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AFIT/GA/ENY/10-M02 

 

Abstract 

 

 Post flight analysis of ballistic missile reentry vehicles is an area of focus for the 

U.S. Government, especially for those involved in ballistic missile defense.  Typically, 

this analysis incorporates either a model-driven least squares filter or a data-following 

Kalman filter.  The research performed here developed a filter that attempts to integrate 

the strengths of both filters.  A least squares filter operates on observation data collected 

during exoatmospheric free flight and a Kalman filter is used to analyze data collected 

lower in the atmosphere, where potential maneuvers could be performed.  Additionally, 

the filter was written to incorporate data from multiple sensors. 

 Using this hybrid filter, different scenarios are investigated to determine the 

potential benefits of adding additional collectors, increasing the data rate of collecting 

sensors, and investigating the effects of different collector geometry on the accuracy of 

results. 

 Results show that the filter successfully transitions from the least squares to 

Kalman filter, using the final values of the free flight propagation for the Kalman filter’s 

initial state.  Using this filter to investigate different collection scenarios, it was 

determined that the best results are achieved when multiple collectors are used, the data 

collection rate of the collectors is increased, and collectors are positioned perpendicular 

to the reentry vehicle heading. 
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ESTIMATING CHARACTERISTICS OF A MANEUVERING REENTRY 

VEHICLE OBSERVED BY MULTIPLE SENSORS 

 

I.  Introduction 

Motivation 

Ballistic missiles are among the most advanced technology being currently 

developed for the purpose of conducting war.  From the relatively small scale missiles in 

the arsenals of India and Pakistan to the massive intercontinental ballist ic missiles 

(ICBMs) whose silos and mobile launchers dot the remote landscapes of Russia and the 

United States, ballistic missile technology exists today on a massive scale and will be a 

major component in future conflicts.  Additionally, the proliferation of missile 

technology to countries that lack the technical manufacturing expertise necessary to 

produce ballistic missiles themselves is a reality.  For these reasons, the understanding of 

the operational capabilities of ballistic missiles and their reentry vehicles (RVs) is 

currently one of our nation’s highest priorities 
[14]

. 

 To meet these priorities, the United States has deployed a wide range of sensor 

technologies throughout the world.  Combining the data collected by these sensors into a 

coherent assessment of a missile system’s capabilities has long been the mission of 

intelligence agencies.  Almost always, this will require data analysis in the form of 

modeling and simulation to determine key characteristics of the missile’s RV.  
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Background 

 The RV parameter most commonly estimated is the ballistic coefficient.  The 

ballistic coefficient can have varying definitions but is generally a ratio between the RV’s 

mass and the product of its coefficient of drag and wetted surface area of the form 
[9]

 

 𝛽 =
𝑚

𝐶𝐷𝑆
 (1) 

where 

β = ballistic coefficient  

m = mass  

CD = coefficient of drag  

S = wetted surface area   

 

In this form, an RV-like object with a large mass to surface area ratio will be 

referred to as a high-beta object (5000 ≲ 𝛽 ≲ 15,000 𝑘𝑔
𝑚2); however, some formulations 

can define the term to be the inverse of this representation leading to RV-like objects 

being characterized by ballistic coefficients that are positive fractions much less than one.  

In the intelligence community, the formulation with mass in the numerator, as in 

Equation (1), is most commonly used and will be adopted for this thesis.  

Research Focus and Problem Statement 

 While mass and wetted area can largely be considered constant for an RV flying a 

purely ballistic trajectory, the coefficient of drag cannot be.  Changes in velocity and 

atmospheric density will lead to variations in the coefficient of drag, and thus, the 

ballistic coefficient.  Estimating the characteristic profile of the ballistic coefficient as it 
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changes throughout the reentry for non-maneuvering RVs is one of the goals of the data 

analysis. 

 For maneuvering RVs, the ability to determine the accelerations that deviate from 

a purely ballistic reentry becomes the focus of analysis.  This thesis will investigate 

methods of characterizing the magnitude and direction of these sensed accelerations. 

 A further challenge in the estimation problem is combining observation data from 

multiple sensors that collect data on the same target.  The analytical problem that is most 

commonly investigated involves the exploitation of single-source radar collections of 

azimuth, elevation, range, and potentially range rate.  As infrared sensors, or other 

sensors that lack the ability to determine range, increasingly monitor reentries, 

incorporating data from this sensor type into the estimation problem is an additional goal 

of this thesis.  In summary, the goal of this thesis is: 

Estimate characteristics of reentry vehicles, including the ballistic coefficient and 

non-gravitational accelerations, using observation data collected by multiple 

sensors. 

Methodology 

Data analyses of reentering objects typically employ either the method of least 

squares 
[1,6,7]

 or a Kalman filter 
[3,8,9]

.  The decision to use one of these filters over the 

other is usually determined by the ability to model the vehicle’s dynamics in a 

predetermined model.  In a situation where a vehicle is only acted on by the forces of 

gravity or by constant sensed accelerations, a least squares filter with a model of these 

dynamics will rapidly determine the best solution 
[1,6]

.  Alternatively, a target 
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experiencing unpredictable accelerations that could vary throughout its flight is better 

filtered by a Kalman filter which can adapt to changing dynamics 
[3,8,9]

. 

In this thesis, an attempt will be made to merge these two filters into a single 

algorithm.  During periods of purely ballistic flight, the accurate and fast solution of the 

least squares filter will be utilized.  When the target has descended lower into the 

atmosphere, where there is a potential for maneuvering, the adaptable Kalman filter will 

be incorporated to estimate non-gravitational accelerations.  Through the marriage of 

these two methods, the strengths of both filters will be exercised. 

Assumptions/Limitations 

The preliminary implementation of this algorithm will assume separate zones 

between the regions of purely ballistic flight and potential maneuverability at a 

predetermined altitude.  However, this assumption could be invalidated by the firing of 

thrusters or an upper stage rocket engine that could be included in the collected data, and 

thus a future version of this algorithm could allow for a more detailed breakdown of 

regions of ballistic and maneuvering flight to compensate for this.  Potentially, allowing 

the Kalman filtering portion of the filter to activate during these regions could handle any 

such maneuvers. 

Alternatively, there could be situations where a vehicle’s performance in the 

lower atmosphere is well known and could be modeled.  By employing the Kalman filter 

during these segments instead of a model driven least squares filter, some accuracy could 

potentially be sacrificed.  This circumstance is unlikely due to the unpredictable nature of 

reentry vehicles and would be unlikely to arise. 
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For all cases investigated, sensors measuring range, azimuth, and elevation (RAE) 

or azimuth and elevation (AE) were incorporated.  Random noise was applied to 

simulated observation data according to Table 1.  These values were specified in an 

attempt to be representative of these categories of sensors without being specific to any 

actual sensor in the real world.  Having a priori knowledge of these values is assumed. 

Table 1. Random noise applied to simulated observations. 

Standard Deviation RAE Sensor AE Sensor 

𝜎𝑅𝐴𝑁𝐺𝐸  2 m -- 

𝜎𝐴𝑍𝐼𝑀𝑈𝑇𝐻  .02 degrees .03 degrees 

𝜎𝐸𝐿𝐸𝑉𝐴𝑇𝐼𝑂𝑁  .015 degrees .03 degrees 

 

Preview 

 In the following pages, Chapter II will review the published literature covering 

previous research on this topic, Chapter III will provide a detailed methodology for the 

data filter’s operation, Chapter IV discusses the results of this methodology, and Chapter 

V provides conclusions and offers recommendations for future work.  After the main 

body of the paper, the appendix includes MATLAB code written as a part of this 

research. 
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II. Literature Review 

 

Chapter Overview 

The purpose of this chapter is to provide an overview of relevant research that has 

been conducted in the past ten years pertaining to this topic. 

Relevant Research 

The research into nonlinear estimation has a long history, arguably dating back 

well before the time of Gauss’s development of least squares to the methods of 

averaging.  The advances in the field have largely mirrored the advances in computing 

technology, as described in Nonlinear Filters: Beyond the Kalman Filter 
[3]

.  Gauss 

developed a method to make a single pass through all the available observations at once.  

With the advances in the computing technology, engineers increasingly turned to 

sequential filters, such as the unscented Kalman filter, to perform real-time estimation.  

As advances in computing progress, even more exotic methods have begun to gain in 

popularity, such as the particle filter.  The particle filter is based off of Monte Carlo 

sampling being used to investigate the state space 
[3,15]

. 

Some research has been performed at the Air Force Institute of Technology 

(AFIT) by Holmes 
[6]

 and Bittle 
[1]

 into the parameter identification of reentry vehicles.  

The research of Holmes and Bittle primarily focused on identifying characteristics of 

reentry vehicles that were in either flying purely ballistic or performing a constant 

maneuver which could be determined from the vehicle’s bank angle 
[1,6]

.  Both of these 

problems lend themselves to the batch processing of the method of least squares, but 
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would not be able to handle the issue of a ballistic coefficient changing as a function of 

velocity and altitude.  In order to account for these uncertain dynamics, this thesis will 

move beyond the batch processing of the method of least squares into a sequential filter, 

like the Kalman filter.  As will be shown, to maintain the maximum accuracy the 

solutions of both a Kalman filter and a nonlinear least squares filter will be combined into 

a hybrid solution. 

Some work that has been done on hybrid filters, or modified filters 
[7,9]

 mostly 

focused on the problem of RV interception by an Anti-Ballistic Missile (ABM).  Jackson 

and Farbman developed an interesting application of the least squares method where data 

is processed in small batches instead of as one large data set.  This method allowed the 

filter to respond to changing dynamics.  Jackson and Farbman’s approach could be of 

applicability in this problem, but they relied heavily on curve fitting data without regard 

to continuity of dynamics between adjacent states.  Also, accelerations were modeled as 

unknowns in three directions, so further processing would need to take place to determine 

the sources of accelerations and what portion of the entire acceleration was due to drag. 

Lee and Liu adopted a more hybrid approach, combining a least squares and 

Kalman filters 
[9]

.  Lee and Liu recognized that a Kalman filter is better suited to a target 

with large changes in dynamics, but that when such a filter is applied to better behaved 

vehicles (slowly changing EOMs) results can degrade greatly.  To counter this behavior, 

Lee and Liu ran a Kalman filter with a basic state vector through portions of the flight 

identified as being nearly ballistic by the companion least squares filter and then switched 

modes to a more dynamic state vector for the Kalman filter when the companion least 

squares filter identifies potential non-ballistic behavior.  This thesis will attempt to utilize 
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the methods of Jackson and Farbman to estimate an initial guess for the state and further 

refine this estimate using a Kalman filter similar to that derived by Lee and Liu. 

Summary 

A lot of research is being done on new methods of data filtering, including 

particle filters and other exotic filtering techniques.  This thesis will investigate a 

combination of the more classical least squares and Kalman filters to take advantage of 

their individual strengths.  This method is different than what was developed by Lee and 

Liu, where the companion least squares filter was only used to modify the makeup of the 

Kalman filter’s state vector.  A method of performing least squares filtering on a sliding 

window of non-ballistic flight will be explored to provide an initial guess at the state for 

the Kalman filter to include in its computations.  This least squares sliding window 

method was pulled from the literature, where it was used to generate the final estimate, 

rather than acting as preprocessing for another filter. Furthermore, whereas all of the 

reviewed literature assumed a single collector and sometimes simplified observation 

models, the algorithm developed here accommodates an unlimited number of sensors and 

a variety of data types. 
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III.  Methodology 

Chapter Overview 

The purpose of this chapter is to overview the specific methods and decisions that 

were implemented for the filters included in this thesis.  A breakdown of the different 

filtering phases as well as assumptions and engineering decisions will be described. 

Filter Phases 

Phase 0 – The Initial Guess. 

The phase of flight where the target is exoatmospheric is analyzed by a batch least 

squares filter fitting the observations to an oblate Earth gravity model.  This phase is 

implemented for all observations that are determined to be at an altitude greater than 120 

km.  The 120 km value is used as a common number with METAL
*
 for consistency.  If 

the data does not include any observations above this cutoff altitude, the algorithm will 

instead consider the highest altitude observations.  In this case, the algorithm will select 

10% of the entire data set that occurs at the highest altitudes to fit a state vector to. 

With the free flight data identified, the initial hurdle for the least squares filter is 

determining an initial guess to feed the batch filter.  For this thesis, an initial state was 

computed using Equation (1) 
[7]

, the same equation that will be used for the least squares 

sliding window.  For this application, this portion of data is taken as the window of 

interest and a single computation is done.  The equation describing the state’s 

                                                
* The Mathematical and Engineering Trajectory Analysis Library is a library of mostly MATLAB functions 

that was developed at the National Air and Space Intelligence Center that contains tools to accomplish 

common trajectory analysis tasks, such as coordinate frame conversions, state vector propagation, and data 

manipulation. [2] 
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propagation with constant snap (fourth-derivative of position) is presented in Equation 

(2) 
[7]

. 

  𝑥 𝑚𝑒𝑎𝑠 =  𝑥𝑛 +  𝑥𝑛
(1) ∆𝑡 +  𝑥𝑛

(2) 
1

2
∆𝑡2 +  𝑥𝑛

(3) 
1

6
∆𝑡3 +  𝑥𝑛

(4) 
1

24
∆𝑡4 (2) 

where 

 𝑥 𝑚𝑒𝑎𝑠  = observed positions  

 𝑥𝑛  = initial state to be computed  

𝑥𝑛
 𝑖  = i

th
 inertial derivative of the state with respect to time  

∆𝑡 = time difference between observations and initial state  

 

Equation (2) can be used to separately solve for the X, Y, and Z components of 

position and velocity for the initial state estimate.  The procedure for computing the 

initial X position and velocity is now described, with the understanding that the 

procedure is the same for the Y and Z components. 

 In order to compute the position and velocity components of the state, a system of 

equations of the form 𝐴𝑥 = 𝑏   is desired so that the least squares solution can be directly 

solved for.  In this application, the A matrix has as many rows as observation points and 

five columns matching the five states defined in Equation (2).  The A matrix defines the 

coefficients of the derivatives defined by Equation (2) as shown below: 

 𝐴 =  

1 ∆𝑡1
1

2
∆𝑡1

2 1

6
∆𝑡1

3 1

24
∆𝑡1

4

1 ∆𝑡2
1

2
∆𝑡2

2 1

6
∆𝑡2

3 1

24
∆𝑡2

4

⋮ ⋮ ⋮ ⋮ ⋮

  (3) 
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 The 𝑏   vector is constructed as the X position components of observations that had 

been previously identified as being exoatmospheric transformed to an ECI reference 

frame.  The 𝑏   vector has as many rows as observations and is a single column.  With this 

information defined, the system of equations is fully defined as: 

  

1 ∆𝑡1
1

2
∆𝑡1

2 1

6
∆𝑡1

3 1

24
∆𝑡1

4

1 ∆𝑡2
1

2
∆𝑡2

2 1

6
∆𝑡2

3 1

24
∆𝑡2

4

⋮ ⋮ ⋮ ⋮ ⋮

 

 
 
 
 
 
 
𝑥𝑛

𝑥𝑛
(1)

𝑥𝑛
(2)

𝑥𝑛
(3)

𝑥𝑛
(4) 

 
 
 
 
 

=  

𝑥𝑚𝑒𝑎𝑠 1
𝑥𝑚𝑒𝑎𝑠 2

⋮
  (4) 

 

 The ideal solution to this system, when 𝐴 is square and nonsingular, is 𝑥 = 𝐴−1𝑏   

however this thesis will take advantage of the Singular Value Decomposition (SVD) to 

perform the inversion, which will have the advantage of computing the minimum norm 

solution when the A matrix is not invertible 
[11]

.  This calculation is done easily with 

MATLAB using the pinv() command to compute the pseudoinverse of 𝐴.  Since the 

pseudoinverse equals the inverse in the case where 𝐴 is invertible, this method is 

appropriate for all 𝐴. 

 Once this procedure has been performed on the X, Y, and Z elements of the 

transformed observations, the initial guess of the state is taken as the position and 

velocity components of the individual solutions.  With this initial guess, the batch least 

squares filter is triggered. 

 Phase 1 – Free Flight Batch Least Squares Filter. 

 The batch least squares filter operates iteratively, improving upon the solution 

until further computation cannot achieve a better result.  The least squares filter relies on 
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the computation of partial derivatives to compute state updates.  In the classical 

implementation of the filter, these derivatives are derived analytically 
[13]

, but with 

today’s computers these derivatives can easily be estimated numerically using a finite 

difference method.  This thesis will implement numerical partial derivatives for 

computing the state updates in the same manner as does portions of METAL
[2]

.  With this 

decision, the least squares algorithm will proceed as described in Figure 1 
[13]

. 

