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Abstract

In an ever-increasing data rich environment, actionable information must be

extracted, filtered, and correlated from massive amounts of disparate often free text

sources. The usefulness of the retrieved information depends on how we accomplish

these steps and present the most relevant information to the analyst. One method

for extracting information from free text is Latent Dirichlet Allocation (LDA), a doc-

ument categorization technique to classify documents into cohesive topics. Although

LDA accounts for some implicit relationships such as synonymy (same meaning) it

often ignores other semantic relationships such as polysemy (different meanings), hy-

ponym (subordinate), meronym (part of), and troponomys (manner). To compensate

for this deficiency, we incorporate explicit word ontologies, such as WordNet, into

the LDA algorithm to account for various semantic relationships. Experiments over

the 20 Newsgroups, NIPS, OHSUMED, and IED document collections demonstrate

that incorporating such knowledge improves perplexity measure over LDA alone for

given parameters. In addition, the same ontology augmentation improves recall and

precision results for user queries.
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Augmenting Latent Dirichlet Allocation

and

Rank Threshold Detection with Ontologies

I. Introduction

The usefulness of information often depends on the efficient extraction of relevant

information. In the area of intelligence analysis, data management systems often be-

come overwhelmed with source documents, in free text form, that are not labeled or

pre-assigned to specific topics. Automatic document modeling, document classifica-

tion and topic categorization algorithms are used to help solve this problem [7]. One

specific technique, Latent Dirichlet Allocation (LDA) [7], is a generative model that

assigns documents to discovered topics and words (or terms) to topics with some prob-

ability. However, due to English words having synonyms, this type of probabilistic

clustering can be misled, often resulting in misclassification of words to topics.

To help resolve the true semantics of a word from a document point of view,

its context must be taken into account. Moreover, other document information can

be saved, such as neighboring terms, to help determine its context [7]. However, to

improve performance, most automated systems assume word independence and use a

unigram approach, i.e., documents are assumed to be composed of an unrelated “bag

of words,” which relieve systems from maintaining a combinatorial representation of

related words. However, losing this context sacrifices the system’s ability to conduct

a more correct semantic analysis of each word in each document.

One way to maintain word semantic relationships is to develop a persistent se-

mantic ontology to maintain groups of concepts and their relationships among other

concepts. One such worldwide open-source project is called the WordNet ontol-

ogy [46]. This thesis shows how ontologies can be used to augment and improve

document modeling algorithms. Specifically, we investigate the benefits of incorpo-
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rating WordNet into the LDA algorithm. LDA is a probabilistic topic model that

can infer a topic distribution based on word content for each document in a corpus.

This inference capability is extended by highlighting semantic relationships that may

be concealed, i.e., having low word probability, and thereby discounted by LDA. Fa-

vorable results conclude that the LDA with WordNet (LDAWN) algorithm generated

lower perplexity results over LDA alone suggesting that ontology augmentation is

beneficial for document modeling refinement.

LDAWN also incorporates a query model for information retrieval purposes. The

returned documents are ranked according to their relevance to a given query by com-

bining the Dirichlet smoothing document model with the LDA model as proposed by

Wei and Croft [48]. Previous work by Millar [36] combined LDA with Self-Organizing

Maps (LDA-SOM), which rank document relevance to a query independent of whether

or not the query terms appeared in the document. More importantly, Wei and Croft’s

model and LDA-SOM overlook query terms that do not explicitly co-occur and are

discounted by LDA. In LDAWN, WordNet is used to rank documents based on the

query terms including any of its synsets to leverage terms that co-occur. Further-

more, LDAWN is used to automatically locate and label the relevancy threshold in

the ranked documents.

The LDAWN process exposes hidden semantic relationships resulting in im-

proved document modeling, document classification and topic categorization over

LDA alone. For any given document, term frequencies are incremented for all terms

in the document with matching terms in WordNet synsets. Then, the resulting term-

document matrix is incorporated into the LDA model to compute the topic distribu-

tion. LDA estimates the per-document topic distribution and per-topic word distri-

bution and outputs the probabilities for each topic distribution. Then we compare the

performance of LDAWN against LDA alone by training 90% for each of four corpora.

After this unigram classification training, the held-out test set is used to measure the

perplexity of each collection over several numbers of topics. These tests were repeated

over five randomized versions of each corpus. Our results show that LDAWN achieved

2



lower perplexity values than basic LDA, i.e., LDAWN provides a better generalization

of unseen documents.

3



II. Background

Tools used for document modeling face difficult challenges dealing with an overwhelm-

ing amount of unstructured or semi-structured data in diverse formats, e.g., webpages

represent petabytes of unstructured and semi-structured data [2]. In addition, docu-

ments and reports from specialized communities are constructed in their own native

formats. Therefore, correlating and integrating diverse document collections has be-

come a challenge and spurred research potentials in the area of knowledge discovery

and data mining. For example, suppose a website stores blog posts as documents. A

new blogger would like to search for a specific topic by formulating a query based on

their information need. Based on the query the documents returned are the answer

set. The blogger then sifts through all the documents in the answer set for their

desired topic. Due to potential for enormous result sets and semantic ambiguities

of words, this is an impractical solution and therefore a probable reason information

retrieval (IR) techniques have become a popular research focus. This chapter reviews

existing techniques regarding common information retrieval methods, relevance and

retrieval evaluation, term categorization, ontology’s, and various clustering techniques

that when combined may provide these unique solutions.

2.1 Information Retrieval Models

The field of information retrieval aims to return documents in ranked order based

on relevance of a document to a submitted query. The organization of the data in IR is

usually unstructured, using natural language text and may be semantically ambiguous

[4]. For example, the 20 Newsgroups data set is a collection of newsgroup documents

containing unstructured natural language text and contains semantic ambiguities. To

illustrate, suppose the term plane appears in the wood working newsgroup and plane

also appears in the airplane newsgroup. The ambiguity is that others can refer to

plane for wood working and others as to fly in a plane, requiring the pronoun to be

resolved. Therefore, exploring the various IR models might be helpful in the retrieval

of unstructured information. This section describes common IR models that have

4



been used to help solve some IR issues, such as the Vector Space, Boolean, Extended

Boolean, Probabilistic, Latent Semantic Indexing Analysis(LSI/A), probabilistic LSI

(pLSI) and Latent Dirichlet Allocation(LDA) models.

2.1.1 Vector Space Model (VSM). The Vector Space Model is an algebraic

way of representing a document as vectors of term frequency counts. The documents

are represented as vectors of term frequencies based on terms in the collection. Thus,

each document contains terms which can be considered as dimensions in a multi-

dimensional hyperplane which make mathematical comparisons much easier.

This is important so the similarity measures can be calculated. A query can also

be represented as a vector of terms. Since the query is often short, the query vector

will be extremely sparse. Given these two vector representations, we can measure

their similarity using mathematical operations such as the cosine between the two

(document and query).

Although straightforward in implementation, some adjustments are required to

normalize terms and consequently weigh their importance in the document and the

entire collection. A common method in VSM is to measure the frequency of terms

or keywords ki in document dj from a corpus D. The normalized term frequency is

depicted as

tf(d, t) =
freqt,d

max`(freq`,d)
(2.1)

where max` is the largest term frequency in di and the frequency of d∈D where D

is the set of all documents in the corpus and t ∈T where T is the set of all terms

occurring in D [21]. A term that appears too frequently may be obsolete in terms of

its relevance, so we determine the inverse term frequency to depict the importance of

the term. For example, if a collection contains documents that are about cats, the

animal, and the query term is dozer, the equipment, we want the documents that

contain dozer to rank higher than those about cats. In this case, the term cat is

obsolete since it will appear too frequently in the collection. So, we use the inverse

5



term frequency idf defined as

idf = log
D
di

(2.2)

where di is the number of documents that the term ti appears [4].

Using VSM, the document vector can be defined as ~dj=(w1,j, w2,j,...wt,j). There-

fore, for a given term i appearing in document j, the term weights wi,j are calculated

by multiplying the term and inverse term frequencies to discount common terms.

wi,j =
freqt,d

max`(freq`,d)
× idf (2.3)

Similarly, the term weights wi,q in the query q are weighted similar to the documents.

Thus, the query vector can be defined as ~q = (w1,q,w2,q,...wt,q), where each term of

the vector can be calculated using [4]

wi,q = 0.5 +
freqt,q

(max`)(freq`,q)
. (2.4)

This representation creates t-dimensional vectors where their cosine angle can be

treated as their similarity score and can be calculated as [4]

sim(dj, q) =
~dj · ~q
|~dj| × |~q|

, (2.5)

=

∑
t
i=1wi,j × wi,q√∑t

i=1w
2
i,j ×

√∑t
i=1w

2
i,q

. (2.6)

After the document and query vector representations are calculated, various IR

models can be used to determine relevance ranking for queries over a given corpus.

Using the vector space model, the cosine of the angle between the query vector and

each document vector are calculated. This angle corresponds to how close the vectors

are within the range of 0 to 1 where 0 means that the vectors are orthogonal, and

1 means they are “identical.” The vector model has been compared to alternative

6



ranking methods and the consensus was that the vector model is either superior or

almost as good as the alternatives [4] by producing higher precision and recall values.

2.1.2 Boolean and Extended Boolean Model. The Boolean Model is designed

to provide retrieval methods based on set theory and Boolean algebra [4]. The term

weights are all binary where the term i appearing in document k, wij ∈ 0,1, For in-

stance, if a term from the query exists in the document the similarity of a document

dj and query q would be assigned 1, declaring the document as relevant and 0, other-

wise. The query must express a Boolean expression which is not easy to translate from

English into an information requirement. The Boolean model has greater precision

in the area of data retrieval due to the binary decision, the data is there or it is not,

based on relevance or non-relevance to the query. There are no criterion to determine

a partial match based on the query. For example, for the query q = ki ∧ (kj∨ kl) and

a document vector ~dj=(0,1,1), the document will be considered non-relevant based

on the query. This is because the query contains an and (∧) operator between the

first and second term therefore the document’s first and second term must both be

1’s for it to be a relevant document. In this case the first term of the document is a

0 and the second term is a 1 and is deemed as non-relevant. The simplicity of this

model, i.e., neglecting partial matching, leads to the retrieval of too few or too many

documents.

The Extended Boolean attempts to refine the Boolean model by fractional

weighting the terms and accounting for partial matches to retrieve a larger num-

ber of relevant documents [4]. Extended Boolean combines Boolean logic with VSM

to improve retrieval performance and ranking over the Boolean model alone.

The similarity of a document dj and query q are given by

sim(qor, dj) =

(
(xp1 + xp2 + ...+ xpm)

m

)1/p

(2.7)
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and

sim(qand, dj) = 1−
(

((1− xp1) + (1− xp2) + ...+ (1− xpm))

m

)1/p

(2.8)

, where qor is the or query and qand is the and query. The p-norm model introduces

p-distances where 1≤ p ≤∞, by varying p between one and infinity the model changes

the ranking from a vector ranking to a Boolean ranking.

A more generalized similarity formula can be applied recursively without regard

to the number of AND/OR operators. For example, for a query q = x1 AND x2 OR x3

the similarity between a document and query can be computed as

sim(q, d) =


(

1−
(

(1−x1)p+(1−x2)p

2

)1/p
)p

+ xp3

2


1/p

. (2.9)

The parameter p can have multiple values within the same query although the prac-

tical impact of this functionality are not known [4].

