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Abstract

Strike planning is one of the fundamental tasks of the Turkish Air Force and

involves assignment of strike aircraft to targets with a maximum level of efficiency.

Therefore, planning an optimal strike plan based on the preferences of the decision

maker is crucial. The efficiency of the strike plan in this research implies attacking the

maximum number of targets while considering target priority and the desired level of

damage on each target. Another objective is to minimize the cost of the plan.

This research develops an exact model that maximizes the efficiency of the strike

plan using LINGO with Excel Spreadsheets. Given this efficiency, the aircraft and

weapon costs plus the distance flown is minimized while maintaining efficiency. The

model also takes into account the aircraft and weapon capacities for particular types

at each base to avoid assigning aircraft to targets from a base where there is an

insufficient resource in terms of the aircraft and weapon capacity.

The results show that the model developed in this research provides a great deal

of cost saving (i.e., approximately 50 %) for a strike plan compared to a strike plan

which does not consider the total cost.
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MAXIMIZING STRIKE PLANNING EFFICIENCY

FOR A GIVEN CLASS OF TARGETS

I. Introduction

In this chapter, Section 1.1 describes the problem statement of this research.

Section 1.2 presents the research question and the objectives of this research. Finally,

the scope, limitations, and the assumptions are discussed in Sections 1.3 and 1.4.

1.1 Problem Statement

The primary responsibility of the Turkish Air Force (TUAF) is to defend Turk-

ish airspace and territory. Alert aircraft are located in particular regions in Turkey

so an immediate and effective reaction capability against airspace intrusions is main-

tained. On the other hand, attack aircraft are assigned so as to achieve desired levels

of damages on targets. The attack aircraft, desired levels of damages, and targets are

determined in advance. The attack aircraft are located at bases depending on poten-

tial threats to the Turkish Republic. The main difference between attack aircraft and

alert aircraft is that alert aircraft have similar capabilities and carry similar weapons

no matter where they are located. Furthermore, alert aircraft require less detailed

planning, as many of the tasking decisions take place in the air, since these taskings

are based upon the proximity of the alert aircraft to the threat. The main problem

in tasking alert aircraft is to locate alert aircraft bases to obtain an optimum level of

coverage of the national airspace against possible intrusions from foreign countries.
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On the other hand, assigning attack aircraft to targets requires a detailed anal-

ysis of the targets and capabilities of the attacking forces. The final assignments are

announced by the Air Tasking Order (ATO). The ATO matches the targets with the

squadrons and assigns aircraft with an appropriate number of weapons to achieve a

desired level of damage on each target; however, there may be several alternative ways

of achieving the desired level of damage by assigning different types of aircraft with

different types of weapons from another base. Moreover, some of these alternative

assignments might be more cost effective. In other words, there might be multiple

optimal assignments with respect to damage expectancy when it is assumed that the

final ATO assignment is optimal and the decision maker could select an assignment

which is more cost effective.

Cost effectiveness refers to the type and number of aircraft and weapons assigned

and the distance flown by these aircraft. Therefore, a smaller number of aircraft and

weapons is generally more cost effective. Thus, cost effective assignments give the

decision maker more options for future missions because there will be more weapons

available and the turnaround time for the aircraft will be decreased due to the shorter

distances between targets and the assigned bases. Therefore, more unassigned avail-

able aircraft and weapons increase flexibility in the decision making process.

However, the overall cost effectiveness of an ATO refers to the total cost of the

assigned strike packages. A strike package is defined as a group of attack aircraft

carrying weapons to achieve the goal of destroying a set of targets. For instance, 2

F-16s carrying 4 MK-84s is a strike package. A smaller number of weapons is not

2



always more cost effective due to the different costs of different weapons. Total cost

depends on the weapon costs and the aircraft sortie costs based upon the distance

flown. Clearly, an ATO that maximizes damage expectancy, uses the least number

of aircraft and weapons or the most cost effective weapon and aircraft combination,

and has the shortest total distance flown is desired.

It is important to make decisions as quickly as possible in an operational envi-

ronment since time is limited due to the necessity of taking immediate action against

enemy attacks. Otherwise, the enemy takes preventive measures and the desired level

of damage on targets may not be achievable due to these preventive measures. The

TUAF must react to all possible threats immediately and hence, having robust and

efficient user friendly tools that aide decision makers in assigning strike packages to

targets in a cost effective way is critical to the overall security of Turkey.

1.2 Research Question

The research question is:

What type of weapons and how many weapons by type should be assigned to

specified targets in order to achieve a desired level of damage on each target while

minimizing the total cost of the assignment with respect to the type and the number

of aircraft and weapons used, and the distance flown?

One of the main objectives of assigning weapons to targets is to achieve a user

defined desired level of damage on each target. The desired level of damage could be

achieved by different types of weapons and different aircraft assignments from several

3



bases, where each assignment has a particular cost, and hence, another objective is

to find the assignment with the minimum cost.

1.3 Scope and Limitations

There are five phases in the strike planning process: target selection, weapon

allocation, mission formation and assignment, mission routing and scheduling process,

and contingency plans. This research deals with the weapon allocation and the mission

formation phases of strike planning. The weapon allocation phase assigns weapons

to targets to achieve the desired level of damage on the targets. On the other hand,

the mission formation phase constructs the actual strike packages to carry weapons

to targets. Target selection, mission routing and scheduling process, and contingency

plans phases are not considered in this research, and it is assumed that targets are

determined by the decision maker.

All targets are individual. There is no network structure among them. Because

there can be multiple targets in sequence for a strike package to attack, the planner

does not have to assign different strike packages to every target. One strike package

can carry different types of weapons and attack targets sequentially. However, it is

not a generally accepted situation for an aircraft to carry different types of weapons

to attack multiple targets. Furthermore, attacking sequentially affects the surprise

effect of the attack negatively since all targets cannot be attacked at the same time.

In general, the aircraft attack target groups and the target groups contain several

single targets. In this research, it is assumed that every strike package attacks a

4



single target in a target group and returns to base. Therefore, aircraft do not carry

different types of weapons in a strike package for a single target. This assumption is

based upon real world applications. Additionally, all aircraft in a strike package which

are assigned to a single target come from the same base to avoid violating the flight

leadership and common site briefing considerations. [6, 8] However, different strike

packages from different bases can be assigned to a target group containing several

single targets where each strike package may carry different types of weapons and

attacks a single target in a target group. Thus, all strike packages may attack single

targets in a target group at the same time to accomplish a surprise attack on the

enemy’s forces.

This research also considers only ground targets. The model in this research

does not assign Combat Air Patrol (CAP) aircraft to intercept enemy aircraft nor

Suppression of Enemy Air Defense (SEAD) support for the strike package.

It is imperative for the air strike assets to accomplish their mission. This re-

search takes into consideration that the desired level of damage on each target must

be achieved at the minimum cost. There are important factors affecting mission plan-

ning such as policy or strategy, personnel availability, aircraft emergency rates, and

weather conditions. The scope of this research is limited by only the probability of

damages (POD) and the total cost of the mission in terms of the aircraft, weapons,

and distance flown.
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1.4 Assumptions

There are several assumptions in this research:

• Once the aircraft are airborne, they are able to complete their missions. No

emergency situations are considered in this research because the ATO plan-

ner does not consider emergency situations in real world applications. In an

emergency situation, a contingency plan may be executed. Note that even

a contingency plan does not consider emergency situations. However, a con-

tingency ATO planner takes into account factors such as weather conditions,

target changes, and intelligence reports before starting to prepare the contin-

gency plans. In other words, immediate changes are not considered in the ATO

process dynamically.

• All weapons are released over the target with 100 % probability. There is a

probability that a weapon is not released once the pilot hits the release button

due to mechanical problems. Furthermore, the pilot can miss the point that he

or she is required to fire the weapon to have the maximum impact on a target

depending on the altitude and the diving angle. In this research, these possible

problems are not considered because the ATO planner cannot anticipate these

problems before planning since planning requires approximately 2 days.

• PODs of strike packages are calculated and put into the model by the user with

respect to each target since each target and strike package has a different POD.

The Joint Munitions Effectiveness Manual (JMEM) is used to calculate PODs

6



and integration of the JMEM into any type of ATO planning tool requires a

license from the authorities of the JMEM software package.

• In practical applications, if a strike package attacks a single target, each aircraft

in a strike package carries the same type of weapons. There may be a target

group to attack and every single target in the target group may have a different

structure that requires different types of weapons to be destroyed at a desired

level of damage. In that case, aircraft in a strike package carry different types

of weapons to attack targets sequentially to have the desired level of damage

on each target. However, it is not a generally accepted situation for an aircraft

to carry different types of weapons to attack multiple targets since attacking

sequentially affects the surprise effect of the attack negatively because of the fact

that all targets cannot be attacked at the same time. Therefore, it is assumed

that strike packages attack single targets and carry only one type of weapon in

this research.

• There is only one type of aircraft at each base due to the structure of the

TUAF. However, different strike packages from different bases can be assigned

to a target group which contains several single targets. Although every aircraft

in a strike package carries the same type of weapon, the strike packages do not

have to carry the same types of weapons as the other strike packages. Every

strike package can attack a target group with different weapon types whereas

each aircraft must carry the same type of weapon in a strike package.
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• The model in this research addresses a single planning period. In other words,

this research deals with the Static Strike Planning Problem. Once a mission is

accomplished, the decision maker may execute this process repeatedly with the

updated number of aircraft and weapons for another mission planning cycle.

1.5 Summary

In this chapter, the problem statement, the research question, and the objectives

of the study are presented. Next, the scope, the limitations and the assumptions of

the study are stated. Chapter II discusses the definition and the general formulation

of the Weapon and Target Assignment (WTA) Problem, the Strike Planning Problem,

and the associated solution methodologies existing in the literature. Chapter III

presents the exact methodology to solve the static strike planning problem, which is

a variation of the WTA problem developed in this research. In Chapter IV, LINGO

interfaced with Excel spreadsheets model is introduced first, and then the analysis

related to the solution time and the cost efficiency is presented. Finally, conclusions

and future research recommendations are made in Chapter V.
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II. Literature Review

In this chapter, Section 2.1 presents the definition and the general formulation of

the WTA problem. Next, the static and the dynamic WTA problem are presented

to make a distinction between the static and the dynamic WTA problem. Then

different solution methodologies for the static WTA problem existing in the literature

are presented. In Section 2.2, the Air Tasking Order (ATO) Models to solve the

static strike planning problem, which is a variation of the static WTA problem, are

presented. Existing solution methodologies are discussed. Although this research

deals with the static strike planning problem, the solution methodologies for the

dynamic strike planning problem existing in the literature are also briefly presented

since the dynamic strike planning problem is an extension of the static strike planning

problem. Finally, Section 2.3 and Section 2.4 give brief descriptions of the Assignment

Problem and Goal Programming, respectively. The model in this research is basically

developed as an assignment problem. Goal programming is widely used in solving the

WTA problem considering target priority.

2.1 Weapon and Target Assignment (WTA) Models

2.1.1 The Definition of the WTA Problem.

A WTA problem solution provides an appropriate assignment of weapons to

targets to maximize the damage expectancy on each target based on target values

which are determined by the decision maker. The basic idea behind the WTA problem

is to maximize the overall effect on targets. [1]
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However, there are some other definitions in the literature. According to Ahuja

et al. [22], the WTA problem is to assign weapons to targets to minimize the total

survival values of all targets. The WTA problem takes place in battlefield situa-

tions where a decision maker wishes to maximize the total damage expectancy on

targets. The problem seeks solutions that have the minimum total survival values

from the minimization standpoint, and it tries to achieve the maximum total damage

expectancy from the maximization standpoint. [22]

Another perspective on defining the WTA problem is that of minimizing the

expected damage on friendly-force assets. On modern battlefields, targets may have

PODs on the attacking platforms that carry the weapons since targets may have

defensive systems. This depends both on the types of targets and the attacking

platforms. The POD for a target on an attacking platform affects the expected

damage value (EDV) on an attacking platform, and the problem minimizes the total

EDV on the attacking platforms considering different PODs for a target on different

attacking platforms. [31,32,34,35]

Another point of view is that the WTA problem is a resource allocation problem

that tries to allocate resources to activities such that the total cost is minimized. Ex-

amples of the resource allocation problem are loan distribution, computer scheduling,

production planning, and the WTA problem. In this problem type, the formulation

of the problem seeks an assignment of resources to the demand points. Similarly, the

WTA problem formulation tries to obtain an assignment of weapons to targets where

weapons are resources and the targets are demand points. [33]
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There are several different models in the literature to solve the WTA problem,

but each model has a different objective function and constraints. No model can

solve the WTA problem while considering all details. Varying assumptions are made

in modeling the WTA problem for particular purposes and the difference between the

models occurs because of these assumptions. [24]

Each model deals with the problem to a certain level of detail. However, there

are major aspects among the models that are common to all references in the liter-

ature. These aspects are: the weapon system, the target complex, the engagement,

the damage, and the assignment algorithm. In addition, each model has a different

level of complexity based on the assumptions that have been made. Also, several of

the references combine the engagement and the level of damage by defining a single

parameter, PODtw, the probability of damage for weapon w on target t. [24]

These aspects are explained below:

The Weapon System

The weapon system is divided into three categories: the scope of the weapon

system which considers different types of weapons and their quantities, the weapon

suitability which takes into account the usable types of weapons for each target, and

the weapon commitment policy which deals with weapon availability uncertainties.

The scope of the weapon system considers either one type of weapon or more than

one type of weapon. One type of weapon indicates that every weapon has the same
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POD on the targets and has the same technical properties. Different types of weapons

are distinguished by differing technical properties such as PODs and accuracies.

The weapon suitability explains whether a particular type of weapon could be

used for a target or not. Since all types of weapons are not appropriate for all types

of targets, inappropriate types of weapons may be eliminated to reduce the number

of decision variables in the model.

The weapon commitment policy has two different aspects: the deterministic

and stochastic approaches to the WTA problem. In the deterministic approach, all

weapons are available, released reliably, and the damage assessment is executed per-

fectly. On the other hand, the stochastic approach assumes all weapons are not

always available, the release of the weapons may be unreliable, and there may be an

unreliable damage assessment. [24]

The Target Complex

The target complex aspect is categorized by the types of targets, the values or

weights assigned to targets, and the defense capabilities associated with targets.

The types of targets include point and area targets. Point targets can be missile

launchers, radar installations, bridges and small cities. If a particular type of weapon

is capable of killing a target, it is considered a point target. If more than one type

of weapon is required to kill the target, it is considered to be an area target. The

key point is that the determination of whether a target is a point or an area target
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does not depend solely on the target. The lethal radius of the weapon must also be

considered.

The expected target value is the usual measure of effectiveness when different

types of weapons are compared. Although this is not the case in reality, the values of

the targets are assumed to be the same from both offensive and defensive points of

view in the literature.

The aspect of defense capabilities of a target may be categorized based on the

type of defense and the treatment of the defensive systems in the model. The types

of defenses may be none, terminal only, area with or without terminal defenses, either

preferential or not. The treatment of the defensive systems can also be categorized as

explicit or implicit cases. In the explicit case, the defensive parameters are explicitly

provided. The implicit case provides specified PODs for the targets only. The explicit

case is also divided into two categories depending on whether or not the assignment

of the defensive weapons in a defensive system of a target against the offensive forces

is known to the offense.