 

 

 

 

 

 

 

 

 

 

 

 

 In MATLAB, the current guess at the initial state is taken as 𝑥 𝑟𝑒𝑓  𝑡0 .  The 

elements of the state used throughout the algorithm are: 

Figure 1 – Nonlinear least squares flowchart 
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 𝑥 =

 
 
 
 
 
 
 
 
 
 
𝑥𝐸𝐶𝐼
𝑦𝐸𝐶𝐼
𝑧𝐸𝐶𝐼
𝑥 𝐸𝐶𝐼
𝑦 𝐸𝐶𝐼
𝑧 𝐸𝐶𝐼
𝑥 𝑆𝐸𝐶𝐼
𝑦 𝑆𝐸𝐶𝐼
𝑧 𝑆𝐸𝐶𝐼  

 
 
 
 
 
 
 
 
 

 (5) 

where 

𝑥𝐸𝐶𝐼  = Earth-Centered Inertial X Position  

𝑦𝐸𝐶𝐼  = Earth-Centered Inertial Y Position  

𝑧𝐸𝐶𝐼  = Earth-Centered Inertial Z Position  

𝑥 𝐸𝐶𝐼  = Earth-Centered Inertial X Velocity  

𝑦 𝐸𝐶𝐼  = Earth-Centered Inertial Y Velocity  

𝑧 𝐸𝐶𝐼  = Earth-Centered Inertial Z Velocity  

𝑥 𝑆𝐸𝐶𝐼  = Earth-Centered Inertial X Sensed Acceleration  

𝑦 𝑆𝐸𝐶𝐼  = Earth-Centered Inertial Y Sensed Acceleration  

𝑧 𝑆𝐸𝐶𝐼  = Earth-Centered Inertial Z Sensed Acceleration  

 

Note that the accelerations in Equation (5) are sensed accelerations.  Sensed 

accelerations differ from the total accelerations in that they do not incorporate 

gravitational acceleration.  Sensed accelerations account for accelerations that are the 

result of other body forces that would result in a maneuver away from a ballistic 

trajectory. 
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This state is then perturbed individually in the X, Y, and Z positions and 

velocities to create six perturbed states denoted 𝑥 𝑝𝑒𝑟𝑡  𝑡0 .  The magnitudes of these 

perturbations are arbitrarily chosen.  For this thesis, perturbations of 1 𝑚 in position and 

1 𝑚

𝑠𝑒𝑐
 in velocity are implemented as arbitrary values. 

 With the initial state and perturbed states defined, they are then propagated to all 

observation times.  This is accomplished by basic equations of motion (EOM) defined in 

Equations (6-11). 

 
𝑑

𝑑𝑡
𝑥 = 𝑥  (6) 

 
𝑑

𝑑𝑡
𝑦 = 𝑦  (7) 

 
𝑑

𝑑𝑡
𝑧 = 𝑧  (8) 

 
𝑑

𝑑𝑡
𝑥 = 𝑥 = 𝑔𝑥  (9) 

 
𝑑

𝑑𝑡
𝑦 = 𝑦 = 𝑔𝑦  (10) 

 
𝑑

𝑑𝑡
𝑧 = 𝑧 = 𝑔𝑧  (11) 

where 

𝑔𝑥 , 𝑔𝑦 , 𝑔𝑧  = x,y,and z ECI components of gravitational acceleration  

 

 During this phase of flight, it is assumed that there is little to no atmosphere and 

therefore there are no external body forces and hence no sensed accelerations.  The only 

changes in velocity are due to the gravitational acceleration.  With the current state 

estimate and its perturbations propagated, the next step is the computation of the data 

residuals. 
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 Computing data residuals is merely an exercise in reference frame 

transformations.  These functions have been fully implemented in the METAL library, 

and were used in this research 
[2]

.  The propagated states are transformed from Earth-

Centered Inertial (ECI) frame to a sensor-specific Range, Azimuth, and Elevation (RAE) 

frame.  With this transformation complete, the residuals are calculated from Equation 

(12). 

 

 𝑟 = 𝑧 − 𝑥 𝑟𝑒𝑓 𝑅𝐴𝐸
 (12) 

where 

𝑟  = matrix of residuals  

𝑧  = matrix of observations  

𝑥 𝑟𝑒𝑓 𝑅𝐴𝐸
 = propagated reference state in RAE frame  

 

 With the residuals computed, statistical editing of outliers can be performed.  

With a priori knowledge of a sensor’s performance
†
, residuals outside of an arbitrary 

number of standard deviations can be removed.  The algorithm produced for this thesis 

allows for the number of standard deviations to be input by the user, with the default 

settings deleting residuals more than three standard deviations from the computed 

reference trajectory. 

 With any deleting complete, the residuals matrix must be reshaped into a column 

vector to be used in the sum  𝑇𝑖
𝑇𝑄𝑖

−1𝑟 𝑖𝑖 .  Note that this action is easily accomplished in 

MATLAB with the reshape() function. 

                                                
† See Table 1 for error values used in the simulated observation data generated for this research. 
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 The 𝑄𝑖  matrix required for the two sums is constructed from the a priori 

knowledge of random errors in the sensor observations.  The matrix is diagonal and of the 

form: 

 𝑄 =

 
 
 
 
 
 
 
 
 

1

𝜎𝑅
2 0 0 0 0 …

0
1

𝜎𝐴
2 0 0 0 …

0 0
1

𝜎𝐸
2 0 0 …

0 0 0
1

𝜎𝑅
2 0 …

0 0 0 0
1

𝜎𝐴
2 ⋱

⋮ ⋮ ⋮ ⋮ ⋱ ⋱ 
 
 
 
 
 
 
 
 

 (13) 

where 

𝑄 = covariance matrix  

𝜎𝑅 = sensor standard deviation in range measurements  

𝜎𝐴 = sensor standard deviation in azimuth measurements  

𝜎𝐸  = sensor standard deviation in elevation measurements  

 

 The 𝑄 matrix in Equation (13) has three of the standard deviations repeated 

enough times to make the matrix dimensions equal to the number of observations 

multiplied by the number of observation data types, three in the case of a sensor with 

range, azimuth, and elevation measurements.  For sensors lacking a range component in 

the measurement, the range standard deviation is omitted and the 𝑄 matrix is reduced in 

size. 

 The last element of the sum  𝑇𝑖
𝑇𝑄𝑖

−1𝑟 𝑖𝑖  needed is 𝑇, the observation matrix, 

computed with the perturbed trajectories.  This matrix is defined as the propagation of the 
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partials of the observation relationships with respect to the different state vector 

components, as shown numerically in Equation (14). 

 

 

 𝑇 = (14) 

 
 
 
 
 
 
 
𝑅𝑟𝑒𝑓 1

−𝑅𝑝𝑒𝑟𝑡 −𝑥1

𝑥𝑝𝑒𝑟𝑡

𝑅𝑟𝑒𝑓 1
−𝑅𝑝𝑒𝑟𝑡 −𝑦 1
𝑦𝑝𝑒 𝑟𝑡

𝑅𝑟𝑒𝑓 1
−𝑅𝑝𝑒𝑟𝑡 −𝑧1

𝑧𝑝𝑒𝑟𝑡

𝑅𝑟𝑒𝑓 1
−𝑅𝑝𝑒𝑟𝑡 −𝑥 1

𝑥 𝑝𝑒𝑟𝑡

𝑅𝑟𝑒𝑓 1
−𝑅𝑝𝑒𝑟𝑡 −𝑦 1

𝑦 𝑝𝑒𝑟𝑡

𝑅𝑟𝑒𝑓 1
−𝑅𝑝𝑒𝑟𝑡 −𝑧 1

𝑧 𝑝𝑒𝑟𝑡

𝐴𝑟𝑒𝑓 1
−𝐴𝑝𝑒𝑟𝑡 −𝑥1

𝑥𝑝𝑒𝑟𝑡

𝐴𝑟𝑒𝑓 1
−𝐴𝑝𝑒𝑟𝑡 −𝑦1

𝑦𝑝𝑒𝑟𝑡

𝐴𝑟𝑒𝑓 1
−𝐴𝑝𝑒𝑟𝑡 −𝑧1

𝑧𝑝𝑒𝑟𝑡

𝐴𝑟𝑒𝑓 1
−𝐴𝑝𝑒𝑟𝑡 −𝑥 1

𝑥 𝑝𝑒𝑟𝑡

𝐴𝑟𝑒𝑓 1
−𝐴𝑝𝑒𝑟𝑡 −𝑦 1

𝑦 𝑝𝑒𝑟𝑡

𝐴𝑟𝑒𝑓 1
−𝐴𝑝𝑒𝑟𝑡 −𝑧 1

𝑧 𝑝𝑒𝑟𝑡

𝐸𝑟𝑒𝑓 1
−𝐸𝑝𝑒𝑟𝑡 −𝑥1

𝑥𝑝𝑒𝑟𝑡

𝐸𝑟𝑒𝑓 1
−𝐸𝑝𝑒𝑟𝑡 −𝑦1

𝑦𝑝𝑒𝑟𝑡

𝐸𝑟𝑒𝑓 1
−𝐸𝑝𝑒𝑟𝑡 −𝑧1

𝑧𝑝𝑒𝑟𝑡

𝐸𝑟𝑒𝑓 1
−𝐸𝑝𝑒𝑟𝑡 −𝑥 1

𝑥 𝑝𝑒𝑟𝑡

𝐸𝑟𝑒𝑓 1
−𝐸𝑝𝑒𝑟𝑡 −𝑦 1

𝑦 𝑝𝑒𝑟𝑡

𝐸𝑟𝑒𝑓 1
−𝐸𝑝𝑒𝑟𝑡 −𝑧 1

𝑧 𝑝𝑒𝑟𝑡

⋮ ⋮ ⋮ ⋮ ⋮ ⋮  
 
 
 
 
 
 

 

where 

𝑇 = observation matrix  

𝑅𝑟𝑒𝑓 1
 = first range value of the propagated reference trajectory  

𝐴𝑟𝑒𝑓 1
 = first azimuth value of the propagated reference trajectory  

𝐸𝑟𝑒𝑓 1
 = first elevation value of the propagated reference trajectory  

𝑅𝑝𝑒𝑟𝑡 −𝑥1
 = first range value of the x-perturbed trajectory  

𝐴𝑝𝑒𝑟𝑡 −𝑥1
 = first azimuth value of the x-perturbed trajectory  

𝐸𝑝𝑒𝑟𝑡 −𝑥1
 = first elevation value of the x-perturbed trajectory  

𝑥𝑝𝑒𝑟𝑡  = magnitude of perturbation to reference state in x direction  

 

 With all elements of the sums  𝑇𝑖
𝑇𝑄𝑖

−1𝑇𝑖𝑖  and  𝑇𝑖
𝑇𝑄𝑖

−1𝑟 𝑖𝑖  now computed, these 

values are now incorporated into the sums and the updates are computed.  From Figure 

1, these updates are  
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       𝑃𝛿𝑥 =   𝑇𝑖
𝑇𝑄𝑖

−1𝑇𝑖
𝑖

 
−1

 (15) 

 𝛿𝑥  𝑡0 = 𝑃𝛿𝑥  𝑇𝑖
𝑇𝑄−1𝑟𝑖   

𝑖
 (16) 

where 

𝑃𝛿𝑥  = updated covariance matrix  

𝛿𝑥  𝑡0  = update to the reference state  

 

 The final step in the batch least squares phase is to check for convergence and 

update the reference state.  The test for convergence can be accomplished in a couple of 

ways, either by checking if the update to the state vector lies within the updated 

covariance matrix uncertainty 
[13] 

or by checking to see if a defined cost function has 

stopped improving from one iteration to the next 
[2]

.  Both of these methods were 

investigated, and in the end it was decided that the cost function method typically led to 

better results as the covariance method would typically indicate convergence before a 

good fit had been achieved. 

 The cost function computed for this thesis takes the form: 

 𝑐𝑜𝑠𝑡 =  
   𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 2

𝑂𝐵𝑆𝐸𝑅𝑉𝐴𝑇𝐼𝑂𝑁𝑆

𝜎𝑆𝐸𝑁𝑆𝑂𝑅
𝑆𝐸𝑁𝑆𝑂𝑅𝑆

 (17) 

where 

𝑐𝑜𝑠𝑡 = cost function used to test for convergence  

𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 = observation residual from reference trajectory  

𝜎𝑆𝐸𝑁𝑆𝑂𝑅  = standard deviation of sensor observation  
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 This cost function normalizes the data residuals by the sensor’s standard 

deviations and gives proper weight to measurements that are more precise than others.  

The change in cost function between iterations is computed in each iteration after the 

first.  Once this change drops below a value defined by the user, the filter is stopped.  The 

default convergence criterion is a change of less than .01% of the cost function. 

 Once the free flight batch least squares filter has converged, the final state is 

passed to the next phase of the algorithm, where the sensed accelerations of the target 

will be considered variable, and need to be estimated. 

 Phase 2a – Least Squares Sliding Window Discontinuous Filter. 

 The next phase of the algorithm is divided into three subsections: 2a, 2b, and 2c, 

which together filter those observations deep enough into the atmosphere that the target 

can experience non-zero sensed accelerations. The first of these subsections in the least 

squares sliding window filter.  This filter is based off of the paper by Jackson and 

Farbman, Trajectory Reconstruction with a Least Squares Sliding Window (LSSW) Filter 

[7]
.  This subsection is a rapid computation of an approximate state at every observation 

that contains a range, azimuth, and elevation measurement.  This approximation can be 

used in the subsequent subsections of phase two as an initial guess of the state at those 

times. 

 This section relies on multiple solutions to Equation (2) over different portions of 

the observations.  Taken as a whole, these solutions are the initial guesses used later.  

Other than computing solutions to Equation (2) multiple times, this portion of the 

algorithm must determine which portions (windows) of the observations to include in 

each run.  The method used to determine this window size is similar to that performed by 
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Jackson and Farbman.  The window size begins at a defined minimum value, grows to a 

nominal value that is used throughout the majority of the observations, and then grows 

again as the window approaches the end of the available data.  Three values for minimum 

window size, window size, and maximum window size are optional user inputs with 

default values 5, 30, and 40, respectively.  An example of a window size varying by the 

position in the observations is presented in Figure 2. 

 

 

After some trial, it was decided to limit the use of these results in later sections of phase 

two to just the position estimates.  The velocity and acceleration estimates were found to 

have extreme noise, often returning estimates with mean and random errors large enough 

that it was unclear if there was any correlation to the truth values.  With the positions 

estimates determined, the next subsection of phase two is commenced. 
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Figure 2 – Least squares sliding window size 
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 Phase 2b – Kalman Filter Forward Pass. 

 The main subsection of phase two runs a Kalman filter.  The Kalman filter is 

executed in a manner described in Figure 3 
[13]

. 

 

 

 

 

 

 

 

 

 

 The state is propagated using easily defined equations of motion, rather than the 

state transition matrix.  These equations of motion are 

  

Figure 3 – The Kalman filter flowchart 

With a previous estimate, 𝑥  − , 
and its covariance, 𝑃 − , set 

𝑥 𝑟𝑒𝑓  𝑡0 = 𝑥  −  

Propagate state and covariance, 

compute 𝑟𝑧  and 𝐻𝑖 . 

𝐾 = 𝑃 − 𝐻𝑇 𝑅 + 𝐻𝑃 − 𝐻𝑇 −1 

𝑃 + =  𝐼 − 𝐾𝐻 𝑃 −  
𝛿𝑥  + = 𝛿𝑥  − + 𝐾 𝑟 𝑧 −𝐻𝛿𝑥  −   

Compute the Kalman gain, covariance, and state update: 

𝑥 𝑟𝑒𝑓+1 𝑡0 = 𝑥 𝑟𝑒𝑓  𝑡0 + 𝛿𝑥  𝑡0  
Update the propagated state:  
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𝑑

𝑑𝑡
𝑥 = 𝑥  (18) 

 
𝑑

𝑑𝑡
𝑦 = 𝑦  (19) 

 
𝑑

𝑑𝑡
𝑧 = 𝑧  (20) 

 
𝑑

𝑑𝑡
𝑥 = 𝑥 = 𝑔𝑥 + 𝑥 𝑆 (21) 

 
𝑑

𝑑𝑡
𝑦 = 𝑦 = 𝑔𝑦 + 𝑦 𝑆 (22) 

 
𝑑

𝑑𝑡
𝑧 = 𝑧 = 𝑔𝑧 + 𝑧 𝑆 (23) 

where 

 

x , y , z  = total accelerations in the x, y, and z ECI directions  

𝑥 𝑆 , 𝑦 𝑆 , 𝑧 𝑆  = sensed accelerations (due to body forces other than gravity) 

    in the x, y, and z ECI directions 

 

 

 Equations (18-23) differ from Equations (6-11) that were used in the free flight 

batch least squares filter in that the sensed accelerations are allowed to be non-zero.  This 

method of propagating the state is more accurate than the approximation given by the 

state transition matrix and is implemented for state propagation.  The state transition 

matrix must still be computed, however, in order to propagate the state covariance.  The 

state transition matrix is computed from 
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 Φ =

 
 
 
 
 
 
 
 
 
1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1 

 
 
 
 
 
 
 
 

+ 𝐹 Δ𝑡 (24) 

where 

Φ = state transition matrix  

𝐹 = state distribution matrix  

Δ𝑡 = difference in time between adjacent observations  

 

 The state distribution matrix, 𝐹, is the Jacobian of the state dynamics defined in 

Equations (18-23) where the gravitational acceleration is replaced with a simple 

approximation with respect to the elements of the state, defined in Equation (5). 

