Final Performance Report

Contract # FA9550-08-C-0006:
Hearing Protection for High-Noise Environments

Attachment 5

CONSTRUCTION OF THE HUMAN HEAD MODEL

Prepared by:
MONOPOLE RESEARCH
739 Calle Sequoia, Thousand Oaks, CA 91360
tel: (805) 375-0318 fax: (805) 499-9878

Approved for public release, distribution unlimited
1. REPORT DATE
 2009

2. REPORT TYPE

3. DATES COVERED
 01-10-2007 to 30-11-2009

4. TITLE AND SUBTITLE
 Construction of the Human Head Model

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
 MONOPOLE RESEARCH, 739 Calle Sequoia, Thousand Oaks, CA, 91360

8. PERFORMING ORGANIZATION REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
 Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:
 a. REPORT
 unclassified
 b. ABSTRACT
 unclassified
 c. THIS PAGE
 unclassified

17. LIMITATION OF ABSTRACT
 Same as Report (SAR)

18. NUMBER OF PAGES
 6

19a. NAME OF RESPONSIBLE PERSON

Standard Form 298 (Rev. 8-98)
Prepared by ANSI Std Z39-18
Summary

A precise model of the cochlea and its vicinity is essential for reliable numerical simulation which could discern between different mechanisms of energy transfer to the human ear.

Therefore, a significant fraction of our effort was devoted to the construction of a sufficiently detailed and anatomically faithful model of the ear (its outer, middle, and inner parts). The model we constructed consists of the following parts:

1. the outer ear represented by its exterior surface, the surface of the auditory canal including the tympanic membrane, modeled as a finite-thickness surface;
2. the middle ear, modeled as a surface of the system of ossicles and supporting structures;
3. the inner ear, modeled as a set of surfaces representing the boundaries of the cochlea, the vestibule, and the semi-circular canals;
4. the skull, described by the surface of the bone;
5. the outer surface of the skin surrounding the skull; and
6. a homogeneous material filling the space between the skull and the inner ear.

For tests of noise-protection devices, we also included a model of a helmet and the material layer filling the space between the helmet and the surface of the head.

We stress that all the geometry components: skull, skin, inner, middle, and outer ear, as well as the helmet, are mutually compatible and matched to one another.

Some representative examples of the geometry details are presented in Figs. 1 to 8.

Figure 1: A part of the inner ear structure: the cochlea and the semi-circular canals.
Figure 2: Another view of the cochlea, the semi-circular canals, and the adjacent structures.

Figure 3: A view of the outer ear and the adjacent part of the skull.
Figure 4: The overall view of the skull model.

Figure 5: A view of the skull model, including the lower jaw.
Figure 6: Another view of the complete skull model.

Figure 7: The outer ear and the inner ear structure embedded in the skull bone.
Figure 8: The model of the head skin surface and the matched helmet.