2.1.3 Probabilistic Model. The Probabilistic Model works from different set

of assumptions, as only the user query and a set of documents deemed the relevant

documents are compared [4]. These are referred to as the ideal answers, i.e., the query

process entails specifying the properties, qualities in a document that relate to the

query, of the ideal set [4]. The issue with this approach is that data properties of the

corpus are not known, therefore, a guess or estimate is used to retrieve the first set of

documents.

Once the results are given from the initial guess, the user reviews the retrieved

documents, which can be a manual or automated process, and decides which docu-

ments are relevant and not relevant. This process is repeated numerous times until

it is highly probable that the current set of documents becomes closer to the true

desired document set.
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The principle of the probabilistic model is that given a user query q and a

document dj, the model tries to estimate the probability that the user will find the

document relevant. This probability is based on the query term and its relevant

documents, which are a subset of documents from the collection that are relevant to

the query term.

In the probabilistic model, the index term weights are binary where wi,j ∈ 0, 1

and wi,q ∈ 0, 1, depending on whether or not the term appeared in the document

or query, respectively. The query q is a subset of index terms and R is the set of

documents known to be relevant and R is the set of non-relevant documents. The

probability that the index term ki is present in the document randomly selected from

R is P(ki | R) and the probability that it is not is given by P(ki | R). Therefore,

measuring similarity is accomplished as [4]

sim(dj, q) ≈
t∑
i=1

wi,q × wi,j ×
(

log
P (ki|R)

1− P (ki|R)
+ log

1− P (ki|R)

P (ki|R)

)
(2.10)

.

Since P(ki|R) and P(ki|R) are initially unknown, they can be approximated

where

P (ki|R) = 0.5 (2.11)

and

P (ki|R) =
ni
N

(2.12)

where N is the total number of documents and ni is the number of documents in

which ki appear. Once the initial subset of relevant documents V and Vi are known,

where V is the subset in which the term ki appears, a baseline is estimated for the

probabilities and new probability equations with an adjustment factor can be used [4]

P (ki|R) =
Vi + ni

N

V + 1
, (2.13)
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P (ki|R) =
ni − Vi + ni

N

N − V + 1
. (2.14)

The probabilistic model ranks the documents in decreasing order of probability

of relevance of a document to the users need. The drawbacks of the model are the ini-

tial guess required for R and R, the unaccounted term frequencies within documents,

and the assumption that the index terms are independent.

2.1.4 Latent Semantic Indexing (LSI). Latent semantic indexing is a pro-

cess similar to VSM which approximates a term-document matrix by one of lower

rank using Singular Value Decomposition (SVD) [13]. The low-rank approximation

of the matrix gives a new representation for the documents in the collection. The

queries are cast into a low-rank representation which enables more efficient compu-

tation of the documents similarity score. Unlike the VSM, LSI addresses two major

problems with VSM to include synonymies and polysemies. A synonymy refers to two

words that have the same meaning such as dog and canine and a polysemy refers to

a single word that has multiple meanings such as bank. Using the VSM to calculate

the document and query vectors for a synonymy, for example dog and canine, the

query vector q would contain dog and the document vector d would contain dog and

canine. The problem lies in the calculation of the vector space which underestimates

the true similarity of dog and canine. This is also true for polysemies where the VSM

overestimates the similarity of bank [13]. Like VSM, LSI uses the cosine similarity to

calculate the similarity of the document and query term but after SVD rank reduc-

tion which brings co-occurring terms closer together and thereby reducing the matrix

dimensionality.

Singular value decomposition is a matrix decomposition method which produces

matrices that are used in LSI with the end product being a low-rank approximation

to the term-document matrix. SVD is the process of factoring a square matrix into

the product of matrices which are derived from their eigenvectors. In SVD non-square

matrix A is an M × N matrix where M is the number of terms in the corpus and N
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is the number of documents in the corpus. Matrix A is then decomposed into three

matrices U, S and V T . The columns of U are the orthogonal eigenvectors of AAT , S is

the singular value matrix of A containing the principle components and the transpose

of V, V T whose columns are the orthogonal eigenvectors of ATA where A can be

expressed by [13]:

A = USV T (2.15)

In equation(2.15), U is a term by term matrix that depicts the relationships between

the terms to include synonymies and polysemies where V is a document by docu-

ment matrix that depicts the shared terms among the documents. S is a symmetric

matrix containing the eigenvalues of U and V on its diagonal representing the term

co-occurrences. Figure 2.1 depicts an example of the SVD matrices and their com-

puted values with 3 documents and 3 terms where A is the term by document matrix,

U is the term by term matrix, S is the co-occurrence matrix, and V is the document

by document matrix.

Dimensionality reduction in LSI is done through a low-rank approximation of

the SVD matrices where k is the value of the reduced rank. To truncate the full

SVD matrices, the first k columns of U, the first k rows of VT , and the first k rows

and columns of S are kept, which are arranged in decreasing order. This truncation

removes the noise by reducing dimensionality to expose the effect of the largest k

singular values of the original SVD matrices. The reduced SVD in Figure 2.2 shows

the matrices reduction where the shaded areas indicate the area of the matrix that is

left after the k rows and columns are removed. After the reduction is complete, the

new matrix Ak is computed by taking the product of Uk, Sk, and V T
k which is the

reduced rank approximation matrix.

The value of k should be chosen so as to minimize the Frobenius norm or Eu-

clidean distance [34] which reduces the length of the vectors in matrix A. To approx-
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Figure 2.1: SVD example.

Figure 2.2: Reduced SVD or Rank k Approximation
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imate the best value for k with the smallest error use

Ak = min ‖A− Ak‖F (2.16)

where A and Ak are both M × N matrices and F is the Frobenius norm. Therefore,

using SVD for a given k, this approximation will yield the lowest possible Frobenius

error.

The query will undergo SVD as well to produce a low-rank approximation that

can be used in computing the document similarity scores. The original query vector

~q will be mapped to its LSI representation by reducing to k-dimensions and using

~qk = Σ−1
k UT

k ~q. (2.17)

Since the query ~q is just a vector of terms, new documents can be added to the col-

lection by computing only ~q without recomputing the LSI representation. According

to Garcia [13], the quality of the LSI matrices will degrade if too many documents

are added since the co-occurrence of terms among documents will be ignored and

recomputing the LSI representations is computationally expensive. Therefore, the

original query vector ~q can be used in the cosine similarity measure since a query in

the original space will be close to the documents in the k -dimensional space.

The computational cost of SVD is large, therefore LSI on a very large collection

may not be feasible. Using a subset of a large collection and adding the remaining

documents in is a work around but as the number of documents added increases, the

quality of LSI decreases. In addition, LSI can be viewed as soft clustering due to the

interpretation of each dimension in the reduced space as a cluster and the value of a

document on that dimension as membership to that cluster.

2.1.5 Probabilistic Latent Semantic Indexing (PLSI). Probabilistic Latent

Semantic Indexing (PLSI) is an automated indexing information retrieval model [20].

It is based on a statistical latent class model which is derived from LSI, making it
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a sounder probabilistic model. PLSI was introduced in 1999 by Jan Puzicha and

Thomas Hofmann [20]. Unlike LSI, PLSI uses a statistical foundation that is more

accurate in finding hidden semantic relationships [20]. The model uses factor analysis

of count data, number of times an event occurs from a collection which is fitted from

a training set of that collection. An Expectation Maximization (EM) algorithm solves

the model to effectively find synonymy and polysemy relationships within a specific

domain.

PLSI is based on the likelihood principle which is a principle of statistical infer-

ence which asserts that all of the information in a sample is contained in the likelihood

function [20]. The statistical generative model called the Aspect Model is the basis of

PLSI. The model is composed of the following probabilities

• select a document d with probability P(d ),

• pick a latent class z with probability P(z|d),

• generate a word w with probability P(w|z).

The observed pair P(d, w) is the result of the generative model where the latent class

z is discarded [20]. The observed pair is then given by a joint probability composed

of

P (d, w) = P (d)P (w|d) (2.18)

P (w|d) =
∑
z∈Z

P (w|z)P (z|d). (2.19)

The Aspect Model makes an independence assumption with the observed pair

and conditional probabilities on the latent class z, where the words w are generated

independently of the documents d. The latent class z is a variable that is used in

predicting w conditioned on d where the word distributions are obtained by a convex

combination of the aspects or factors P(w|z). The mixture of factor weights are

characterized by the P(z|d) which offers greater modeling power. Using Bayes’ rule a
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new version of the joint probability model is given by

P (w|d) =
∑
z∈Z

P (z)P (w|z)P (d|z) (2.20)

which is just a reformatted version of the generative model.

To reduce word perplexity, model fitting must be accomplished through maxi-

mum likelihood estimation. The EM algorithm which involves two steps, the E-step

and the M-step, is a standard procedure for maximum likelihood estimation [20]. The

E-step computes the posterior probabilities of the latent variable z and the M-step

updates the posterior probabilities computed in the E-step. The equation used in the

E-step with a control parameter β is

Pβ(z|d, w) =
P (z)[P (d|z)P (w, z)]β∑

z′ P (z′)[P (d|z′)P (w, zprime)]β ′z
. (2.21)

The M-step equations are a convergent procedure that approaches a local max-

imum of the likelihood where the re-estimation equations are

P (w|z) =

∑
d n(d, w)P (z|d, w)∑

d,w′ n(d, w′)P (z|d, w′)
(2.22)

P (d|z) =

∑
w n(d, w)P (z|d, w)∑

d′,w n(d′, w)P (z|d′, w)
(2.23)

P (z) =
1

R

∑
d,w

n(d, w)P (z|d, w), R ≡
∑
d,w

n(d, w). (2.24)

PLSI uses query folding to incorporate queries into the Aspect Model. A repre-

sentation of the query is computed in the EM iteration, where factors are fixed so that

the mixing proportions P(z|q) are adapted in each maximization step. The results are

the probabilities and mixing proportions will have an affect on the term weights and

the query will have a higher probability of matching the factors.
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Query folding is the process of adding documents or queries that were not com-

puted with the original training collection. This is done by fixing the P(w|z) parame-

ters and calculating the new query P(z|q) by EM or Tempered EM. TEM is a model

fitting algorithm that is closely related to deterministic annealing [20]. It is designed

to solve the problem of over-fitting where noise overshadows the model relationships.

If TEM is not used the model will perform less well on a folded-in query than on the

data set used for training.

Similar to VSM and LSI, PLSI uses the cosine similarity metric to find the

similarity between document vector representations to score the documents in the

collection with regards to the query. The aspect vector for a query is generated by

treating the query as a new document. The query is added to the model and the

weights for the query are trained with the TEM algorithm. According to Hofmann,

PLSI outperforms LSI with a precision increase of around 100% from the LSI baseline

[20].

2.1.6 Latent Dirichlet Allocation (LDA). In 1990, de Finetti [7] established

that any collection of exchangeable random variables has a representation as a mixture

distribution, in general an infinite mixture. Thus, if we wish to consider exchangeable

representations for documents and words, we need to consider mixture models that

capture the exchangeability of both words and documents [7].