 𝑥 = 𝑥 𝑆 + 𝑔𝑥 = 𝑥 𝑆 −
𝜇𝑥

 𝑥2+𝑦2+𝑧2 
3

2 
 (25) 

 𝑦 = 𝑦 𝑆 + 𝑔𝑦 = 𝑦 𝑆 −
𝜇𝑦

 𝑥2+𝑦2+𝑧2 
3

2 
 (26) 

 𝑧 = 𝑧 𝑆 + 𝑔𝑧 = 𝑧 𝑆 −
𝜇𝑧

 𝑥2+𝑦2+𝑧2 
3

2 
 (27) 

where 

μ = Earth’s gravitational parameter ≈  3.986005 ∙ 105 𝑘𝑚
3

𝑠2   

 

 With these values substituted for the gravitational acceleration, the state 

distribution matrix is computed by Equation (28). 
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 𝐹 = (28) 

 
 
 
 
 
 
 
 
 

0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0

−𝜇𝑅−3 1 − 3𝑥2𝑅−2 3𝜇𝑥𝑦𝑅−5 3𝜇𝑥𝑧𝑅−5 0 0 0 1 0 0

3𝜇𝑥𝑦𝑅−5 −𝜇𝑅−3 1 − 3𝑦2𝑅−2 3𝜇𝑦𝑧𝑅−5 0 0 0 0 1 0

3𝜇𝑥𝑧𝑅−5 3𝜇𝑦𝑧𝑅−5 −𝜇𝑅−3 1 − 3𝑧2𝑅−2 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 

 
 
 
 
 
 
 
 

 

where 

𝑅 =   𝑥2 + 𝑦2 + 𝑧2    for ease of computation  

  

 With the state distribution matrix, 𝐹, computed, the state transition matrix, Φ, can 

be determined.  The state transition matrix can then be used to propagate the covariance 

matrix to the current time with Equation (29). 

 𝑃𝑡𝑛  − = Φ 𝑃𝑡𝑛−1
 +  ΦT + Q (29) 

where 

𝑃𝑡𝑛  −  = initial covariance matrix at time 𝑡𝑛   

𝑃𝑡𝑛−1
 +  = updated covariance matrix at time 𝑡𝑛−1  

𝑄 = noise applied to covariance propagation  

 

 A few different methods of computing Q, the covariance propagation noise, were 

investigated.  In the end, the method employed by the Kinematics And Dynamics 

Reconstruction Environment (KADRE)
[4]

 was implemented due to its incorporation of 
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the time step.  Due to its explicit dependency on the time step from one data point to the 

next, the filter was better behaved when compared to other methods, including a constant 

Q.  The computation of Q was performed with Equation (30). 

 𝑄 =   
1

𝑗 !𝑘!
 𝐹𝑖  𝑄0   𝐹𝑇 𝑗  ∆𝑡1+𝑖+𝑗  

1

1+𝑖+𝑗

𝑚

𝑗=0

𝑛

𝑖=0

 (30) 

where 

𝐹 = state distribution matrix  

𝑄0 = covariance scaling matrix  

∆𝑡 = elapsed time from previous data point  

 

 The scaling matrix, Q0, was implemented as user-defined variables that form the 

diagonal matrix shown in Equation (31). 

 𝑄0 =

 
 
 
 
 
 
 
 
 
 
𝑞𝑝 0 0 0 0 0 0 0 0

0 𝑞𝑝 0 0 0 0 0 0 0

0 0 𝑞𝑝 0 0 0 0 0 0

0 0 0 𝑞𝑣 0 0 0 0 0
0 0 0 0 𝑞𝑣 0 0 0 0
0 0 0 0 0 𝑞𝑣 0 0 0
0 0 0 0 0 0 𝑞𝑎 0 0
0 0 0 0 0 0 0 𝑞𝑎 0
0 0 0 0 0 0 0 0 𝑞𝑎  

 
 
 
 
 
 
 
 
 

 (31) 

where 

𝑞𝑝  = position covariance scaling constant  

𝑞𝑣  = velocity covariance scaling constant  

𝑞𝑎  = acceleration covariance scaling constant  
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 The covariance scaling constants qp , qv , and qa  are implemented with default 

values of 0, 0, and 0.001, respectively.  These values were arbitrarily selected after some 

experimentation. 

 With the state and covariance propagated to the current data point, the next step 

involves the computation of the observation matrix, H, which is a linearization of the 

relationship between the state elements and the observation variables.  This matrix can be 

used to convert both the covariance and state variables to the observation variables 

reference frame.  As the transformation from ECI state components to RAE observation 

variables is easily handled with the METAL library, the exact transformation can be 

used.  The observation matrix must still be used to transform the propagated covariance 

matrix.  The observation matrix is computed from Equations (32-47). 

𝐻 =

 
 
 
 
 
𝜕𝑅

𝜕𝑥

𝜕𝑅

𝜕𝑦

𝜕𝑅

𝜕𝑧

𝜕𝑅

𝜕𝑥 

𝜕𝑅

𝜕𝑦 

𝜕𝑅

𝜕𝑧 

𝜕𝑅

𝜕𝑥 

𝜕𝑅

𝜕𝑦 

𝜕𝑅

𝜕𝑧 

𝜕𝐴𝑧

𝜕𝑥

𝜕𝐴𝑧

𝜕𝑦

𝜕𝐴𝑧

𝜕𝑧

𝜕𝐴𝑧

𝜕𝑥 

𝜕𝐴𝑧

𝜕𝑦 

𝜕𝐴𝑧

𝜕𝑧 

𝜕𝐴𝑧

𝜕𝑥 

𝜕𝐴𝑧

𝜕𝑦 

𝜕𝐴𝑧

𝜕𝑧 

𝜕𝐸𝑙

𝜕𝑥

𝜕𝐸𝑙

𝜕𝑦

𝜕𝐸𝑙

𝜕𝑧

𝜕𝐸𝑙

𝜕𝑥 

𝜕𝐸𝑙

𝜕𝑦 

𝜕𝐸𝑙

𝜕𝑧 

𝜕𝐸𝑙

𝜕𝑥 

𝜕𝐸𝑙

𝜕𝑦 

𝜕𝐸𝑙

𝜕𝑧  
 
 
 
 

 (32) 

𝜕𝑅/𝐴𝑧/𝐸𝑙

𝜕𝑥 
 =  

𝜕𝑅/𝐴𝑧/𝐸𝑙

𝜕𝑥 
 = 

𝜕𝑅/𝐴𝑧/𝐸𝑙

𝜕𝑧 
= 0 (33) 

𝜕𝑅/𝐴𝑧/𝐸𝑙

𝜕𝑥 
 =  

𝜕𝑅/𝐴𝑧/𝐸𝑙

𝜕𝑦 
 = 

𝜕𝑅/𝐴𝑧/𝐸𝑙

𝜕𝑧 
= 0 (34) 

𝜕𝑅

𝜕𝑥
 =

𝑥−𝑥0

𝑅
 (35) 

𝜕𝑅

𝜕𝑦
 =

𝑦−𝑦0

𝑅
 (36) 

𝜕𝑅

𝜕𝑧
 =

𝑧−𝑧0

𝑅
 (37) 

𝜕𝐴𝑧

𝜕𝑥
 

=  
 −𝑠𝑖𝑛  𝜃 𝑐𝑜𝑠  𝜔𝑡  −𝑐𝑜𝑠  𝜃 𝑠𝑖𝑛  𝜔𝑡   𝑔𝐴𝑧 − −𝑠𝑖𝑛  𝜑  𝑐𝑜𝑠  𝜃 𝑐𝑜𝑠  𝜔𝑡  +𝑠𝑖𝑛  𝜑  𝑠𝑖𝑛  𝜃 𝑠𝑖𝑛  𝜔𝑡   𝑓𝐴𝑧

 1+ 
𝑓𝐴𝑧
𝑔𝐴𝑧

 
2
 𝑔𝐴𝑧

2

 
(38) 
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𝜕𝐴𝑧

𝜕𝑦
 

=  
 −𝑠𝑖𝑛  𝜃 𝑠𝑖𝑛  𝜔𝑡  +𝑐𝑜𝑠  𝜃 𝑐𝑜𝑠  𝜔𝑡   𝑔𝐴𝑧 − −𝑠𝑖𝑛  𝜑  𝑐𝑜𝑠  𝜃 𝑠𝑖𝑛  𝜔𝑡  −𝑠𝑖𝑛  𝜑  𝑠𝑖𝑛  𝜃 𝑐𝑜𝑠  𝜔𝑡   𝑓𝐴𝑧

 1+ 
𝑓𝐴𝑧
𝑔𝐴𝑧

 
2
 𝑔𝐴𝑧

2

 
(39) 

𝜕𝐴𝑧

𝜕𝑧
 

=  
−𝑐𝑜𝑠  𝜑  𝑓𝐴𝑧

 1+ 
𝑓𝐴𝑧
𝑔𝐴𝑧

 
2
 𝑔𝐴𝑧

2

 
(40) 

𝑓𝐴𝑧  = −𝑠𝑖𝑛 𝜃  𝑐𝑜𝑠 𝜔𝑡 𝑥 + 𝑠𝑖𝑛 𝜔𝑡 𝑦 − 𝑋0𝐸𝐶𝐸𝐹
 + 𝑐𝑜𝑠 𝜃  −𝑠𝑖𝑛 𝜔𝑡 𝑥 + 𝑐𝑜𝑠 𝜔𝑡 𝑦 − 𝑌0𝐸𝐶𝐸𝐹

  (41) 

𝑔𝐴𝑧  = −𝑠𝑖𝑛 𝜑 𝑐𝑜𝑠 𝜃  𝑐𝑜𝑠 𝜔𝑡 𝑥 + 𝑠𝑖𝑛 𝜔𝑡 𝑦 − 𝑋0𝐸𝐶𝐸𝐹
  

−  𝑠𝑖𝑛 𝜑 𝑐𝑜𝑠 𝜃  −𝑠𝑖𝑛 𝜔𝑡 𝑥 + 𝑐𝑜𝑠 𝜔𝑡 𝑦 − 𝑌0𝐸𝐶𝐸𝐹
  +  𝑐𝑜𝑠 𝜑  𝑧 − 𝑍0𝐸𝐶𝐸𝐹

  
(42) 

𝜕𝐸𝑙

𝜕𝑥
 

=
 𝑐𝑜𝑠  𝜑 𝑐𝑜𝑠 𝜃 𝑐𝑜𝑠  𝜔𝑡  −𝑐𝑜𝑠  𝜑 𝑠𝑖𝑛  𝜃 𝑠𝑖𝑛  𝜔𝑡   𝑔𝐸𝑙− 𝑥−𝑋0 

𝑓𝐸𝑙
𝑔𝐸𝑙

  1− 
𝑓𝐸𝑙
𝑔𝐸𝑙

 
2
  𝑔𝐸𝑙

2

 
(43) 

𝜕𝐸𝑙

𝜕𝑦
 

=
 𝑐𝑜𝑠  𝜑 𝑐𝑜𝑠 𝜃 𝑠𝑖𝑛  𝜔𝑡  +𝑐𝑜𝑠 𝜑 𝑠𝑖𝑛  𝜃 𝑐𝑜𝑠  𝜔𝑡   𝑔𝐸𝑙− 𝑦−𝑌0 

𝑓𝐸𝑙
𝑔𝐸𝑙

  1− 
𝑓𝐸𝑙
𝑔𝐸𝑙

 
2
  𝑔𝐸𝑙

2

 
(44) 

𝜕𝐸𝑙

𝜕𝑧
 

=
𝑠𝑖𝑛  𝜑 𝑔𝐸𝑙− 𝑧−𝑍0 

𝑓𝐸𝑙
𝑔𝐸𝑙

  1− 
𝑓𝐸𝑙
𝑔𝐸𝑙

 
2
  𝑔𝐸𝑙

2

 
(45) 

𝑓𝐸𝑙  
= 𝑐𝑜𝑠 𝜑 𝑐𝑜𝑠 𝜃  𝑐𝑜𝑠 𝜔𝑡 𝑥 + 𝑠𝑖𝑛 𝜔𝑡 𝑦 − 𝑋0𝐸𝐶𝐸𝐹

      

+  𝑐𝑜𝑠 𝜑 𝑠𝑖𝑛 𝜃  −𝑠𝑖𝑛 𝜔𝑡 𝑥 + 𝑐𝑜𝑠 𝜔𝑡 𝑦 − 𝑌0𝐸𝐶𝐸𝐹
  +  𝑠𝑖𝑛 𝜑  𝑧 − 𝑍0𝐸𝐶𝐸𝐹

  
(46) 

𝑔𝐸𝑙  =   𝑥2 + 𝑦2 + 𝑧2  (47) 

where 

𝜑 = sensor geocentric latitude  

𝜃 = sensor longitude  

𝜔 = Earth angular velocity  

𝑋0, 𝑌0, 𝑍0 = sensor ECI position at observation  

𝑋0𝐸𝐶𝐸𝐹
, 𝑌0𝐸𝐶𝐸𝐹

, 𝑍0𝐸𝐶𝐸𝐹
 = sensor ECEF position  
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 This fully defines the 𝐻 matrix for range, azimuth, and elevation observations.  If 

the solution from the LSSW subsection is included in the Kalman filter, those partial 

derivatives must be included in 𝐻.  Since the LSSW solution is just the state vector 

positions, those partials are easily added as shown in Equation (48). 

 𝐻 =  

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0

  (48) 

 

 The final matrix that must be computed before determining the Kalman gain, K, is 

the measurement noise matrix, R.  For a sensor collecting range, azimuth, and elevation 

data, the R matrix is constructed by Equation (49).  If the LSSW solution is also included, 

its apparent noise is included as shown in Equation (50).  The initial implementation of 

the algorithm uses a LSSW error standard deviation that is independent of direction.  This 

could be modified in subsequent work. 

𝑅 =  
𝜎𝑅 0 0
0 𝜎𝐴𝑧 0
0 0 𝜎𝐸𝑙

  (49) 

𝑅 =

 
 
 
 
 
 
𝜎𝑅 0 0 0 0 0
0 𝜎𝐴𝑧 0 0 0 0
0 0 𝜎𝐸𝑙 0 0 0
0 0 0 𝜎𝐿𝑆𝑆𝑊 0 0
0 0 0 0 𝜎𝐿𝑆𝑆𝑊 0
0 0 0 0 0 𝜎𝐿𝑆𝑆𝑊 

 
 
 
 
 

 (50) 

where 

𝑅 = measurement noise matrix  

𝜎𝑅 = sensor range measurement standard deviation  



29 

𝜎𝐴𝑧  = sensor azimuth measurement standard deviation  

𝜎𝐸𝑙  = sensor elevation measurement standard deviation  

𝜎𝐿𝑆𝑆𝑊  = LSSW error standard deviation  

 

 With 𝑃𝑡𝑛  − , H, and R, the Kalman gain, K; the updated covariance, 𝑃𝑡𝑛  + ; and 

the state update, 𝛿𝑥 , are computed from Equations (51-53), respectively. 

𝐾 = 𝑃 − 𝐻𝑇 𝑅 + 𝐻𝑃 − 𝐻𝑇 −1 (51) 

𝑃𝑡𝑛  +  =  𝐼 − 𝐾𝐻 𝑃𝑡𝑛  −  (52) 

𝛿𝑥  = 𝐾 𝑧 − 𝐻𝑥   (53) 

where 

𝐼 = identity matrix  

𝑧  = vector of observations  

𝑥  = 9-element vector of the current state  

 

 This completes the Kalman filter subsection.  This series of equations is carried 

out at every data point until the end of the data set.  As the computation takes place, a 

time history of the state and covariance are saved for use in the final subsection of phase 

two, the backward smoother. 

 Phase 2c – Backward Smoother Pass. 

 The final subsection of phase two involves a backward traveling smoother pass 

using the time history of results from the Kalman filter.  This section of code was 
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implemented in the manner described by the KADRE engineering description 
[4]

.  

Starting at the final time, the filter consists of Equations (54-56). 

 

𝐶 = 𝑃𝑡𝑛  + Φ𝑇𝑃𝑡𝑛+1
 − −1 (54) 

𝑃𝑠𝑚𝑜𝑜𝑡 𝑕𝑡𝑛
 = 𝑃𝑡𝑛  + + 𝐶  𝑃𝑠𝑚𝑜𝑜𝑡 𝑕𝑡𝑛+1

− 𝑃𝑡𝑛+1
 −  𝐶𝑇 (55) 

𝑥 𝑠𝑚𝑜𝑜𝑡 𝑕𝑡𝑛
 = 𝑥 𝑡𝑛 +  𝐶  𝑥 𝑠𝑚𝑜𝑜𝑡 𝑕𝑡𝑛+1

𝑇
− 𝑥 𝑡𝑛+1

 − 𝑇  
𝑇

 (56) 

where 

𝐶 = C matrix  

𝑥 𝑡𝑛+1
 −  = pre-update state vector from Kalman filter  

 

 Once the smoother pass is complete, the filtering phases of the code are complete.  

Additional code is included to perform analysis on the results, including calculations of 

altitude, ballistic coefficient, and Mach number.  These calculations makeup the final 

phase of the algorithm. 

 Phase 3 – Wrap-up and parameter computation. 

 The final phase of the algorithm performs calculations that can be useful for the 

analysis of results.  With the complete time history of the state available, these 

calculations are performed rapidly and included in the output.  Key among these 

parameters for this research is the ballistic coefficient.  With the time history of sensed 

accelerations, the ballistic coefficient is computed from Equations (57) and (58). 
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𝑉𝑎  =   𝑥 + 𝜔 𝑦 2 +  𝑦 − 𝜔 𝑥 2 + 𝑧 2 (57) 

𝛽 
=

1
2
 𝜌 𝑉𝑎

2

 𝑥 𝑆
2 + 𝑦 𝑆

2 + 𝑧 𝑆
2

 
(58) 

where 

𝑉𝑎  = Air relative velocity magnitude  

𝜔 = Earth’s angular velocity about the pole  

𝜌 = altitude dependent atmospheric density  

 

 In addition to ballistic coefficient, parameters such as altitude, Mach number, and 

the position of the target in latitude and longitude are computed for easier analysis. 