The Engagement

The engagement aspect can be categorized based on whether the offensive or

defensive system is deterministic or probabilistic. If the offensive system is deter-

ministic, the POD of a weapon can be obtained perfectly whereas the weapons have

probabilities of not impacting at their intended level in the probabilistic approach.

Likewise, the deterministic defensive systems have defense capabilities such as radars
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and interceptors which work perfectly. The probabilistic defensive systems similarly

have probabilistic defense capabilities which are capable of identifying the enemy

attack with a probability of less than 1.

The Damage

In the damage aspect, the damage may be either deterministic or probabilistic

and be either partial or total. If a target is killed with a probability of less than 1, the

damage becomes probabilistic and it is deterministic if there is a probability of kill

of 1. The difference between the partial and the total damage is whether the entire

target either is killed or not.

The Assignment Algorithm

The assignment algorithm aspect contains different solution methodologies which

are generally used to find the optimum assignment of weapons to targets in accordance

with the preferences of the decision maker. These solution methodologies are game

theory, graphical or manual techniques, graph theory, linear or non-linear program-

ming, dynamic programming, heuristic approaches, exhaustive searches, or Monte

Carlo techniques.

Lagrange-multiplier techniques are frequently incorporated with these meth-
ods since they allow constraints to be easily handled in the optimization,
thereby reducing the computational effort. Double Lagrange multipliers
are employed in two-sided allocations or games. [24]

The algorithms or solution methodologies essentially depend on the decision maker

and the nature of the problem. The possible alternatives are:
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• The solution is optimal as opposed to near optimal solutions. This may also

include a proof of optimality,

• The solution is either integer or continuous,

• The optimal defensive support such as SEAD and CAP can also be provided,

• The computational complexity of the algorithm.

The ideal algorithm should return an integer solution that can be proved to be

optimal. The algorithm should also provide an optimum defensive support, be capable

of dealing with large instances of the general WTA problem, run in an acceptably

short amount of time, be insensitive to small variations in the number of weapons

and targets and the parameters in the model, and yield a global optimum solution

rather than a local optimum. [24]

2.1.2 The General Formulation of the WTA Problem.

The general WTA problem can be formulated non-linearly as follows:

Minimize

|T |∑
t=1

µt ·
|Ww|∏
w=1

(1− PODtw)xtw (2.1)

Subject to

|T |∑
t=1

xtw ≤ |Ww|, for each w ε Ww (2.2)

xtw ≥ 0 and integer, for each t ε T and for each w ε Ww (2.3)

where
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T is the set of targets and t ε T ,

Ww is the set of weapon types and w ε Ww,

µt is the target priority for each target t ε T ,

PODtw is the probability of damage of a single weapon w ε Ww on target t ε T ,

xtw is the decision variable, which is the number of weapons by type w ε Ww

assigned to target t ε T .

The Objective Function (2.1) tries to minimize the total expected survival value

of all targets, where (1−PODtw) is the survival probability of target t ε T if a weapon

w ε Ww is assigned to it, taking into account that the total number of weapons assigned

for a particular type should not be more than the number of weapons available of that

type using Constraint (2.2).

In real world applications, there may be some additional constraints such as:

• minimum or maximum number of weapons for a particular type assigned to a

target,

• minimum or maximum total number of weapons assigned to a target,

• minimum requirement on the survival value of a target. [22]

2.1.3 The Static WTA Problem.

In the static WTA problem, all weapon and target assignments should be done

for a single stage in time. Additionally, all weapons and all targets to be assigned are
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known in advance, all weapons are assigned simultaneously, and an assignment of a

weapon to a target is independent of all other assignments. [9, 22]

Some important properties of the static WTA problem are:

• It is NP-hard since the computation time will increase exponentially based upon

the problem size. The most difficult aspects in solving the static WTA problem

are its nonlinear nature and the several types of weapons that are available to

be assigned to targets.

• The static WTA problem is discrete because fractional weapon and target as-

signments are not allowed.

• The static WTA problem is stochastic in nature but this should not be confused

with a stochastic or non-deterministic solution technique for the WTA problem.

It is stochastic because the weapon and target assignments are modeled as events

with non-deterministic outcomes. [9, 23]

The static WTA problem is used to find solutions for a single period of time.

However, this does not mean that the static WTA problem is solved only once and

then the final weapon and target assignment is implemented. The threat evaluation

and the weapon and target assignment process are executed repeatedly in the battle-

field. Therefore, the real time necessities are directly related to how frequently the

threat evaluation and the weapon and target assignment process are executed. [9]
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2.1.4 The Dynamic WTA Problem.

The dynamic WTA problem is complicated compared to the static WTA prob-

lem because it deals with the WTA problem by considering multiple stages in time. In

the dynamic WTA problem, some weapons are assigned at a single stage and the re-

sult of the assignment is evaluated. Then, the course of action for the next assignment

is determined. [22]

Some important properties of the dynamic WTA problem are:

• It is NP-hard since the computation time will increase exponentially based upon

the problem size. The most difficult aspects in solving the static WTA problem

are its nonlinear nature, several time stages, and the several types of weapons

that are available to be assigned to targets,

• The dynamic WTA problem is discrete because fractional weapon and target

assignments are not allowed,

• The dynamic WTA problem is stochastic in nature because the weapon and

target assignments are modeled as events with non-deterministic outcomes,

The benefit of considering the dynamic WTA problem is that it involves several

time stages and the outcome of an assignment at a single stage is assessed each time

and targets which have already been attacked and destroyed will not be attacked

in the next time stage due to the useful information which was obtained from pre-

vious assignments and their outcomes. This is called shoot-and-look strategy in the

literature. [16,18,22]

18



The steps in solving the dynamic WTA problem are as follows:

• Determine the targets that have not been attacked in the last stage,

• Assign the remaining weapons to the surviving targets so as to minimize the

total surviving value of the targets at the end of the final stage. [17]

2.1.5 Solution Methodologies for the Static WTA Problem.

This research deals with the static strike planning problem which is a variation

of the static WTA problem. Therefore, the solution methodologies reviewed in this

subsection contain the solution methodologies for solving the static WTA problem.

However, reviewing the solution methods both for the static and the dynamic

strike planning problem in Subsection 2.2.2 is considered useful because the strike

planning problem, which is directly addressed in this research, is static and the dy-

namic strike planning problem is an extension of the static strike planning problem.

The methodologies to solve the WTA problem depend on the modeling as-

sumptions and the resulting instances of the WTA problem. This is because of the

NP-complete nature of the problem. [23] The multiple types of weapons available to

assign and the non-linearity of the objective function make the WTA problem diffi-

cult to solve. The NP-completeness of the problem causes the computation time of

any optimal algorithm to grow exponentially as the size of the problem increases. [9]

Hence, the decision maker has to make some assumptions to fit the general WTA

problem into his or her preferences based on battlefield requirements.
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F. Johansson and G. Falkman [9] propose an exhaustive search algorithm to

find optimal solutions for the small-sized static WTA problem. Even the static WTA

problem is not an easy problem to solve even though several simplifying assumptions

are made. Due to its computational complexity, the static WTA problem requires

approximation algorithms to find good solutions in real time. However, it is pos-

sible to find an optimal solution to the small-sized static WTA problem since the

problems have been solved optimally for problems with 8 targets and 6 weapons in

approximately one second. Static WTA problems larger than this size require heuris-

tic algorithms because the problems that contain 9 targets and 9 weapons require

approximately 43.7 minutes to be solved optimally. [9]

Ahuja et al. [22] propose exact algorithms for the static WTA problem using

branch-and-bound techniques and different lower bounding schemes. These branch-

and-bound algorithms are the first implicit enumeration algorithms that can solve

moderately sized instances (40 targets and 40 weapons) of the static WTA problem

optimally in approximately 50 seconds. The lower bounding schemes that Ahuja et

al. [22] propose are the lower bounding scheme using an integer generalized network

flow formulation, the minimum cost flow-based lower bounding scheme, and the max-

imum marginal return-based lower bounding scheme.
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The Lower Bounding Scheme Using an Integer Generalized Network Flow For-

mulation

Ahuja et al. [22] formulate the static WTA problem as a generalized integer

network flow model on an appropriately defined network using integer linear pro-

gramming (IP) methods.

The piecewise-linear approximation of the convex objective function of
this formulation gives a lower bound on the optimal solution. This integer
linear program can also be viewed as an integer generalized network flow
problem with convex flow costs. The generalized network flow formulation
is substantially more difficult than the standard generalized network flow
problem because the flow values are required to be integer numbers and
the costs of flows on some arcs are convex functions. [22]

In this method, each convex function is approximated by a piecewise-linear

convex function. Therefore, the optimal solution of the modified version of the for-

mulation provides a lower bound on the optimal solution of the generalized formula-

tion. [22]

The Minimum Cost Flow-Based Lower Bounding Scheme

This lower bound is not as effective as the bound given by the generalized

integer network flow formulation. However, it requires less computational time. In

this formulation, the objective function of the static WTA problem can be taken into

account as maximizing the expected damage to the targets. Ahuja et al. [22] develop

an upper bound on the expected damage to the targets. Subtracting this upper bound

on the expected damage from the total value of the targets provides a lower bound

on the optimal solution to the static WTA problem. [22]
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The formulation of the static WTA problem using the minimum cost flow-based

lower bounding scheme is essentially based upon maximizing the damage to targets

as a maximum cost flow problem. Since this is a maximization problem, all arc costs

in this formulation must be multiplied by -1 to obtain the minimum cost. Finally,

subtracting the upper bound from the total value of the targets provides a lower

bound for the static WTA problem. [22]

The Maximum Marginal Return-Based Lower Bounding Scheme

“This formulation is based on the underestimation of the survival of a target

when hit by a weapon because it is assumed that every target is hit by the best

weapons”. [22]

This algorithm is a variation of the knapsack problem and uses a greedy ap-

proach to obtain a lower bound. This lower bounding scheme is a modified maximum

marginal return algorithm in the literature. In this algorithm, a weapon is assigned

so as to maximize the improvement in the objective function value. This algorithm

is a heuristic algorithm, but it provides an optimal solution if all weapons are identi-

cal. [22]

Ahuja et al. [22] develop a branch-and-bound algorithm using the three lower

bounding schemes above. This algorithm is the first exact algorithm that can solve

moderately sized instances (40 targets and 40 weapons) of the WTA problem in

reasonable time (for comparisons of the solution times of several instances, refer to
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the article [22]). A branch-and-bound algorithm basically depends on the branch

strategy, the lower bounding schemes and the search strategy.

The branch strategy determines which weapon and target combination gives the

best improvement in the objective function.

The lower bounding strategy includes three types of lower bounding schemes

which are generalized network flow, minimum cost flow, and maximum marginal re-

turn.

The search strategy is an important factor depending on the number of weapons

and the targets. It is better to use breadth-first search strategy for small instances

(i.e. 10 weapons and 10 targets) whereas the depth-first strategy gives better results

for large instances. [22]

Exact algorithms to solve the WTA problem can handle only moderately sized

instances of the WTA problem. For instance, the exhaustive search algorithm which

F. Johansson and G. Falkman propose [9] solves the small sized (9 targets and 9

weapons) static WTA problem, in which all weapons available should be assigned, in

approximately 43.7 minutes. [9] Similarly, although the branch-and-bound algorithm

can solve moderately sized instance (40 weapons and 40 targets) of the static WTA

problem in approximately 50 seconds, the largest size static WTA problem for which

the branch-and-bound algorithm can find an optimal solution consistently contains 80

targets and 80 weapons and it requires approximately 16.2 hours. [22]
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In the battlefield, it is crucial to make a decision in a reasonable amount of time.

However, the decision maker cannot determine the size of the weapon and the target

assignment in advance. The decision maker has to be prepared to find an acceptable

assignment for all possible instances of the WTA problem. Therefore, there is a

demand to solve large instances of the WTA problem in a reasonable amount of time.

The solution time for the WTA problem plays an important role in the real world.

Heuristic algorithms can provide near optimal solutions for the WTA problem in a

reasonable amount of time. However, the trade-off between the solution quality and

the solution time essentially depends on the preferences of the decision maker and the

necessities of the battlefield.

A very large scale neighborhood search algorithm (VLSN) proposed by Ahuja et

al. [22] is a neighborhood search algorithm where the size of the neighborhood is very

large.

The VLSN algorithm starts with a feasible solution of the optimization problem

using the minimum cost flow formulation based construction heuristic and successively

improves it by replacing the solution with an improved neighbor using the VLSN

neighborhood structure until it converges to a locally optimal solution. [22]

The minimum cost flow formulation based construction heuristic solves a se-

quence of minimum cost flow problems to find good solutions for the static WTA

problem and this solution constitutes an excellent starting feasible solution for the
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static WTA problem. The quality of the locally optimal solution depends on both the

quality of the starting feasible solution and the structure of the neighborhood. [22]

The VLSN neighborhood structure is essentially based on the multiexchange

neighborhood structure developed by Thompson and Psaraftis [20] and Thompson

and Orlin [21]. The structure searches the neighborhood iteratively and the algorithm

either finds a better multiexchange solution and improves the current solution or stops

and declares that the current solution is locally optimal in each iteration. [22]

The VLSN search algorithm is very efficient in solving the WTA problem, since

the construction heuristic gives the optimal solutions for over half of the instances

up to 200 weapons and 400 targets, and the VLSN search algorithm’s solutions of

the remaining instances are near optimal. Moreover, the solution time even for the

instance containing 200 weapons and 400 targets is approximately 2 seconds and it is

less than a second for the rest of the instances. [22]

The success of the VLSN approach can be attributed to the dimension of the

solution space and the starting feasible solution. For instance, the VLSN approach

searches the neighborhood of size 3 billion for the instance containing 80 weapons using

five-exchanges and the construction heuristic provides an excellent starting feasible

solution which is very important for the quality of the final solution. [22]

Another heuristic algorithm, an immunity-based ant colony optimization (ACO),

is proposed by Lee et al. [32] to improve the performance in terms of the solution

quality and the computational time for the static WTA problem.
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The ACO algorithm imitates the behavior of real ants using artificial ants and

is a constructive population-based search technique to solve optimization problems by

using the principle of pheromone information. In this approach, several generations of

artificial agents which are actually artificial ants executed in an evolutionary manner

to search for good solutions. The artificial ants are initially randomly generated on

nodes, and stochastically move from a start node to feasible neighbor nodes in the

local search phase. The artificial ants collect and store information in pheromone

trails during the local search phase. The pheromone can only be released when the

artificial ants build solutions and is evaporated in the search process to avoid local

convergence and to explore more search areas. Thus, additional pheromone is stored

to update the pheromone trail so the search process can be executed in a different

pheromone trail to avoid being trapped into the local optima. [33]

Ants are capable of exploring and exploiting pheromone information, which
have been left on the traversed ground. Ants then can choose paths based
on the amount of pheromone. With such a concept, a multi-agent al-
gorithm called ACO has been widely employed as a cooperative search
algorithm for solving optimization problems. [32]

The success of the ACO algorithm in solving optimization problems can be

attributed to the search parallelism which is based on the components of the solution.

