.014B82671 FALGE
274 §1] D.014B52667 FALSE
275 291) 0014810842 FALSE
276 45 0014419779 FALSE
217 390  0.014391904 FALSE
278 61  0.014240917 FALSE
279 217 0.01417662 FALSE

0.014062357 FALSE
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Table B.16:  OHSUMED Results for cells LDAWN-QM without multiplier.

Rank D Doc (0 Score Contzins Huery Term
1 1042009232724 FALSE
2 1328703183833 FALSE
3 16481 0.871207 FALSE
4 ETZ20. 8301589 FALSE
5 1ETE310.8031941 FALSE
E 1646310, 7389352 FALSE
K 137470733703 TRUE
] 105610 . 720ETTE TRUE
=] 15553230.7475213 FALSE

10 1042320, 7203034 TRUE
11 25960 7212073 FALSE
12 124240 FOEZ251 FALSE
13 1286000 BE3TESL S FALSE
14 1196410 EIEEA5E TRUE
15 2020 B281245 TRUE
16 210 6510532 FALSE
17 152090 6724413 TRUE
18 2320 ET1007E TRUE
19 127710 BEAS88T TRUE
20 F2EED EE4025E TRUE
21 200 EBEZ2Z01E TRUE
22 4168300 64472232 TRUE
23 ABE0TIOEB447TETT TRUE
24 1685310 EES3586 TRUE
25 2000 5353593 TRUE
26 13950 6334216 TRUE
27 E03)0 . E314459 TRUE
28 119210 8229398 TRUE
23 164860 8227339 TRUE
20 102290 8224376 FALSE
231 10240] 0.B18EDT TRUE
32 117720 B100517 TRUE
33 121050 8002751 FALSE
34 2273 0.5353785 TRUE
35 A07EQN 5375317 FALSE
26 SE2E0.5261326 TRUE
a7 44310.5671ETE TRUE
1] 12720 564987 TRUE
JEi ] 2050 5642526 TRUE
40 1385710 8616534 TRUE
41 e300 5561922 TRUE
42 EE2GI0 5536557 TRUE
4.3 1080300 58531038 TRUE
44 32350 5507056 FALSE
45 139310 5437042 FALSE
46 2533] 0.542408 FALSE
47 AT0S20. 5393018 FALSE
48 104200 5383141 TRUE
43 25230 5364693 TRUE
50 1329900 53453649 FALSE
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Table B.17:  OHSUMED Results for cells LDAWN-QM with multiplier.

Rank 10 | Ooc D Score Cortains Guery Term
2 10561|0.720ETS TRUE
= 10423 0. 720303 TRUE
4 11964 0. EIEE3E TRUE
=] 08| 0.528125 TRUE
g 152090 672441 TRUE
7 F3Z2|0.ET1002 TRUE
=] 127710 .EE42359 TRUE
=] FFEE| 0. EE4029 TRUE

10 06| 0 . BEZ202 TRUE
11 4163|0.644733 TRLUE
12 1EE07|0.E447 38 TRLUE
13 165853| 0. 635359 TRUE
14 2000 5235929 TRUE
15 1295\ 0.6233422 TRUE
16 E09) 0. 5631446 TRUE
17 11981] 0622394 TRUE
12 15486| 0. 622734 TRUE
19 102400 16807 TRUE
20 117720610052 TRUE
21 2278 0.592729 TRUE
22 SESE| 0536153 TRLUE
23 44310561678 TRLUE
24 13786| 0 564958 TRUE
25 205|0.564253 TRUE
26 139570 561652 TRUE
27 2569 0.556152 TRUE
28 EESS|0 553686 TRUE
29 10203 0.553104 TRUE
20 1042000 525314 TRUE
21 2553 0.5364649 TRUE
a2 164730 5253338 TRLUE
a3 156190 522318 TRLUE
2d 2328[0.515313 TRLUE
25 SETO[0.511905 TRUE
26 282/0.510285 TRUE
a7 TA50|0.506E2E TRUE
28 2440506447 TRUE
28 150370 505576 TRUE
40 2208|0.502285 TRUE
41 11289] 0.49278 TRUE
42 15455|0.4302 16 TRUE
43 TTA3[0.4877 31 TRLUE
dd 234|0 425353 TRLUE
45 15512|0.482224 TRUE
4E 5329|0.471647 TRUE
47 EES1| 0. 462509 TRUE
48 2420 4E7I2T TRUE
45 16026 0. 4623657 TRUE
50 153866| 0 463252 TRUE
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Table B.18:  OHSUMED Results for cells LDAWN-QM with threshold.

Rank ID Doc D Score Contains Guery Term
8294 15465 0.129142944 TRUE
§295 11278 0.129141143 TRUE
8296 944 0.129140428 TRUE
8297 14016 0.12913936 TRUE
8298 11328 0.129139006 TRUE
8299 1785 0.129138652 TRUE
§300 12947 0.129136894 TRUE
8301 3763 0.129135501 TRUE
8302 680 0.129134118 TRUE
8303 2189 0.129132405 TRUE
8304 8159 0.129132064 TRUE
§305 3114 0.129132064 TRUE
8307 5183 0.129030825 FALSE
8308 14567 0.12896494 FALSE
8309 13351 0.128947968 FALSE
8310 4371 0.128600623 FALSE
8311 14537 0.128376079 FALSE
8312 4227 0.128203829 FALSE
8313 11824 0.128107405 FALSE
8314 14020 0.128039241 FALSE
8315 832 0.127879954 FALSE
8316 4952 0.127791261 FALSE
8317 2022 0.127780221 FALSE
8318 3342 0.12746014 FALSE
8319 14924 0.127412859 FALSE
8320 13092 0.12715341 FALSE
8321 16081 0.127081281 FALSE
8322 14091 0.127044827 FALSE
8323 6816 0.127022405 FALSE
8324 11504 0.127018784 FALSE
8325 15670 0.126961653 FALSE
8326 9099 0.12692029 FALSE
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