Summary 

This chapter described the methodology used in the algorithm to filter observation 

data.  The algorithm operates in two primary filtering phases with a third wrap-up phase. 

The first phase filters exoatmospheric observations with a batch least squares filter that 

assumes there are no sensed accelerations other than gravity.  The second phase filters 

endoatmospheric observations with a least squares sliding window filter, a Kalman filter 

forward pass, and a backward running smoother. The final, wrap-up phase, calculates 

parameters that can be useful for further analysis. 
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IV.  Analysis and Results 

Chapter Overview 

This chapter reviews the analysis that was performed with the filtering algorithm 

created following the methodology detailed in Chapter III.  The primary goals of the 

analysis performed were to validate the filter’s performance in reconstructing an 

observed reentering target, to investigate the benefits to accuracy of additional sensors 

observing the same target, to investigate the benefits to accuracy of an increased rate of 

data collection against targets, and to investigate the benefits to accuracy of different 

sensor collection geometries.  In each case where the accuracy of the filter is to be 

investigated, the filter will be tested against both non-maneuvering and maneuvering 

targets. 

Results of Simulation Scenarios 

 Case 1 – Filter Performance. 

The initial goal in reviewing the filter results was to ensure that the filter was 

successfully filtering the collected data.   To verify filter performance, the residual errors 

between the observed data and the reconstructed trajectory were analyzed to ensure that 

whenever possible they had a nearly zero mean error, an apparent random scattering in 

error about the mean error, and a low standard deviation in error. 

In order to assess the performance of the algorithm, a test case was constructed 

with a single target reentering which is observed from an altitude of 800 km to an altitude 

near impact.  The observing sensor collected range, azimuth, and elevation data at a rate 

of 2 Hz.  An overview of the collection geometry is presented in Figure 4.  The target is 
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initially acquired by the sensor over the State of Maine and is tracked to its impact in the 

central United States. 

 

 

 

 

 

 

 

 The residual errors between the observed data and the reconstructed state vectors 

are presented in Figure 5.  The residuals shows the characteristics of near zero mean 

error, random scattering about the mean error, and a low standard deviation of error.  For 

this case, the mean error was -0.0032 m in range, -0.00016 deg in azimuth, and 0.0037 

deg in elevation.  The residual scattering appears to be nearly random, the error standard 

deviation was 1.9 m in range, 0.016 deg in azimuth, and 0.015 deg in elevation. 

Figure 4 – Single sensor collection geometry 
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 The results presented in Figure 5 were typical of other scenarios that were filtered.  

With these results satisfying the criteria for the filter performance that were being 

investigated, the subsequent focuses of analysis were examined.  The errors in the 

trajectory estimate from the truth trajectory are presented in Figure 6
‡
 and Table 2 as 

reference for analysis performed in the subsequent sections. 

                                                
‡
 Acceleration units of 𝑘𝑚

𝑠𝑒𝑐2 and 𝑚

𝑠𝑒𝑐2  are used when plotting acceleration values and errors, respectively.  In 

axes labels these units are labeled 𝑘𝑚 𝑠𝑠  and 𝑚 𝑠𝑠  for clarity when displayed in the MATLAB font. 
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Figure 5 – Single sensor observation residuals 
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Table 2. Trajectory error values with primary sensor 

𝑋  𝑚  𝑌  𝑚  𝑍  𝑚  𝑉𝑋   
𝑚

𝑠
  𝑉𝑌   

𝑚

𝑠
  𝑉𝑍   

𝑚

𝑠
  𝐴𝑋   

𝑚

𝑠2  𝐴𝑌   
𝑚

𝑠2  𝐴𝑍   
𝑚

𝑠2  

53.1 78.5 99.3 2.4 7.7 8.1 1.9 2.9 3.1 

Error RMS  𝑚 : 79.3 Error RMS  𝑚
𝑠
 : 6.6 Error RMS   𝑚

𝑠2 : 2.7 

 

 The transition of the filter from least squares to the Kalman filter can be easily 

observed in the plots of trajectory errors from the truth reference, presented in Figure 6.  

The least squares filter achieves a random scattering of error with a much smaller 

standard deviation than the Kalman filter does.  Despite this fact, it is also noted that the 

Kalman filter appears to do a better job of minimizing the mean error.  This is especially 

noticeable in the position errors from truth. 
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Figure 6 – Trajectory results with primary sensor 
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 Regardless of these errors, the estimated trajectory is very close to the truth 

values.  With these estimates determined, the ballistic coefficient can be computed from 

the sensed acceleration values with Equations (57) and (58).  An example of ballistic 

coefficient values computed with this method is in Figure 7. 

 

 

 The computed ballistic coefficient in Figure 7 is typical of an RV’s ballistic 

coefficient derived from measurements.  At higher altitudes, the ballistic coefficient is 

largely unobservable and it climbs towards its actual value as the target descends in 

altitude before impact.  The results obtained were close enough to the truth values to 

conclude that the ballistic coefficient was being properly computed. 

 Although initially implemented as optional, the backward smoothing pass, 

discussed in Chapter III - Phase 2c, was eventually deemed to be necessary for optimal 

results.  A comparison of acceleration estimates computed with and without the smoother 
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pass enabled appears in Figure 8.  While the unsmoothed values appear to be close to the 

truth, their mean error has a standard deviation of 6.9  𝑚

𝑠2  compared to 1.9  𝑚

𝑠2  for the 

smoothed estimates. 

 

Figure 8 – Effects of smoother pass on estimates 

 The benefits of the smoother pass are further revealed when these accelerations 

are transformed into the corresponding ballistic coefficient estimates.  The ballistic 

coefficient estimates from the smoothed and unsmoothed estimates appear in Figure 9.  

This zoomed view highlights the errors throughout the unsmoothed results.  Whereas the 

smoothed accelerations converge to the truth value, the unsmoothed accelerations 

overshoot the truth and then overcompensate to a ballistic coefficient that is less than the 

truth.  For these reasons, the backward smoother pass was deemed integral to achieving 

the best results. 
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Figure 9 – Ballistic coefficient estimated with and without smoother pass. 

To further validate the filter performance, scenarios with maneuvering targets 

were constructed to observe the filter’s ability to model non-ballistic accelerations.  The 

maneuvers performed by the target are summarized in Table 3. 

Table 3. Reentry scenarios
§
 

SCENARIO REENTRY MANEUVERS 

1 None 

2 Below 40 km alt: 𝑥 = 𝑥 𝑔𝑟𝑎𝑣 − .000980665 𝑎𝑙𝑡 − 40𝑘𝑚  

3 
Below 40 km alt: 𝑥 = 𝑥 𝑔𝑟𝑎𝑣 − .000980665 𝑎𝑙𝑡 − 40𝑘𝑚  

Below 20 km alt: 𝑦 = 𝑦 𝑔𝑟𝑎𝑣 − 2 . 000980665 𝑎𝑙𝑡 − 20𝑘𝑚   

 

 Both scenarios 2 and 3 involved accelerations in the x direction that ramp up from 

zero as altitude decreased.  Scenario 3 added a level of complexity with a second 

                                                
§ These reentry scenarios were arbitrarily defined 
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maneuver in the y direction that begins at a lower altitude.  This maneuver ramped up 

more rapidly than the maneuver in the x direction. 

 These scenarios were run through the filter with the same observing sensor.  The 

results showed that the filter was capable of modeling maneuvering accelerations and had 

similar errors to the non-maneuvering case.  Error plots are presented in Figure 10 and 

Figure 11 while a summary of the fits are in Table 4 and Table 5. 
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Table 4. Trajectory errors from scenario 2, maneuvering target 

𝑋  𝑚  𝑌  𝑚  𝑍  𝑚  𝑉𝑋   
𝑚

𝑠
  𝑉𝑌   

𝑚

𝑠
  𝑉𝑍   

𝑚

𝑠
  𝐴𝑋   

𝑚

𝑠2  𝐴𝑌   
𝑚

𝑠2  𝐴𝑍   
𝑚

𝑠2  

39.6 61.1 63.5 2.4 7.5 8.9 1.8 2.9 4.0 
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Figure 10 – Trajectory results from scenario 2, maneuvering target 
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Table 5. Trajectory errors from scenario 3, maneuvering target 

𝑋  𝑚  𝑌  𝑚  𝑍  𝑚  𝑉𝑋   
𝑚

𝑠
  𝑉𝑌   

𝑚

𝑠
  𝑉𝑍   

𝑚

𝑠
  𝐴𝑋   

𝑚

𝑠2  𝐴𝑌   
𝑚

𝑠2  𝐴𝑍   
𝑚

𝑠2  

46.9 88.9 66.7 2.5 10.1 8.7 1.8 4.6 4.5 

 

 The last discovery made that affected the error of the estimated trajectory 

pertained to the least squares sliding window portion of the algorithm.  The section of the 

filter was intended to provide the Kalman filter with an initial guess for the position of 

the target during the maneuvering portion of the data.  After analysis of the estimates 

computed with the LSSW compared to those computed without the LSSW filter active, it 

was determined that the LSSW failed to improve the trajectory results in every scenario.  
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Figure 11 – Trajectory results from scenario 3, maneuvering target 
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As an example of this behavior, the results of the baseline scenario are presented in Table 

6 both with and without the LSSW active. 

Table 6. Trajectory errors due to LSSW 

𝑋  𝑚  𝑌  𝑚  𝑍  𝑚  𝑉𝑋   
𝑚

𝑠
  𝑉𝑌   

𝑚

𝑠
  𝑉𝑍   

𝑚

𝑠
  𝐴𝑋   

𝑚

𝑠2  𝐴𝑌   
𝑚

𝑠2  𝐴𝑍   
𝑚

𝑠2  

56.9 148.7 139.9 2.7 11.4 9.6 1.9 3.8 3.4 

Error RMS  𝑚 : 122.4 Error RMS  𝑚
𝑠
 : 8.7 Error RMS   𝑚

𝑠2 : 3.1 

Baseline Error: 79.3 Baseline Error: 6.6 Baseline Error: 2.7 
Difference: +54.4% Difference: +31.8% Difference: +14.8% 

 

Case 2 – Filter Performance Improvements Through Additional Sensors. 

 In order to investigate performance improvements that could result from filtering 

data from multiple sensors, three additional sensor locations were defined.  The three 

additional sensor locations, all equidistant from the impact point, are described in Table 7 

and displayed graphically in Figure 12.  These sensors incorporate the same random 

observation noise as described in Table 1. 

Table 7. Observing sensors 

SENSOR CHARACTERISTIC 

1 Approximately Along Reentry Azimuth, 400km from Impact 

2 Approximately 45
o
 to Reentry Azimuth, 400km from Impact 

3 Approximately 90
o
 to Reentry Azimuth, 400km from Impact 
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The results of incorporating data from an additional sensor at location 1 are 

presented in Figure 13 and a summary of the trajectory errors from the truth are presented 

in Table 8.  In general, the addition of a second sensor along the reentry azimuth has no 

positive effect on the results of the trajectory fit, in this scenario.  In fact, the results are 

worse than those achieved with the primary sensor alone.  It is unclear why the results are 

as degraded as they are, but it is assumed that adding a sensor at location 1 adds little 

observability to the problem beyond what the primary sensor already provides.   
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Table 8. Combined trajectory errors with addition of sensor 1 

𝑋  𝑚  𝑌  𝑚  𝑍  𝑚  𝑉𝑋   
𝑚

𝑠
  𝑉𝑌   

𝑚

𝑠
  𝑉𝑍   

𝑚

𝑠
  𝐴𝑋   

𝑚

𝑠2  𝐴𝑌   
𝑚

𝑠2  𝐴𝑍   
𝑚

𝑠2  

246.2 443.0 381.2 7.8 9.8 17.3 2.5 3.8 5.5 

Error RMS  𝑚 : 366.1 Error RMS  𝑚
𝑠
 : 12.3 Error RMS   𝑚

𝑠2 : 4.1 

Baseline Error: 79.3 Baseline Error: 6.6 Baseline Error: 2.7 
Difference: +361.7% Difference: +86.4% Difference: +51.9% 

 

The results of incorporating data from an additional sensor at location 2 are 

presented in Figure 14 and a summary of the trajectory errors from the truth are presented 

in Table 9.  In general, the addition of a second sensor approximately 45 degrees off of 

the reentry azimuth has a positive effect on the results of the trajectory fit.  The position, 
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Figure 13 – Trajectory results with addition of sensor 1 
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velocity, and acceleration errors are all improved over the results achieved using only the 

primary sensor. 
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Table 9. Combined trajectory errors with addition of sensor 2 

𝑋  𝑚  𝑌  𝑚  𝑍  𝑚  𝑉𝑋   
𝑚

𝑠
  𝑉𝑌   

𝑚

𝑠
  𝑉𝑍   

𝑚

𝑠
  𝐴𝑋   

𝑚

𝑠2  𝐴𝑌   
𝑚

𝑠2  𝐴𝑍   
𝑚

𝑠2  

12.2 109.2 28.7 1.8 4.3 3.8 2.0 2.0 2.3 

Error RMS  𝑚 : 65.6 Error RMS  𝑚
𝑠
 : 3.5 Error RMS   𝑚

𝑠2 : 2.1 

Baseline Error: 79.3 Baseline Error: 6.6 Baseline Error: 2.7 
Difference: -17.3% Difference: -47.0% Difference: -22.2% 

 

The results of incorporating data from an additional sensor at location 3 are 

presented in Figure 15 and a summary of the trajectory errors from the truth are presented 

in Table 10.  In general, the addition of a second sensor approximately 90 degrees off of 

the reentry azimuth has a positive effect on the results of the trajectory fit, similar to the 

results achieve with additional sensor 2.  The position, velocity, and acceleration errors 
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Figure 14 – Trajectory results with addition of sensor 2 
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are all improved over the results achieved using only the primary sensor, and when 

averaged are slightly better than those achieved with additional sensor 2. 
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Table 10. Combined trajectory errors with addition of sensor 3 

𝑋  𝑚  𝑌  𝑚  𝑍  𝑚  𝑉𝑋   
𝑚

𝑠
  𝑉𝑌   

𝑚

𝑠
  𝑉𝑍   

𝑚

𝑠
  𝐴𝑋   

𝑚

𝑠2  𝐴𝑌   
𝑚

𝑠2  𝐴𝑍   
𝑚

𝑠2  

13.7 102.9 33.4 1.9 3.6 3.2 2.2 1.8 2.0 

Error RMS  𝑚 : 63.0 Error RMS  𝑚
𝑠
 : 3.0 Error RMS   𝑚

𝑠2 : 2.0 

Baseline Error: 79.3 Baseline Error: 6.6 Baseline Error: 2.7 
Difference: -20.6% Difference: -54.5% Difference: -25.9% 

 

 These results show that accuracy can be improved by collecting data from an 

additional sensor, although there are geometry considerations.  A secondary sensor added 

along the reentry azimuth was detrimental to the accuracy of the combined results, but a 

secondary sensor located either 45 or 90 degrees to the reentry azimuth improved the 

accuracy of the results.  Alternative scenarios were investigated that did not show the 
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Figure 15 – Trajectory results with addition of sensor 3 
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addition of a sensor along the reentry azimuth to be detrimental, but the trend of better 

results being achieved by shifting a secondary sensor away from the reentry azimuth was 

consistently found throughout these alternatives. 

 This was anticipated based on general knowledge of data filtering.  By adding a 

second sensor along the trajectory’s azimuth, there is little added information that was not 

already present from the primary sensor.  By adding that sensor orthogonal to the 

azimuth, the amount of new information added to the filter is maximized. 

 Case 3 – Filter Performance Improvements Through Increased Data Rate. 

 The next variation to the standard collection scheme is the modification of the 

data rate at which the sensor or sensors collect observations.  For these cases, the rate of 

collection will be increased from 2 to 3 Hz in order to investigate what effects this may 

have. 

 The first scenario that will be modified is the initial scenario whose results are 

presented in Figure 6 and Table 2.  The single, primary sensor collects data at the 

increased rate; the results of this are presented in Figure 16 and Table 11. 