Latent Dirichlet Allocation (LDA) like PSLI is a generative probabilistic model

for collection of discrete data such as a text corpora [7]. LDA is a three-level hier-

archical Bayesian model where an item in a collection is modeled as a finite mixture

over a set of latent topics. Topics are characterized by a distribution over the words

in the corpus. The topics are then modeled as a finite mixture over a set of topic

probabilities. The topic probabilities provide a reduced dimension representation of

documents in a given collection.

The basic idea is that documents are represented as random mixtures over latent

topics, where each topic is characterized by a distribution over words [7]. LDA uses the
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Figure 2.3: Graphical model of LDA.

following process for each document d in the corpus D where we choose N∼Poisson(ξ)

and we choose θ∼Dir(α). For each of the N words wn, n=1...N:

1. Choose topic zn Multinomial(θ).

2. Choose a word wn from P(wn|zn, β), a multinomial probability conditioned on

topic zn.

There are several assumptions that are taken into account such as the dimensionality

k of Dirichlet distribution is assumed to be known and fixed, the probabilities are

parameterized by a k × V matrix β where β is estimated by βij= P(wi=1|zj=1).

Also, N is independent of all other data variables θ and z. The k dimensional Dirichlet

random variable θ takes values in the (k-1)-simplex and is given by the following

density function [7]:

P (θ|α) =
Γ(
∑

k
i=1αi)∏

k
i=1Γ(αi)

θα1−1
1 ...θαk−1

k (2.25)

where the parameter α is a k-vector with components αi > 0.

The probabilities of the entire corpus where the marginal probabilities of single

documents are summed over the entire collection is given by:

P (D|α, β) =
M∏
d=1

∫
P (θd|α)(

Nd∏
n=1

∑
P
(
zdn|θd)P (wdn|zdn, β)

)
dθd. (2.26)
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It has been shown that LDA outperforms other probabilistic models, such as

the unigram, mixture of unigram and Probabilistic Latent Semantic Indexing (pLSI)

models, for several document collections [7]. Latent Dirichlet Allocation is a gener-

ative probabilistic model for a collection of discrete data such as a text corpus. As

shown in Figure 2.1.6, LDA is a three-level hierarchical Bayesian model where a doc-

ument in a collection is modeled as a finite mixture over a set of latent topics K with

a Dirichlet prior. Topics are characterized by a distribution over the words W in the

corpus. The topics are then modeled as a finite mixture over sets of word-topic φ and

document-topic θ probabilities. The topic probabilities provide a reduced dimension

representation of the documents in the collection.

The plates/boxes represent repeated learning operations to obtain the various

distributions. The variables α and β are parameters having a uniform Dirichlet prior

representing the per-document topic distribution and the per-topic word distribution,

respectively. Given a document i, θi represents its topic distribution. For each jth

word in document i, zij represents its topic assignment. Note that wij is the only

observable variable (shaded) and the rest are latent variables. Thus, inference of the

various latent distributions is done using repeated Gibbs sampling—N times for each

word in each document and M times for each document in the collection.

2.2 Document Preprocessing

Information retrieval methods require preprocessing of the documents to condi-

tion the date such as, eliminate non-essential data such as stopwords (common words),

removal of suffixes and identifying index terms and/or keywords. It is sometimes im-

portant to remove unneeded punctuation, normalize numbers as well as date/time

formats. All of these text preprocessing techniques are optional.

2.2.1 Lexical analysis. Lexical analysis is the process of turning a stream of

text into a stream of words. Spacing, punctuation and some abbreviations are deemed

as non-essential in some IR arenas, therefore their removal may improve IR efficiency.
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However, there are several instances when removal may deteriorate the context of the

words. These cases are hyphens, certain digits (date and time), case of letters and

punctuation. Therefore, their removal should be considered on a case-by-case basis.

Numbers are usually discarded as index terms, for example a query such as

“boats that sank in 2005” with index terms boats, sank, 2005 could retrieve more

documents related to 2005 and not the boats that sank. In this case, the year 2005

would not be considered a good index term. However, when the numbers are inter-

leaved such as A.D. 200, the number is important to the text. Also, numbers such as

social security numbers, bank accounts or credit card numbers may be relevant and

therefore should not be removed. The removal of numbers must be considered on a

case by case basis and in the context of the collection. Finally, date and time should

be normalized to the same format.

2.2.2 Stopword Removal. The focus of IR is to find the discriminatory

words that will retrieve the most relevant documents. Stopwords are the frequent

terms such as articles, prepositions and conjunctions are normally filtered as potential

index terms. The removal of these terms minimizes the indexing structure and vector

dimensions for a more streamline process.

The list of stopwords can be specialized to include verbs, adverbs and adjectives

providing further index compression by eliminating uninteresting words. Although

the goal may be to compress the index terms, this reduction can reduce the number

of relevant documents retrieved. For example, if a user that is looking for documents

containing the phrase “to be or not to be” and all the remains after stopword elimi-

nation is “be” it is impossible to properly recognize the documents that contain the

specified phrase [4]. Most web search engines have opted for a full text index as to

avoid ambiguities caused from stopword removal [4].

There are several common stopword lists that are available. The entire stopword

list used in this thesis can be found in Appendix 1, however a comparison of two such

lists are shown in Figure 2.1. Here the first column is a list containing 429 words
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Table 2.1: Comparison of Large and Small Stopword Lists.
List1 List2
a a
- a’s
- able
about about
b b
back -
backed -
backing -
backs -
be be
... ...

and a second column is a list that is larger containing 571 words, the dashes indicate

where the listings differ. Depending on the context in which the stopword list is used

may dictate which list is appropriate, therefore editing the lists based on the domain

is recommended.

2.2.3 Stemming. Stemming is a procedure designed to reduce all words to

their root by stripping each word of its derivational and inflecational suffixes [32]. This

process is useful when counting word frequency, matching words with suffixes is often

less successful than finding matching stemmed words. In the areas of computational,

information retrieval, and mathematical analysis, word stemming is essential in the

evaluation of terms and keywords [32].

Several algorithms are used to perform stemming, each with its own benefits.

Stemming algorithms may have semantical implications and therefore should be used

with caution. Sometimes suffixes provide clues to the grammatical context of words

and should not be removed. For example, the word cardiology could be stemmed to

cardio which could have several possible suffixes such as cardiology, cardioprotectant,

cardiopulmonary/ cardiovascular. Stemming these words to the root cardio may not

be a good idea since there are many word forms in very different domains. Therefore,
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selecting the appropriate stemming algorithm for the collection is important, but most

IR algorithms do not use stemming for these reasons [32].

According to Yates [4], there are four types of stemming algorithm; affix removal,

table lookup, successor variety and n-grams. Table lookup stores a table of all index

terms and their stems, so terms from queries and indexes could be stemmed very

fast. The successor variety determines word and morpheme boundaries and using one

of the following methods cutoff, peek/plateau or complete method to find the stem

word. N-grams uses the identification of diagrams and trigrams as its basis and then

association measures are calculated between pairs of terms based on shared unique

diagrams. N-grams stemming is more of a clustering algorithm using matrix to store

similar words and then uses a single link clustering method.

Affix removal stemming is the simplest and can be implemented efficiently,

Porter’s algorithm is the most common affix removal stemming algorithm. The Porter

algorithm uses a suffix list and applies a series of rules to the suffixes of the words in

the text [4]. An example of one of the rules is

s −→ φ (2.27)

which converts plural forms to their singular forms by substituting s by nil, φ. Fur-

thermore, applying the following rules

sses −→ ss (2.28)

s −→ φ (2.29)

to the word possesses yields the stem word possess.

2.2.4 Identify index terms or keywords. Index terms or keywords are the

unique words that remain after the text pre-processing is complete. The terms remain-

ing are usually nouns due to the elimination of verbs, adverbs, adjectives, connectives
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articles and pronouns during pre-processing. During the parsing process several nouns

that appear near each other can be grouped into a topic. The topics formed are called

noun groups. The distance between the nouns is a predefined measure, usually the

number of words between the nouns. These noun groups can be used as the index

terms.

In some cases full-indexing is used which incorporates the entire vocabulary.

For specialized domains the index terms may be pared down by a subject matter

expert to narrow the index term scope. The process of selecting index terms can

be accomplished manually for specialized areas but automating term selection is a

common practice.

The vocabulary ultimately defines a thesaurus of index terms. The thesaurus

consists of a pre-compiled list of important words in a given domain of knowledge and

for each word in this list a set of related words [4]. The purpose of the thesaurus is

to provide a standard vocabulary for indexing and searching and to assist users with

identifying query terms and for query reformulation. A thesaurus may be used in

query reformulation. A user determines the information that they requires and an IR

system can provide a thesaurus to narrow the search terms based on conceptualizing

the query. Since a user may not select the correct terms for searching based on a lack

of experience, the IR system can assist the user by providing related terms based on

the query. On the other hand, a thesaurus can be used with the initial query but

this requires expensive processing time since the thesaurus has not been tailored to a

query. Therefore, a thesaurus may not be computationally efficient especially in IR

systems where the user expects fast processing.

2.3 Query Operations

A query operation is a precise request for information from a collection. The

query can be composed of free text such as web search engines or in a computer

language for databases or other information systems.
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Initial query formulation is usually done with little knowledge of the collection

therefore it may be difficult for users to describe a well-formed query for effective

retrieval. This idea implies that users spend the majority of their retrieval time

reformulating queries. Furthermore, relevance feedback can assist users in query re-

formulation, query expansion and reweighting query terms.

2.3.1 Query Expansion and Term Reweighting. Ad-hoc retrieval relies on

the user’s query to provide a variety of terms and varying term frequencies to differ-

entiate term importance [27]. There are two stages in the ad-hoc retrieval process,

the first is the initial user query and the second is the expansion of the query based

on the relevant documents retrieved using the initial query.

The initial retrieval of n best-ranked documents are regarded as relevant without

user interaction. They are then used to train the initial query term weights and expand

the query. The expanded query is used in a second retrieval attempt can give better

results than the initial query if the initial results are reasonable and has some relevant

documents within the best n. The process will work properly only if the initial query

contains a variety of terms and term importance is evident.

This is where term weighting can improve retrieval results by calculating a

modified query ~qm. The three classic methods to calculate the modified query ~qm

based on relevance feedback are

Standard Rochio : ~qm = α~q +
β

|Dr|
∑
∀ ~dj∈Dr

~dj −
γ

|Dn|
∑
∀ ~dj∈Dr

~dj (2.30)

Ide Regular : ~qm = α~q + β
∑
∀ ~dj∈Dr

~dj − (γ)Σ∀ ~dj∈Dn

~dj (2.31)

Ide Dec Hi : ~qm = α~q + β
∑
∀ ~dj∈Dr

~dj − (γ)maxnon−relevant(~dj) (2.32)

where maxnon−relevant (~dj) is a reference to the highest ranked non-relevant document.

The documents in Dr and Dn are those that the user deemed as relevant or non-
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relevant. The current understanding is that the three techniques yield similar results,

however in the past, Equation (2.32) was considered slightly better [4].