Moreover, the local search efficiency of ACO can be improved by implementing an

immune system. The immune system eliminates the decrepit and degenerative parts

but not the normal parts in the human body. [32]

The immune system in the optimization world mimics the behavior of the im-

mune system in the human body. The approach includes two main points. The first
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step is to improve the current solution and the second step is to avoid making the

current solution worse. At each step, the immune system approach tries not to dete-

riorate the current solution. The only modification in the solution that the immune

system approach can make is an improvement in the current solution. [32]

Therefore, the immunity-based ACO algorithm increases the search performance

of solving the static WTA problem. In this algorithm, ACO tries to find better

solutions and avoid being stuck in local optima and seeks the global optima. Then,

the immune system utilizes problem-specific heuristics to conduct local search and

does fine-tuning in the solution space. [32]

Simulated annealing (SA) and genetic algorithms (GA) are also among the

heuristic algorithms which are widely used to solve optimization problems in the

literature and these methods yield good results in reasonable time. [32]

The SA is a representation of the annealing process of solids which heats the

solid to a high temperature and then cools it down gradually. SA enables asymptotic

convergence to the optimal solution escaping from local optima by using a probability

function in accepting or rejecting new solutions. [35]

GA is an algorithm which handles either linear or non-linear constraints without

any additional mathematical operations as matrix inverses for the objective function.

The GA is an evolutionary algorithm which adopts the mechanism of natural selection

to search for the best solution from candidates in the local search process. [34]
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The GA starts with randomly selected chromosomes representing the initial so-

lution. The variables are represented as genes in the chromosomes. The chromosomes

are evaluated according to their fitness values which are evaluated using two genetic

operators: the crossover and the mutation. The chromosomes with better fitness

values are more likely to be selected in the next generation. After several generations,

the GA converges to the global optimum. [35]

SA has been shown to have the ability of finding the global optimum. How-
ever, due to its sequential characteristics, SA cannot be used in a parallel
architecture to improve its search efficiency. GAs can be viewed as parallel
search techniques that stimulate the evolution of individual structures for
optimization inspired by natural evolution. However, the parallelism of
search is based on the solution level, Thus, the search efficiency may not
be very nice. [32]

Lee et al. [35] introduces a new gene reformation in the GA which is called eu-

genic process for offspring. The concept of eugenic is to find better solutions around

the current solution before moving to the next stage of the search. These are called lo-

cal search mechanisms. The proposed algorithm greedily reforms the current solution

instead of using a random trial process, and it is called greedy eugenics.

The concept of eugenics is simply stated as a process which starts from an

obtained feasible solution and tries to improve the current solution by local changes.

If a better solution is found, then it replaces the current solution. The steps are

repeated until a criterion is satisfied.

According to Lee et al. [35], the search can easily escape from local optima due

to crossover and mutation operations and the parallel search methods used in the GA

even though the greedy algorithms may have a high probability of being trapped in
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a local optima. Therefore, the greedy eugenics finds the locally best solutions and is

not trapped in the local optima.

As a comparison between the GA and the GA with greedy eugenics, the 100%

convergence to the optimal solution in 20.28 seconds with a standard deviation of

7.15 seconds for 10 trials is obtained using the GA with greedy eugenics as opposed

to the GA, which is able to converge to the optimal solution with 40 % for 10 trials

and is not able find the optimal solution within a maximum generation in any trials.

Lee et al. [35] also compare the GA in which SA is used for local search with the

GA with greedy eugenics. The SA is treated as an alternative to simple eugenics in the

GA with the SA as local search and is incorporated as the eugenic mechanism to take

advantage of search strategies in which relatively worse solutions may be accepted in

order to reach the global optimum rather than being trapped into local optima.

Lee, Z. J. and Lee, C. Y. [33] combine the GA and the ACO and present a hybrid

algorithm to solve the WTA problem. This approach starts with a feasible solution

using the GA to avoid having premature convergence and conducts fine-tuning in the

search space using the ACO to find better solutions. In this research, the hybrid

algorithm is compared with the SA, the GA, and the ACO algorithms and the hybrid

algorithm converges to the global optima better among these algorithms.

Zeng et al. [31] present another heuristic algorithm which is called discrete par-

ticle swarm optimization (DPSO) model to solve the static WTA problem. The

standard particle swarm optimization (PSO) is an adaptation of a simplified social
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behaviour. The PSO uses the personal thinking of each particle and the collaborative

effect of the particles in finding the global optimal solution. Because of the contin-

uous search of the PSO, Zeng et al. [31] develop a DPSO model for the static WTA

problem.

In the DPSO model, the greedy search strategy is introduced to control the local

search and converge to the global optimum. Due to the fact that the greedy search

strategy has a high probability to be trapped into a local optimum, two probabilities

such as fixed probability and unfixed probability are employed to the update strategy

which is called permutation in this research.

The DPSO model converges to the global optimum quicker than the GA and the

GA with greedy eugenics. For instance, the DPSO converges to a global optimum in

100 % of the tests in 0.0058 minutes whereas the GA with greedy eugenics converges

to a global optimum in 100 % of the tests in 0.0087 minutes and the GA converges

to a global optimum in 60 % of the tests in 0.0099 minutes.

Yücel, A. [1] proposes a sequential method to solve the static WTA problem.

This is a heuristic approach. In this approach, the primary assignments are identified

first, and the secondary assignments are executed next. The process is repeated

building up a bipartite graph until no feasible assignment is left. This greedy approach

is faster than the branch and bound algorithm that Yücel, A. [1] used in this paper and

it allows multi-target assignments. In other words, the multiple weapons can be used

against a single target. Despite the fact that the branch and bound algorithm finds
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the optimal solution, the sequential method consistently finds multiple assignments

that are close to the optimal, with differences that may be considered operationally

insignificant.

2.2 Air Tasking Order (ATO) Optimization Models

2.2.1 The Definition of the Strike Planning Problem.

The strike planning problem is a substantial problem in which there is a set of

targets and a set of combat resources that may be assigned to targets. There may

also be some target defenders. The objective of solving the strike planning problem is

to maximize the strike planning efficiency in terms of the levels of damage to targets

and the total cost of the strike plan while limiting the damage to strike forces caused

by the defenders. [13]

The strike planning problem used for preparing an ATO that is a result of a

complex process of target selection and weapons allocation covering several types of

missions is a variation of the WTA problem. Strike planning has five phases: tar-

get selection, weapon allocation, mission formation and assignment, mission routing

and scheduling process, and contingency plans. This research deals with the weapon

allocation and the mission formation phases of the strike planning. The weapon al-

location phase assigns weapons to targets to achieve the desired levels of damages on

the targets. On the other hand, the mission formation phase constructs the actual

strike packages to carry weapons to targets. [7]
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A strike package can be defined as a group of attack aircraft carrying weapons

to achieve the goal of destroying a set of targets. Strike packages are constructed

in several steps. First, the mission planner should go through a weapon allocation

process to determine the type and number of aircraft and weapons to achieve the

desired levels of damages on the targets. Next, all aircraft attacking the targets

in the same vicinity are grouped together considering aircraft speed restrictions and

tactics. Finally, the mission planner should add SEAD or CAP aircraft into the group

if necessary. [7, 8, 11]

As a result, the weapon allocation and mission formation phases of the strike

planning turn out to be a variation of the WTA problem where the objective function

is to maximize the number of targets destroyed based on target priority subject to the

constraints such as aircraft and weapon availabilities, weapon effects, weapon suit-

ability, distance to target, and speed depending on whether the problem is formulated

as dynamic or static. [7]

This research directly addresses the static strike planning problem. Therefore,

the solution methodologies reviewed in this chapter are the ones to solve the static

strike planning problem. There are many solution methods proposed by different

authors to solve the static strike planning problem. These solution methods are pre-

sented in the next subsection. However, the solution methodologies for the dynamic

strike planning problem existing in the literature are also briefly presented in Sub-

section 2.2.3 since the dynamic strike planning problem is an extension of the static

strike planning problem.
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2.2.2 Solution Methodologies for the Static Strike Planning Problem.

Da Silva Castro, D. R. [7] proposes a mixed integer linear program (MILP) to

assign heterogeneous strike packages to targets considering target priority and aircraft

availability.

In this model, the strike packages are not necessarily homogeneous. The strike

packages are allowed to contain different types of aircraft and weapons. However,

the POD for each different strike package on the targets should be obtained prior to

solving the model using the Equation (3.1) which is presented in Chapter 3.

There are three model objectives: minimizing the value of the targets which

are not assigned, minimizing the effects of imperfect matching (incomplete damage,

long-distance flight etc.) of targets to strike packages and maximizing the value of

unused aircraft. These components of the multi-objective function can be combined

into a weighted sum or the model can be solved using goal programming which is

discussed in Section 2.4.

The optimal solution time for a strike planning problem with 100 targets, 3

types of aircraft, 2 possible aircraft configurations, 3 types of weapons, 20 different

strike packages, 7 bases and 156 available aircraft is less than 2 seconds using GAMS

with CPLEX and less than 3 seconds using GAMS with XA.

Da Silva Castro, D. R. [7] also develops an MILP for the static strike planning

problem by using penalties which are sensitive to changes in the input data such as

the number of targets, aircraft availabilities for the strike packages and the PODs of
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the strike packages on the targets due to adverse weather conditions. These penalty

values force the model to produce a new ATO which is similar to the the previous

ATO. The new ATO should be similar to the previous ATO to avoid having the same

computational effort and saving time in assigning the strike packages to the targets.

Weaver, P. R. [29] presents a fast and accurate automated decision aid for

the decision maker in the battlefield to change the current strike plan according to

the emergence of time sensitive targets in accordance with the adaptation of the

methodology that Da Silva Castro, D. R. [7] developed.

A time sensitive target has a high priority and requires immediate response

because it poses a danger to friendly forces. [36]

Similar to Da Silva Castro’s research [7], Weaver’s research also considers max-

imizing the achievement of target destruction goals based on the target priority, min-

imizing the attrition risk, disrupting the current ATO as little as possible, and min-

imizing the distance flown on the newly assigned missions. However, this research

deals with SEAD support as well to increase the number of strike options which is a

future research recommendation of Da Silva Castro, D. R. [7].

Zacherl, B. [36] improves the automated decision aid that Weaver, P. R. [29]

developed to revise the current ATO adding a prevention capability for overkilling

of high-value targets at the risk of leaving lower priority targets unstruck. In this

new IP model, the size of the problem is greatly reduced because the strike packages

34



are limited to a reasonable number of missions. A greedy heuristic algorithm is also

developed to find fast solutions compared to the IP model.

This greedy heuristic can solve a problem instance containing 20 targets and

11 missions in less than 2 seconds whereas the model that Weaver, P. R. [29] devel-

oped solves in 205 seconds. The greedy heuristic also yields near optimal solutions

compared to the IP model in Zacherl’s [36] research.

Dolan, M. H. [8] presents an IP model to solve the strike planning problem.

In this model, the objective function maximizes the weighted sum of the destroyed

targets based on target priority, less penalty values for the targets not destroyed and

the distance penalty values. This model assigns the strike packages to targets based

on the strike package preferences of the decision maker and on the aircraft capabilities.

This model also takes into account that all aircraft of the same type that are

assigned to the same target should come from the same base to prevent violating flight

leadership and common site briefing considerations. However, the aircraft may come

from different bases if different types of aircraft are required for a strike package. The

model considers the aircraft availabilities as well.

Dolan, M. H. [8] reduces the number of decision variables using a special feature

of the modeling language (GAMS) which ensures that the decision variables and

the constraints are considered only for valid base, aircraft and target combinations.

In addition, targets which have similar characteristics in terms of the resistance to
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weapons can be grouped into a single one to reduce the number of decision variables

in the model.

The solution time differs depending on the different solvers (XA and ZOOM)

compatible with GAMS and XA finds solutions quicker than ZOOM. In addition, the

optimality tolerance affects the solution time significantly. For instance, the solution

time for a strike planning problem with 50 targets and zero optimality tolerance is

more than one hour as opposed to the solution time of a strike planning problem

with 50 targets and 0.25 optimality tolerance which is 3 minutes. Also, XA finds a

solution for a strike planning problem with 100 targets and 0.25 optimality tolerance

in 2 minutes and 42 seconds whereas ZOOM does not find a solution.

B. J. Griggs [11] proposes an MILP model to find an optimal allocation of

strike packages to targets considering SEAD and CAP aircraft based on the fact that

the targets are prioritized depending on the target values. The number of decision

variables in this model is very high. For instance, a strike planning problem with less

than 10 types of aircraft, 20 types of weapons, 2 different PODs, 40 types of targets,

and 30 sectors has 1,920,000 decision variables and only 60 of these decision variables

are binary. A sector is basically defined as the location of a target in the enemy’s

territory. Solving a strike planning problem with 1,920,000 decision variables using

MILP takes more time compared to a linear programming (LP). The binary variables

are first converted to continuous decision variables to solve the problem using LP.

However, the solution may contain fractional assignments in this case. To overcome

the problem, the fractional values of the decision variables are fixed and the strike
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planning problem is solved again using LP. This yields a near optimal solution in less

time compared to MILP. The model also takes into account uncertainties of weather

conditions using a decision tree after having a solution using the MILP.

Li et al. [13] proposes a MILP approach for a strike planning problem with SEAD

and without SEAD taking into account combat resource availabilities and distance

between the targets and the location of the strike forces. The computational results

show that the LP relaxation of the strike planning problem without SEAD is a very

good approximation of the optimal solution unless the asset availability constraint is

not so restrictive. In these instances, the near optimal solutions are obtained in a

short period of time. The solution time for a strike planning problem with SEAD is

greater than the solution time for a strike problem without SEAD and the solution

time depends heavily on the asset availability constraints.

Bardak, F. S. [3] presents an IP model to assign SEAD assets to targets. In

this model, the objective function minimizes the total aircraft attrition in the strike

packages. The aircraft sortie costs, the weapon costs, target priority, and weapon and

aircraft availabilities for a particular base are also considered in this research.

Tikves., S. . [25] compares different solution methodologies such as exhaustive

search using branch and bound, a greedy algorithm, a genetic algorithm, and network

flow based solution techniques for the static strike planning problem. The preference

of choosing a particular methodology mainly depends on the size and complexity of

the problem. The results in Tikves.’s research show that strike planning problems in an
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ascending order in terms of the problem size and complexity can be solved efficiently

using a greedy algorithm, an exhaustive search using branch and bound, or a genetic

algorithm.

2.2.3 Solution Methodologies for the Dynamic Strike Planning Problem.

As mentioned in Subsection 2.2.2, presenting the solution methodologies for the

dynamic strike planning problem briefly is considered useful since the dynamic strike

planning problem is an extension of the static strike planning problem. Therefore, the

solution methodologies for the dynamic strike planning problem are briefly presented

in this subsection.

Crawford, K. R. [6] improves the model which Dolan, M. H. [8] has developed

to solve the dynamic strike planning problem. This model incorporates the time

dimension into the strike planning problem, so it allows multiple assignments for an

aircraft to attack targets in a single optimization model.

Da Silva Castro, D. R. [7] presents a MILP to solve the dynamic strike planning

problem as well as the static strike planning problem. However, the strike packages

should contain single types of aircraft and weapons. In other words, the addition of

the time dimension into the model restricts the model to use only homogeneous strike

packages over a multi-period time horizon.

Da Silva Castro, D. R. [7] improves this dynamic model which is sensitive to

the changes in strike planning using penalties in order for the model to be persistent

with the changes.
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Barth, C. D. [4] develops a comprehensive composite mission variable decompo-

sition (CMVD) for the dynamic strike planning problem. Barth’s research deals with

target selection as well as weapon allocation.