53 

-2000

-1500

-1000

-500

0

500

X
 (

k
m

)

Errors From Truth - X Position

 

 

Truth

Computed

0 50 100 150 200 250 300 350 400 450
-200

0

200

X
 E

rr
o
r 

(m
)

Time After Initialization (sec)

4750

4800

4850

4900

4950

5000

5050

5100

Y
 (

k
m

)

Errors From Truth - Y Position

 

 

Truth

Computed

0 50 100 150 200 250 300 350 400 450
-400

-200

0

200

Y
 E

rr
o
r 

(m
)

Time After Initialization (sec)

3800

4000

4200

4400

4600

4800

5000

5200

Z
 (

k
m

)

Errors From Truth - Z Position

 

 

Truth

Computed

0 50 100 150 200 250 300 350 400 450
-200

0

200

400

Z
 E

rr
o
r 

(m
)

Time After Initialization (sec)

-1

0

1

2

3

4

5

V
x
 (

 km
/ s

 )

Errors From Truth - X Velocity

 

 

Truth

Computed

0 50 100 150 200 250 300 350 400 450
-10

0

10

20

V
x
 E

rr
o
r 

( 
m

/ s
 )

Time After Initialization (sec)

-1

-0.5

0

0.5

1

1.5

2

V
y
 (

 km
/ s

 )

Errors From Truth - Y Velocity

 

 

Truth

Computed

0 50 100 150 200 250 300 350 400 450
-50

0

50

V
y
 E

rr
o
r 

( 
m

/ s
 )

Time After Initialization (sec)

-4

-3

-2

-1

0

V
z
 (

 km
/ s

 )

Errors From Truth - Z Velocity

 

 

Truth

Computed

0 50 100 150 200 250 300 350 400 450
-50

0

50

V
z
 E

rr
o
r 

( 
m

/ s
 )

Time After Initialization (sec)



54 

 

 

Table 11. Trajectory errors with primary sensor at increased data rate 

𝑋  𝑚  𝑌  𝑚  𝑍  𝑚  𝑉𝑋   
𝑚

𝑠
  𝑉𝑌   

𝑚

𝑠
  𝑉𝑍   

𝑚

𝑠
  𝐴𝑋   

𝑚

𝑠2  𝐴𝑌   
𝑚

𝑠2  𝐴𝑍   
𝑚

𝑠2  

67.8 107.5 104.8 2.0 6.8 5.0 1.6 3.3 2.2 

Error RMS  𝑚 : 95.1 Error RMS  𝑚
𝑠
 : 5.0 Error RMS   𝑚

𝑠2 : 2.5 

2Hz Error: 79.3 2Hz Error: 6.6 2Hz Error: 2.7 
Difference: +19.9% Difference: -24.2% Difference: -7.4% 

 

 The single sensor results show improvements in velocity and acceleration at the 

increased data rate, with reduced accuracy in position.  The next modified scenario will 

increase the data rates of secondary sensors that are collecting data from different 

locations than the primary sensor.  The first of these will recreate the geometry whose 

results are presented in Figure 13 and Table 8 with the secondary sensor at location 1.  
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Figure 16 – Trajectory results with primary sensor at increased data rate 
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The results of this geometry with the secondary sensor now collecting at 3 Hz are 

presented in Figure 17 and Table 12. 
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Table 12. Trajectory errors with addition of sensor 1 at increased rate 

𝑋  𝑚  𝑌  𝑚  𝑍  𝑚  𝑉𝑋   
𝑚

𝑠
  𝑉𝑌   

𝑚

𝑠
  𝑉𝑍   

𝑚

𝑠
  𝐴𝑋   

𝑚

𝑠2  𝐴𝑌   
𝑚

𝑠2  𝐴𝑍   
𝑚

𝑠2  

237.6 433.2 367.5 8.5 11.3 19.5 3.1 3.4 9.0 

Error RMS  𝑚 : 355.5 Error RMS  𝑚
𝑠
 : 13.9 Error RMS   𝑚

𝑠2 : 5.8 

2Hz Error: 366.1 2Hz Error: 12.3 2Hz Error: 4.1 
Difference: -2.9% Difference: +13.0% Difference: +41.5% 

 

 While the trajectory results still show a significant error when compared to the 

results from the primary sensor alone, the results show mixed improvement with respect 

to those obtained when a sensor at location 1 operated at the nominal collection rate.  In 

this case, the position error is improved by 2.9% while the velocity and acceleration 

errors worsened by 13.0% and 41.5%, respectively.  These results do not show promise 
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Figure 17 – Trajectory results with addition of sensor 1 at increased rate 
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for an increased collection rate being a means of achieving increased accuracy, but with 

such poor errors to begin with, it may be an unsuitable case for comparison. 

 The next modified scenario will operate a sensor at location 2, similar to the 

results presented in Figure 14 and Table 9, at the increased data rate of 3 Hz.  Results 

from this scenario are presented in Figure 18 and Table 13. 
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Table 13. Trajectory errors with addition of sensor 2 at increased rate 

𝑋  𝑚  𝑌  𝑚  𝑍  𝑚  𝑉𝑋   
𝑚

𝑠
  𝑉𝑌   

𝑚

𝑠
  𝑉𝑍   

𝑚

𝑠
  𝐴𝑋   

𝑚

𝑠2  𝐴𝑌   
𝑚

𝑠2  𝐴𝑍   
𝑚

𝑠2  

14.1 104.4 32.6 1.8 3.8 2.4 2.2 2.6 1.9 

Error RMS  𝑚 : 63.7 Error RMS  𝑚
𝑠
 : 2.8 Error RMS   𝑚

𝑠2 : 2.3 

2Hz Error: 65.6 2Hz Error: 3.5 2Hz Error: 2.1 
Difference: -2.9% Difference: -20.0% Difference: +9.5% 

 

 Similar to the results achieved for increasing the collection rate of a sensor at 

location 1, the error in position was improved and the error in acceleration was worsened 

by increasing the collection rate of a sensor at location 2.  However, unlike the previous 

scenario, the error in velocity was improved.  Error in position and velocity were 

improved by 2.9% and 20.0%, respectively, while error in acceleration worsened by 

9.5%.  This reduction in acceleration accuracy is much less than the 41.5% reduction in 
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Figure 18 – Trajectory results with addition of sensor 2 at increased rate 
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acceleration accuracy computed from the previous scenario, but it is unclear why the 

results are consistently worse in acceleration in these two scenarios. 

 The last modified scenario will operate a sensor at location 3, similar to the results 

presented in Figure 15 and Table 10.  Results from this scenario are presented in Figure 

19 and Table 14. 
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Table 14. Trajectory errors with addition of sensor 3 at increased rate 

𝑋  𝑚  𝑌  𝑚  𝑍  𝑚  𝑉𝑋   
𝑚

𝑠
  𝑉𝑌   

𝑚

𝑠
  𝑉𝑍   

𝑚

𝑠
  𝐴𝑋   

𝑚

𝑠2  𝐴𝑌   
𝑚

𝑠2  𝐴𝑍   
𝑚

𝑠2  

11.8 99.4 28.1 1.5 3.0 2.5 2.0 1.6 1.8 

Error RMS  𝑚 : 60.0 Error RMS  𝑚
𝑠
 : 2.4 Error RMS   𝑚

𝑠2 : 1.8 

2Hz Error: 63.0 2Hz Error: 3.0 2Hz Error: 2.0 
Difference: -4.8% Difference: -20.0% Difference: -10.0% 

 

 Improving on the results achieved for increasing the collection rate of sensor 2, 

the results from increasing the collection rate of sensor 3 show improvement in position, 

velocity, and now acceleration.  Errors were improved by 4.8% in position, 20.0% in 

velocity, and 10.0% in acceleration.  The review of these four scenarios suggest that an 

increase in the collection rate of a sensor can affect the resulting trajectory results either 
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Figure 19 – Trajectory results with addition of sensor 3 at increased rate 
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positively or negatively and seem to be highly influenced by the collection geometry. 

Further analysis into this phenomenon could be carried out focusing on data rates other 

than those selected here.  For many collectors, data rates in excess of 10 or 20 Hz are not 

unheard of, and could show great improvement over the values presented here. 

 Case 4 – Filter Performance Improvements Through Collection Geometry. 

 When investigating the effects of increasing the rate of data collection, it was 

noted that the results showed significant variation depending on the geometry of the 

collecting sensor.  In that case, the addition of a sensor 90 degrees off of the reentry 

azimuth was of most benefit to the accuracy of the trajectory fit.  To further analyze this 

case, the filter is rerun for the sensors located at locations 1, 2, and 3 without the primary 

sensor.  The results of these three fits can be compared to discover trends in accuracy 

based solely on a single sensor’s collection geometry. 

 The first scenario reviewed places the sensor at location 1, along the reentry 

azimuth, operating at the standard data rate of 2 Hz.  The results of this scenario are 

presented in Figure 20 and Table 15. 
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Table 15. Trajectory errors from sensor 1 

𝑋  𝑚  𝑌  𝑚  𝑍  𝑚  𝑉𝑋   
𝑚

𝑠
  𝑉𝑌   

𝑚

𝑠
  𝑉𝑍   

𝑚

𝑠
  𝐴𝑋   

𝑚

𝑠2  𝐴𝑌   
𝑚

𝑠2  𝐴𝑍   
𝑚

𝑠2  

57.5 163.5 107.6 2.7 6.2 6.8 2.0 2.9 3.3 

Error RMS  𝑚 : 117.8 Error RMS  𝑚
𝑠
 : 5.5 Error RMS   𝑚

𝑠2 : 2.8 

 

 The results from this scenario will be used as a baseline for the results achieved 

when the sensor is placed at locations 2 and 3.  Deviations from these results will be used 

to determine whether collection geometry has a noticeable effect on the accuracy of the 

reconstructed trajectories. 
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Figure 20 – Trajectory results from sensor 1 
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 The next scenario places the sensor at location 2, approximately 45 degrees off of 

the reentry azimuth, operating at the standard data rate of 2 Hz.  The results of this 

scenario are presented in Figure 21 and 

Table 16. 
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Table 16. Trajectory errors from sensor 2 

𝑋  𝑚  𝑌  𝑚  𝑍  𝑚  𝑉𝑋   
𝑚

𝑠
  𝑉𝑌   

𝑚

𝑠
  𝑉𝑍   

𝑚

𝑠
  𝐴𝑋   

𝑚

𝑠2  𝐴𝑌   
𝑚

𝑠2  𝐴𝑍   
𝑚

𝑠2  

25.3 36.4 24.9 9.8 4.1 5.7 5.1 1.9 3.2 

Error RMS  𝑚 : 29.4 Error RMS  𝑚
𝑠
 : 7.0 Error RMS   𝑚

𝑠2 : 3.6 

Baseline Error: 117.8 Baseline Error: 5.5 Baseline Error: 2.8 
Difference: -75.0% Difference: +27.3% Difference: +28.6% 

 

 With the sensor at location 2, the position accuracy was improved by 75.0% while 

the velocity and acceleration results both suffered degradations in accuracy, when 

compared to the truth reference, of 27.3% and 28.6%, respectively. 

 The other scenario that was tested involved the placement of a sensor at location 

3, approximately perpendicular to the reentry azimuth, operating at the standard data rate 

of 2 Hz.  The results from this scenario are presented in Figure 22 and  
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Figure 21 – Trajectory results from sensor 2 
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Table 17. 

 

 

 

-2000

-1500

-1000

-500

0

500
X

 (
k
m

)
Errors From Truth - X Position

 

 

Truth

Computed

0 50 100 150 200 250 300 350 400 450
-100

-50

0

50

X
 E

rr
o
r 

(m
)

Time After Initialization (sec)

4750

4800

4850

4900

4950

5000

5050

5100

Y
 (

k
m

)

Errors From Truth - Y Position

 

 

Truth

Computed

0 50 100 150 200 250 300 350 400 450
-100

-50

0

50

Y
 E

rr
o
r 

(m
)

Time After Initialization (sec)

3800

4000

4200

4400

4600

4800

5000

5200

Z
 (

k
m

)

Errors From Truth - Z Position

 

 

Truth

Computed

0 50 100 150 200 250 300 350 400 450
-200

-100

0

100

Z
 E

rr
o
r 

(m
)

Time After Initialization (sec)

-1

0

1

2

3

4

5

V
x
 (

 km
/ s

 )

Errors From Truth - X Velocity

 

 

Truth

Computed

0 50 100 150 200 250 300 350 400 450
-100

-50

0

50

V
x
 E

rr
o
r 

( 
m

/ s
 )

Time After Initialization (sec)

-1

-0.5

0

0.5

1

1.5

2

V
y
 (

 km
/ s

 )

Errors From Truth - Y Velocity

 

 

Truth

Computed

0 50 100 150 200 250 300 350 400 450
-50

0

50

V
y
 E

rr
o
r 

( 
m

/ s
 )

Time After Initialization (sec)

-4

-3

-2

-1

0

V
z
 (

 km
/ s

 )

Errors From Truth - Z Velocity

 

 

Truth

Computed

0 50 100 150 200 250 300 350 400 450
-20

0

20

V
z
 E

rr
o
r 

( 
m

/ s
 )

Time After Initialization (sec)



67 

 

 

 

Table 17. Trajectory errors from sensor 3 

𝑋  𝑚  𝑌  𝑚  𝑍  𝑚  𝑉𝑋   
𝑚

𝑠
  𝑉𝑌   

𝑚

𝑠
  𝑉𝑍   

𝑚

𝑠
  𝐴𝑋   

𝑚

𝑠2  𝐴𝑌   
𝑚

𝑠2  𝐴𝑍   
𝑚

𝑠2  

39.6 75.4 58.6 5.3 4.8 2.5 3.0 2.4 1.7 

Error RMS  𝑚 : 59.7 Error RMS  𝑚
𝑠
 : 4.4 Error RMS   𝑚

𝑠2 : 2.4 

Baseline Error: 117.8 Baseline Error: 5.5 Baseline Error: 2.8 
Difference: -49.3% Difference: -20.0% Difference: -14.3% 

 

 As in the previous scenario, the position accuracy was improved over the 

baseline, this time showing a 49.3% improvement.  Furthermore, the velocity and 

acceleration results for this scenario showed an improvement in accuracy.  Velocity and 

acceleration errors, when compared to the truth reference, were reduced by 20.0% and 

14.3%, respectively. 
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Figure 22 – Trajectory results from sensor 3 
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 Reviewing these scenarios collectively, it is noted that position errors were 

reduced in both cases where the sensor was not operating at a location along the reentry 

azimuth.  However, while the position errors showed a trend that encouraged the 

placement of the sensor farther from the reentry azimuth, the results in velocity and 

acceleration were mixed and may require further analysis to investigate subtle trends. 

Investigative Questions Answered 

After validating the filter’s performance against different scenarios, several 

scenario adjustments were investigated to determine any benefits that could be derived.  

Initially, it was determined that including observations from a second sensor could 

improve the filter’s accuracy, but this varied with the placement of the second sensor.  

The greatest improvement was derived from placing the sensor perpendicular to the 

reentry azimuth of the target. 

After investigating the effects of a second sensor, the data rate of the collecting 

sensors were varied.  It was determined that increasing the data rate of either the primary 

or secondary sensors could improve the filter’s accuracy.  This result was expected as it 

increases the filter’s knowledge of the target during the same time period. 

The final scenario modification involved further investigation of sensor geometry.  

When adding additional sensors to the primary collector, it was noted that the location of 

the second sensor could vary the resulting filter accuracy.  This phenomenon was further 

investigated by considering data only from the secondary sensor at reduced range.  The 

sensor was operated at the three different collection locations and the resulting filter 
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accuracy was reviewed.  In the scenarios investigated, the filter achieved its best accuracy 

when the single sensor was operated perpendicular to the target’s reentry azimuth. 

Summary 

This chapter investigated the accuracy of the filter by comparing its output to 

truth data used to generate the observations that were fed to the filter.  Several different 

scenarios were investigated, including adding a second sensor, increasing the data 

collection rate, and changing the sensor collection geometry.  The results of these 

modifications were reviewed and summarized. 

  



70 

V.  Conclusions and Recommendations 

Chapter Overview 

This chapter will cover the general conclusions that were drawn from the analysis 

section of the paper.  Additionally, recommendations for future action and research are 

presented. 

Conclusions of Research 

The filter developed for this thesis combined the strengths of the least squares and 

Kalman filters.  The least squares filter operates rapidly and accurately on the free-flight 

portions of flight.  The Kalman filter provides greater flexibility for the state’s 

acceleration components to vary lower in the atmosphere.  The filter successfully 

transitioned from the least squares to Kalman filter, using the final values of the free 

flight propagation for the Kalman filter’s initial state. 

The developed algorithm includes a least squares sliding window filter that 

estimates an initial guess of position during the maneuvering phase of flight.  After 

investigation of the effects of computing these initial guesses, it was determined that they 

consistently had a detrimental effect on the filter estimates.  After this was concluded, the 

least squares sliding window was not implemented for the results presented in Chapter 

IV. 

Once the filter was validated against both maneuvering and non-maneuvering 

targets, the filter was used to investigate other collection scenario modifications and their 

effects.  The filter achieved varying levels of accuracy when the scenario was modified 
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with a different number of sensors, increasing data collection rates, and different 

collection geometries. 

After investigating these scenarios, it was determined that the best results were 

achieved with additional collectors, by increasing the data collection rate, and by moving 

the collector position perpendicular to the reentry azimuth. 

Significance of Research 

This research expands on the work of previous Air Force Institute of Technology 

(AFIT) graduate students’ work in the area of data filtering of collections of reentry 

vehicles.  Whereas previous research only addressed non-maneuvering or simple 

maneuvering targets with fixed bank angles, this work allows for the study of complex 

maneuvering targets with varying accelerations. 

Of further significance, the filter algorithm allows for the inclusion of multiple 

sensors.  Including all of the available data into the filter estimates ensures that the best 

results can be achieved. 

Recommendations for Action 

While several scenarios were investigated to determine the effects of 

modifications to the number of collectors, their data rates, and their collection geometry, 

more work could be done to further investigate these areas.  The accuracy of the filter 

results varied significantly in all scenarios, so subtler investigation could identify trends 

and true optimums.  Error contour plots could be generated for different scenarios in 

order to better illustrate results. 
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Additionally, further modifications could be investigated beyond those introduced 

here.  The algorithm was written to accommodate multiple targets simultaneously, but is 

not investigated here.  Another major area that could be investigated is the benefit of 

range, azimuth, and elevation sensors over sensors that only measure azimuth and 

elevation.  The algorithm is written to manage both of these types of sensors and this 

could be a major area of investigation. 

Recommendations for Future Research 

As discussed in the filter performance section of the analysis and conclusions, the 

least squares filter is not performing as well on the non-maneuvering portion of the 

trajectory as the Kalman filter is performing on the lower regions of flight.  There may be 

ways of improving this performance.  Areas to investigate could include modifications to 

the numerical partial derivatives that are used.  These could either be altered with 

different perturbation sizes or replaced by analytical solutions to the partials.  One 

possibility could be adjusting the perturbation magnitudes as the targets approach 

convergence.  If this portion of the filter performed better, the overall performance would 

likely be greatly improved. 

