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« Motivation

— Full-scale aircraft hydrocarbon pool fire
testing is expensive and arduous

— The FAA is concerned with unique fire
protection challenges New Large Aircraft
(NLA) pose due to unusually great
dimensions, fuel quantities, and novel
(composite) materials
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STEP 3: CFD COMBUSTION ANALYSIS

A multi-tiered simulation framework is being formulated to model a sequential dynamic
aircraft crash fire event. Applied Research Associates SVO is developing a phase | aircraft
crash analysis methodology, with the AFRL/RXQD following suit working on a phase Il liquid
fuel dispersion and phase Il combustion analysis using computational fluid dynamics.
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Progress Path

* CFD Model Development
— Computational Resources / Physics / Boundary Conditions / Domain

NMavalAanmant

|- Model validation

— J.M. Suo-Antilla and L.A. Gritzo. “Thermal Measurements
from a Series of Tests with Large Cylinder Calorimeter on the
Leeward Edge of a JP-8 Pool Fire in Cross-Flow.” SAND

2NN1_102A

— Low / Medium / ngh Cross wind cases
« Anpnbnlication to Full-Scale Aircraft

The bullets are faded at the bottom of slide 5 because it's a progress path and those
items have not been completed yet.






s MEDIUM CROSS-WIND
TIME HISTORY

SUO-ANTILLA & GRITZO (2001)

Sandia National labs has developed an experimental test series designed specifically to
provide flame and skin temperature and heat flux data on a cylinder immersed in a jet fuel
fire under varied wind conditions. Certain segments of their data was extracted and
averaged due to optimal quasi-steady wind conditions. A low, medium, and high wind data
set was selected from their data reduction to formulate a comparable modeling
environment to compare results.



The following boundary conditions were set reflecting measurements and observations
made by Sandia National labs to create similar physical conditions. Far field model
boundaries were defined to simplify model orientation with respect to the oncoming
measured wind direction from experiments. The fire inlet conditions were extrapolated
from Sandia experimental data and turbulent boundaries conditioned to reflect the
fluctuations measured.

All wall conditions were initialized to 300 K, but were allowed to float (or rise) during the
CFD solution process to account for combustion convective and radiant heat transfer
effects.

Reynolds number calculations are based upon the cylinder diameter, and reflect an
increasing turbulent flow regime due to increasing mean velocity validating the need for
turbulent versus laminar flow modeling assumptions.
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Low wind flame temperature measurements compare very well with model results,
especially when taking into account dissimilarities between experimental set-up and model
conditions.

The low cross-wind conditions create the best conditions for a pure diffusion flame
compared to the higher wind conditions, reflecting an environment most representative of
the model design assumptions.
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The medium wind comparative condition compares reasonably well like the low wind
condition, with the most normally distributed wind gust across the cylinder. With the
highest turbulence intensity measured of all three cases, this case provides the most even
and well-averaged results most favorable for turbulent RANS modeling conditions.
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The high wind validation case shows the highest discrepancy of all three cases for 2 primary
reasons. Here, the convective force of the cross wind condition begins to compete heavily
with the diffusion combustion process creating a fire plume nearing the modeling
assumption limitations. In addition, increased cross winds create greater flow separation
around the leeward side of the cylinder. With the employment of a reduced order (2-
equation linear eddy-viscosity) turbulence model to save computational cost, cylinder flow
separation and ultimate detachment becomes increasingly hard to predict, shifting average
flamelet location off of the cylinder surface. This creates large discrepancies between skin
temperatures and heat fluxes leading to the largest divergence between experimental and
model results.
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Low speed skin temperature modeling results reflect reasonably well compared to
experiment once again when taking into account all of the model simplifications. Maximum
temperature magnitudes are achieved and trends are generally comparable.
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Similar to the low wind case, medium wind conditions create favorable results as well with
applied conditions still well within model assumptions.
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Model issues with flow separation become largely apparent here with windward surface
temperatures comparing reasonably well with experimental results, but the leeward
cylinder side diverging significantly due to the flame lifting off of the surface.

Flame lifting can be caused by a combination of both turbulent flow model breakdown
combined with combustion model assumption divergence.
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Heat flux magnitudes tend to follow suit with skin temperature measurements, with the
low wind condition creating acceptable heat flux magnitudes and trending profiles
between model and experiment.
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Although heat flux model and experimental magnitudes aren't as comparable compared to
the low wind speed case, the profiles compare well showing major flow structures are well
captured.
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Leeward heat flux comparisons between model and experiment suffer the most for the
high wind regime for the same reasons discussed previously. Heat flux magnitudes and
trending profiles, however, due compare well on the windward side where flow separation
is not an issue.
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The following three pictures depict the average flame shape and temperature in the 3
cross-cuts compared against experimental data, in addition to cylinder skin temperatures.

The low wind case shows the lowest plume temperatures largely due to the least amount
of fuel air mixing combined with the largest off normal wind direction with respect to the
cylinder surface.

The medium wind case has the highest fluctuating wind condition and the most normal
wind direction creating the most definitive plume shape and increased temperatures.

The high wind case had the least amount of wind fluctuations but the highest magnitudes
causing increased swirl behind the cylinder and non-coherent plume structures.
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The Boeing 707 was selected as the baseline aircraft due to its comparable size and shape
with the average commercial jetliner.

The PCA fire condition as described in NFPA 403 was used for model conditions, with
formal boundary conditions derived from the low to medium cross-wind speeds that
compared the best in the validation study.
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Flow visualization of the Boeing 707 in a 5 mph (equivalent low speed condition) with 10%
turbulence intensity is depicted.

Similar to the validation cylinder results, thermal surface conditions are affected by the
local flow structures created by the turbulent mixing between the combusting fuel vapors
and incoming oxygenated wind. More complex surface shapes create a more varied profile
creating localized hot and cold spots due to varied aerodynamic shapes (stream-wise main
wings versus the bluff body the vertical tail presents to the oncoming cross-flow).
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