There are also some scheduling algorithms in the literature to solve the dynamic

strike planning problem. These are also briefly presented below.

Van Hove, J. C. [26] presents a decomposition approach to increase the upper

bound on the problem size for which it is reasonable to obtain optimal solutions.

Koewler, D. A. [12] proposes a scheduling algorithm to assign combat resources

to targets in a dynamic environment. In this approach, the problem is divided into

two parts such as combat planning data structure and combat planning scheduling data

structure.

The combat planning data structure allows the decision maker to input planning

information, and the combat planning scheduling data structure builds a schedule

developing objects instead of using decision variables and equations.

Finally, Calhoun, K. M. [5] develops a tabu search (TS) algorithm to schedule

air combat resources to targets.

The next two sections present the Assignment Problem and Goal Programming,

respectively, since the solution methodology is developed in this research as an as-

signment problem and goal programming is widely used in solving the WTA problem

considering target priority.
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2.3 Assignment Problem

The assignment problem is a transportation problem where each supply node

and demand node has a supply or demand equal to 1. [27] The supply nodes become

weapons and the demand nodes become targets in the WTA problem. If the supply

nodes can be assigned to more than one demand node but a demand node must

be assigned to exactly one supply node, then the assignment problem is called the

generalized assignment problem. [10]

The generalized assignment problem regarding the WTA problem can be for-

mulated as follows:

Minimize

|T |∑
t=1

|W |∑
w=1

ctw · xtw (2.4)

Subject to

|T |∑
t=1

xtw ≤ bw, for each w ε W (2.5)

|W |∑
w=1

xtw = 1, for each t ε T (2.6)

where

T is the set of targets and t ε T

W is the set of weapons and w ε W

xtw is 1 if the weapon w ε W is assigned to target t ε T , 0 otherwise

ctw is the cost of assigning weapon w ε W to target t ε T
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bw is the weapon capacity for weapon w ε W

In this formulation, the Objective Function (2.4) minimizes the total cost of the

weapon and target assignment. Constraint (2.5) ensures the capacity of each type of

weapon is not exceeded and Constraint (2.6) ensures each target is attacked by only

one weapon.

2.4 Goal Programming

In some situations, the decision maker may encounter multiple objectives or

goals. Goal programming is a method which allows the decision maker to formulate

the problem with multiple goals as an LP. The key point in goal programming is that

the deviation variables which represent how well the goals are satisfied are used to

convert each goal into a constraint for the LP. [27,30]

The general goal programming model can be formulated as follows:

Minimize

|I|∑
i=1

w+
i · d+i + w−i · d−i (2.7)

Subject to

|J |∑
j=1

aij · xj + d−i − d+i = bi, for each i ε I (2.8)

xj, d
−
i , d

+
i >= 0, for each i ε I and for each j ε J (2.9)

where

I is the set of goals and i ε I
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J is the set of decision variables and j ε J

xj is the jth decision variable where j ε J

d−i is the deviation below goal i ε I

d+i is the deviation above goal i ε I

w−i is the weight for deviation below goal i ε I

w+
i is the weight for deviation above goal i ε I

aij is the coefficient associated the jth decision variable in goal i ε I

bi is the right hand side of goal i ε I

In this formulation of the Objective Function (2.7), the analyst tries to achieve

each goal as close as possible by assigning weights w−i and w+
i to deviations d−i and

d+i , respectively, for goal i ε I to minimize the weighted sum of the deviations. [10]

However, it is difficult to determine the weights of the deviations from the goals

in most situations. In such a case, preemptive goal programming in which the goals

are ranked from most important to least important is used. The objective function

for preemptive goal programming follows:

Minimize

|I|∑
i=1

Pi · (d−i + d+i ) (2.10)

where

Pi >> Pi+1 >> ... >> P|I|
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In this formulation, Pi for each goal i ε I, represents the goal priority. From

the perspective of this research, the decision maker does not have to determine each

weight for each deviation from destroying the targets in solving the WTA problem.

Instead, the targets are ranked with respect to associated priorities and the weapons

are assigned to targets based upon these target priorities.

2.5 Summary

This chapter reviewed the WTA problem, and the strike planning problem

with the associated ATO models in terms of the problem definition and the solu-

tion methodologies existing in the literature. The Assignment Problem and Goal

Programming were also discussed in this chapter because the model in this research

is developed as an assignment model and goal programming is widely used in the

literature to solve the WTA problem considering target priority. The next chapter

presents the exact solution methodology developed in this research to solve the static

strike planning problem which is a variation of the WTA problem.
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III. Methodology

In this chapter, Section 3.1 introduces the problem and the objectives of the math-

ematical model developed in this research. The definitions, the sets and indices, the

parameters and the decision variables used in the methodology are defined and the

solution steps in the methodology such as Preprocessing, Phase I, and Phase II are

explained in detail in Section 3.2.

3.1 Introduction

The Turkish Air Force (TUAF) has to defend Turkish airspace and territory.

The TUAF has two types of primary missions: an immediate responding to airspace

intrusions and attacking ground targets which are determined based on the intelligence

reports. In this research, attacking ground targets is only considered and it is called

the Static Strike Planning Problem.

The problem considered in this research is static because it is assumed that it

is possible to assign weapons to targets in a single stage in time (see Section 1.4).

The decision maker may implement the strike package and target assignment process

repeatedly and take into account that some of the targets may have been destroyed

in previous attacks. This differs from the Dynamic Strike Planning Problem. In the

dynamic strike planning problem, the mathematical model sequentially seeks solu-

tions for multiple time periods whereas the mathematical model for the static strike

planning problem seeks solutions for a single time period.
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The research question is:

What type of weapons and how many weapons by type should be assigned to

specified targets in order to achieve a desired level of damage on each target while

minimizing the total cost of the assignment with respect to the type and number of

aircraft and weapons used, and the distance flown?

The objectives of this research based on the research question above are:

• to achieve a desired level of damage on each target,

• to avoid assigning weapons to targets using the strike packages if the desired

level of damage is not achievable,

• to avoid having a higher level of damage on each target than the desired level

of damage,

• to minimize the total cost of the weapon and target assignment.

In the battlefield, it may not be beneficial to assign a strike package to a target

if the assignment does not achieve the desired level of damage on the target. The

desired level of damage is determined by the decision maker, and it is based on the

fact that a target will be out of order only if a certain level of damage is achieved.

Therefore, there may be limited military value to assign a strike package to a target if

the desired level of damage on the target cannot be achieved. If such an assignment is

made, it leads to a waste of resources in terms of aircraft, weapons, and the personnel

who are responsible for carrying out the mission.
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This research allows the achieved level of damage for each attacked target to

exceed the desired level of damage. Therefore, the desired levels of damages on the

targets are lower bounds. However, it is assumed there is no need to exceed the desired

level of damage for a target. The difference between the desired level of damage and

the achieved level of damage on a target should be as small as possible to conserve

resources.

In addition, some targets have higher priority compared to the other targets.

The decision maker may wish to have the desired levels of damages on the targets

in such a way that the desired level of damage for a target that has the highest

priority is achieved first, and the rest of the levels of damages on the remaining

targets are achieved sequentially from the highest to the lowest in terms of the target

priority. This research carries out this objective, as well. If there is insufficient

resource available in terms of aircraft and weapons, the model finds a solution in such

a way that as many targets as possible are destroyed to a desired level of damage

based on the target priority. In other words, if it is not possible to achieve the

desired level of damage for each target due to resource constraints, the targets which

are not destroyed to their desired levels of damages should be the ones which have

low priority. Furthermore, the model developed in this research does not allow an

assignment when the achievable level of damage is below the desired level of damage

for a target even when this target has a higher priority than another target whose

desired level of damage can be achieved.
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The other objective of this research is to minimize the total cost of the final

assignment which achieves the desired levels of damages on the targets. There may

be several ways to assign strike packages to targets considering the bases in a country

because the locations and the types and numbers of aircraft and weapons at the bases

vary. The total cost of the mission basically depends on the types of aircraft and

weapons and the distance flown. This research deals with minimizing the total cost

of the strike package and target assignment as well. The model finds a solution that

achieves the best assignment in terms of the desired level of damage on each target

without considering the total cost in Phase I. It finds a new solution in Phase II that

minimizes the total cost while achieving the same levels of damages on the targets

determined in Phase I.

3.2 Mathematical Formulation

3.2.1 Definitions.

aircraft configuration: formation of aircraft based on the type of aircraft and

the number of aircraft (e.g., 2 x F-16, 4 x F-4)

weapon configuration: formation of weapon based on the type of weapon and

the number of weapons (e.g., 2 x MK-84, 4 x GBU-10)

strike package: particular type of aircraft configuration carrying a particular

type of weapon configuration
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3.2.2 Sets and Indices.

T ={1, 2, ..., τ} is the set of targets and t ε T

B={1, 2, ..., β} is the set of bases and b ε B

AB={1, 2, ..., αβ} is the set of aircraft configurations at base b ε B and ab ε AB

WB={1, 2, ..., ωβ} is the set of weapon configurations at base b ε B and wb ε WB

3.2.3 Parameters.

acapb : available aircraft capacity at base b ε B

wcapwb
: available weapon capacity that is needed to constitute wb ε WB con-

figuration at base b ε B

costab : cost of a single aircraft per Nautical Mile (NM) in the aircraft configu-

ration ab ε AB at base b ε B

costwb
: cost of a single weapon in the weapon configuration wb ε WB at base

b ε B

disttb : distance from base b ε B to target t ε T in Nautical Mile (NM) units

obtst : the slack value that is obtained in Phase I

reqpodt : desired level of damage for target t ε T

podtbabwb
: POD of the strike package at base b ε B containing aircraft configu-

ration ab ε AB and weapon configuration wb ε WB on target t ε T

µt : priority of target t ε T and µt ε Z
+
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nab : number of aircraft in aircraft configuration ab ε AB

mwb
: number of weapons in weapon configuration wb ε WB

3.2.4 Decision Variables.

xtbabwb
: 1, if a strike package at base b ε B containing aircraft configuration

ab ε AB and weapon configuration wb ε WB is assigned to target

t ε T

0, otherwise

ξt : 1, if no strike package is assigned to target t ε T

0, otherwise

st : slack variable for the level of damage on target t ε T

3.2.5 Preprocessing.

There are two parameters that should be calculated before solving the model:

The POD of the strike package at base b ε B containing aircraft configuration ab ε AB

and weapon configuration wb ε WB on target t ε T (podtbabwb
), and the distance from

base b ε B to target t ε T (disttb)

Calculating the PODs for the strike packages prior to solving the model makes

the mathematical formulation linear. After calculating these values, the strike plan-

ning problem, which is a variation of the WTA problem, can be solved as an assign-

ment problem with additional constraints in Phase I and Phase II.
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The problem here is that the number of decision variables associated with each

POD increases combinatorially since the WTA problem is an NP-hard problem [23].

Therefore, the decision maker should determine the possible and reasonable (i.e.,

feasible) aircraft and weapon configurations.

The POD for the WTA problem can be obtained using:

Prob of Damagetwm = 1− (1− Prob of Damagetw)m (3.1)

where

t is a target,

w is a weapon type, and

m is the number of weapons.

Prob of Damagetwm is the POD using m weapons of type w on target t

Prob of Damagetw is the unitary POD for a single weapon w on

target t. [7, 19]

The PODs for the strike packages in this model can be calculated using Equation

(3.1). The parameters that should be known before manipulating this equation are

the number of aircraft in the strike package and the unitary POD for an aircraft in

the strike package carrying particular type and number of weapons.
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The distance from base b ε B to target t ε T (disttb) is calculated using the Great

Circle Distance (GCD) equation. The GCD equation is:

∆σ̂ = arctan(

√
(cosφf .sin∆λ)2 + (cosφs.sinφf − sinφs.cosφf .cos∆λ)2

sinφs.sinφf − cosφs.cosφf .cos∆λ
) (3.2)

GCD = r.∆σ̂ (3.3)

where

φs, λs : standpoint (lattitude, longitude),

φf , λf : forepoint (lattitude, longitude),

∆σ̂ : (spherical) angular difference/distance,

∆λ : the longitude difference between the standpoint and the forepoint, and

r : the average radius of the earth which is 3440.07 NM.

The coordinates are first converted to decimal degrees using (Sign(Deg+(Min+

Sec/60)/60)). The Sign becomes 1 if the latitude is North (N) and -1 if the latitude

is South (S). Likewise, the sign becomes 1 if the longitude is East (E) and -1 if

the longitude is West (W). The decimal degrees should also be converted to radians

multiplying by (π/180).

The mathematical models for Phase I and Phase II are now presented and

described.
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3.2.6 Phase I.

Minimize
∑
T

{(
∑
B

∑
AB

∑
WB

xtbabwb
.podtbabwb

− reqpodt) + µt.st} (3.4)

Subject to∑
B

∑
AB

∑
WB

xtbabwb
.podtbabwb

+ st ≥ reqpodt for each t ε T (3.5)

∑
T

∑
AB

∑
WB

xtbabwb
.nab ≤ acapb for each b ε B (3.6)

∑
T

∑
AB

xtbabwb
.nab .mwb

≤ wcapwb
for each b ε B and wb ε WB (3.7)

∑
B

∑
AB

∑
WB

xtbabwb
≤ 1 for each t ε T (3.8)

st = reqpodt.ξt for each t ε T (3.9)

xtbabwb
ε {0, 1} for each t ε T, b ε B, ab ε AB, wb ε WB

(3.10)
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ξt ε {0, 1} for each t ε T (3.11)

st ≥ 0 for each t ε T (3.12)

The Objective Function (3.4) in Phase I minimizes the objective function value

using the slack variables (st) and the decision variables (xtbabwb
). Each target has a

priority (µt) based on its importance and a desired level of damage (reqpodt) deter-

mined by the decision maker. The target which has the highest priority is the most

important target and it needs to be attacked first.

As long as the slack variable st is not equal to zero, a value with respect to (µt.st)

is added to Objection Function (3.4). Even though the slack variables can take on

any value greater than or equal to zero according to Constraint (3.12), Constraint

(3.9) forces each slack variable to be either zero or the desired level of damage.

The purpose of Constraint (3.9) is to avoid assigning strike packages to targets

when no available strike packages can achieve the desired level of damage on a target.

There may be some instances of the strike planning problem such that no strike

package has enough POD to satisfy the desired level of damage on a target because

the desired level of damage for the target is too high or the PODs of the weapons are

too low. This may occur even if there are enough resources in terms of the aircraft

and the weapons because of the lower PODs of the strike packages with respect to

the desired level of damage of the target. In this case, it may be undesirable to assign
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a strike package to a target, because it is not possible to achieve the desired level

of damage on the target. The aircraft and the weapons that are not spent on these

targets can be used to achieve the desired level of damage on other targets, which

have lower priorities. This increases the number of targets that are destroyed to their

desired levels of damage.

Since this is a minimization problem, the Objective Function (3.4) tries to make

the slack variables zero starting from the most important target because the most im-

portant target increases the Objective Function (3.4) value most when not attacked

due to its large target priority (µt). Therefore, the formulation seeks solutions se-

quentially starting from the most important target to the least important target.