Other modifications that could be researched include the inclusion of further data 

types.  The algorithm as written addresses two data types: range, azimuth, and elevation 

sensors and azimuth and elevation-only sensors.  There are situations where additional 

data types could be available and it would be a benefit to incorporate these data types into 

the analysis.  One easy data type that could be included would be GPS or other position 

information obtained from the operator of the test.  Another data type that could be 
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included would be right-ascension and declination angle measurements that are typical of 

overhead sensors.  This data type could easily be incorporated due to its similarity to the 

azimuth and elevation data type. 

Summary 

This chapter reviewed the research and offered some general conclusions that 

were derived and suggested future work that could be performed.  In the previous 

chapters, the filter is derived and validated against various scenarios.  Future work could 

be done in either the areas of collection optimization using the filter as it currently exists, 

or filter modification to either improve performance or accommodate data types from 

sensor types that were not considered for this thesis. 
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Appendix 

Coordinate Frames 

 All computation is done in an Earth-Centered Inertial (ECI) reference frame when 

possible, most notably in the EOMs which, when expressed in ECI are simplified to those 

in Equations (6-11).  When this is not possible, as in the case of Equation (32), it is 

important to realize the coordinate frames being referenced.  This section does not define 

the algorithms to transform from one frame to another, but simply defines the reference 

frames. 

 

Figure 23 – Earth-Centered Inertial (ECI) coordinate frame 
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Figure 24 – Earth-Centered Earth-Fixed (ECEF) coordinate frame 

 

Figure 25 – Latitude/Longitude coordinate frame 
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Figure 26 – South, East, Up (SEZ) coordinate frame 
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kaliper.m 

kaliper.m is the main filter code written in the MATLAB scripting language.  

Original formatting is preserved to maintain functionality when pasted into MATLAB. 

 

function varargout = kaliper(varargin) 
%KALIPER - Kalman filter And Least squares Integrated Parameter 

Estimation Routine 
% 
% -- Usage -- 
%  state                 = kaliper(target, sensor, koptions)  
% [state, target]        = kaliper(target, sensor, koptions)  
% [state, target, stats] = kaliper(target, sensor, koptions)  
% 
% -- Input definition -- 
% target - data structure defining observed targets of the form: 
%   target{tgt}.obs       - metric observations (numobs x 3) 
%   target{tgt}.obs_time  - metric observation times (numobs x 1) 
%   target{tgt}.obs_snr   - indices of sensors for all obs (numobs x 1) 
%   target{tgt}.obs_ff    - logical array specifying free flight obs 

(numobs x 1) 
%   target{tgt}.numobs    - number of metric observations (1) 
%   target{tgt}.init_time - time of initial guess state vector 
%   target{tgt}.init_sv   - initial guess state vector (1x10) 
% 
% sensor - data structure defining observing sensors of the form: 
%   sensor{snr}.snr_type      - sensor type, one of: 
%                                1: stationary ranged (range,az,el) 
%                                2: stationary two-angle (az,el) 
%                                3: moving range (range,az,el) 
%                                4: moving two-angle (az,el) 
%   sensor{snr}.pos_lla       - LLA sensor position (1x3) OR (numeph x 

3) 
%                               (geod lat, lon, alt) - (rad, rad, km) 
%   sensor{snr}.pos_ecf       - ECEF sensor position (1x3) OR (numeph x 

3) 
%   sensor{snr}.pos_time      - moving sensor ephemeris times (numeph x 

1) 
%   sensor{snr}.tm            - SEZ to ECEF rot matrix (3x3) OR (numeph 

x 9) 
%   sensor{snr}.stddev        - standard deviations of obs (1x3) 
%   sensor{snr}.obs_bias      - constant observation biases (1x3) 
% 
% koptions - data structure defining kaliper run options (Optional) 
%   koptions.echo             - true/false flag to echo status to 

command (1) 
%                               {default value = false(1)} 
%   koptions.sig_edit         - number of std deviations for editting 

(1) 
%                               {default value = 3} 
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%   koptions.max_iter         - maximum number of least squares 

iterations (1) 
%                               {default value = 40} 
%   koptions.conv_tol         - convergence tolerance for least squares 

(1) 
%                               {default value = .0001} 
%   koptions.lssw             - true/false flag to use LSSW results in 

KF (1) 
%                               {default value = true(1)} 
%   koptions.window_size      - sliding window nominal size for LSSW 

pass (1) 
%                               {default value = 30} 
%   koptions.min_window_size  - sliding window minimum size for LSSW 

initialization (1) 
%                               {default value = 5} 
%   koptions.max_window_size  - sliding window maximum size for LSSW 

termination (1) 
%                               {default value = 40} 
%   koptions.qp               - KF position plant noise scale factor 

(1) 
%                               {default value = 0.0} 
%   koptions.qv               - KF velocity plant noise scale factor 

(1) 
%                               {default value = 0.0} 
%   koptions.qa               - KF acceleration plant noise scale 

factor (1) 
%                               {default value = 0.001} 
%    
% 
% -- Output definition -- 
% state - data structure defining state vector components 
%   state{tgt}.time           - metric observation times (numobs x 1) 
%   state{tgt}.sv             - state vector solution (numobs x 9) 
%                {1-3}        - ECI positions (km), ECI epoch @ 0 GMT 

day of collect 
%                {4-6}        - ECI velocities (km/s) 
%                {7-9}        - ECI sensed accelerations (km/s2) (total 

accel - gravity) 
%   state{tgt}.sv_smooth      - smoothed state vector solution (numobs 

x 9) 
%                {1-3}        - ECI positions (km), ECI epoch @ 0 GMT 

day of collect 
%                {4-6}        - ECI velocities (km/s) 
%                {7-9}        - ECI sensed accelerations (km/s2) (total 
%                accel - gravity) 
% 
% target - if requested, target structure is returned with updated 

parameters 
% 
% stats - data structure detailing estimation statistics 
%   stats{iter,tgt}.cost_func - Weighted cost function of target by 

iteration 
%   stats{iter,tgt}.cov       - covariance update computed by target 

and iteration 
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%   stats{iter,tgt}.res{snr}  - residual vectors by iteration, target, 

and sensor 

  
% variables persistent to this function for subsequent calls 
persistent target sensor koptions earth 

  
% define earth parameters for later use 
earth = define_earth; 

  
% define atmospheric parameters 
read_stdatmos('stdatmos76.dat') 

  
% accept input 
if nargin == 2 
    target = varargin{1}; 
    sensor = varargin{2}; 
    % options undefined, will be filled with defaults 
    koptions = []; 
elseif nargin == 3 
    target = varargin{1}; 
    sensor = varargin{2}; 
    koptions = varargin{3}; 
else 
    error('Input should either be target & sensor or target, sensor, 

and koptions') 
end 

  
% fill undefined components of the options structure with default 

values 
if isempty(koptions) 
    koptions.echo = false(1); 
    koptions.sig_edit = 3; 
    koptions.max_iter = 40; 
    koptions.conv_tol = .0001; 
    koptions.lssw = true(1); 
    koptions.window_size = 30; 
    koptions.min_window_size = 5; 
    koptions.max_window_size = 40; 
    koptions.qp = 0; 
    koptions.qv = 0; 
    koptions.qa = 0.001; 
else 
    if ~isfield(koptions, 'echo') || isempty(koptions.echo) 
        koptions.echo = false(1); 
    end 
    if ~isfield(koptions, 'sig_edit') || isempty(koptions.sig_edit) 
        koptions.sig_edit = 3; 
    end 
    if ~isfield(koptions, 'max_iter') || isempty(koptions.max_iter) 
        koptions.max_iter = 40; 
    end 
    if ~isfield(koptions, 'conv_tol') || isempty(koptions.conv_tol) 
        koptions.conv_tol = .0001; 
    end 
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    if ~isfield(koptions, 'lssw') || isempty(koptions.lssw) 
        koptions.lssw = true(1); 
    end 
    if ~isfield(koptions, 'window_size') || 

isempty(koptions.window_size) 
        koptions.window_size = 30; 
    end 
    if ~isfield(koptions, 'min_window_size') || 

isempty(koptions.min_window_size) 
        koptions.min_window_size = 5; 
    end 
    if ~isfield(koptions, 'max_window_size') || 

isempty(koptions.max_window_size) 
        koptions.max_window_size = 40; 
    end 
    if ~isfield(koptions, 'qp') || isempty(koptions.qp) 
        koptions.qp = 0; 
    end 
    if ~isfield(koptions, 'qv') || isempty(koptions.qv) 
        koptions.qv = 0; 
    end 
    if ~isfield(koptions, 'qa') || isempty(koptions.qa) 
        koptions.qa = 0.001; 
    end 
end 

  
% optional plot of residuals 
if koptions.echo 
    figure; 
    resax1 = subplot(3,1,1); 
    resax2 = subplot(3,1,2); 
    resax3 = subplot(3,1,3); 
end 

  
% number of targets in structure 
numtgt = length(target); 

  
% time pad to add to observations at the same time value 
time_pad = 1e-10; 

  
% loop through targets 
for tgt = 1:numtgt 

  
    % number of observations of this target 
    numobs = length(target{tgt}.obs_time); 

     

    % number of sensors for this target 
    tgtsnr = unique(target{tgt}.obs_snr); 
    numsnr = length(tgtsnr); 

     
    % add small time intervals on to any observations at the same time 
    repeat_idx = diff(target{tgt}.obs_time) == 0; 
    repeat_idx = [false(1); repeat_idx];                                   

%#ok<AGROW> 
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    while any(repeat_idx) 
        target{tgt}.obs_time(repeat_idx) = 

target{tgt}.obs_time(repeat_idx) + time_pad; 
        repeat_idx = diff(target{tgt}.obs_time) == 0; 
        repeat_idx = [false(1); repeat_idx];                               

%#ok<AGROW> 
    end 

  
    % convert 3-D observations to ECI frame for SV initial guess 
    target{tgt}.obs_eci = repmat(NaN, numobs, 3); % NaN padding 

     

    % locate 3-D observations of stationary and moving sensors 
    for snridx = 1:numsnr 

         
        % index of this sensor 
        snr = tgtsnr(snridx); 

         
        % observations from this sensor, and those observation times 
        obsidx = target{tgt}.obs_snr == snr; 
        obs_time = target{tgt}.obs_time(obsidx); 

         
        % stationary range, az, el observations 
        if sensor{snr}.snr_type == 1 
            obs_sez = tm_rae2sez(target{tgt}.obs(obsidx,:)); 
            obs_ecf = tm_sez2ecr(obs_sez, sensor{snr}.pos_ecf, 

sensor{snr}.tm); 
        % moving range, az, el observations 
        elseif sensor{snr}.snr_type == 3 
            obs_sez = tm_rae2sez(target{tgt}.obs(obsidx,:)); 

             
            % interpolate sensor positions at observation times 
            interp_lat = interp1(sensor{snr}.pos_time, 

sensor{snr}.pos_lla(:,1), obs_time, 'spline'); 
            interp_lon = interp1(sensor{snr}.pos_time, 

sensor{snr}.pos_lla(:,2), obs_time, 'spline'); 
            interp_alt = interp1(sensor{snr}.pos_time, 

sensor{snr}.pos_lla(:,3), obs_time, 'spline'); 
            [sensor_pos, sensor_tm] = calc_sensor_move(interp_lat, 

interp_lon, interp_alt); 

             
            % moving transformation 
            obs_ecf = tm_sez2ecr_move(obs_sez, sensor_pos, sensor_tm); 
        else 
        % sensor without 3-D observation, move to next sensor 
            continue; 
        end 

         
        % convert ecef to eci 
        obs_eci = tm_ecr2eci(obs_ecf, 0, obs_time, 0); 

         
        % insert transformation into structure 
        target{tgt}.obs_eci(obsidx,:) = obs_eci; 
    end 
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    % check if initial guess has been specified, otherwise compute it 
    if ~isfield(target{tgt}, 'init_sv') || 

~isempty(target{tgt}.init_sv) 
        [init_time, init_sv] = kaliper_calcinit(tgt); 
        target{tgt}.init_time = init_time; 
        target{tgt}.init_sv = init_sv; 
    end 
end 

     
%%%% 
%%%% Phase 1 state vector estimation - Free Flight - Sensed Accels = 0 
%%%% 

  
if koptions.echo 
    disp('** Entering Phase 1 - Free-Flight Estimation **') 
end 

  
% set free flight ode45 options 
options = odeset('RelTol', 1e-6, 'Vectorized', 'on'); 

  
% initialize least squares run 
ls_iter = 1; 
converged = false(size(target)); 

  
% begin estimation 
while any(~converged) && ls_iter <= koptions.max_iter 

  
    if koptions.echo 
        disp([' * Iteration ' num2str(ls_iter)]) 
    end 

     
    for tgt = 1:numtgt 

         
        if koptions.echo 
            disp(['  -Target ' num2str(tgt)]) 
        end 

         

        % initialize running sums for this target 
        TtQiT = zeros(6); 
        TtQir = zeros(6,1); 
        cost_func = 0; 

  
        % time series to propagate to, first value is time of SV 
        prop_time = [target{tgt}.init_time; 

target{tgt}.obs_time(target{tgt}.obs_ff)]; 
        if prop_time(1) == prop_time(2), prop_time(1) = []; end 

  
        % propagate SV to all FF observation times, ignoring any sensed 

accelerations 
        [calc_time,calc_sv] = ode45(@kaliper_eom, prop_time, 

target{tgt}.init_sv', options); 
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        % propagate perturbed SVs for numerical partial derivates to 

form H matrix 
        sv_pert = [.001 .001 .001 .0001 .0001 .0001]; % accelerations 

not perturbed 
        pert_init_sv = repmat(target{tgt}.init_sv, 6, 1) + 

[diag(sv_pert) zeros(6,3)]; 
        [pert_time,pert_sv] = ode45(@kaliper_eom, prop_time, 

pert_init_sv', options); 

  
        % transform propagated SVs to sensor data reference, compute 

TtQiT and TtQir 
        for snridx = 1:numsnr 

  
            % index of this sensor 
            snr = tgtsnr(snridx); 

  
            % observations from this sensor, and those observation 

times 
            obsidx = target{tgt}.obs_snr(target{tgt}.obs_ff) == snr; 
            %obs_time = 

target{tgt}.obs_time(target{tgt}.obs_ff(obsidx)); 
            obs_time = target{tgt}.obs_time(target{tgt}.obs_ff); 
            obs_time = obs_time(obsidx); 
            numobs = length(obs_time); 

  

            if numobs == 0, continue, end 

             
            % stationary range, az, el OR az, el observations 
            if sensor{snr}.snr_type == 1 || sensor{snr}.snr_type == 2 

  
                % convert ECI SV positions to stationary RAE 
                calc_eci = calc_sv(obsidx,1:3); 
                calc_ecf = tm_eci2ecr(calc_eci, 0, obs_time, 0); 
                calc_sez = tm_ecr2sez(calc_ecf, sensor{snr}.pos_ecf, 

sensor{snr}.tm); 
                calc_rae = tm_sez2rae(calc_sez); 

  
                % same for perturbed states 
                pert_eci = pert_sv(obsidx,:); 
                pert_eci = reshape(pert_eci', 9, [])';  % 1 vec / row 
                pert_ecf = tm_eci2ecr(pert_eci(:,1:3), 0, ... 
                    reshape(repmat(obs_time, 1, 6)', [], 1), 0); 
                pert_sez = tm_ecr2sez(pert_ecf, sensor{snr}.pos_ecf, 

sensor{snr}.tm); 
                pert_rae = tm_sez2rae(pert_sez); 

  
                % moving range, az, el OR az, el observations 
            elseif sensor{snr}.snr_type == 3 || sensor{snr}.snr_type == 

4 

  
                % interpolate sensor positions at observation times 
                interp_lat = interp1(sensor{snr}.pos_time, 

sensor{snr}.pos_lla(:,1), obs_time, 'spline'); 
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                interp_lon = interp1(sensor{snr}.pos_time, 

sensor{snr}.pos_lla(:,2), obs_time, 'spline'); 
                interp_alt = interp1(sensor{snr}.pos_time, 

sensor{snr}.pos_lla(:,3), obs_time, 'spline'); 
                [sensor_pos, sensor_tm] = calc_sensor_move(interp_lat, 

interp_lon, interp_alt); 

  
                % convert ECI SV positions to moving RAE 
                calc_eci = calc_sv(obsidx,1:3); 
                calc_ecf = tm_eci2ecr(calc_eci, 0, obs_time, 0); 
                calc_sez = tm_ecr2sez_move(calc_ecf, sensor_pos, 

sensor_tm); 
                calc_rae = tm_sez2rae(calc_sez); 

  
                % same for perturbed states 
                pert_eci = pert_sv(obsidx,:); 
                pert_eci = reshape(pert_eci', 9, [])';  % 1 vec / row 
                pert_ecf = tm_eci2ecr(pert_eci(:,1:3), 0, ... 
                    reshape(repmat(obs_time, 1, 6)', [], 1), 0); 
                pert_sez = tm_ecr2sez_move(pert_ecf, sensor_pos, 

sensor_tm); 
                pert_rae = tm_sez2rae(pert_sez); 

  
            else 
                error(['Unrecognized sensor type ID: ' 

num2str(sensor{snr}.snr_type)]) 
            end 

  
            % use calculated RAE values to compute residuals vectors 
            if sensor{snr}.snr_type == 1 || sensor{snr}.snr_type == 3 
                % range, azimuth, and elevation observations 
                obs_rae = target{tgt}.obs(target{tgt}.obs_ff,:); 
                res = obs_rae(obsidx,:) - calc_rae; 
                % save residuals 
                stats{ls_iter,tgt}.res{snr} = res;                         