2.3.2 Query Expansion Through Local Clustering. In IR, clustering is the

practice of grouping common documents into subsets so further analysis can be ac-

complished on their relationships [4]. Clustering is another common way to expand

queries. This technique uses association matrices to quantify term correlations such

as term co-occurrence and to use those terms to expand the query. The problem with

the association matrices is that they do not adapt well to the current query. Several

local clustering techniques may be used to alleviate this issue by optimizing the cur-

rent search. There are three techniques discussed to include association, metric and

scalar.

Association clustering [4] uses an association matrix composed of co-occurring

terms within the documents. The association comes from the notion that co-occurring

terms inside documents tend to have synonymity association. Therefore, a matrix ~s

is developed using the terms as the si rows and the documents dj as columns where

the matrix values represent the co-occurring frequency of the terms. Then they are

clustered by taking the u-th row of the matrix ~s and returns the set Su(n) of n largest

values of su,v, where u and v (u6=v) are the values in the matrix, v varies over the set

of local terms. Su(n) is then a local association cluster around the term su [4].

Second is the metric clustering technique [4] which takes into account where

the terms occur in the documents not just their co-occurrences. The distance s(ki,

kj) between terms ki and kj are the number of terms that are between them. Metric

clustering is similar to association clustering but uses distance s(ki, kj) for the values

in the matrix. They are clustered by taking the u-th row of the matrix ~s and returns

the set Su(n) of n largest values of su,v, where u and v (u6=v) are the values in the

matrix, v varies over the set of local terms. Su(n) is then a metric correlation cluster

around the term su [4].
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Lastly, scalar clustering [4] is similar to association clustering where it finds

synonymy relationships between terms using term neighborhoods. This is done by

using term neighbors, where terms with similar neighbors are most likely to have

a synonymy relationship. To quantify the relationship the terms are split into two

vectors where ~su and ~sv (u6=v) are correlated terms values. The cosine angle between

the vectors is used to induce a similarity value. Like the last two clustering methods

the set Su(n) of n largest values of su,v where u and v (u6=v) are the values in the

vectors and is a scalar cluster around su [4].

The clusters produced from these techniques are the terms that are used in the

expanded query ~qm. There are a couple of ways to do this which are adding the terms

in the clusters to the original query or replacing the original query with the clustered

terms. Either option will provide an expanded query to retrieve relevant documents

based on these clustering techniques.

2.3.3 Relevance Feedback. Relevance feedback [4] is a very important tool,

especially if a collection is unlabeled. The initial results a query returns may not reflect

the desired output this is where user feedback comes in handy. This can be done using

two relevance feedback methods which are global and local. Global methods expand

the user query or reformulates the query terms based on the initial result set. These

methods may include the incorporation of a thesaurus, the generation of a thesaurus,

or spelling correction [34].

Local methods adjust the query based on initial returned documents. The local

methods include relevance feedback, pseudorelevance feedback and indirect relevance

feedback. According to Yates, relevance feedback (RF) is the most used and most

successful approach to improve IR results [34].

Relevance feedback involves the user to improve the relevancy of the returned

documents in the initial results set. The RF process proceeds as follows:

1. User issues query.
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2. System returns an initial set of results.

3. User marks returned documents as relevant or nonrelevant.

4. System retrieves a better set of results based on the user input.

5. System displays a new set of relevant documents.

This process can be repeated several times where relevancy may be improved with

each iteration.

A common algorithm for implementing RF is the Rocchio algorithm [34]. Roc-

chio uses the vector model and combines it with the relevance feedback information

provided by the user. The goal of the algorithm is to maximize the similarity of

relevant documents while minimizing the similarity of non-relevant documents. The

optimal query vector is the equation on which the Rocchio algorithm is based:

~qopt = arg max
~q

[sim(~q, Cr − sim(~q, Cnr)] (2.33)

where ~q is the query vector and Cr are the relevant documents and Cnr are the non-

relevant documents.

The problem with the optimal query vector is that the full set of relevant docu-

ments is not known. This is where Rocchio’s algorithm modifies the query vector ~qm

with weights attached to each term. and Dr the relevant documents and Dnr are the

non-relevant documents. Therefore, ~qm is given by:

~qm = α~q0 + β
1

|Dr|
∑
~dj∈Dr

~dj − γ
1

|Dnr|
∑
~dj∈Dnr

~dj. (2.34)

2.4 Relevance Retrieval Evaluation

The final step in any information retrieval process is to evaluate the results and

determine their usefulness. There are several measures to determine if the results are

useful such as user feedback, precision and recall. This section discusses methods for
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improving relevancy results through user feedback as well as the measures of relevancy,

namely precision and recall.

2.4.1 Precision and Recall. The goal in any IR system is to maximize both

precision and recall. Precision is the percentage of retrieved documents which are

relevant and recall is the percentage of relevant documents retrieved. Let R be a set

of relevant documents and A be an answer set to a retrieval request I and Ra be the

number of documents in the intersection of R and A. Precision is then calculated by:

Precision =
|Ra|
A

(2.35)

and recall is calculated by:

Recall =
|Ra|
R

. (2.36)

Figure 2.4 is an example of a recall and precision graph from the Trec08 conference

[45]. The graph shows the concave shape where the area under the curves represent the

average precision. Moving the curves up and out to the right depicts the improvement

of both precision and recall, making the average precision increase. These measures

assume that the relevant documents are known, which may not be the case. Therefore,

variations of these equations such as F-measure and R-precision are used to determine

the true curve of precision versus recall. This comparison is created by averaging the

results over various queries. However, this does not paint a clear picture of the results

of individual queries or the algorithms used in the IR system.

A common single value measure is called the R-Precision method where a single

value summary of the ranking is used. This is done by computing the precision at the

R-th position in the document ranking where R is the number of relevant documents

int the collection for a given query. R-precision can also be averaged over the entire

set of queries.

R-Precision is a useful single value measure to compare various IR algorithms

and determine which method outperforms the rest. Creating an average recall ver-
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Figure 2.4: Typical Precision and Recall graph

sus precision evaluation strategy for IR systems are used extensively in IR retrieval

literature [4].

2.4.2 Perplexity. Perplexity, a common metric for evaluating natural lan-

guage processing models [25], is used to evaluate the models. The perplexity value

computed on the held-out test data indicates how well the model is able to generalize

the unseen data. The lower the perplexity the better the model is able to generalize.

The following equation is used for computing perplexity:

perplexity(Dtest) = exp

{
−ΣM

d=1log p(wd)

ΣM
d=1Nd

}
(2.37)

where Dtest is the set of test documents held out from the collection, M is the number

of documents in the collection, p(wd) is the probability of the words in document d,

and Nd are the number of words in document d. Notice that the numerator, is the

entropy of the collection, given p(wd), for each document [7].
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2.5 Text Categorization and Ontologies

An ontology is a formal representation of a set of concepts within a domain

and the relationships between those concepts. Ontologies are used in the information

retrieval domain to model lexical and domain knowledge and for information extrac-

tion. The common ontologies used in natural language processing are WordNet and

the Web Ontology Language (OWL).

2.5.1 WordNet. WordNet is a lexical database that links English nouns,

verbs, adjectives, and adverbs to sets of synonyms called synsets which are then linked

by their semantic relations (Antonymy, Hyponymy, Meronymy, and Troponymy)

which determine word definitions [37]. Where the Web Ontology Language’s aim

is information organization, WordNet is used to provide semantic relationships by

linking words to their semantic counterparts, improving relevancy ranking [21].

WordNet uses language definitions as a set W of pairs (f,s), where f is a word

string and s is the set of meanings for that string where f can be used to express

a particular s [37]. Currently, there are 118,000 word forms, a string over a finite

alphabet, and more than 90,000 word senses, an element from a given meaning set,

with more than 166,000 (f,s) pairs [37]. The semantic relationships between word

forms or synsets are connected by pointers between word forms or (f,s) pairs. This

provides a link between a word and the various synonyms, antonyms, and various

other semantic relationships useful in defining a broader scope of semantic relations.

The additional relationship information provided by WordNet aids in the semantic

contexts that other IR methods fail to consider such as the troponomy march or

walk, the manner in which one moves. Incorporating WordNet with common IR

methods such as vector modeling or document clustering could be beneficial to the

IR community [37].

WordNet has been used in many areas as a reference ontology in the area of

information retrieval. For instance, Varelas et al. uses WordNet to detect similar-

ities that are semantically but not lexicographically related. They combined their
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approach with a novel IR method resulting in a better performance over other IR

methods [44]. Hearst devised a method for automatic discovery of WordNet relations

by searching for lexico-semantic relations shown to be useful in the detection of hidden

semantic relationships [18]. Several others have used WordNet for text classification

to include Rosso et al. [24], Chua and Kulathuramaiyer [11], and Mansuy and Hilder-

man [35]. Measuring concept relatedness is another area where WordNet has made

contributions, eg., automatically annotating text with cohesive concept ties [42] and

measuring relatedness of pairs of concepts [43]. WordNet has also been paired with

Roget’s and Corpus-based Thesauri to augment WordNet’s missing concepts [33].

Text clustering algorithms have been enhanced using WordNet as shown by Liu et

al. [30] and Hotho et al. [21]. These works have shown that ontology augmentation

is useful in identifying hidden semantic relationships and is worth investigating for

improving LDA results.

2.5.2 Web Ontology Language (OWL). Information contained on the World

Wide Web, a corpus where there is less definable structure requires some concrete

organization to attain useful knowledge. One way that this can be done is to form

computational patterns that can be connected in such a way that meaningful infor-

mation can be extracted.

The Web Ontology Language (OWL) enables the mining of the massive amount

of unorganized data that would otherwise be meaningless [3]. OWL is a language that

makes use of ontologies. OWL is based on defining and instantiating Web specific

ontologies. Ontology is defined as “That department of the science of metaphysics

which investigates and explains the nature and essential properties and relations of

all beings, as such, or the principles and causes of being” [1]. In computer science

and information science ontology is a formal representation of a set of concepts within

a domain and the relationships between those concepts. In OWL, ontology’s define

classes, properties and their instances. Given such an ontology, the OWL formal

semantics specifies how to derive its logical consequences, or entailed from its seman-
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tics. These entailments may be based on a single document or multiple distributed

documents that have been combined using defined OWL mechanisms.

OWL differs from other Web standard languages as it makes use of the semantics

to create a useful tool outside of its’ original function. For example, the Extensible

Markup Language (XML) is in a message format rather than a knowledge represen-

tation that OWL provides. Furthermore, OWL consists of three sub languages; OWL

Lite, OWL DL, and OWL Full. Each of these sub languages designed to provide

specific user requirements.

OWL Lite is designed for lite user’s, as the title expresses. Users that require

classification hierarchy and simple constraint features where cardinality can be ex-

pressed as 0 or 1. OWL Lite also provides swift migration from other taxonomies.

OWL Description Logic (DL) is for the user that requires the maximum compu-

tational completeness and are guaranteed to return a computation. DL provides all

the functions of the OWL language restricting type separation(classes and properties

can not be one in the same). OWL DL is designed to support the existing DL business

segment and has desirable computational properties for reasoning systems.

OWL Full, is designed for the user who is not concerned with computational

guarantees but are interested in strict expressiveness. Also, OWL Full allows an

ontology to augment the meaning of a predefined vocabulary.