The Objective Function (3.4) also tries not to exceed the desired level of damage

on a target. Since it is minimizing the objective function value, the difference between

the achieved level of damage and the desired level of damage should be as small as

possible. The negative values of this difference mean that the desired level of damage

is not achieved. In addition, Constraint (3.9) forces the slack variable (st) to be either

equal to zero or to the desired level of damage (reqpodt). Constraint (3.5) allows the

slack variable (st) to take on any value greater than or equal to zero. If the slack

variable (st) is not equal to zero according to Constraint (3.5), it should be equal to

the desired level of damage according to Constraint (3.9). This means that the desired

level of damage cannot be achieved and there is no need to assign a strike package

that is not capable of achieving the desired level of damage on the target. Thus, this

process makes the decision variables (xtbabwb
) zero in Constraint (3.5) so as not to
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unnecessarily spend resources. Therefore, the difference between the achieved level of

damage and the desired level of damage in the Objective Function (3.4) becomes as

small as possible to minimize overachievement of the level of damage.

Briefly, the model basically attempts to assign strike packages to the targets

sequentially based on the target priority, and it avoids assigning strike packages to

targets if the strike packages are not able to achieve the desired levels of damage on

these targets.

Constraint (3.5) ensures the desired level of damage for a target t ε T is met or

exceeded. If the decision variables (xtbabwb
) do not satisfy the desired level of damage

due to insufficient resources or low PODs (podtbabwb
), the slack variable (st) is used to

make the solution feasible.

Constraint (3.6) ensures the available aircraft capacities for each base are not

exceeded. Since the decision variables (xtbabwb
) can only be zero or one, multiplying

this decision variable by the number of aircraft (nab) in an aircraft configuration

(ab ε AB) determines the number of aircraft used for target t ε T . The total number

of aircraft used at base b ε B should be less than or equal to the aircraft capacity at

base b ε B.

Constraint (3.7) ensures the available weapon capacities for each base are not

exceeded. The decision variables (xtbabwb
) should be multiplied by the number of

weapons (mwb
) in a weapon configuration (wb ε WB) and the number of aircraft (nab) in

an aircraft configuration (ab ε AB) to find the total number of weapons used for target
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t ε T . The total number of weapons used at base b ε B should be less than or equal

to the weapon capacity for a particular type depending on the weapon configuration

(wb ε WB) at base b ε B.

Constraint (3.8) ensures that only one strike package containing an aircraft

configuration (ab ε AB) and a weapon configuration (wb ε WB) from base b ε B can be

assigned to target t ε T .

There may be numerous types of possible strike packages based on the different

types of aircraft and the weapons, but it is not realistic to include all possible strike

packages in a model. These possible strike packages increase the number of decision

variables combinatorially since the WTA problem is an NP-hard problem and the

strike planning problem is a variation of the WTA problem [23].

In real world applications, every base has different types of aircraft and there

are some aircraft configurations that are commonly used among these aircraft combi-

nations. There are also weapon configurations that are commonly used based on the

types of weapons. These particular types of aircraft and weapons are mainly based

on the special characteristics of the flight. It is undesirable for the pilots to fly with

a configuration on which they have no training.

Some configurations are undesirable because of the characteristics of the mission.

Each mission requires different types of supplementary aircraft such as escort aircraft

and CAP. Each different strike package for a mission necessitates special training

depending on the formation of the attacking aircraft and the supplementary aircraft.
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In addition, the mathematical model maintains a linear formulation and the

calculation of the PODs for different strike packages requires multiplication. If this

multiplication is executed in the model, the mathematical formulation becomes non-

linear which is more challenging to solve since solvers for nonlinear formulations do

not guarantee a global optimum.

Another way of obtaining the PODs for different strike packages is to calcu-

late the PODs for all possible strike packages during preprocessing. In this model,

preprocessing is accomplished in order to calculate the POD for all strike packages

depending on the available aircraft configuration (ab ε AB) and the weapon configu-

ration (wb ε WB) specified by the decision maker. The number of POD calculations is

based on the possible number of strike packages used in the model and this number

increases as the number of aircraft configurations (ab ε AB) and weapon configurations

(wb ε WB) increase combinatorially. Therefore, there is no need to include all possible

strike packages in the model if they are unrealistic in real world applications.

In this model, the possible aircraft and weapon configurations should be speci-

fied by the decision maker before solving the model and the POD should be calculated

during preprocessing so the mathematical formulation remains linear.

Constraint (3.9) ensures the slack variable (st) should be either equal to zero or

to the desired level of damage (reqpodt) for target t ε T as mentioned above.

Constraints (3.10) and (3.11) ensure the decision variables (xtbabwb
) and (ξt) are

either zero or one. The requirement for the decision variable (xtbabwb
) to be binary
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means the model should either assign a strike package to a target t ε T or not. The

binary decision variable (ξt) makes the slack variable (st) either equal to zero or to

the desired level of damage for a target t ε T so as not to waste resources in terms of

aircraft and weapons.

Briefly, Phase I assigns the strike packages to the targets while satisfying the

objectives:

• to achieve the desired level of damage on each target,

• to avoid assigning weapons to targets using the strike packages if the desired

level of damage is not achievable,

• to avoid having a higher level of damage on each target than the desired level

of damage.

However, this does not guarantee that the final strike package and target as-

signment is the most cost effective. Phase II assigns the strike packages to targets

with a cost that is less than or equal to the cost of the assignment in Phase I while

maintaining the levels of damage that are achieved in Phase I.
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3.2.7 Phase II.

Minimize
∑
T

∑
B

∑
AB

∑
WB

xtbabwb
.(costab .nab .disttb + costwb

.mwb
.nab) (3.13)

Subject to

∑
B

∑
AB

∑
WB

xtbabwb
.podtbabwb

≥ reqpodt − obtst for each t ε T (3.14)

∑
T

∑
AB

∑
WB

xtbabwb
.nab ≤ acapb for each b ε B (3.15)

∑
T

∑
AB

xtbabwb
.nab .mwb

≤ wcapwb
for each b ε B and wb ε WB (3.16)

∑
B

∑
AB

∑
WB

xtbabwb
≤ 1 for each t ε T (3.17)

xtbabwb
ε {0, 1} for each t ε T, b ε B, ab ε AB, wb ε WB

(3.18)

The Objective Function (3.13) in Phase II minimizes the total cost of the final

strike package and the target assignment based on the aircraft cost, the weapon

cost and the distance flown. The cost of a single aircraft (costab) in the aircraft
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configuration (ab ε AB) basically depends on the distance flown (disttb) from base

b ε B to target t ε T . The number of aircraft (nab) in a configuration also needs to be

considered to have the total distance-based cost of the strike package.

The total cost of the final strike package and the target assignment also includes

the weapon costs. The single weapon cost (costwb
) and the number of weapons (mwb

)

in the weapon configuration (wb ε WB) should be multiplied by the number of aircraft

(nab) in the aircraft configuration (ab ε AB) to have the weapon-based cost of the strike

package.

The Objective Function (3.13) in Phase II minimizes the sum of the distance-

based and the weapon-based costs of the strike package and the target assignment.

Constraint (3.14) ensures that the strike package assignment for the target t ε T

should maintain the achieved level of damage in Phase I. If the target t ε T is attacked

in Phase I, the slack variable (st) is zero. If the target t ε T is not attacked in Phase

I, the slack variable (st) equals the desired level of damage (reqpodt) value. The

obtained slack (obtst) for target t ε T in Phase I has the same value as the slack

variable (st) for target t ε T in the optimal solution of Phase I. The new right hand

side (reqpodt-obtst) ensures the model finds feasible solutions that maintain the levels

of damages achieved in Phase I.

Constraints (3.15), (3.16), (3.17), and (3.18) play the same role in Phase II as

they played in Phase I.
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Briefly, Phase II assigns the strike packages to the targets while satisfying the

objective:

• to minimize total cost of the strike package and target assignments.

3.3 Summary

This chapter explained the solution methodology developed in this research for

the static strike planning problem which is a variation of the WTA problem. The

problem statement and the objectives of this research are also discussed in detail in

this chapter. The next chapter analyzes the solution methodology presented in this

chapter in terms of the solution time and cost efficiency.
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IV. Data and Analysis

In this chapter, the process of building the required data to solve the strike planning

problem and solver type are presented in Section 4.1. Next, the Optimality Tolerance

Analysis is executed and a particular optimality tolerance for the Resource Capacity

Analysis is determined based on the optimality tolerance analysis in Section 4.2. Next,

the effect of changing the aircraft and weapon capacities are analyzed in Section 4.3.

Finally, the Cost Efficiency Analysis, which is one of the main objectives in this

research (see Section 3.2), is performed in Section 4.4.

4.1 Data and Implementation

4.1.1 Solver Type.

There are several software packages which solve optimization problems with

exact methods. The differences among these solvers are: type of optimization prob-

lem, problem definition, solution methodology, analysis of results, diagnosis of errors,

graphical interfaces, and limitations on decision variables and constraints. [2]

The strike planning problem in this research is formulated as an MILP where

the integer variables are binary and the solution methodology is an exact method. In

addition, the number of decision variables for a representative model of the Turkish

Air Force is significant. For instance, the possible strike packages for a single target in

this research is 420 including 8 bases, 2 different types of aircraft, 8 different types of

weapons, and 35 different aircraft and weapon configurations where each of these strike

packages is represented by a binary decision variable. If the decision maker would like
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to solve the strike planning problem for even 20 targets, the number of binary decision

variables required is approximately 8400, which increases the computational effort to

solve the problem. This is not surprising because the WTA problem is NP-hard and

the strike planning problem is a variation of the WTA problem. [23]. Therefore, the

solver used to solve the strike planning problem should have the ability to deal with

a large number of decision variables.

In addition, the decision maker should input different parameters to build dif-

ferent problems depending on the number of targets and the aircraft and weapon

capacity, and see the final assignments clearly rather than searching for them among

numerous decision variables in a solution report.

Under these considerations, two types of solvers are compared in this research:

Microsoft Excel Solver and LINGO.

Microsoft Excel Solver is a commercial tool used to solve optimization problems

using an Excel spreadsheet structure. It is easy to build a linear model in an Excel

spreadsheet due to its matrix structure. Also, the Excel spreadsheet allows the user

to input parameters easily. However, it has a limitation on the number of decision

variables and constraints, and it does not give consistent and precise results when

solving binary integer models.

LINGO is a comprehensive tool that is designed to make the formulation of the

optimization problems more straightforward and solves them more efficiently. The

main purpose of LINGO is to allow the user to build the model quickly, solve it, and
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interpret the results to verify the formulation. It is a powerful language in formulating

and solving optimization problems because it is integrated with a set of robust built-in

solvers capable of efficiently solving most classes of optimization models. [14,15]

LINGO has also the ability to import data from Excel spreadsheets to solve an

optimization problem and export the resulting output data back to the spreadsheet

using an Object Linking and Embedding (OLE) function. Therefore, the user can

build a data structure in an Excel spreadsheet, then formulate and solve the problem

in LINGO after retrieving the data from the Excel spreadsheet. [14]

Therefore, the solver type used in this research is LINGO interfaced with Excel

spreadsheets in order to solve a representative strike planning problem consistently

and precisely in LINGO and get the benefit of the spreadsheet structure of Excel to

input data required for the problem and display the results in an easy way.

There are also several versions of LINGO to solve optimization problems with

differing limitations on the number of decision variables and constraints. The version

of LINGO used in this research is the Extended LINGO version, which is capable of

handling an unlimited number of decision variables and constraints.

Finally, all of the analyses in this research was performed on a computer with

an Intel Core (2) Duo P8400 @ 2.26 GHz Processor, 3 GB RAM and Windows Vista

Home Premium 64-Bit operating system.
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4.1.2 Inputting the Data.

There are constant parameters used in this analysis such as the number of bases,

the type of aircraft at each base, and the particular type of strike packages in terms

of the type and the number of aircraft and weapons.

Table 4.1: Types of Aircraft at the Bases

BASE 1 BASE 2 BASE 3 BASE 4 BASE 5 BASE 6 BASE 7 BASE 8
F-4 F-16 F-4 F-16 F-16 F-4 F-4 F-16

Table 4.2: Weapon Configurations for Different Types of Aircraft

F-4 F-16
MK-82 2, 4, 8 2, 4, 8
MK-84 2, 4, 6 2, 4, 6
GBU-10 2, 4 2, 4
GBU-12 2, 4 2, 4

AGM-65A 2, 4, 6 2, 4, 6
AGM-65G 2, 4 2, 4

MK-20 N/A 2, 4, 8
MK-83 N/A 2, 4

Table 4.3: Allowable Number of Aircraft in a Strike Package

F-4 F-16
2, 4, 6 2, 4, 6

Table 4.1 shows the number of bases and type of aircraft at each base. The

allowable number of weapons on a particular type of aircraft and the allowable number

of aircraft in a strike package are shown in Table 4.2 and in Table 4.3, respectively.

These parameters should be specified in accordance with the capabilities of

the Turkish Air Force to decrease the number of decision variables as explained in
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Figure 4.1: Range Name Illustration for a Weapon Type at a Base

Section 3.2. The user should give a range name to the interval of cells in an Excel

spreadsheet for each type of weapon at each base and the associated number of aircraft

and weapons to construct sets for LINGO. The sets allow the user to group a large

number of similar decision variables and constraints. This results in quick and easy

model building. This is illustrated in Figure 4.1.

A strike package is defined by the type and number of aircraft and weapons,

and it is created using cells on an Excel spreadsheet in this research. In Figure 4.1,

Row 1 shows the number of strike packages and Row 2 shows the number of bases

from where the strike packages take-off. Row 3 shows the type of aircraft in the strike

packages and Row 4 shows the number of aircraft in the strike packages. Similarly,

Row 5 shows the type of weapon in the strike packages and Row 4 shows the number

of weapons in the strike packages. For instance, Column AH in Figure 4.1 implies a

strike package from Base 1 containing 2 F-4s carrying 2 GBU-12s.

The user also needs to define the range names in an Excel spreadsheet for

PODs, strike package and target assignments which are either 0 or 1 implying that a

strike package is assigned to a target or not, and distances to targets for each strike
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Figure 4.2: General Range Name Illustration
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Figure 4.3: Defining Sets in LINGO

package in accordance with each type of weapon and the number of targets, since the

model should consider the aircraft and the weapon capacities for each type at every

base, and each base has a different number of aircraft and weapons for each type.

Each strike package and target assignment in the model is multiplied by the number

of aircraft and weapons in the associated strike package. If the strike package and

target assignment is 1, then the numbers of aircraft and weapons are added to the

used number of aircraft and weapons at the associated base.

Moreover, a strike package and target assignment is basically determined by

POD of the strike package and the distance to the target from the base where the

strike package takes-off.

POD of a strike package on a target is used to satisfy the desired level of damage

on the target considering the overachievement and underachievement of the desired

level of damage on the target which are explained in Chapter 3 and every strike

package has a separate POD on a target even though the PODs may be the same for

different strike packages on the same target.

The model in this research assigns only one strike package for a target. Then,

the numbers of aircraft and weapons in the strike package are added to the numbers of
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aircraft and weapons used at the associated base. However, a strike package with the

same type and number of aircraft and weapons from the same base can be assigned

to several targets as long as the aircraft and weapon capacities at the associated base

are not exceeded.

The total numbers of aircraft and weapons used of particular types at a base

are calculated based on the strike packages assigned to several targets. Therefore, the

user should define the range names in accordance with each type of weapon at each

base and the number of targets to find out the number of weapons of particular types

used at a base. Then, the number of aircraft used at a base can be calculated by

summing all aircraft used in the strike packages carrying different available types of

weapons at the base.