%#ok<AGROW> 

                 
                % plot residuals 
                if koptions.echo 
                    if snr == 1 
                        cla(resax1), plot(resax1, obs_time, res(:,1), 

'r.'), hold(resax1, 'on') 
                        cla(resax2), plot(resax2, obs_time, res(:,2), 

'r.'), hold(resax2, 'on') 
                        cla(resax3), plot(resax3, obs_time, res(:,3), 

'r.'), hold(resax3, 'on') 
                        drawnow 
                    else 
                        cols = 'rbmk'; nc = length(cols); 
                        plot(resax1, obs_time, res(:,1), [cols(mod(snr-

1,nc)+1) '.']) 
                        plot(resax2, obs_time, res(:,2), [cols(mod(snr-

1,nc)+1) '.']) 
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                        plot(resax3, obs_time, res(:,3), [cols(mod(snr-

1,nc)+1) '.']) 
                        drawnow 
                    end 
                end 

  
                % statistical editting of outliers based on sensor std 

dev 
                if ls_iter > 1 
                    res( abs(res(:,1)) > 

sensor{snr}.stddev(1)*koptions.sig_edit, 1) = 0; 
                    res( abs(res(:,2)) > 

sensor{snr}.stddev(2)*koptions.sig_edit, 2) = 0; 
                    res( abs(res(:,3)) > 

sensor{snr}.stddev(3)*koptions.sig_edit, 3) = 0; 
                end 

                 
                % mark editted points 
                if koptions.echo 
                    edit1 = abs(stats{ls_iter,tgt}.res{snr}(:,1)) > 

sensor{snr}.stddev(1)*koptions.sig_edit; 
                    edit2 = abs(stats{ls_iter,tgt}.res{snr}(:,2)) > 

sensor{snr}.stddev(2)*koptions.sig_edit; 
                    edit3 = abs(stats{ls_iter,tgt}.res{snr}(:,3)) > 

sensor{snr}.stddev(3)*koptions.sig_edit; 
                    if any(edit1), plot(resax1, obs_time(edit1), 

stats{ls_iter,tgt}.res{snr}(edit1,1), 'kx'), end 
                    if any(edit2), plot(resax2, obs_time(edit2), 

stats{ls_iter,tgt}.res{snr}(edit2,2), 'kx'), end 
                    if any(edit3), plot(resax3, obs_time(edit3), 

stats{ls_iter,tgt}.res{snr}(edit3,3), 'kx'), end 
                end 

                 
                % cost function update 
                cost_func = cost_func + ... 
                    sqrt( sum( res(:,1).^2 ) ) / sensor{snr}.stddev(1) 

+ ... 
                    sqrt( sum( res(:,2).^2 ) ) / sensor{snr}.stddev(2) 

+ ... 
                    sqrt( sum( res(:,3).^2 ) ) / sensor{snr}.stddev(3); 

             
            elseif sensor{snr}.snr_type == 2 || sensor{snr}.snr_type == 

4 
                % azimuth and elevation observations 
                obs_ae = target{tgt}.obs(target{tgt}.obs_ff,2:3); 
                res = obs_ae(obsidx,:) - calc_rae(:,2:3); 
                % save residuals 
                stats{ls_iter,tgt}.res{snr} = res;                         

%#ok<AGROW> 

                 
                % plot residuals 
                if koptions.echo 
                    if snr == 1 
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                        cla(resax2), plot(resax2, obs_time, res(:,1), 

'r.'), hold(resax2, 'on') 
                        cla(resax3), plot(resax3, obs_time, res(:,2), 

'r.'), hold(resax3, 'on') 
                        drawnow 
                    else 
                        cols = 'rbmk'; nc = length(cols); 
                        plot(resax2, obs_time, res(:,1), [cols(mod(snr-

1,nc)+1) '.']) 
                        plot(resax3, obs_time, res(:,2), [cols(mod(snr-

1,nc)+1) '.']) 
                        drawnow 
                    end 
                end 

  
                % statistical editting of outliers based on sensor std 

dev 
                if ls_iter > 1 
                    res( abs(res(:,1)) > 

sensor{snr}.stddev(1)*koptions.sig_edit, 1) = 0; 
                    res( abs(res(:,2)) > 

sensor{snr}.stddev(2)*koptions.sig_edit, 2) = 0; 
                end 

                 
                % mark editted points 
                if koptions.echo 
                    edit1 = abs(stats{ls_iter,tgt}.res{snr}(:,1)) > 

sensor{snr}.stddev(1)*koptions.sig_edit; 
                    edit2 = abs(stats{ls_iter,tgt}.res{snr}(:,2)) > 

sensor{snr}.stddev(2)*koptions.sig_edit; 
                    if any(edit1), plot(resax2, obs_time(edit1), 

stats{ls_iter,tgt}.res{snr}(edit1,1), 'kx'), end 
                    if any(edit2), plot(resax3, obs_time(edit2), 

stats{ls_iter,tgt}.res{snr}(edit2,2), 'kx'), end 
                end 

                 
                % cost function update 
                cost_func = cost_func + ... 
                    sqrt( sum( res(:,1).^2 ) ) / sensor{snr}.stddev(1) 

+ ... 
                    sqrt( sum( res(:,2).^2 ) ) / sensor{snr}.stddev(2); 

  
                % remove computed range values 
                calc_rae(:,1) = []; 
                pert_rae(:,1) = []; 
            else 
                error(['Unrecognized sensor type ID: ' 

num2str(sensor{snr}.snr_type)]) 
            end 

             
            % resize residuals matrix to a vector 
            res = reshape(res',[],1); 
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            % use perturbed trajectories to compute observation 

matrices (Ti) 
            % 
            % each observation time has as many entries as is has 
            % components of range, azimuth, or elevation 
            %  (Range, Az, & El - 3 entries per obs time) 
            %  (Az & El         - 2 entries per obs time) 
            % 
            partials_x = calc_rae - pert_rae(1:6:end,:); 
            partials_x = reshape(partials_x', [], 1); 

  

            partials_y = calc_rae - pert_rae(2:6:end,:); 
            partials_y = reshape(partials_y', [], 1); 

  
            partials_z = calc_rae - pert_rae(3:6:end,:); 
            partials_z = reshape(partials_z', [], 1); 

  
            partials_vx = calc_rae - pert_rae(4:6:end,:); 
            partials_vx = reshape(partials_vx', [], 1); 

  
            partials_vy = calc_rae - pert_rae(5:6:end,:); 
            partials_vy = reshape(partials_vy', [], 1); 

  
            partials_vz = calc_rae - pert_rae(6:6:end,:); 
            partials_vz = reshape(partials_vz', [], 1); 

  
            % construct the observation matrix: dX(i)/dt 
            T = [partials_x/sv_pert(1)  partials_y/sv_pert(2)  

partials_z/sv_pert(3) ... 
                partials_vx/sv_pert(4) partials_vy/sv_pert(5) 

partials_vz/sv_pert(6)]; 

  
            % construct the covariance matrix 
            Q = diag( repmat(1./sensor{snr}.stddev.^2, 1, numobs) ); 
            Qi = inv(Q); 

             
            % add to running sums 
            TtQiT = TtQiT + T'*Qi*T; 
            TtQir = TtQir + T'*Qi*res; 
        end % end of loop through sensors 

         
        % compute state vector update 
        cov_update = pinv(TtQiT); 
        sv_update = cov_update * TtQir; 

         
%         % check for target convergence - covariance method 
%         cov_diag = reshape(cov_update,[],1); 
%         cov_diag = cov_diag(1:7:end); 
%         converged(tgt) = all(sv_update <= sqrt(cov_diag)*1e-7); 

  
        % check for target convergence - cost function method 
        if ls_iter > 1 
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            converged(tgt) = abs( (stats{ls_iter-1,tgt}.cost_func - 

cost_func) / stats{ls_iter-1,tgt}.cost_func ) < koptions.conv_tol; 

             
            % if cost function improved, apply correction 
            if cost_func < stats{ls_iter-1,tgt}.cost_func 
                target{tgt}.init_sv = target{tgt}.init_sv - [sv_update' 

0 0 0]; 
            end 
        else 
            % first run, apply correction 
            target{tgt}.init_sv = target{tgt}.init_sv - [sv_update' 0 0 

0]; 
        end 

         
        if koptions.echo && converged(tgt) 
            disp('   Convergence Criteria Met.') 
        end 

         

        % save statistics 
        stats{ls_iter,tgt}.cost_func = cost_func;                          

%#ok<AGROW> 
        stats{ls_iter,tgt}.cov = cov_update;                               

%#ok<AGROW> 

         
        % increment iteration number 
        ls_iter = ls_iter + 1; 
    end % end of loop through targets 

     
end % end of iteration while loop 

  
% fill state structure with states during free-flight 
for tgt = 1:numtgt 

     
    % time series to propagate to, first value is time of SV 
    prop_time = [target{tgt}.init_time-time_pad; 

target{tgt}.obs_time(target{tgt}.obs_ff)]; 

     
    % propagate converged state vector 
    [calc_time,calc_sv] = ode45(@kaliper_eom, prop_time, 

target{tgt}.init_sv', options); 

     
    % save values 
    state{tgt}.time = target{tgt}.obs_time;                                

%#ok<AGROW> 
    state{tgt}.sv   = zeros(length(target{tgt}.obs_time),9);               

%#ok<AGROW> 
    state{tgt}.sv(target{tgt}.obs_ff,:) = calc_sv(2:end,:);                

%#ok<AGROW> 
    state{tgt}.cov  = zeros(length(target{tgt}.obs_time),81);               

%#ok<AGROW> 
    full_cov = zeros(9,9); 
    full_cov(1:6,1:6) = stats{end,tgt}.cov; 
    acc_cov = 0.001; 
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    full_cov(7,7) = acc_cov; full_cov(8,8) = acc_cov; full_cov(9,9) = 

acc_cov; 
    state{tgt}.cov(target{tgt}.obs_ff,:) = repmat( ... 
        reshape(full_cov,1,[]), ... 
        length(find(target{tgt}.obs_ff)), 1);                              

%#ok<AGROW> 
end 

  
%%%% 
%%%% Phase 2 state vector estimation - Reentry - Sensed Accels ~= 0 
%%%% 

  
if koptions.echo 
    disp('** Entering Phase 2 - Non-Ballistic Estimation **') 
end 

  
%%%% 
%%%% Phase 2a - least squares sliding window discontinuous estimation 
%%%% 

  
% check whether LSSW should be performed 
if koptions.lssw 

     
    if koptions.echo 
        disp('   * Phase 2a - LSSW Beginning *') 
    end 

  
    % loop through targets 
    for tgt = 1:numtgt 

  
        % this will only function on 3D observations, others will have 

to be interpolated 
        all_time = target{tgt}.obs_time(~target{tgt}.obs_ff); 
        all_eci  = target{tgt}.obs_eci(~target{tgt}.obs_ff,:); 
        all_sv   = zeros(length(all_time), 9); 

  
        % strip out NaNs associated with non-3D observations 
        fit_idx = find(~isnan(all_eci(:,1))); 

  
        % data to fit with sliding window 
        fit_time = all_time(fit_idx); 
        fit_eci  = all_eci(fit_idx,:); 
        numobs = length(fit_time); 

  
        % compute lssw window size for each observation 
        win_pt  = [1, koptions.window_size/2, numobs-

koptions.window_size/2, numobs]; 
        win_win = [koptions.min_window_size, koptions.window_size, 

koptions.window_size koptions.max_window_size]; 
        win_size = ceil(interp1(win_pt, win_win, 1:numobs)); 

  
        for obs = 1:numobs 
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            win_max = min(numobs, max(1+win_size, 

obs+ceil(win_size/2))); 
            win_min = win_max - win_size; 

  
            win_time = fit_time(win_min:win_max); 
            win_eci  = fit_eci(win_min:win_max,:); 
            numfit = length(win_time); 

  
            % precompute times 
            dt = win_time - win_time(1); 
            dt2 = dt.^2; 
            dt3 = dt.^3; 
            dt4 = dt.^4; 

  
            % construct A matrix 
            A = []; 
            A(:,1) = ones(numfit,1); 
            A(:,2) = dt; 
            A(:,3) = dt2/2; 
            A(:,4) = dt3/6; 
            A(:,5) = dt4/24; 

  
            % separate b vectors for X,Y,Z of observations 
            bx = win_eci(:,1); 
            by = win_eci(:,2); 
            bz = win_eci(:,3); 

  
            % least squares by Singular Value Decomposition for 

stability 
            pinv_A = pinv(A); % this is much faster than using svd() 

and pinv() seperately 
            xh_x = pinv_A * bx; 
            xh_y = pinv_A * by; 
            xh_z = pinv_A * bz; 

  
            all_sv(fit_idx(obs),:) = [xh_x(1) xh_y(1) xh_z(1) xh_x(2) 

xh_y(2) xh_z(2) xh_x(3) xh_y(3) xh_z(3)]; 

  

%             % subtract gravity acceleration from computed 

accelerations 
%             grav_acc = calc_grav([xh_x(1) xh_y(1) xh_z(1)]); 
%             all_sv(fit_idx(obs),7:9) = all_sv(fit_idx(obs),7:9) - 

grav_acc; 

  
        end 

  
        state{tgt}.lssw_std = std(all_sv(fit_idx,1:3)-fit_eci(:,1:3)); 

  
        % save SV solutions to use as initial solutions in Phase 2b 
        state{tgt}.sv(~target{tgt}.obs_ff,1:3) = all_sv(:,1:3); 
    end 

  
    if koptions.echo 
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        disp('   * Phase 2a - LSSW Complete  *') 
    end 
end 

  
%%%% 
%%%% Phase 2b - Kalman Filter pass with weighted LSSW results 
%%%% 

  
if koptions.echo 
    disp('   * Phase 2b - KF Beginning *') 
end 

  
% loop through targets 
for tgt = 1:numtgt 

     
    % non-free flight indeces 
    kf_idx  = find(~target{tgt}.obs_ff); 

     
    for i = 1:length(kf_idx) 

         
        % index of this observation in the overall array 
        obsidx = kf_idx(i); 
        obs_time = target{tgt}.obs_time(obsidx); 
        snridx = target{tgt}.obs_snr(obsidx); 

         
        % pull out previous state vector for easy access 
        prev_sv = state{tgt}.sv(obsidx-1,:); 

         
        % propagate previous state to this time for the prediction 
        [prop_time,prop_sv] = ode45(@kaliper_eom, 

target{tgt}.obs_time(obsidx-1:obsidx), prev_sv', options); 

         
        X_minus = prop_sv(end,:); 

         
        % compute state transition matrix to propagate covariance from 

prev state 
        delta_t = diff(target{tgt}.obs_time(obsidx-1:obsidx)); 
        F = calc_state_dist(state{tgt}.sv(obsidx-1,:)); 
        Phi = eye(9) + F * delta_t; 

         
        % compute noise on covariance propagation 
        % KADRE Q Method 
        cov_noise = zeros(9); 
        q_scale = diag([koptions.qp koptions.qp koptions.qp ... 
                        koptions.qv koptions.qv koptions.qv ... 
                        koptions.qa koptions.qa koptions.qa]); 
        for j = 0:2 
            for k = 0:2 
                cov_noise = cov_noise + 1/(factorial(j) * factorial(k)) 

* ... 
                    F^j * q_scale * (F')^k * delta_t^(1+j+k)/(1+j+k); 
            end 
        end 
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%         % MSIC Q Method 
%         tot_acc = kaliper_calcaccel(prev_sv); 
%         acc_mag = sqrt( tot_acc(1)^2 + tot_acc(2)^2 + tot_acc(3)^2 ); 
%         cov_pos = koptions.qp * tot_acc * delta_t^4 / acc_mag; 
%         cov_vel = koptions.qv * tot_acc * delta_t^2 / acc_mag; 
%         cov_acc = koptions.qa * tot_acc / acc_mag; 
%         cov_noise = diag([cov_pos cov_vel cov_acc]); 

         
        % propagate previous covariance as the prediction 
        if i == 1 
            init_cov = diag([0.01 0.01 0.01 0.001 0.001 0.001 0.001 

0.001 0.001]); 
            P_minus = Phi * init_cov * Phi' + cov_noise; 
        else 
            P_minus = Phi * reshape(state{tgt}.cov(obsidx-1,:),9,9) * 

Phi' + cov_noise; 
        end 

             

         
        % compute observation matrix, H 
        % 
        %      | (X-X0)/R     (Y-Y0)/R   (Z-Z0)/R    0 0 0    0 0 0| 
        %  H = |  dAz/dX       dAz/dY     dAz/dZ     0 0 0    0 0 0| 
        %      |  dEl/dX       dEl/dY     dEl/dZ     0 0 0    0 0 0| 
        % 
        %  R = [ (X-X0)^2 + (Y-Y0)^2 + (Z-Z0)^2 ]^(1/2) 
        %  (X0,Y0,Z0) - Inertial location of observer @ observation 

time 
        % 

         
        % determine position of observing sensor 
        if sensor{snridx}.snr_type == 1 || sensor{snridx}.snr_type == 2 
            % stationary sensor 
            sen_eci = tm_ecr2eci(sensor{snridx}.pos_ecf, 0, obs_time, 