The OWL structure is based on the formal syntax and semantics which are an

extension of the Resource Description Framework (RDF) [3]. RDF is an assertion

language on which OWL is based. It provides a means to express propositions using

precise formal vocabularies. OWL uses RDF to specify the specific vocabularies to

be used. An XML file with an RFD tag provides the necessary identifiers to provide

a meaningful and readable ontology. Figure 2.5 depicts the use of OWL to add

comments, version control, importing existing ontologies and labeling [3].

Since ontologies are like software they change over time which require version

control and OWL provides a version definition function to link versions together and
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<owl:Ontology rdf:about=“ ”/>
<rdfs:comment>An example OWL ontology /< rdfs:comment>

<owl:priorVersion rdf:resource=“http://www.w3.org/TR/2003/PR-owl-guide-20031215/wine”/>
<owl:imports rdf:resource=“http://www.w3.org/TR/2004/REC-owl-guide-20040210/food”/>

<rdfs:label>Wine Ontology /< rdfs:label>

Figure 2.5: Example of Owl Structure

track history of an ontology. This along with other functions that OWL provides

enable users to create ontologies that are easily linked and make searching the Web

that much easier [3].

The data described by an OWL ontology is interpreted as a set of “individuals”

and a set of “property assertions” which relate these individuals to each other. An

OWL ontology consists of a set of data types which place constraints on sets of

individuals that make up classes and the types of relationships permitted among two

objects. These data types provide semantics by allowing systems to infer additional

information based on the data explicitly provided.

OWL is a useful tool in the area of information retrieval, by using the relation-

ship data provided by OWL ontologies. The use of OWL strives to create organization

that provides a means to obtain useful information from complex relationships which

would otherwise be overlooked. The use of software agents with an unorganized

ontology provides suboptimal results. Using OWL or another ontology language to

organize data and creating domain specific ontologies which may improve information

retrieval results since information will have a defined structure.

2.6 Document Clustering and Visualization

The document clustering hypothesis states that documents within the same

cluster behave similarly with respect to relevance to some information needs [34].

Therefore, a cluster with a document that is relevant to the search criteria may also

contain other documents that are relevant, which is the sole purpose of document

clustering, gathering documents with similar terms. Document clustering is a form
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of unsupervised learning, i.e, where no human expert has labeled or assigned the

documents to classes [34]. In this way, the learned algorithm and corpus will deter-

mine which clusters the documents appear. The clustering algorithms used to create

clusters use a distance measure often a Euclidean distance, which is the distance of

documents from their cluster centers. There are two common clustering algorithms,

k-means and hierarchical clustering, which are briefly discussed in the following sub-

sections.

2.6.1 K-means Clustering. K-means clustering is a flat clustering algorithm

whose objective is to minimize the average squared Euclidean distance from a given

cluster ω having centroid ~µ where ~x is the length normalized documents [34]. The

centroid is given by:

~µ(ω) =
1

|ω|
∑
~x∈ω

~x. (2.38)

Each cluster in K-means should be a sphere with the centroid at the center of

gravity and the clusters should not overlap [34]. To measure the effectiveness of the

K-means clustering the residual sum of squares(RSS) is calculated. RSS is the squared

distance from each centroid summed over all of the vectors, which is formulated as

follows:

RSSk =
∑
~x∈ω

|~x− ~µ(ωk)|2. (2.39)

The objective function of K-means is RSS and minimizing it is equivalent to

minimizing the average squared distance. This gives a measure of how well the cen-

troids represent their documents [34].

2.6.2 Hierarchical Clustering. Hierarchical clustering provides a structured

output which is more informative than other clustering algorithms [34]. As opposed to

K-means the hierarchical clustering algorithms do not require specifying the number

of clusters ahead of time. Although hierarchical algorithm are deterministic, their

efficiency is less desirable having a complexity of at least quadratic compared to K-
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means which is linear. Therefore, these trade offs must be considered when choosing

a clustering algorithm.

Hierarchical clustering algorithms are either top-down or bottom-up. Bottom-

up treats each document as a singleton and merges pairs of clusters until all documents

are in a single cluster. Top-down splits the clusters until individual documents are

reached. Bottom-up is more frequently used in IR [34].

There are four common hierarchical clustering algorithms: single-linkage, complete-

linkage, group-average, and centroid. Single-linkage is the similarity of two clusters

by their most similar members and where the two clusters are closest together which

is a local criteria. The clusters are merged based on the two closest pairs and then

by the next closest pair. A single-linkage clustering side-effect called chaining occurs,

where documents are added to the cluster and can create a chain effect. This chaining

effect can produce a straggling cluster which can be extended for long distances, an

undesirable side-effect.

Complete-linkage based clustering solves the issues that single-linkage based

clustering creates but produce other structure irregularities caused by outliers. Complete-

link based clustering is the similarity of two clusters by their most dissimilar mem-

bers. The merge criteria are non-local and take into account the cluster structure and

thereby reduce the chain-effect that is produced by single-linkage clustering.

Group-average clustering is another approach that takes into account all sim-

ilarities between documents which elevates the problems that arise with single and

complete-linkage clustering algorithms. The group-average clustering algorithm aver-

ages the similarity of all the pairs of documents to include those in the same cluster

but self-similarities are not included in the average.

The final hierarchical clustering algorithm is the centroid clustering algorithm.

The similarity of two clusters is based on the similarity of their centroids [34]. This is

similar to the group-average algorithm except that centroid clustering excludes pairs

that are in the same cluster. Centroid clustering is more commonly used because it
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is simpler to calculate the similarity of two centroids than to calculate the pairwise

similarity in group-average clustering.

2.6.3 Self-Organizing Maps (SOM). Self-organizing maps is a type of ar-

tificial neural network that is trained using unsupervised learning to produce a low-

dimensional (typically two-dimensional), discretized representation of the input space

of the training samples, called a map. SOM’s consist of a fixed lattice where multi-

dimensional data is represented in a 2D space. Self-organizing maps are different than

other artificial neural networks in the sense that they use a neighborhood function to

preserve the topological properties of the input space [26].

A self-organizing map consists of components called nodes or neurons known

as processing elements. Associated with each node is a weight vector of the same

dimension as the input data vectors and a position in the map space. The usual

arrangement of nodes is a regular spacing in a hexagonal or rectangular grid. The

procedure for placing a vector from data space onto the map is to find the best-

matching unit in a vector to the vector taken from the data space and to assign the

map coordinates of this node to the vector. The best-matching unit can be found

using

c = argmini||x−mi|| (2.40)

where c is the index of the best-matching unit, x is an input from the input sample,

and mi is the vector associated with the processing element i, and ‖.‖ is the distance

metric.

After c has been calculated, c and all of the mi’s with a certain geometric

distance in the map space (physically the grid) can be updated using

mi(t+ 1) = mi(t) + α(t)hci(t)[x(t)−mt] (2.41)

where t ≥ 0 is a discrete coordinate, α(t) is a monotonically decreasing learning

rate and hci is a neighborhood function. In order for convergence to occur hci must
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Figure 2.6: SOM Cluster Map. [36]

approach zero with increasing time and acts as a smoothing kernal over the SOM

lattice to ensure the converged map is ordered [26].

Self-organizing maps naturally cluster so that the data with similar features

are mapped to the same or nearby processing elements [36]. The topology of the

input space is preserved on the lattice, i.e, relationships between samples in the

high-dimensional input space are preserved on a low-dimensional mapping [26]. This

preservation makes the SOM a great visualization tool to map multi-dimensional data

to a 2D representation, as seen in Figure 2.6.
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III. Augmenting LDA and Rank Threshold Detection using

WordNet

In an ever-increasing data rich environment, actionable information must be ex-

tracted, filtered, and correlated from massive amounts of disparate often free text

sources. The usefulness of the retrieved information depends on how we accomplish

these steps and present the most relevant information to the analyst.

It has been shown by Blei et al. that LDA outperforms other probabilistic

models such as the unigram, mixture of unigram and Probabilistic Latent Semantic

Indexing models, for several document collections [7]. Latent Dirichlet Allocation is

a generative probabilistic model for collection of discrete data such as a text corpus.

LDA is a three-level hierarchical Bayesian model where an item in a collection is

modeled as a finite mixture over a set of latent topics. Topics are characterized by

a distribution over the words in the corpus. The topics are then modeled as a finite

mixture over a set of topic probabilities. The topic probabilities provide a reduced

dimension representation of documents in a given collection.

Figure 3.1 depicts the general document modeling process, where the collection

is encoded to include text processing, use of ontologies and query introduction. After

encoding, the modeling process can be accomplished with various modeling algorithms

to include LDA, SOM, LSI, PLSI, Vector or Boolean. Finally, the results are presented

to depict the output of the modeling algorithm. This model is tailored later for

LDAWN in Section 3.2.

3.1 Process Overview

The principle advantages of generative models, such as LDA, include their mod-

ularity and their extensibility. They are easier to modify and study; for example, us-

ing an alternative sampling method from Gibbs Sampling as used in finding scientific

topics [15] to Random Sampling used in face recognition [23]. It is also possible for

LDA to be embedded in complex models as well as extending LDA by introducing

background knowledge to improve word and topic distributions, as we do here.
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Figure 3.1: General document modeling process.

Recent work in this area include clustering and visualization using LDA and Self-

Organizing Maps (SOM) [36], document modeling using probabilistic topic models [7],

and a comparison of probabilistic topic models [41]. Both Blei’s et al. and Styvers’

and Griffiths’ work aim to analyze the contents of documents and the meaning of

words using probabilistic topic models. Their results show that LDA outperforms

other probabilistic models. Additionally, Millar et al. [36] work shows how LDA and

SOM’s can be used together to cluster and visualize topic distributions, their results

on the 20 Newsgroups and NIPS collections showed good behavior. However, they

pointed out a couple of challenges such as setting LDA hyperparameters and choosing

a reasonable topic number. Our approach to LDA will not differ, but the novelty of our

approach comes with the incorporation of WordNet into the LDA document modeling

process.

WordNet has been used in many areas as a reference ontology in the area of

information retrieval. For instance, Varelas et al. [44] uses WordNet to detect simi-

larities that are semantically but not lexicographically related. They combined their

approach with a novel IR method resulting in a better performance over other IR
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methods [44]. Hearst devised a method for automatic discovery of WordNet relations

by searching for lexico-semantic relations shown to be useful in the detection of hidden

semantic relationships [18]. Several others have used WordNet for text classification

to include Rosso et al. [24], Chua and Kulathuramaiyer [11], and Mansuy and Hilder-

man [35]. Measuring “concept relatedness” is another area where WordNet has made

contributions, i.e., automatically annotating text with cohesive concept ties [42] and

measuring relatedness of pairs of concepts [43]. WordNet has also been paired with

Roget’s and Corpus-based Thesauri to augment WordNet’s missing concepts [33].

Text clustering algorithms have been enhanced using WordNet as shown by Liu et

al. [30] and Hotho et al. [21]. These works have shown that ontology augmentation is

useful in identifying hidden semantic relationships and is worth investigating.