The user may want to define a range name for each strike package. The numbers

of aircraft and weapons of particular types used can be calculated by summing the

numbers of aircraft and weapons used in each strike package but this takes more time

to construct the model compared to defining the range names for each type of weapon,

since increasing the number of columns in a range name saves time in constructing

the model. However, the biggest number of columns that can be included in a range

name should not exceed the number of columns for each type of weapon because the

model should consider the weapon capacities for each type.

On the other hand, the distance to target from a base where a strike package

takes-off is used in the Objective Function (3.13) to minimize the total cost. There-
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fore, the distance between each strike package and target assignment in the model is

considered and the user should also define range names for the distances in accordance

with each type of weapon, because the distances are added to the Objective Function

(3.13) after multiplication by the strike package and target assignments. The strike

package and target assignments are given range names in accordance with each type

of weapon to satisfy the weapon capacities for each type, and LINGO does not allow

the user to manipulate data sets with different sizes. Therefore, the user should give

range names to distances in accordance with each type of weapon, as well.

The other range names which should be defined are costs for each type of aircraft

and weapons, the aircraft and the weapon capacities for each type at each base, the

targets and associated desired levels of damages, priority values (µ), slack variables,

and the obtained slack values.

Briefly, the dimension of the range names of PODs, the assignments, and the

distances should be number of targets by the number of strike packages for a particular

type of weapon at a particular base. This differs in accordance with each type of

weapon since the number of allowable strike packages for different types of weapons

are not the same. Figure 4.2 illustrates the range names in Excel for a target and

weapon combination and Figure 4.3 shows the method of defining sets in LINGO.

Therefore, the data structure in an Excel spreadsheet should represent a model

as generally as possible because adding a new possible strike package, a base or more

targets may be a cumbersome effort to build the data structure in an Excel spread-
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Figure 4.4: Aircraft and Weapon Cost Input Spreadsheet

sheet, which is required to solve the strike planning in LINGO, due to the fact that

adding more data is time consuming. However, building smaller data structures from

a more generalized one by deleting rows and columns only is easy because deleting

rows and columns does not affect the range names but adding a new cell to a range

requires defining the range name again.

After building the general framework of the data structure defining the constant

parameters in the Excel spreadsheets as discussed above, the user inputs different

aircraft and weapon costs and capacities, using the Excel spreadsheets as shown in

Figures 4.4, 4.5, and 4.6. Also, the used aircraft and weapon capacities are calculated

after the strike planning problem is solved and this allows the decision maker to

compare the used aircraft and weapons with the aircraft and weapon capacities.

Each strike package in the model should be defined distinctively in terms of the

type and number of aircraft and weapons since each strike package has a different

POD on a target and these PODs should be calculated in the preprocessing stage.

Therefore, each strike package from the same base has the same base coordinates.
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Figure 4.5: Aircraft Capacity Input and Used Aircraft Display Spreadsheet

Figure 4.6: Weapon Capacity Input and Used Weapon Display Spreadsheet
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Figure 4.7: Base Coordinates Input Spreadsheet

However, the user should not input the base coordinates for all strike packages in

the data structure. The user inputs the base coordinates in a small spreadsheet in

Figure 4.7 and all strike packages (as shown in Figure 4.8) take their associated base

coordinates from this spreadsheet. The user also inputs the target coordinates in a

spreadsheet in Figure 4.8 to calculate the distances between each target and each

base.

Finally, the desired level of damage and the priority value of each target, and

the POD for each strike package and target combination should be specified using

the assignment spreadsheet in Figure 4.9. However, the user does not have to input

all PODs into the assignment spreadsheet since the only necessary POD to input is

the unitary POD. A strike package which carries a particular type and number of

weapons with the smallest number of aircraft has the unitary POD, since increasing

the number of aircraft in a strike package increases the POD and this can be calculated

using Equation (3.1). For instance, a strike package with 2 F-16s carrying 2 GBU-12s

has a unitary POD for a particular target. Then, the POD for a strike package with

4 F-16s carrying 2 GBU-12s can be calculated using Equation (3.1). 14 of 420 PODs
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Figure 4.8: Target Coordinates Input and Distance Calculation Spreadsheet

for a target should be input into the data structure in the preprocessing stage since

there are 420 possible strike packages in this analysis and 14 of them is sufficient to

calculate all PODs for a target. These 14 strike packages are constructed from only

2 different bases since each base has only one type of aircraft and there are 2 types

of aircraft in this analysis. The PODs for the other strike packages can be exported

from the cells of these 14 strike packages using Excel spreadsheet structure.

Note that the user also has to input the same number of unitary PODs into the

model to solve the strike planning problem non-linearly as solving the strike planning

problem linearly. However, the non-linear model finds out the PODs for all strike

packages while it solves the problem and this increases the solution time whereas
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Figure 4.9: Assignment Spreadsheet

the PODs in this research are calculated in the preprocessing stage. The number of

PODs requiring to input into the model also decreases as the number of the same

type of targets increase in the model since a POD is determined by a strike package

and a target combination and a strike package has the same POD on the same type

of targets.

4.1.3 Solving the Model.

The LINGO application can be inserted in the Excel spreadsheet as an object

and the LINGO code is pasted onto the LINGO object. Once the user selects the

LINGO object on the Excel spreadsheet, the LINGO toolbar is displayed in place
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of the Excel spreadsheet toolbar. Then, the user can start the model by clicking

the Solve button on the LINGO toolbar. Note that the LINGO application must

be opened before attempting to solve the model in the Excel spreadsheet; otherwise,

an error message indicating that the LINGO application cannot be inserted to the

spreadsheet is displayed. The model can also be run using LINGO only. Similarly,

the Excel spreadsheet must be opened as long as the Excel file location in which there

are sets and associated attributes such as number of aircraft and weapons, PODs,

distances, etc. is not specified in the OLE command, which imports the data from

the spreadsheet and exports it back to the spreadsheet again.

After clicking on the Solve button, LINGO compiles the model, solves it, and

exports the solution of the final assignment into the Excel spreadsheet. Compiling

the model in LINGO and exporting the solutions to the Excel spreadsheet takes

approximately 6 and 20 seconds for a target set of 100, respectively, and the overall

solution time, which is analyzed in the following sections, include these times. These

times decrease as the number of targets in the model decreases. Note that Phase I

should be solved first in order to solve Phase II since Phase II uses the slack values

obtained in Phase I to assign the strike packages to the same targets as in Phase I

while minimizing the cost.

4.2 Optimality Tolerance Analysis

The optimality tolerance used in this research is the relative optimality toler-

ance which is a value r between 0 and 1. It implies that the branch-and-bound solver
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should only search for integer solutions with objective function values at least 100 ·r%

better than the best integer solution found so far. This guarantees that the solution

is within 100 ·r % of the optimal solution. Moreover, the relative optimality tolerance

greatly decreases the solution time. For instance, the alternative of getting the near

optimal solution, which is within a few percentage points of the true optimal solution,

in several minutes on large integer models as opposed to the true optimal solution

in several days makes the use of an optimality tolerance a beneficial trade-off tool

between running time and solution quality where the true optimal solution is defined

as the theoretical objective bound. [14]

Table 4.4: Optimality Gap with Optimality Tolerance of 0.0001 %

ACAP WCAP TARGETS OPT GAP (%) TIME (secs)
PHASE I 60 30 100 0.000265 18000
PHASE II 60 30 100 0.67 18000

Table 4.4 shows the optimality gap between the true optimal solution and the

best integer solution after 5 hours. The solver was interrupted after 5 hours because

the planning of an ATO takes approximately 2 days and this planning contains target

selection, weapon and target allocation, mission formation and assignment, mission

routing and scheduling, and contingency plans. [7] Therefore, the ATO planner has

only a couple of hours to determine the weapon and target allocation, and the mission

formation.

ACAP and WCAP in Table 4.4 display the aircraft capacity and the weapon

capacity at each base, respectively. In fact, the aircraft and the weapon capacities
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Table 4.5: Optimality Gap of Phase I with Optimality Tolerance of 0.0001 % in 60
seconds

ACAP WCAP TARGETS OPT GAP (%) TIME (secs)
PHASE I 60 30 100 0.000530 60

are based on the particular types of aircraft and weapons but all bases have the same

number of aircraft and weapons of each type in this analysis. The aircraft capacity

of 60 and the weapon capacity of 30 increases the solution time significantly as they

play a strictly binding constraint role on the attack of all 100 targets in this instance

of the formulation. Resource Capacity Analysis is discussed in Section 4.3. In this

strictly bounded instance, the effect of the optimality tolerance can be seen clearly

because finding the true optimal solution requires a large amount of time where the

true optimal solution is defined as the theoretical objective bound.

The targets in T are divided into 20 target groups in this analysis and each

target group has a different priority value, and every single target in a target group

has the same priority. For example, if |T | =100, then every target group in T contains

5 single targets. This ensures that the model in this research assigns the weapons to

targets in accordance with the target group priority.

The optimality gap is defined as the gap between the best integer solution found

and the true optimal solution. Phase I of this instance, consisting of 60 aircraft and

30 weapons for each type at each base, converges to the optimal solution with an

optimality gap of 0.000530 % in 1 minute as shown in Table 4.5. This is a very

small gap and close to the near optimal solution which was found in 5 hours. The
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Table 4.6: Optimality Gap Changes of Phase II with Optimality Tolerance of 0.0001%

ACAP WCAP TARGETS OPT GAP (%) TIME (secs)
PHASE II 60 30 100 1.97 60
PHASE II 60 30 100 1.1 300
PHASE II 60 30 100 0.87 600
PHASE II 60 30 100 0.69 3600
PHASE II 60 30 100 0.67 18000

Table 4.7: Solution Times of Phase II with Different Optimality Tolerances

ACAP WCAP TARGETS OPT TOL (%) TIME (secs)
PHASE II 60 30 100 2 116
PHASE II 60 30 100 1 357
PHASE II 60 30 100 0.9 429
PHASE II 60 30 100 0.8 727
PHASE II 60 30 100 0.7 1674

optimality gap difference between these two solutions is 0.000265 % and the solution

time difference compensates for this optimality gap.

Table 4.6 shows that the optimality gap decreases as the elapsed running time

increases. In this example, the model is allowed to run 5 hours and the optimality

gap percentages and the associated time values are snapshot values along with the

running process. The optimality gap difference between the near optimal solution in

1 minute and the near optimal solution in 5 hours is 1.3 % where the total cost of

the weapon and target assignment in 1 minute is $ 1.42182 · 107 and the total cost of

the weapon and target assignment in 5 hours is $ 1.41529 · 107. The cost difference

between these two near optimal solution is $ 65,300 which is very small compared to

the total cost in 5 hours. The acceptable trade-off between the solution time and the

solution quality depends on the decision maker.
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Figure 4.10: Solution Times of Phase II with Different Optimality Tolerances

Table 4.7 and Figure 4.10 are built according to the optimality gap percentages

and elapsed running times in Table 4.6. In this case, the time for an instance implies

the solution time with the optimality tolerance associated with it rather than the

elapsed running time in Table 4.6.

It is clear in Table 4.7 and Figure 4.10 that the solution time decreases as the

optimality tolerance increases, and the decision maker can make a trade-off between

the solution quality and the solution time.

The optimality tolerance of 0.7 % is selected for the following analyses since the

optimality tolerance of 0.7 % finds a solution for the instance of the strike planning

problem, consisting of 100 targets, 60 aircraft at each base, and 30 weapons for each
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type at each base, in less than half an hour. If the optimality tolerance is set to 0.6%,

the solution is not found after 5 hours.

However, the optimality tolerance of 0.7 % is not a generally acceptable opti-

mality tolerance for the strike planning problem. The optimality of tolerance of 0.7

% is selected for an instance of the strike planning problem containing 100 targets,

60 aircraft at each base, and 30 weapons for each type at each base in this analysis.

A generally acceptable optimality tolerance for the strike planning problem can be

found applying Design of Experiments (DOE) on the optimality tolerance.

4.3 Resource Capacity Analysis

4.3.1 Increasing the Capacity.

In this subsection, the analysis investigates the affect of increasing the number

of aircraft only, the affect of increasing the number of weapons only, and the affect of

increasing both the number of aircraft and weapons on the solution time.

Increasing the aircraft capacity at each base yields erratic results for Phase II

in terms of the solution time as shown in Table 4.8 and Figure 4.11. The solution

times for Phase I are approximately the same for each aircraft and weapon capacity

combination as can be seen in Table 4.8 and Figure 4.11. In addition, the solutions

with increasing number of aircraft are not necessarily true optimal solutions as the

optimality tolerance is set to 0.7 % in this analysis. In other words, there is a gap

between the true optimal solution and the best integer solution that is within 0.7%

of the true optimal solution. Although LINGO does have the ability to find the true
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Figure 4.11: Solution Times (in seconds) with Increasing Aircraft Capacities for 100
Target Instance with 0.7 % Optimality Tolerance

optimal solution with optimality tolerance other than 0, it does not find the true

optimal solutions in this instance.

Therefore, increasing the aircraft capacity while maintaining the given weapon

capacities does not consistently decrease the solution time.

Table 4.8: Solution Times (in seconds) with Increasing Aircraft Capacities for 100
Target Instance with 0.7 % Optimality Tolerance

ACAP WCAP PHASE I PHASE II TRUE OPTIMAL
60 30 128 1674 NO
80 30 104 247 NO
100 30 119 > 18000 NO
120 30 130 299 NO
140 30 130 968 NO
160 30 133 363 NO
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Figure 4.12: Solution Times (in seconds) with Increasing Weapon Capacities for 100
Target Instance with 0.7 % Optimality Tolerance

Increasing the weapon capacity for all types of weapons at each base yields

erratic results for Phase II, which are shown in Table 4.9 and Figure 4.12. This

resembles the affect of increasing the aircraft capacity. However, the solution time

tended to decrease for both Phase I and Phase II compared to the solution time for

a combination of the aircraft capacity of 60 at each base and the weapon capacity

of 30 for each type of weapon at each base as the increment in the weapon capacity

increases. The solution time for Phase I decreases as the weapon capacity increases

whereas it stays approximately constant as the aircraft capacity increases. Moreover,

some of the solutions with increased weapon capacities are true optimal solutions

(i.e., the objective function bound equals the best integer solution). Therefore, the
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Table 4.9: Solution Times (in seconds) with Increasing Weapon Capacities for 100
Target Instance with 0.7 % Optimality Tolerance

ACAP WCAP PHASE I PHASE II TRUE OPTIMAL
60 30 128 1674 NO
60 50 122 2043 NO
60 70 89 130 NO
60 90 30 45 YES
60 110 29 132 NO
60 130 31 50 YES

Table 4.10: Solution Times (in seconds) with Increasing Aircraft and Weapon Capac-
ities for 100 Target Instance with 0.7 % Optimality Tolerance

ACAP WCAP PHASE I PHASE II TRUE OPTIMAL
60 30 128 1674 NO
80 50 23 158 YES
100 70 25 68 YES
120 90 24 32 YES
140 110 25 36 YES
160 130 27 37 YES

weapon capacity had more affect than the aircraft capacity on the solution time for

both Phase I and Phase II.

