Matrix Elements of Volumetric Integral Operators in Acoustics and Elasticity for Node Based Basis Functions on Tetrahedral Supports

MONOPOLE RESEARCH, 739 Calle Sequoia, Thousand Oaks, CA, 91360

Approved for public release; distribution unlimited

Security classification:
- Report: Unclassified
- Abstract: Unclassified
- This page: Unclassified

Limitation of abstract: Same as Report (SAR)

Number of pages: 2
Final Performance Report

Contract # FA9550-08-C-0006:
Hearing Protection for High-Noise Environments

Attachment 2

MATRIX ELEMENTS OF VOLUMETRIC INTEGRAL OPERATORS
IN ACOUSTICS AND ELASTICITY
FOR NODE BASED BASIS FUNCTIONS ON TETRAHEDRAL SUPPORTS

Prepared by:
MONOPOLE RESEARCH
739 Calle Sequoia, Thousand Oaks, CA 91360
tel: (805) 375-0318 fax: (805) 499-9878

Approved for public release, distribution unlimited
Abstract

A new method of evaluation of matrix elements of the monopole and dipole terms of the Green function appearing in volumetric integral equations in acoustics and elasticity is presented. The procedure offers both analytical simplicity and accuracy. It does not require the conventional singularity extraction procedure and it offers improved computational efficiency since it reduces six-dimensional volumetric integrals to four-dimensional surface integrals with nonsingular integrands.

Summary

The purpose of this work was to derive new and efficient analytical expressions for matrix elements of the monopole and the dipole components of the Green function appearing in volumetric integral equations in acoustics. The method we present reduces volumetric integrals involving singular integrands to surface integrals with nonsingular integrands. The technique has, therefore, two main advantages:

(i) it reduces the dimensionality of the integrals from six to four and,

(ii) it eliminates singularities which, in general, cause difficulties in numerical integration.

The Galerkin method is used in the evaluation of matrix elements. As the result we obtained a set of semi-analytical, numerically stable expressions for all matrix elements of integral equation operators appearing in

- first order volumetric integral quations,
- second order volumetric integral quations, as well as those appearing in the
- “surface quivalent formulation” integral equations applicable to geometries composed of an arbitrary number of piecewise homogeneous material regions.

The paper on this subject is in preparation.