3.2 Augment LDA using WordNet (LDAWN)

Tools used in document modeling face difficult challenges dealing with data

management and data diversity compounded with the overwhelming amount of un-

structured or semi-structured data. As an example, web pages represent petabytes [2]

of unmanageable amount of semi-structured data. In addition, various documents and

reports from specialized communities are constructed in these formats. As a result,

many research activities are flourishing in the area of knowledge discovery and data

mining of various document collections.

3.2.1 LDAWN Problem Definition. In the area of Knowledge Discovery

and Data Mining (KDD), data management systems often become overwhelmed with

source documents, in free text form, that are not labeled or pre-assigned to specific

topics. The usefulness of the retrieved information depends on how we accomplish

these steps and present the most relevant information to the analyst.

3.2.2 LDAWN Goals and Hypothesis. One method for extracting informa-

tion from free text is Latent Dirichlet Allocation (LDA), a document categorization

technique to classify documents into cohesive topics. Although LDA accounts for some
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implicit relationships such as synonymy (same meaning) it often ignores other seman-

tic relationships such as polysemy (different meanings), hyponym (subordinate), and

meronym (part of). To compensate for this deficiency, we incorporate explicit word

ontologies, such as WordNet, into the LDA algorithm to account for various semantic

relationships.

The benefit of supplementing the LDA algorithm with WordNet synsets is to

introduce semantic relationships LDA is not designed to discover such as polysemes,

hyponyms, meronyms, troponomys etc. For example, a document about dog may

not be related to a document about cat by the LDA algorithm but their semantic

ties with animal can reveal their hidden relationships. To avoid further complicating

the LDA algorithm as it reduces the term-document matrix to a much smaller word-

topic categorization, any enhancement should not increase the dimensionality of the

problem space. LDAWN, achieves both of these objectives.

The LDAWN algorithm increases document term frequencies by incrementing

terms by the number of new entries for WordNet terms appearing in the same doc-

ument. This is a similar strategy to the “add strategy” used by Hotho et al. [21],

where a term that appears in WordNet as a synset is accounted for at least twice but

could be accounted for more often due to terms having more than one synset. As a

result, term frequencies are increased for words contained in a document that have

semantic relationships with other words contained in the same document. This in

turn increases the LDA word-topic distribution probabilities for a given word with

semantic relations that have affected its term frequency count. The term frequency

directly affects the LDA probability for p(w|z), where each topic z is characterized

by a distribution over the words w. This alters the distribution so that some words

are more probable than others, therefore identifying words that are related and that

better fit the word-topic distribution. For example, if the word dog appears twice

in a document and the term canine appears once in the same document, the term

frequencies for those terms are incremented by the number of occurrences. Therefore,

the term frequency for dog and canine are both three for that document. This method
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Table 3.1: LDAWN and LDA word-topic distributions for dog and canine.
LDA
Topic 53: canine allergens supply seen responds gmt relative dogs
LDAWN
Topic 96: dogs canine allergens supply seen responds gmt relative

gives equal word probability for both dog and canine thereby explicitly defining their

semantic relationship.

This method directly affects LDA in terms of computing the posterior distribu-

tion of hidden variables, which is intractable. Therefore, using variational inferences

to formulate the computation of a marginal or conditional probability, a family of

distributions on the latent variables are obtained, making the computation tractable.

One of these distributions is the variational distribution which is a conditional distri-

bution, varying as a function of w, where w are the words in the distribution. Since

the variational distribution is explicitly dependent on w, increasing the probability’s

in w directly affects the variational distribution which in turn influences the word-

topic distribution. To show how the word-topic distribution is affected by LDAWN a

comparison of the LDAWN and LDA distributions show the affects of incorporating

an ontology. The LDAWN distribution should have higher probabilities for semanti-

cally related terms than LDA for the topics they are assigned. Using a small collection

of documents pertaining to dogs, Table 3.1 are the LDAWN and LDA word-topic dis-

tributions for the words dog and canine in order of word probability, from greatest to

least.

The LDAWN word-topic distribution in Table 3.1 has higher probabilities for

the terms dog and canine than LDA. These increased probabilities for those terms

create the explicit semantic relationship, LDA alone is unable to define.

As discussed in Section 2.5.1 each set of synsets, has a unique index organized

into hierarchies. Each hierarchy level expands further to reveal a myriad of synsets,

expanding the synsets excessively may cause term frequencies to be incremented un-

realistically. Therefore, LDAWN only expands the first level synsets of the hierarchy
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Figure 3.2: Graphical depiction of WordNet Synsets for dog and canine.

which avoids traversing too far into the ontology network causing unnecessary compu-

tation and unmanageable relationship tracking. This level captures the most prevalent

word semantic relationships. However, restricting the number of hierarchy levels could

cause LDAWN to overlook important semantic relationships. Further study can in-

vestigate if additional levels yields better results. Figure 3.2 is a graphical depiction

of the first level synsets for the terms dog and canine.
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Figure 3.3: The LDAWN Process.

The LDAWN process is shown in Figure 3.3 and described in the following steps:

1. Parse and remove stopwords (stemming not used).

2. Store documents and terms in the collection.

3. Parse and build vocabulary.

4. Pre-process and encode data as term frequencies.

5. Find semantically related terms in the vocabulary and weight them using Word-

Net.

6. Use repeated Gibbs sampling and LDA algorithm for 200 iterations or until

convergence.

7. Output the per-document topic distribution θ and per-topic word distribution

φ.

3.2.3 Experimental Design. LDA and LDAWN are trained on four text cor-

pus to compare the generalization performance of these models. The first collection

is 20 Newsgroups which is a collection of pre-categorized newsgroups into 20 topic
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areas [29]. OHSUMED is a set of references from MEDLINE, classified into topics

where documents can belong to multiple topics. MEDLINE is an on-line medical in-

formation database, consisting of titles and abstracts from 270 medical journals over

a 5-year period from 1987-1991 [19]. Also, the NIPS collection are the abstracts from

the “Neural Information Processing Systems” conference containing the abstracts of

the submitted papers over a 5-year period from 2000-2005 and are unlabeled [14]. Fi-

nally, experiments are conducted using a collection of unlabeled classified improvised

explosive device (IED) reports.

Using the four corpora listed above, 90% of the documents are trained for each

data set on LDA and LDAWN models. LDA is allowed to run up to 200 iterations or

until convergence, as discussed in Blei et al. [7]. The model parameters taken from the

output during training are fixed and used on the test set. These inputs include the

topic-distribution θ, α, and β. According to Steyvers and Griffiths, good values for α,

and β are α=50/T and β=0.01 based on the number of topics T and the vocabulary

size [41]. Keeping θ learned from the training set, the remaining documents are used

as a test set to calculate the perplexity for specified number of topics. The models are

evaluated for 10 topic values from 10 to 100 in increments of 10. Figure 3.4 depicts

the experiment design with LDA at the top of the figure and LDAWN at the bottom.

Further experiments are conducted on the four collections using independent

and pseudorandom training and testing sets for each experiment. There are a total of

five experiments per collection to include previous experiments. As before 90% of the

collection used in training and 10%held out for testing. This is to ensure collection

biasing is avoided. To find the best model parameters additional experiments are

conducted where the values of α and β and varying topic numbers are explored to see

how the LDA and LDAWN models react and if document modeling can be further

improved. Experiments on the 20 Newsgroups and IED collections are conducted

with α=50/T at topics numbers 50, 100 and 200. The β parameter is varied from

0.01, 0.02 and 0.05.
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Figure 3.4: Experimental Design for LDA (Top) and LDAWN (Bottom).

The evaluation metric perplexity, see Equation 2.37 in Chapter 2, a common

metric for evaluating natural language processing models [25], are used to evaluate

the models. The perplexity value computed on the held-out test data indicates how

well the model is able to generalize unseen data. The lower the perplexity the better

the model is able to generalize. Four experiments were conducted to thoroughly

compare the performance of LDAWN against that of LDA. Experiment one consisted

of training and testing over all four copora. Experiment two consisted of obscuring

two of the collections from their pre-categorized state, OHSUMED and 20 Newsgroups

collections. Experiment three is the mean perplexity values over all experiments

and include standard deviation error bars. Experiment four explored the results of

adjusting the prior parameters α and β for the per-document topic distribution θ and

the per-topic word distribution φ.
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3.3 Rank Threshold Detection with LDAWN

LDA-SOM clusters documents based on the self-organizing map after document

modeling with the Latent Dirichlet Allocation algorithm and topic selection are com-

plete. LDA-SOM leverages the word-topic distribution output of LDA to produce

a visualization of those document clusters. The LDA-SOM process is similar to the

LDAWN process in that initial preprocessing of documents are parsed and stopwords

are removed, with no stemming. The vocabulary for the collection is created and data

is encoded as term frequencies in a term-document matrix.

The documents are ranked according to their relevance to a given query by

combining the Dirichlet smoothing document model P(w|D) with the LDA model [48].

This combination is given by the following equation:

P (w|D) = λ

(
Nd

Nd + µ
PML(w|D) + (1− Nd

Nd + µ
)PML(w|coll)

)
+ (1− λ)Pldaw|D

(3.1)

where PML is the probability from original document model and Plda is the probability

from the LDA model. The parameters λ and µ are set at µ=1000 and λ=0.7, which

achieve the best results according to Wei et al. [48]. The hybrid probabilistic query

model differs in one area, PML(w|coll) is changed to PML(w|C), where C is the cluster

containing the document [36].

P (w|D) = λ

(
Nd

Nd + µ
PML(w|D) + (1− Nd

Nd + µ
)PML(w|C)

)
+(1−λ)Pldaw|D (3.2)

This change gives the retrieval process a distinct advantage of assigning probability

to document that are relevant to the query in which the query terms to not explicitly

appear in the documents [36]. The following steps and Figure 3.5 depict the LDA-

SOM process:

1. Use LDA to classify the words and documents into topics.

2. Look at the topics that emerge and decide which of the topics are relevant to

the the user.
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Figure 3.5: LDA-SOM IR Process

3. Take the documents and put them in a SOM using the probabilities for the

relevant topics as the dimensions of the data.

4. Cluster the SOM and determine the largest cluster. This is the one that has

low probability for all dimensions (i.e., topics).

5. Discard the documents associated with the largest cluster.

6. Take the remaining documents and run LDA on them to generate new topics.

7. Run SOM using the remaining documents and the new topics.

8. Cluster the SOM.

9. Use the clusters and the LDA topics to rank documents to user defined queries

using the hybrid probabilistic query model Equation 3.2.

3.3.1 Threshold Problem Definition. Previous work by Millar [36], LDA-

SOM, rank document relevance to a query independent of whether or not the query

terms appeared in the document. More importantly, his implementation overlooks

query terms that do not explicitly co-occur and is discounted by LDA. In LDAWN,

WordNet is used to supplement the rank documents based on the query terms includ-

ing any of its synsets to leverage terms that co-occur. In addition, since all remaining
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Figure 3.6: LDAWN IR Process

documents are ranked and returned to the user a rank threshold of relevancy should

be automatically defined.

3.3.2 Threshold Goals and Hypothesis. Equation 3.2 bases the relevancy of

documents to a query independently of whether the query terms appear in a document

or not, therefore WordNet can be leveraged by finding those documents that the

query terms appear and any of its WordNet synsets. Also, a rank threshold can be

automatically detected by determining the point at which the query terms or their

synsets no longer appear in the documents. This provides the user a point at which

documents are no longer relevant without searching the entire ranked documents list.