In Table 4.10 and Figure 4.13, the combined affect of increasing both the aircraft

capacity and the weapon capacity show that the solution times for both Phase I and

Phase II decrease significantly. The reason for a significant decrease in solution time

for Phase I and Phase II after increasing both the aircraft and the weapon capacity

is that the weapons are carried by the aircraft and increasing the capacities of only

one of them does not significantly increase the possible strike package combinations

because building different strike packages depends on both the type of aircraft and

the type of weapon. In other words, increasing one of them does not relax the for-

mulation significantly, since it only allows an increase in either the aircraft capacity
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Figure 4.13: Solution Times (in seconds) with Increasing Aircraft and Weapon Ca-
pacities for 100 Target Instance with 0.7 % Optimality Tolerance

or the weapon capacity, and this generates several more alternative strike package

combinations to consider without increasing the resource capacity for several binding

constraints resulting in erratic solution times.

More importantly, the solutions found with an increased number of resources

in terms of both the aircraft and the weapons are true optimal solutions even though

the optimality tolerance is set to 0.7 %.

Finally, the solution times for Phase I with different aircraft and weapon ca-

pacities are significantly shorter than the solution times for Phase II because Phase

I considers only increasing the number of targets attacked in accordance with target

priority. Phase I avoids exceeding the levels of damage beyond the desired levels of

damage in order to attack as many targets as possible and does not consider the
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Figure 4.14: Solution Times (in seconds) with Decreasing Aircraft Capacities for 100
Target Instance with 0.7 % Optimality Tolerance

cost. Therefore, the addition of minimizing the cost of attacking the same number

of targets as in Phase I in Phase II model increases the solution time. However, the

difference between solution times for Phase I and Phase II are not significant when

there are sufficient resources to build different strike packages with different costs.

4.3.2 Decreasing the Capacity.

In this subsection, the analysis contains the affect of decreasing the number of

aircraft only, the affect of decreasing the number of weapons only, and the affect of

decreasing both the number of aircraft and weapons on the solution time and the

number of targets attacked.
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Table 4.11: Solution Times (in seconds) with Decreasing Aircraft Capacities for 100
Target Instance with 0.7 % Optimality Tolerance

ACAP WCAP PHASE I PHASE II # TARGETS
TIME TIME ATTACKED

60 30 128 1674 100
40 30 32 126 75
20 30 26 28 37

Table 4.12: Solution Times (in seconds) with Decreasing Weapon Capacities for 100
Target Instance with 0.7 % Optimality Tolerance

ACAP WCAP PHASE I PHASE II # TARGETS
TIME TIME ATTACKED

60 30 128 1674 100
60 20 120 169 95
60 10 15 20 54

Table 4.11 and Figure 4.14 show that the solution times for both Phase I and

Phase II decrease significantly as the aircraft capacity decreases because the number

of targets attacked decreases due to insufficient aircraft capacity to attack 100 targets.

The model developed in this research solves the strike planning problem preemptively

as long as the priority values are specified in the proper way. It is determined that

the priority value for a target that has the higher priority should be at least twice as

much as the priority value of a target that has the lower priority. Since the model

solves the strike planning problem preemptively starting from the target that has

the highest priority level to the target that has the lowest priority level, the model

with decreased number of aircraft deals with fewer decision variables. Therefore, the

decreased number of decision variables decreases the solution time significantly. For

example, the Phase II solution time in Table 4.11 decreases by approximately 2 orders

of magnitude when aircraft capacity decreases from 60 to 20.
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Figure 4.15: Solution Times (in seconds) with Decreasing Weapon Capacities for 100
Target Instance with 0.7 % Optimality Tolerance

Table 4.13: Solution Times (in seconds) with Decreasing Aircraft and Weapon Ca-
pacities for 100 Target Instance with 0.7 % Optimality Tolerance

ACAP WCAP PHASE I PHASE II # TARGETS
TIME TIME ATTACKED

60 30 128 1674 100
40 20 97 46 75
20 10 19 17 40

Decreasing the weapon capacity also decreases the solution time significantly

similar to the reduced aircraft capacity as can be seen in Table 4.12 and Figure 4.15.

For example, the Phase II solution time in Table 4.12 decreases by approximately 2

orders of magnitude when weapon capacity decreases from 30 to 10.

Table 4.13 and Figure 4.16 illustrates the combined affect of decreasing both

the aircraft and the weapon capacity on the solution time and the number of targets

attacked.
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Figure 4.16: Solution Times (in seconds) with Decreasing Aircraft and Weapon Ca-
pacities for 100 Target Instance with 0.7 % Optimality Tolerance

As a result, the solution time significantly decreases as the aircraft or weapon

capacity decreases. Decreasing the aircraft or weapon capacity reduces the number of

targets which can be attacked and decreases the solution time. However, these results

show the affect of resource capacities for an instance of the strike planning problem

that contains 8 bases, 2 different types of aircraft, 8 different types of weapons, and 35

different types of aircraft and weapon configurations. For a general result, the DOE

should be performed.

4.4 Cost Efficiency Analysis

The main objective of this research is to attack as many targets as possible

with the minimum cost while considering the target priority. The cost efficiency,
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which implies minimizing the total cost of the strike plan, and the solution times

are analyzed in this research with different scenarios containing different resource

packages (RP), target sets (TS), and usable bases.

A resource package consists of a number of bases with particular aircraft and

weapon capacities and a target package consists of a number of targets located at

particular coordinates. Five different resource packages and 5 different target sets,

which are notional but represent real world situations for the TUAF, are constructed

and these are described below.

There are also 8 different notional bases used in this research and the resource

packages are constructed based upon these notional bases. Table C.1 shows the coor-

dinates and Figure C.1 illustrates the locations of the bases in Appendix C.

Resource Package 1

Resource Package 1 is a generalized resource package consisting of different

numbers of aircraft and weapons of particular types at each base. All aircraft are

able to fly and there is no restriction on aircraft and weapons besides their associated

capacities at each base (see Figure D.1 in Appendix D, Table E.1 in Appendix E, and

Table F.1 in Appendix F for locations of available bases for Resource Package 1 and

associated aircraft and weapon capacities).

Resource Package 2

Resource Package 2 assumes all F-4s are under inspection due to maintenance

problems. Therefore, the only aircraft that can fly during the intended strike planning
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period are F-16s (see Figure D.2 in Appendix D, Table E.1 in Appendix E, and

Table F.2 in Appendix F for locations of available bases for Resource Package 2 and

associated aircraft and weapon capacities).

Resource Package 3

Resource Package 3 assumes Turkey has been attacked from both the west and

east. The bases located in west and east Turkey are unusable. Therefore, the strike

planner cannot assign aircraft from these bases. The available bases are Base 2, Base

3, Base 4, and Base 7. (see Figure D.3 in Appendix D, Table E.1 in Appendix E, and

Table F.3 in Appendix F for locations of available bases for Resource Package 3 and

associated aircraft and weapon capacities).

Resource Package 4

Resource Package 4 assumes MK series weapons experience some mechanical

problems. Therefore, the strike packages carrying these weapons cannot be assigned

to targets. Aircraft availabilities and weapon availabilities for other weapon types are

subject to aircraft and weapon capacities at each base (see Figure D.4 in Appendix

D, Table E.1 in Appendix E, and Table F.4 in Appendix F for locations of available

bases for Resource Package 4 and associated aircraft and weapon capacities).

Resource Package 5

Resource Package 5 assumes the only usable bases are the ones located in the

northern part of Turkey because there is an epidemic disease in the southern part of

Turkey. All cities in the south have been evacuated and a serious terrorist attack at

91



different locations is expected according to intelligence reports. Therefore, a strike

plan against terrorist targets should be performed using the usable bases (see Figure

D.5 in Appendix D, Table E.1 in Appendix E, and Table F.5 in Appendix F for

locations of available bases for Resource Package 5 and associated aircraft and weapon

capacities).

Finally, there are 5 different notional target sets used to construct different sce-

narios for the Cost Efficiency Analysis. The number of targets in the target sets are

shown in Table 4.14. The biggest target set considered for the cost efficiency analysis

contains 50 targets and the other target sets contain the same targets in terms of tar-

get location and the desired level of damage with a decrease of 10 targets having the

least target priorities in the previous target set. For instance, Target Set 1 consists

of 50 targets and Target Set 2 consists of the 40 targets having the highest priority

in Target Set 1.

Table 4.14: Number of Targets Contained in Target Sets

TS 1 TS 2 TS 3 TS 4 TS 5
# Targets 50 40 30 20 10

Table 4.15 shows the cost efficiency performance of Phase II in the methodology

of this research compared to Phase I and the number of targets attacked in Phase I

and Phase II in parentheses, respectively, for 25 different scenarios. Obviously, Phase

II provides a great deal of savings in terms of cost for all scenarios.
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In Table 4.15, the cost saving percentage implies the difference between costs of

both Phase I and Phase II divided by the cost of Phase I.

Note that the cost saving percentages are different for the scenarios in which

the same targets are attacked because Phase I does not consider the cost of the final

assignment of the strike packages to targets and therefore it ends up with an arbitrary

cost whereas Phase II finds the assignment with the minimum cost.

Table 4.15: Cost Saving Percentages Between Phase I and Phase II and the Number
of Targets Attacked in Phase I and Phase II

RP 1 RP 2 RP 3 RP 4 RP 5
TS 1 47.75 % 54.23 % 35.75 % 38.01 % 15.69 %

(37, 37) (16, 16) (18, 18) (33, 33) (24, 24)
TS 2 47.31 % 53.64 % 34.00 % 39.66 % 14.76 %

(37, 37) (16, 16) (18, 18) (33, 33) (24, 24)
TS 3 64.70 % 53.39 % 44.73 % 50.58 % 14.88 %

(30, 30) (16, 16) (18, 18) (30, 30) (24, 24)
TS 4 65.59 % 54.70 % 44.63 % 56.83 % 54.60 %

(20, 20) (16, 16) (18, 18) (20, 20) (20, 20)
TS 5 64.44 % 69.58 % 52.99 % 63.91 % 66.77 %

(10, 10) (10, 10) (10, 10) (10, 10) (10, 10)

For instance, the cost saving percentages are different for the scenarios consisting

of Resource Package 4 and Target Set 1, and Resource Package 4 and Target Set 2 even

though the same targets are attacked , but Target Set 2 only contains the 40 highest

priority targets in Target Set 1. Since Phase I only considers attacking the maximum

number of targets satisfying the desired level of damage on each target, there are

usually multiple ways of attacking the same targets considering the target priority,

and Phase I can select any of them, and therefore, Phase I ends up with inconsistent
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total costs as opposed to Phase II, which always finds the optimal assignment of the

strike packages from Phase I with the minimum cost.

The LINGO Interfaced with Excel Spreadsheet Models for different scenarios to

analyze the cost efficiency are included in Appendix B.

For a deeper analysis of the cost efficiency, the scenario consisting of Resource

Package 2 and Target Set 4 was selected and 30 different test cases with different

target locations but the same desired levels of damages were examined. The results

of these test cases are analysed using the Central Limit Theorem. According to the

Central Limit Theorem, the distribution of a population can be approximated by a

normal distribution if 30 or more samples are taken from that population. [28]

The mean cost saving of 56.1 % with a standard deviation of 1.28 % is achieved

in these 30 different test cases. The cost savings for these 30 different test cases are

shown in Table G.1 in Appendix G.

As a result, Phase II provides a great deal of cost saving after attacking the

maximum number of targets considering target priority in Phase I.

4.5 Summary

This chapter presented the solver used in this research. Inputting the necessary

data and solving the model was explained in detail. Optimality tolerance was analyzed

to find a reasonable optimality tolerance for the resource capacity and cost efficiency

analyses in this research since the mathematical formulation of the model in this

research is an MILP and it requires a great amount of time (i.e., more than 25 hours)
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to solve to optimality when the constraints are strictly binding. The resource capacity

analysis was performed for this reason. Finally, cost efficiency, which is one of the main

objectives of this research, was analyzed. The next chapter presents the conclusions of

this research and discusses possible recommendations for future research of the strike

planning problem.
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V. Conclusions and Recommendations

5.1 Summary of the Research

The first chapter in this research introduces the problem statement and the

research objectives. The scope, limitations, and assumptions are also discussed in

Chapter I.

The formulation of the general WTA problem, the static and the dynamic WTA

problem, and the existing solution methodologies for the static WTA problem are

presented in Chapter II. The ATO model to solve the static strike planning problem

and the associated solution methodologies in the literature are presented in Chapter II,

as well. Although this research directly addresses the static strike planning problem, it

is also considered useful to briefly present the solution methodologies for the dynamic

strike planning problem in Chapter II since the dynamic strike planning problem is

an extension of the static strike planning problem.

Chapter III explains the solution methodology developed in this research and

discusses the objectives of this research in detail. The definitions, the sets and indices,

the parameters and the decision variables used in the methodology are defined and

the solution steps in the methodology such as Preprocessing, Phase I, and Phase II

are also explained in this chapter.

In Chapter IV, LINGO interfaced with Excel Spreadsheets, which is selected

as the solver type to solve the strike planning problem in this research, and the

reasons for this selection are discussed first. Next, inputting the necessary data to
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solve the model is explained and illustrated in detail. Then, the optimality tolerance

was analysed to find a reasonable optimality tolerance for the resource capacity and

the cost efficiency analyses in this research since the mathematical formulation of

the model in this research is an MILP and it requires a great amount of time (i.e.,

more than 25 hours) to solve to optimality when the constraints are strictly binding.

The resource capacity analysis was also performed for this reason. Finally, the cost

efficiency which is one of the main objectives of this research was analyzed.

Finally, this chapter presents the conclusion of this research and discusses rec-

ommendations for future research of the strike planning problem.

5.2 Conclusions

This research deals with maximizing the strike planning efficiency for a given

class of targets. The strike planning efficiency implies minimizing the total cost of

assigning strike packages to targets in terms of the aircraft and the weapon costs, and

the distance flown.

The solution methodology developed in this research finds an optimal strike

plan attacking the maximum number of targets in Phase I and minimizing the total

cost in Phase II.

The solution methodology also avoids assigning strike packages to targets if

the desired levels of damage are not achievable and avoids having a higher level of

damage on a target than the associated desired level of damage to save resources for

possible future assignments using PODs only, which can be obtained using JMEM,

97



rather than forcing the decision maker to give preferences to the strike packages. The

aircraft and weapon capacities for particular types at each base are also considered

in this research.

Moreover, the solution methodology developed in this research is an MILP to

solve the strike planning problem optimally considering the target priority and the

desired level of damage on each target. Since the mathematical formulation of the

model is an MILP, it requires a great deal of time (i.e., more than 25 hours) to solve

to optimality when the constraints are strictly binding. Therefore, the optimality

tolerance analysis is performed to determine a reasonable optimality tolerance for

resource capacity and cost efficiency analyses. The optimality tolerance of 0.7 %

is selected for an instance of the strike planning problem, which contains 8 bases,

2 different types of aircraft, 8 different types of weapons, and 35 different aircraft

and weapon configurations, in this research for the resource capacity and the cost

efficiency analyses because the ATO planner has a couple of hours to prepare a strike

plan even though the ATO process requires approximately 2 days to complete, but the

2-day time period includes target selection, weapon allocation, mission formation and

assignment, mission routing and scheduling process, and contingency plans. However,

the optimality tolerance of 0.7 % is not a generally acceptable optimality tolerance

for the strike planning problem. The optimality tolerance analysis in this research

shows a way of determining a generally acceptable optimality tolerance for the strike

planning problem.
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The resource capacity analysis shows that increasing either aircraft capacity at

each base or weapon capacity for a particular type of weapon at each base does not

decrease the solution time. However, increasing both the aircraft capacity and the

weapon capacity significantly and consistently decreases the solution time.

Finally, cost efficiency is one of the main objectives in this research besides

achieving the desired level of damage on each target and avoiding assigning weapons

to targets if the desired level of damage is not achievable. The solution methodology

maintains significant cost savings between Phase I and Phase II as illustrated in

Chapter IV for 25 different scenarios and 30 different test cases for one of these

scenarios.

5.3 Future Research Recommendations

LINGO interfaced with Excel spreadsheets model developed in this research is

flexible in terms of inputting the cost of aircraft and weapons, target and base coor-

dinates, types of targets, and the desired levels of damage on targets. However, there

is still a need to develop a tool that will allow the user to build more flexible scenarios

with different numbers of bases and allowable strike packages. In this research, build-

ing a different scenario with different numbers of bases and allowable strike packages

may be time consuming because the user has to give range names for possible strike

packages in the Excel spreadsheets to transfer the data to LINGO. The user also needs

to adapt the LINGO code for different scenarios. A flexible tool having a graphical

user interface may be very beneficial to the strike planning tool in this research.
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The model in this research directly addresses a single strike planning period.

The exact solution methodology developed in this research to solve the static strike

planning problem can be extended to solve the dynamic strike planning problem

considering multiple strike planning periods. Preparing a strike plan considering

multiple strike planning periods increases the flexibility in the decision making process

since the aircraft capacities at each base differ in time and the decision maker can

consider different aircraft capacities at each base based on the turnaround times of

the aircraft.

The model developed in this research does not consider the defensive systems of

the targets. Therefore, the model does not assign any SEAD or CAP support for the

strike packages. Adding defensive systems into the model by using different objective

functions and constraints can solve more realistic strike planning problems.

The optimality tolerance of 0.7 % determined in Chapter IV is not a generally

acceptable optimality tolerance for the strike planning problem. The optimality tol-

erance of 0.7 % is selected for an instance of the strike planning problem containing

100 targets, 60 aircraft at each base, and 30 weapons for each type at each base in this

analysis. A generally acceptable optimality tolerance for the strike planning problem

can be found applying Design of Experiments (DOE) on the optimality tolerance.

Finally, the affect of changing the aircraft and weapon capacities for particular

types at each base analyzed in this research is valid for an instance of the strike

planning problem containing 8 bases, 2 different types of aircraft, 8 different types of
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weapons, and 35 different types of aircraft and weapon configurations. For a general

result, the DOE should be performed.

101



Appendix A. LINGO Codes for Phase I and Phase II

The CD associated with this thesis includes the LINGO Codes for Different Instances

for Phase I and Phase II.
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Appendix B. LINGO Interfaced with Excel Spreadsheet Models

The CD associated with this thesis includes the LINGO Interfaced with Excel Spread-

sheet Models for the Instances with Different Number of Targets.
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Appendix C. Notional Base Locations

There are 8 different notional bases used in this research and the resource packages

are constructed based upon these notional bases. Table C.1 shows the coordinates

and Figure C.1 illustrates the locations of the bases.

Table C.1: Notional Base Coordinates

LATITUDE LONGITUDE
DEG MIN SEC DEG MIN SEC

BASE 1 40 08 0 29 09 0
BASE 2 39 27 0 31 25 0
BASE 3 40 34 0 34 22 0
BASE 4 39 40 0 37 46 0
BASE 5 39 19 0 40 57 0
BASE 6 37 43 0 38 54 0
BASE 7 37 38 0 33 27 0
BASE 8 38 16 0 28 52 0

104



Figure C.1: Notional Base Locations
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Appendix D. Usable Base Locations for Resource Packages

A resource package consists of a number of usable bases with particular aircraft and

weapon capacities. 5 different resource packages, which are notional but represent

real world situations for the TUAF, are constructed and these are used in the cost

efficiency analysis in this research. The following figures illustrates the locations of

the usable bases for 5 different resource packages in this research.
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Figure D.1: Usable Base Locations for Resource Package 1
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Figure D.2: Usable Base Locations for Resource Package 2
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Figure D.3: Usable Base Locations for Resource Package 3
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Figure D.4: Usable Base Locations for Resource Package 4
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Figure D.5: Usable Base Locations for Resource Package 5
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Appendix E. Aircraft Capacities at Usable Bases for Resource

Packages

There are 5 different resource packages in this research to perform the cost efficiency

analysis. The resource packages differ with respect to the usable bases, aircraft ca-

pacities and weapon capacities for particular types at each base. Table E.1 shows the

aircraft capacities at the usable bases for 5 different resource packages in this research.

Table E.1: Aircraft Capacities at Bases for Resource Packages

BASE 1 BASE 2 BASE 3 BASE 4 BASE 5 BASE 6 BASE 7 BASE 8
RP 1 20 18 22 16 24 20 22 20
RP 2 N/A 18 N/A 16 24 N/A N/A 20
RP 3 N/A 18 22 16 N/A N/A 22 N/A
RP 4 20 18 22 16 24 20 22 20
RP 5 20 18 22 16 24 N/A N/A N/A
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Appendix F. Weapon Capacities at Usable Bases for Resource

Packages

There are 5 different resource packages in this research to perform the cost efficiency

analysis. The resource packages differ with respect to the usable bases, aircraft ca-

pacities and weapon capacities for particular types at each base. The following tables

show the weapon capacities for particular types at the usable bases for 5 different

resource packages in this research.

Table F.1: Weapon Capacities at Bases in Resource Package 1

MK-82 MK-84 GBU-10 GBU-12 AGM AGM MK-20 MK-83
65A 65G

BASE 1 80 80 60 40 40 50 100 80
BASE 2 90 80 70 80 60 60 N/A N/A
BASE 3 90 70 50 70 50 40 120 60
BASE 4 70 60 50 60 70 70 N/A N/A
BASE 5 80 90 90 50 40 90 N/A N/A
BASE 6 60 70 40 90 80 80 80 70
BASE 7 90 70 70 60 50 40 90 90
BASE 8 80 90 60 80 60 60 N/A N/A

Table F.2: Weapon Capacities at Bases in Resource Package 2

MK-82 MK-84 GBU-10 GBU-12 AGM AGM
65A 65G

BASE 2 90 80 70 80 60 60
BASE 4 70 60 50 60 70 70
BASE 5 80 90 90 50 40 90
BASE 8 80 90 60 80 60 60
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Table F.3: Weapon Capacities at Bases in Resource Package 3

MK-82 MK-84 GBU-10 GBU-12 AGM AGM MK-20 MK-83
65A 65G

BASE 2 90 80 70 80 60 60 N/A N/A
BASE 3 90 70 50 70 50 40 120 60
BASE 4 70 60 50 60 70 70 N/A N/A
BASE 7 90 70 70 60 50 40 90 90

Table F.4: Weapon Capacities at Bases in Resource Package 4

GBU-10 GBU-12 AGM AGM
65A 65G

BASE 1 60 40 40 50
BASE 2 70 80 60 60
BASE 3 50 70 50 40
BASE 4 50 60 70 70
BASE 5 90 50 40 90
BASE 6 40 90 80 80
BASE 7 70 60 50 40
BASE 8 60 80 60 60

Table F.5: Weapon Capacities at Bases in Resource Package 5

MK-82 MK-84 GBU-10 GBU-12 AGM AGM MK-20 MK-83
65A 65G

BASE 1 80 80 60 40 40 50 100 80
BASE 2 90 80 70 80 60 60 N/A N/A
BASE 3 90 70 50 70 50 40 120 60
BASE 4 70 60 50 60 70 70 N/A N/A
BASE 5 80 90 90 50 40 90 N/A N/A
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Appendix G. 30 Test Cases for the Instance with 20 Targets

For a deeper analysis of the cost efficiency, the scenario consisting of Resource Package

2 and Target Set 4 was selected and 30 different test cases with different target

locations but the same desired levels of damages were examined. Table G.1 shows the

cost saving percentages for these 30 different test cases.

In addition, the CD associated with this thesis includes LINGO with Excel

Spreadsheet Models for these 30 different test cases.
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Cost Saving (%)
Test Case 1 55.71
Test Case 2 58.19
Test Case 3 54.34
Test Case 4 57.62
Test Case 5 55.58
Test Case 6 57.22
Test Case 7 55.59
Test Case 8 55.82
Test Case 9 55.71
Test Case 10 54.07
Test Case 11 56.91
Test Case 12 55.15
Test Case 13 55.58
Test Case 14 56.47
Test Case 15 57.08
Test Case 16 55.90
Test Case 17 58.65
Test Case 18 57.39
Test Case 19 55.30
Test Case 20 55.27
Test Case 21 54.82
Test Case 22 55.81
Test Case 23 55.29
Test Case 24 56.90
Test Case 25 55.10
Test Case 26 58.42
Test Case 27 58.65
Test Case 28 55.70
Test Case 29 55.30
Test Case 30 54.58

Table G.1: The Cost Saving Percentages for 30 Different Test Cases for the Scenario
of Resource Package 2 and Target Set 4
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Appendix H. Blue Dart

SPENDING LESS MONEY ON ATTACKING TARGETS

One of the main responsibilities of many Air Forces in the world is to protect the

national territory against terrorist activities attacking targets, which pose threats to

the national territory. It is important to attack targets on time since the enemy may

have a prompt intelligence capability about the possible attack. Therefore, attacking

targets at a different time than the required time may result in a useless impact on

the target. This brings about an unnecessary decrease in the resource capacities.

Air Force resources such as aircraft and weapons are limited and missions must

be carefully planned. Any decrease in the resources affects the decision making pro-

cess negatively since making a decision with a limited number of resources is harder

than making a decision with plenty of resources. The decision maker has few options

when there are limited resources available. Therefore, limited resources affect the

effectiveness and efficiency of the mission. The attacks should be effective. In other

words, the decision maker should meet the desired levels of damage on the targets.

The desired levels of damage should be met to neutralize the terrorist activities be-

cause a desired level of damage on a target is determined based on the operational

characteristics of a target. The attacks should also be efficient to prevent unnecessary

resource use.

An efficient mission plan also saves a great deal of money since resources are

comprised of aircraft and weapons and they both cost a lot. So, how is an effective and
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efficient mission plan maintained? There are several ways to attack targets using Air

Force resources since aircraft can be assigned from several bases and different types

and numbers of weapons can be carried by these aircraft when attacking targets.

Attacking a target by aircraft taking-off from a base that is closest to the target most

probably provides the most efficient attack. However, weapon costs should also be

taken into account since they differ greatly. So, a target should be attacked with the

weapons that have the least costs, as well.

Resources can also be saved by avoiding having a higher level of damage on a

target than the desired level of damage since having a higher level of damage generally

requires more resources. There is no need to have a higher level of damage on a target

because the desired level of damage on a target is determined by the decision maker

based on the operational characteristics of the target. If the desired level of damage on

a target is achieved, that means the target cannot continue performing its operational

activities. Therefore, having a higher level of damage than the desired level of damage

decreases the efficiency of a mission plan and this is an undesired situation from the

Air Force standpoint.

A decision maker also needs an automatic tool to quickly determine an effective

and efficient plan since making a quick decision is crucial in the battlefield because

the enemy may change the current status of a target (i.e., moving a headquarter to

another place) using intelligence reports.
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This research develops a mathematical model to determine an effective and

efficient mission plan. The model in this research attacks as many targets as possible

first. Next, it minimizes the total cost of the final mission plan. In addition, an Excel

spreadsheet tool is developed that planners may use to make a quick decision in the

battlefield. Finally, the model developed in this research provides about 50 % cost

saving in the mission planning.
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Appendix I. Story Board

The CD associated with this thesis includes the Powerpoint slide for the story board.
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Figure I.1: Story Board
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İzmir to take an air traffic control education and training. He was assigned as an air

traffic control officer in Diyarbakir after graduating from Air Defense School in 2005.

He entered Graduation School of Engineering, Air Force Institute of Technology in

2008.

125



REPORT DOCUMENTATION PAGE 
Form Approved 
OMB No. 074-0188 

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and 
maintaining the data needed, and completing and reviewing the collection of information.  Send comments regarding this burden estimate or any other aspect of the collection of information, including 
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, 
Suite 1204, Arlington, VA  22202-4302.  Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to an penalty for failing to comply with a collection of 
information if it does not display a currently valid OMB control number.   
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 
1. REPORT DATE (DD-MM-YYYY) 

25-03-2010 
2. REPORT TYPE  

Graduate Research Project 
3. DATES COVERED (From – To) 

Sep 2008 – Mar 2010 
4.  TITLE AND SUBTITLE 
 
 MAXIMIZING STRIKE PLANNING EFFICIENCY FOR A GIVEN CLASS OF 
TARGETS 
  
 

5a.  CONTRACT NUMBER 

5b.  GRANT NUMBER 
 

5c.  PROGRAM ELEMENT NUMBER 

6.  AUTHOR(S) 
 
Necip DİRİK, 1st Lt, TUAF 
 
 
 

5d.  PROJECT NUMBER 
 
5e.  TASK NUMBER 

5f.  WORK UNIT NUMBER 

7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(S) 
  Air Force Institute of Technology 
 Graduate School of Engineering and Management (AFIT/EN) 
 2950 Hobson Street, Building 642 
 WPAFB OH 45433-7765 

8. PERFORMING ORGANIZATION 
    REPORT NUMBER 
 
     AFIT-OR-MS-ENS-10-01 

9.  SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 
  
INTENTIONALLY LEFT BLANK 
 

10. SPONSOR/MONITOR’S ACRONYM(S) 
 
 
11.  SPONSOR/MONITOR’S REPORT 
NUMBER(S) 

12. DISTRIBUTION/AVAILABILITY STATEMENT 
       
        APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. 

 
13. SUPPLEMENTARY NOTES  
 
 
 
14. ABSTRACT  
 Strike planning is one of the fundamental tasks of the Turkish Air Force and involves assignment of strike aircraft to targets with a maximum 
level of efficiency. Therefore, planning an optimal strike plan based on the preferences of the decision maker is crucial. The efficiency of the strike 
plan in this research implies attacking the maximum number of targets while considering target priority and the desired level of damage on each 
target. Another objective is to minimize the cost of the plan. 
 
This research develops an exact model that maximizes the efficiency of the strike plan using LINGO with Excel Spreadsheets. Given this efficiency, 
the aircraft and weapon costs plus the distance flown is minimized while maintaining efficiency. The model also takes into account the aircraft and 
weapon capacities for particular types at each base to avoid assigning aircraft to targets from a base where there is an insufficient resource in terms of 
the aircraft and weapon capacity. 
 
The results show that the model developed in this research provides a great deal of cost saving (i.e., approximately 50 %) for a strike plan compared 
to a strike plan which does not consider the total cost.  
15. SUBJECT TERMS 
       Weapon and Target Assignment (WTA), Strike Planning, Air Tasking Order (ATO) 
 

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF  
     ABSTRACT 
 
 

UU 

18. NUMBER  
      OF 
      PAGES 
 

141 

19a.  NAME OF RESPONSIBLE PERSON 
James T. Moore, Dr. (ENS) 

a. REPORT 
 

U 

b. ABSTRACT 
 

U 

c. THIS PAGE 
 

U 

19b.  TELEPHONE NUMBER (Include area code) 
(937) 255-3636 ext:4528 

   Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Std. Z39-18 

 