The LDAWN IR process is depicted in Figure 3.6 the only difference from the LDA-

SOM IR process is the incorporation of ontologies.

Experiments were conducted on the 20 Newsgroups collection using Millar’s

LDA-SOM algorithm and LDAWN algorithm with equation 3.2 and the following

parameters, α=50/T, β=0.01, µ=1000 and λ=1000. Both algorithm’s are allowed to

run 200 iterations and the ranked document list contains the automatic threshold,

indicated by a T in the document list. The comparison metric is precision and recall,
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where the 20 Newsgroups are in categories and the query can be assigned to a specific

category, therefore can be treated as a semi-labeled collection.
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IV. Results and Analysis of LDAWN and Rank Threshold

Detection

4.1 LDAWN Proof of Concept

Test results for the first experiment compared the four collection perplexity val-

ues, see Figures 4.1 through 4.4, show that LDAWN garnered less (better) perplexity

values in a great majority of topic values. Figure 4.1 is the 20 Newsgroups collection,

which is pre-categorized into 20 topic areas. Pre-categorization can be inferred since

the LDA and LDAWN models are consistently similar in their perplexity values at

each topic increment. In Figure 4.2 the perplexity values for the LDAWN model are

lower at each topic increment than the LDA model, which means the LDAWN model

is able to generalize unseen data better than the LDA model alone. Figure 4.3 are

the OHSUMED collection, here the documents have been obscured from their labeled

topics. The perplexity values on the training set and again the LDAWN model has

a lower perplexity at each topic increment. In Figure 4.4, the IED reports collection

prove LDAWN is able to generalize unseen data better than LDA in the majority of

test cases. However, in the IED collection at topic numbers 30 and below LDAWN’s

perplexity increases dramatically which could be due to the held-out set composition.

If the test set contained a higher number of words that did not appear in the training

set and WordNet did not find their synsets, their probabilities would be lower thereby

increasing the perplexity.

The overall improvement, reduction in perplexity, at 100 topics are 9.8% for 20

Newsgroups, 19% for NIPS, 15% for OHSUMED, and 28% for IED. The results for

the NIPS, OHSUMED, and IED collections show that the LDAWN model when faced

with a previously unseen document which may contain words that did not appear in

the training documents are able to generalize those words better than the LDA model.

These words most likely have smaller probabilities which make the perplexity of the

unseen documents increase in the LDA model. Since the LDAWN model is able to

find semantically related words in these documents, those word probabilities increase

which decrease the perplexity for those unseen documents. However, as seen in the
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Figure 4.1: Perplexity results on the 20 Newsgroups collection.
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Figure 4.2: Perplexity results on the NIPS collection.

51



0 10 20 30 40 50 60 70 80 90 100
5000

10000

15000

20000

25000

30000

35000

40000

45000

Number of Topics

Pe
rp

le
xi

ty

 

 
LDA
LDAWN

Figure 4.3: Perplexity results on the OHSUMED collection.
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Figure 4.4: Perplexity results on the IED collection.
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Table 4.1: LDA and LDAWN Models Training Times.
20 Newsgroups OHSUMED NIPS IED
(33 MB) (60.1 MB) (35.8 MB) (12.2 MB)

LDA 37 min 195 min 43 min 64 min
LDAWN 110 min 250 min 94 min 137 min

IED collection at topic numbers 30 and below, LDAWN’s perplexity indicates that

there are a number of terms that do not have synsets and do not occur frequently and

therefore have low probabilities. This could also be a collection anomaly requiring

further testing.

A drawback of using the LDAWN model for document modeling is the increased

runtime in searching through the synsets and incorporating the additional words. Our

experiments show that it takes approximately twice as long to run the LDAWN model.

Table 1 shows the associated runtime for each collection with the corresponding model.

These runtimes are also associated with the size of the collection. The OHSUMED

collection is the largest of the three and therefore takes the longest to run for both

models. System memory for these tests is 3 GB of RAM and a 2.7 GHZ processor,

increasing system memory and processor speed may reduce the training runtime.

4.1.1 Analysis. These experiments show significant improvements over pre-

vious work using LDA to model documents by incorporating the WordNet ontology

to help uncover hidden semantic relationships. For any given document, we incre-

mented term frequencies for all terms in the document matching terms in the synsets

of WordNet. Then, we incorporated this enhanced term-document matrix into the

LDA model to compute the topic distribution. LDA estimated the per-document

topic distribution and per-topic word distribution and output the probabilities for

each topic distribution.
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Figure 4.5: Perplexity results on the 20 Newsgroups obscured collection.
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Figure 4.6: Perplexity results on the OHSUMED obscured collection.
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4.2 LDAWN Randomized Collections

A majority of each collection are trained using the LDAWN model to classify

the documents into topics. The 10% held-out set is used to test and measure the

perplexity, using perplexity Equation 2.37 as discussed in Chapter 2, of each collection

for several numbers of topics. Results show that augmentation of LDAWN, fared

better than LDA alone, i.e., LDAWN achieves a better generalization of documents

in each collection.

Test results for experiment two are the obscured (mixed-up) 20 Newsgroups

and OHSUMED collections and test if the collection categorization affect perplexity

values, see Figures 4.5 and 4.6. Figure 4.5 is the 20 Newsgroups collection, where the

documents were obscured from their pre-categorized topics. LDAWN outperforms

LDA at all topic values in the obscured collection where the perplexity’s were similar

along most topic values in experiment one. Figure 4.6 is the obscured OHSUMED

collection where the documents are not in their predefined state as classified topics.

Again, LDAWN outperforms LDA at all topic values in the obscured collection where

the perplexity’s were similar along most topic values in experiment one.

4.2.1 Analysis. During this experiment the results for the OHSUMED and

20 Newsgroups collections are different from the topic categorized findings in exper-

iment one. These results are due to obscuring the OHSUMED and 20 Newsgroups

collection from their original topic category’s. This experiment shows that collec-

tions that are labeled or pre-categorized pose similar perplexity’s at all topic values

for LDAWN and LDA although LDAWN’s values are slightly lower. This fact tells

us that the LDAWN model it most helpful when collections are not categorized or

labeled, which is the case when document and topic modeling are the most useful.
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Figure 4.7: Mean Perplexity results for the 20 Newsgroups collection.
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Figure 4.8: Mean Perplexity results for the NIPS collection.
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Figure 4.9: Mean Perplexity results for the OHSUMED collection.
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Figure 4.10: Mean Perplexity results for the IED collection.
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4.3 LDAWN Confidence Testing

Experiment three mean perplexity values over five experiments on all four col-

lections, see Figures 4.7 through 4.10, shows the mean perplexity values for the 20

Newsgroups, NIPS, OHSUMED and collections.

4.3.1 Analysis. Test results over the five experiments per collection with

the perplexity mean and standard deviation, shown in Figures 4.7 through 4.10, show

that LDAWN garnered less (better) perplexity values in a great majority of topic

values. Figure 4.7, is the 20 Newsgroups collection, which is pre-categorized into

20 topic areas. This pre-categorization can be inferred since the LDA and LDAWN

models are consistently similar in their perplexity values at each topic increment,

meaning that the documents in each pre-labeled topics categories belong in similarly

inferred topics. Overall, the perplexity values for the LDAWN model are lower at

each topic increment than the LDA model, which means the LDAWN model is able

to categorize the new documents better than the LDA model alone. Figure 4.8, is

the NIPS collection, LDAWN consistently outperforms LDA at every topic number.

Figure 4.9 bottom left, is the OHSUMED collection perplexity values on the training

set and again the LDAWN model has a lower perplexity at each topic increment. In

Figure 4.10, the IED reports collection prove, once again, that LDAWN is able to

generalize unseen data better than LDA in the majority of test cases. However, in

the IED collection at topic numbers 30 and below, LDAWN’s perplexity increases

dramatically which could be due to the held-out set composition. If the test set

contained a higher number of words that did not appear in the training set and

WordNet did not find their corresponding synsets, their probabilities would be lower

thereby increasing the perplexity. This can occur at a lower number of topics when

the collection is diverse.

The results for the NIPS, OHSUMED, and IED collections show that the

LDAWN model when faced with a previously unseen document, which may contain

words that did not appear in the training documents, are able to generalize those
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words better than the LDA model. These words most likely have smaller probabili-

ties which result in the perplexity of the unseen documents to increase in the LDA

model. Since the LDAWN model is able to find semantically related words in these

documents, those word probabilities increase which decrease the perplexity for those

unseen documents. However, as seen in the IED collection at topic numbers 30 and

below, LDAWN’s perplexity indicates that there are a number of terms that do not

have synsets and do not occur frequently and therefore have low probabilities. This

may also be a collection anomaly requiring further testing.

Figures 4.7 through 4.10 also shows the standard deviation depicted by the

error bars, black for plain LDA and gray for LDAWN, among the four collections

over five experiments. The variances at 10 topics consistently have a large spread,

on the OHSUMED, 20 Newsgroups and IED collections, due to more outliers or

increased perplexities at low topic numbers. This is reasonable because it is more

difficult to construct topic models at low topic numbers because the document model

is generated by first picking word distributions over the topics. Therefore, if the

number of topics is low then the word distribution is severely restricted causing a

high variance. Alternately, LDAWN has a smaller variance than LDA in all the

collections.

4.4 Determining Best α and β Parameters

To empirically determine the best α and β to use, experiments on the 20 News-

groups and IED collections are conducted with α=50/T at topics numbers 50, 100

and 200. The β parameter is varied from 0.01, 0.02 and 0.05 depicted in Figures

4.11 through 4.13. Figure 4.11 is the 20 Newsgroups collection, at 50 topics, top left,

with β=0.01 the LDAWN perplexity decreases drastically as it approaches 50 topics

as well as LDAWN outperforming LDA at most topic numbers. This is also true

with LDAWN and 100 topics Figure 4.12, with parameter β=0.01 perplexity steadily

decreases and is lower than the perplexity at β=0.02 and 0.05. LDAWN still outper-

forms LDA at each topic number. Figure 4.13 at 200 topics and β=0.02, there is a
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Figure 4.11: 20 Newsgroups 50 Topics at α=50/T and β=0.01, 0.02, 0.05.

Figure 4.12: 20 Newsgroups 100 Topics at α=50/T and β=0.01, 0.02, 0.05.
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Figure 4.13: 20 Newsgroups 200 Topics at α=50/T and β=0.01, 0.02, 0.05.

Figure 4.14: IED 50 Topics at α=50/T and β=0.01, 0.02, 0.05.
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Figure 4.15: IED 100 Topics at α=50/T and β=0.01, 0.02, 0.05.

Figure 4.16: IED 200 Topics at α=50/T and β=0.01, 0.02, 0.05.

62



noticeable decline in the perplexity. LDAWN consistently has a lower perplexity than

LDA with β=0.01 and α=0.25 but at larger topic numbers such as 200, better results

are achieved with β=0.02.

As with the 20 Newsgroups, the IED collection showed similar results with the

varying values for α and β. Figure 4.14 through 4.16 is the IED collection, at 50

topics, Figure 4.14, with β=0.02 the LDAWN perplexity decreases as it approaches

50 topics as well as LDAWN outperforming LDA at most topic numbers. This is

also true with LDAWN at 100 topics Figure 4.15, with parameter β=0.02 perplexity

steadily decreases and is lower than the perplexity with β=0.01 and 0.05. LDAWN

still outperforms LDA at each topic number. Figure 4.16 with 200 topics and β=0.01,

there is a noticeable decline in the perplexity. LDAWN consistently has a lower

perplexity than LDA with β=0.02 and α=0.25 but at larger topic numbers such as

200, better results are achieved with β=0.01.

4.4.1 Analysis. These experiments were designed to test the best parameters

for the document models. As proposed by Steyvers and Griffiths [41], we also found

the values of α=50/T and β=0.01 produced the best overall results. However, these

values are best fit for an unlabeled collection like the IED collection. When the model

is faced with a categorized/semi-labeled collection such as 20 Newsgroups β=0.02

fared better with large topic numbers. So when determining the best parameters, the

collection and desired number of topics should be considered when choosing α and β.

4.5 Rank Threshold Detection Using WordNet

LDAWN also incorporates a query model for information retrieval purposes. The

documents are ranked according to their relevance to a given query by combining the

Dirichlet smoothing document model with the LDA model as proposed by Wei and

Croft [48].
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4.5.1 LDAWN Threshold Detection Results. Table 4.2 are the LDAWN top

50 results on the query term bike. The value of true is given to a document that

contains the query term or its WordNet sysnet. Notice that a value of true does not

appear until three quarter of the way down the list. This is unusual since most IR

system results would rank the documents with the query term much higher. In order

to increase the score of the documents that contain the query term a multiplier must

be used. Therefore, a multiplier is applied to the rank score of each document in

the ranked list that contains the query term or its WordNet synset. The multiplier

moves the documents that contain the query term or its WordNet synset closer to the

top, these results are shown in Table 4.3. After the multiplier is applied the last true

value is found and the threshold is drawn as seen in Table 4.4, these are ranked 650-

700. The threshold was found at document 1441 indicated by the T for the suggested

threshold, at rank 653, which is about the halfway point of the total 1497 documents.

To further evaluate the performance of LDAWN, precision and recall metrics

are calculated for both LDA and LDAWN. The OHSUMED collection was used since

it includes labeled queries, i.e., subject matter experts determined which documents

in the collection are relevant to the queries. Table 4.5 and 4.6 are the precision and

recall results from the OHSUMED collection for labeled query’s Q1 through Q15.

Note: Q8 and Q14 have no relevant documents.

Figure 4.17 depicts the average recall versus precision at 11 levels of recall

for the two algorithms averaged across the 13 queries. Like Figure 4.17, typically

these graphs slope downward from left to right, enforcing the notion that as more

relevant documents are retrieved (recall increases), the more non-relevant documents

are retrieved (precision decreases). Therefore curves closer to the the upper right

corner of the graph, e.g., closest to 100% precision and recall, perform better. Since

LDAWN garnered higher precision and recall for every query over LDA and is closer

to the upper right corner, LDAWN’s performance is superior to LDA. Therefore, we

conclude that incorporating WordNet into the query process is also beneficial for

information retrieval performance.
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Table 4.2: Top 50 Results for bike LDAWN without multiplier.
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Table 4.3: Top 50 Results for bike LDAWN with multiplier.
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Table 4.4: 50 Results for bike LDAWN that include threshold.
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Table 4.5: LDA-SOM and LDAWN Recall for OHSUMED.
Q1 Q2 Q3 Q4 Q5 Q6 Q7

LDA-SOM 0.0004 0.0002 0.0015 0.0001 0.00004 0.0006 0.00004
LDAWN 0.0004 0.0002 0.0017 0.0001 0.0002 0.0008 0.00007

Q9 Q10 Q11 Q12 Q13 Q15
LDA-SOM 0.0002 0.00 0.00008 0.0001 0.00008 0.0002
LDAWN 0.0002 0.00004 0.00008 0.0001 0.0001 0.0002

Table 4.6: LDA-SOM and LDAWN Precision for OHSUMED queries.
Q1 Q2 Q3 Q4 Q5 Q6 Q7

LDA-SOM 0.64 0.57 0.62 1.00 0.17 0.68 0.50
LDAWN 0.64 0.71 0.80 1.00 0.83 0.95 1.00

Q9 Q10 Q11 Q12 Q13 Q15
LDA-SOM 0.57 0.00 0.50 1.00 0.67 0.80
LDAWN 0.86 0.50 0.50 1.00 1.00 0.80

4.5.2 Analysis. This automatic threshold detection method is designed to

give the user an estimate of the point at which the documents are no longer relevant

to the query. This method is still in its infancy stage but far outperforms a manual

binary search of the physical documents. Therefore, there is plenty of room for further

explorations and possible improvements. Additional results can be found in Appendix

2, where the threshold is detected for the query terms battery, motorcycle, tire and

ride.

As indicated in the both Tables 4.5 and 4.6 LDAWN has higher precision and

recall results for a majority of the queries which means LDAWN retrieves the most

relevant documents with respect to the query. Figure 4.17 also shows LDAWN has a

higher precision at all 11 levels of recall which validates that LDAWN retrieves more

relevant documents than LDA.
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Figure 4.17: Average precision over 11 levels of recall for OHSUMED queries.
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V. Conclusions

Latent Dirichlet Allocation (LDA) with WordNet (LDAWN) exposes hidden semantics

relationships resulting in improved document modeling, document classification and

topic categorization over LDA alone. This technique benefits the e-intelligence/counter-

intelligence community by enabling intelligence analysts to quickly extract more rele-

vant information from massive amounts of disparate data, e.g., IED incident reports.

For any given document, term frequencies are incremented for all terms in the docu-

ment with matching terms in WordNet synsets. Then, the resulting term-document

matrix is incorporated into the LDA model to compute the topic distribution. LDA

estimates the per-document topic distribution and per-topic word distribution and

outputs the probabilities for each topic distribution. After unigram classification

training over each of the four corpora, a held-out test set is used to measure the

perplexity of each collection over several numbers of topics. Our results show that

augmentation of LDAWN, fared better than basic LDA, i.e., LDAWN achieves a bet-

ter generalization of documents in each collection.

The threshold detection method using LDAWN is a way to automatically find

a threshold among relevant documents and non-relevant documents in a ranked list.

The goal of automation is met which requires no user interaction. In addition, the

user has the ability to view documents below the threshold causing no restriction to

the user. This method can be used with LDA, LDAWN and other modeling tools

that do not have a relevancy threshold detection method.

Results show that augmentation of LDAWN, fared better than basic LDA, i.e.,

LDAWN achieves a better generalization of documents in the collection by using

parameters α=50/T and β=0.01 as suggested by Steyvers and Griffiths.

5.1 Future Work

Several avenues for future research can further advance this work. Future work

includes term reweighting, using domain specific ontologies and further experiments

on other labeled collections.
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5.1.1 Term reweighting. Term reweighting will modify the term frequencies

and therefore modify the probability of the term, increasing the probability of the

original term and decreasing the probability of the synset term. This reweighting

scheme will be important during the information retrieval process, specifically during

document ranking and will give a fair weight to the synset terms. The documents

Currently, LDA-SOM weighs terms equally. To define a distinction between a

term and its synset, the synset term and the non-query terms need to be weighted

differently. The term weighting process is done during the LDA-SOM term-document

matrix generation where the term frequencies are collected. The proposed term

weighting scheme would give a term the full weight value of 1.0 if the term is contained

in the document. If the term is a synset of the term and both query term and synset

terms appears in the document then it would be given a term weight reduction to

0.80. If the term is a synset and appears in the document and the original term does

not then the weight would be reduced to 0.75. This term weighting process produces a

clear distinction of the term importance, where the original term receives the highest

term weight and therefore probability. LDA-SOM experiments for the term weighting

process are accomplished with the following parameters α=50/T, β=0.01 and various

query’s tested on the 20 Newsgroups and IED collections .

5.1.2 Customized Ontologies. WordNet like ontologies can be created and

tailored for expected terms in the collection. The tailored ontologies will drastically

reduce the ontology size. This reduction in size would improve LDAWN runtime

performance and provide domain specific synsets, lowering perplexity. Additionally,

OWL (see Section 2.5.2) can be leveraged to generate such customized ontologies.

5.1.3 Evaluate Labeled IED Data. The LDAWN favorable results could

be further validated if the IED collection included canned queries and the relevant

documents for those queries. Although, very labor intensive process, as the IED

collection is a large and dynamic collection, this would provide a validated baseline to

ensure LDAWN is the best model to gain insights into this collection. In addition, an
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IED subject matter expert should verify the automatic threshold detection process is

indeed finding the best possible threshold and if it will be a valuable tool for their

analysis.
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Appendix A. Stop Word Listing

a about after again all almost
also although always among an and
another any approximately are as at
be because been before being between
both but by can could did
do does done due during each
either enough especially etc followed following
for found from further give given
giving had hardly has have having
here how however if in into
is it its itself just kg
km largely like made mainly make
may might min ml mm more
most mostly must nearly neither no
nor not now obtain obtained of
often on only or other our
out over overall per perhaps possible
previously quite rather really regarding resulted
resulting same seem seen several should
show showed shown shows significant significantly
since so some such suggest than
that the their theirs them then
there these they this those through
thus to under up upon use
used using various very was we
were what when whereas which while
with within without would
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Appendix B. Query Results for Threshold

Table B.1: 20 Newsgroups Top 50 Results for tire LDAWN-QM without multiplier.
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Table B.2: 20 Newsgroups Top 50 Results for tire LDAWN-QM with multiplier.
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Table B.3: 20 Newsgroups 50 Results for tire LDAWN-QM that include threshold.
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Table B.4: 20 Newsgroups Top 50 Results for ride LDAWN-QM without multiplier.
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Table B.5: 20 Newsgroups Top 50 Results for ride LDAWN-QM with multiplier.
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Table B.6: 20 Newsgroups 50 Results for ride LDAWN-QM that include threshold.
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Table B.7: 20 Newsgroups Top 50 Results for motorcycle LDAWN-QM without
multiplier.
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Table B.8: 20 Newsgroups Top 50 Results for motorcycle LDAWN-QM with mul-
tiplier.
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Table B.9: 20 Newsgroups 50 Results for motorcycle LDAWN-QM that include
threshold.
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Table B.10: 20 Newsgroups Top 50 Results for battery LDAWN-QM without mul-
tiplier.
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Table B.11: 20 Newsgroups Top 50 Results for battery LDAWN-QM with multiplier.
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Table B.12: 20 Newsgroups Results for battery LDAWN-QM that include threshold.
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Table B.13: NIPS Results for Bayes LDAWN-QM without multiplier.
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Table B.14: NIPS Results for Bayes LDAWN-QM with multiplier.
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Table B.15: NIPS Results for Bayes LDAWN-QM that include threshold.
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Table B.16: OHSUMED Results for cells LDAWN-QM without multiplier.

89



Table B.17: OHSUMED Results for cells LDAWN-QM with multiplier.
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Table B.18: OHSUMED Results for cells LDAWN-QM with threshold.
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