0); 
            sen_ecf = sensor{snridx}.pos_ecf; 
            sen_lla = tm_ecr2lla(sensor{snridx}.pos_ecf); 
            sen_lla(1) = geoc2geod(sen_lla(1)); 
            sen_tm  = sensor{snridx}.tm; 
        elseif sensor{snridx}.snr_type == 3 || sensor{snridx}.snr_type 

== 4 
            % moving sensor, interpolate sensor position at obs_time 
            interp_lat = interp1(sensor{snr}.pos_time, 

sensor{snr}.pos_lla(:,1), obs_time, 'spline'); 
            interp_lon = interp1(sensor{snr}.pos_time, 

sensor{snr}.pos_lla(:,2), obs_time, 'spline'); 
            interp_alt = interp1(sensor{snr}.pos_time, 

sensor{snr}.pos_lla(:,3), obs_time, 'spline'); 

             
            sen_lla = [interp_lat, interp_lon, interp_alt]; 
            [sen_ecf, sen_tm] = calc_sensor(interp_lat, interp_lon, 

interp_alt); 
            sen_eci = tm_ecr2eci(sen_ecf, 0, obs_time, 0); 
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        end 

         
        % compute range 
        rng = sqrt( (X_minus(1)-sen_eci(1))^2 + (X_minus(2)-

sen_eci(2))^2 + (X_minus(3)-sen_eci(3))^2 ); 

         
        % convert X_minus to the observation variables 
        sim_ecf = tm_eci2ecr(X_minus(1:3), 0, obs_time, 0); 
        sim_sez = tm_ecr2sez(sim_ecf, sen_ecf, sen_tm); 
        sim_rae = tm_sez2rae(sim_sez); 

  

        % determine whether we need the range component 
        if target{tgt}.obs(obsidx,1) ~= 0 
            H = zeros(3,9); 

             
            % fill in range partials 
            H(1,1:3) = (X_minus(1:3)-sen_eci) / rng; 

             
            % row indeces to compute Az and El partials in 
            azi = 2; 
            eli = 3; 

             
            % define simulated & actual observations - full RAE 
            sim_z = sim_rae; 
            obs_z = target{tgt}.obs(obsidx,:); 
        else 
            H = zeros(2,9); 

             
            % row indeces to compute Az and El partials in 
            azi = 1; 
            eli = 2; 

             
            % define simulated & actual observations - only AE 
            sim_z = sim_rae(2:3); 
            obs_z = target{tgt}.obs(obsidx,2:3); 
        end 

         
        % fill in azimuth partials (see appendix) 
        % compute common terms contained in partials: 
        % sin & cos of sensor position 
        slat = sin(sen_lla(1)); 
        clat = cos(sen_lla(1)); 
        slon = sin(sen_lla(2)); 
        clon = cos(sen_lla(2)); 
        % sin & cos of ECI->ECEF angle 
        st = sin(earth.AngVel * obs_time); 
        ct = cos(earth.AngVel * obs_time); 
        % predicted SV position components 
        x = X_minus(1); 
        y = X_minus(2); 
        z = X_minus(3); 

         

        % azimuth partials 
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        numer_Az = -slon*(ct*x+st*y-sen_ecf(1))+clon*(-st*x+ct*y-

sen_ecf(2)); 
        denom_Az = -slat*clon*(ct*x+st*y-sen_ecf(1))-slat*slon*(-

st*x+ct*y-sen_ecf(2))+clat*(z-sen_ecf(3)); 
        dAz_base = 1/(1 + (numer_Az/denom_Az)^2); % derivative of inv 

tan 

         
        % dAz/dX, dY, dZ 
        H(azi,1) = dAz_base * ((-slon*ct-clon*st)*denom_Az - (-

slat*clon*ct+slat*slon*st)*numer_Az) / denom_Az^2; 
        H(azi,2) = dAz_base * ((-slon*st+clon*ct)*denom_Az - (-

slat*clon*st-slat*slon*ct)*numer_Az) / denom_Az^2; 
        H(azi,3) = dAz_base * (-clat*numer_Az) / denom_Az^2; 

         
        % elevation partials 
        numer_El = clat*clon*(ct*x+st*y-sen_ecf(1))+clat*slon*(-

st*x+ct*y-sen_ecf(2))+slat*(z-sen_ecf(3)); 
        denom_El = rng; 
        dEl_base = 1/sqrt(1 - (numer_El/denom_El)^2); % derivative of 

inv sin 

         
        % dEl/dX, dY, dZ 
        H(eli,1) = dEl_base * ((clat*clon*ct - clat*slon*st)*denom_El - 

(x-sen_eci(1))/denom_El*numer_El) / denom_El^2; 
        H(eli,2) = dEl_base * ((clat*clon*st + clat*slon*ct)*denom_El - 

(y-sen_eci(2))/denom_El*numer_El) / denom_El^2; 
        H(eli,3) = dEl_base * (slat*denom_El - (z-

sen_eci(3))/denom_El*numer_El) / denom_El^2; 

         
        % if a solution from the LSSW pass was computed, add it to the 

calculation 
        if koptions.lssw && ~all(state{tgt}.sv(obsidx,1:3) == 0) 
            % add SV components to observation & simulation variables 
            obs_z = [obs_z state{tgt}.sv(obsidx,1:3)]; 
            sim_z = [sim_z X_minus(1:3)]; 

             
            % add derivatives to H matrix 
            % H = [H; zeros(6,3), eye(6,6); zeros(3,9)]; % (complete 

SV) 
            H = [H; eye(3,3), zeros(3,6)]; % (position SV) 

             
            % construct measurement noise matrix w/ SV components 
            R = diag([sensor{snridx}.stddev.^2, 

state{tgt}.lssw_std.^2]); 
        else 
            % construct measurement noise matrix 
            R = diag(sensor{snridx}.stddev.^2); 
        end 

         
        % with H&R computed, calculate the Kalman Gain 
        K = P_minus*H' * pinv(H*P_minus*H' + R); 

         

        % compute SV update 
        X_plus = X_minus(:) + K*(obs_z(:) - sim_z(:)); 
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        % compute covariance update 
        P_plus = (eye(9) - K*H)*P_minus; 

         

        % save results from this data point 
        state{tgt}.sv_minus(obsidx,:)  = X_minus'; 
        state{tgt}.cov_minus(obsidx,:) = P_minus(:)'; 
        state{tgt}.sv(obsidx,:)  = X_plus'; 
        state{tgt}.cov(obsidx,:) = P_plus(:)'; 

         
        if koptions.echo 
            disp(['Completed KF Pass - Filter Time = ' 

num2str(obs_time)]) 
        end 
    end 
end 

  
if koptions.echo 
    disp('   * Phase 2b - KF Complete  *') 
end 

  
if koptions.echo 
    disp('   * Phase 2c - Smoother Beginning *') 
end 

  
%%%% 
%%%% Phase 2c - Smoother 
%%%% 

  
% loop through targets 
for tgt = 1:numtgt 

     
    % non-free flight indeces 
    kf_idx  = find(~target{tgt}.obs_ff); 
    state{tgt}.cov_smooth = state{tgt}.cov; 
    state{tgt}.sv_smooth = state{tgt}.sv; 

     
    % run smoother backwards 
    for i = length(kf_idx)-1:-1:1 

         
        % index of this observation in the overall array 
        obsidx = kf_idx(i); 
        obs_time = target{tgt}.obs_time(obsidx); 

         

        % compute state transition matrix to propagate covariance from 

prev state 
        delta_t = diff(target{tgt}.obs_time(obsidx:obsidx+1)); 
        F = calc_state_dist(state{tgt}.sv(obsidx,:)); 
        Phi = eye(9) + F * delta_t; 

         
        C = reshape(state{tgt}.cov(obsidx,:),9,9) * Phi' * ... 
            pinv(reshape(state{tgt}.cov_minus(obsidx+1,:),9,9)); 
        P_smooth = reshape(state{tgt}.cov(obsidx,:),9,9) + C * ... 



96 

            (reshape(state{tgt}.cov_smooth(obsidx+1,:),9,9) - ... 
             reshape(state{tgt}.cov_minus(obsidx+1,:),9,9)) * C'; 

         
        state{tgt}.cov_smooth(obsidx,:) = P_smooth(:)'; 
        state{tgt}.sv_smooth(obsidx,:) = state{tgt}.sv(obsidx,:) + ... 
            (C * (state{tgt}.sv_smooth(obsidx+1,:)' - 

state{tgt}.sv_minus(obsidx+1,:)'))'; 

         
        if koptions.echo 
            disp(['Completed KF Pass - Smoother Time = ' 

num2str(obs_time)]) 
        end 
    end 
end 

  
if koptions.echo 
    disp('   * Phase 2c - Smoother Complete  *') 
end 

  
%%%% 
%%%% Phase 3 - Wrap up, Parameter Computation 
%%%% 

  
if koptions.echo 
    disp('** Phase 3 - Parameter Computation **') 
end 

  
% loop through targets 
for tgt = 1:numtgt 

     
    %%%% compute residuals 
    sv_ecf = tm_eci2ecr(state{tgt}.sv_smooth(:,1:3), 0, 

state{tgt}.time, 0); 
    sv_sez = zeros(size(sv_ecf)); 

     
    % number of sensors for this target 
    tgtsnr = unique(target{tgt}.obs_snr); 
    numsnr = length(tgtsnr); 

     
    % loop through sensors, computing SEZ information 
    for snridx = 1:numsnr 
        snr = tgtsnr(snridx); 

  
        % observations from this sensor, and those observation times 
        obsidx = target{tgt}.obs_snr == snr; 
        obs_time = target{tgt}.obs_time(obsidx); 

         
        % stationary range, az, el OR az, el observations 
        if sensor{snr}.snr_type == 1 || sensor{snr}.snr_type == 2 

  
            % convert ECEF SV positions to stationary SEZ 
            sv_sez(obsidx,:) = tm_ecr2sez(sv_ecf(obsidx,:), 

sensor{snr}.pos_ecf, sensor{snr}.tm); 
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            % moving range, az, el OR az, el observations 
        elseif sensor{snr}.snr_type == 3 || sensor{snr}.snr_type == 4 

  

            % interpolate sensor positions at observation times 
            interp_lat = interp1(sensor{snr}.pos_time, 

sensor{snr}.pos_lla(:,1), obs_time, 'spline'); 
            interp_lon = interp1(sensor{snr}.pos_time, 

sensor{snr}.pos_lla(:,2), obs_time, 'spline'); 
            interp_alt = interp1(sensor{snr}.pos_time, 

sensor{snr}.pos_lla(:,3), obs_time, 'spline'); 
            [sensor_pos, sensor_tm] = calc_sensor_move(interp_lat, 

interp_lon, interp_alt); 

  
            % convert ECEF SV positions to moving SEZ 
            sv_sez(obsidx,:) = tm_ecr2sez_move(sv_ecf(obsidx,:), 

sensor_pos, sensor_tm); 
        else 
            error(['Unrecognized sensor type ID: ' 

num2str(sensor{snr}.snr_type)]) 
        end 
    end 

     
    % compute RAE state 
    sv_rae = tm_sez2rae(sv_sez); 
    target{tgt}.res = repmat(NaN, size(sv_rae)); 

     
    % loop through sensors, computing residuals 
    for snridx = 1:numsnr 
        snr = tgtsnr(snridx); 

  

        % observations from this sensor 
        obsidx = target{tgt}.obs_snr == snr; 

  
        if sensor{snr}.snr_type == 1 || sensor{snr}.snr_type == 3 
            % range, azimuth, and elevation observations 
            target{tgt}.res(obsidx,:) = target{tgt}.obs(obsidx,:) - 

sv_rae(obsidx,:); 

  
        elseif sensor{snr}.snr_type == 2 || sensor{snr}.snr_type == 4 
            % azimuth and elevation observations 
            target{tgt}.res(obsidx,2:3) = target{tgt}.obs(obsidx,2:3) - 

sv_rae(obsidx,2:3); 
        end 
    end 

     
    % plot residuals, if requested 
    if koptions.echo 
        figure, hold on 

         
        % loop through sensors, computing residuals 
        for snridx = 1:numsnr 
            snr = tgtsnr(snridx); 



98 

  
            % observations from this sensor 
            obsidx = target{tgt}.obs_snr == snr; 
            if snr == 1 
                subplot(3,1,1), hold on 
                plot(target{tgt}.obs_time(obsidx), 

target{tgt}.res(obsidx,1), 'r.') 
                subplot(3,1,2), hold on 
                plot(target{tgt}.obs_time(obsidx), 

target{tgt}.res(obsidx,2), 'r.') 
                subplot(3,1,3), hold on 
                plot(target{tgt}.obs_time(obsidx), 

target{tgt}.res(obsidx,3), 'r.') 
            else 
                cols = 'rbmk'; nc = length(cols); 
                subplot(3,1,1) 
                plot(target{tgt}.obs_time(obsidx), 

target{tgt}.res(obsidx,1), [cols(mod(snr-1,nc)+1) '.']) 
                subplot(3,1,2) 
                plot(target{tgt}.obs_time(obsidx), 

target{tgt}.res(obsidx,2), [cols(mod(snr-1,nc)+1) '.']) 
                subplot(3,1,3) 
                plot(target{tgt}.obs_time(obsidx), 

target{tgt}.res(obsidx,3), [cols(mod(snr-1,nc)+1) '.']) 
            end 
        end 
    end 

     
    %%%% compute lat/lon/alt positions 
    state{tgt}.lla = tm_eci2vel(state{tgt}.sv_smooth(:,1:3), 

state{tgt}.time); 
    state{tgt}.lla(:,3) = state{tgt}.lla(:,3)/1000; 

     
    %%%% compute altitude 
    state{tgt}.alt = state{tgt}.lla(:,3); 

     
    %%%% compute ballistic coefficient 
    % atmospheric values 
    [temp, pres, dens] = calc_atmos(state{tgt}.alt);                       

%#ok<NASGU> 

     
    % air relative velocity for dynamic pressure 
    vxa = state{tgt}.sv_smooth(:,4) + 

earth.AngVel.*state{tgt}.sv_smooth(:,2); 
    vya = state{tgt}.sv_smooth(:,5) - 

earth.AngVel.*state{tgt}.sv_smooth(:,1); 
    vz  = state{tgt}.sv_smooth(:,6); 
    va  = sqrt( vxa.^2 + vya.^2 + vz.^2 ); 

  
    % dynamic pressure (convert dens from kg/m3 to kg/km3) 
    dynpres = .5 * 1000^3 * dens .* va.^2; 

     

    % magnitude of drag acceleration 
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    drag_mag = sqrt( state{tgt}.sv_smooth(:,7).^2 + 

state{tgt}.sv_smooth(:,8).^2 + state{tgt}.sv_smooth(:,9).^2 ); 

     
    % ballistic coefficient in kg/m2 
    state{tgt}.beta = dynpres ./ drag_mag / 1000^2; 

     
    %%%% Mach number (non-dim) 
    gamma = 1.4; 
    gas_const = 284; 
    state{tgt}.mach = va ./ sqrt( gamma * gas_const * temp ) * 1000; 
end 

  
if koptions.echo 
    disp('** KALIPER Run Complete **') 
end 

  
% set output variables 
if nargout == 1 
    % one output requested 
    varargout{1} = state; 
elseif nargout == 2 
    % two outputs requested 
    varargout{1} = state; 
    varargout{2} = target; 
elseif nargout == 3 
    % three outputs requested 
    varargout{1} = state; 
    varargout{2} = target; 
    varargout{3} = stats; 
end 

  
    %KALIPER_CALCINIT - compute initial guess for state 
    % 
    % Initial guess based on least squares solution to equations of 

motion 
    % assuming constant 4th derivative of position: 
    % x_measured =  
    %               x_true + 
    %               x_true(1) * T + 
    %               x_true(2) * T^2 / 2 +  
    %               x_true(3) * T^3 / 6 +  
    %               x_true(4) * T^4 / 24 + noise 
    % 
    % Note: number in () is the nth derivative 
    % 
    function [init_time, init_sv] = kaliper_calcinit(tgt) 

         
        numobs = length(target{tgt}.obs_time); 

         
        % check if free flight observations have been predetermined 
        if isfield(target{tgt}, 'obs_ff') 
            target{tgt}.obs_ff = false(numobs,1); 
        end 
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        if ~isfield(target{tgt}, 'obs_ff') || ~any(target{tgt}.obs_ff) 
            % initial attempt will be to select observations outside of 

the 
            % Eath's atmosphere 
            obs_alt = calc_alt(target{tgt}.obs_eci); 
            num_3d = length(find(~isnan(obs_alt))); 

             
            target{tgt}.obs_ff = obs_alt >= earth.AtmAlt; 

             
            % check to see if there is still nothing defined 
            if ~any(target{tgt}.obs_ff) 
                % select highest altitude points until 10% of available 

are 
                % selected (arbitrary) 
                alt_step = -1; 
                cutoff_alt = max(obs_alt) + alt_step; 
                while length(find(target{tgt}.obs_ff))/num_3d < .1 
                    target{tgt}.obs_ff = obs_alt >= cutoff_alt; 
                    cutoff_alt = cutoff_alt + alt_step; 
                end 
            end 
        end 

         
        % compute least squares solution 
        fit_time = target{tgt}.obs_time(target{tgt}.obs_ff); 
        fit_eci = target{tgt}.obs_eci(target{tgt}.obs_ff,:); 
        numfit = length(fit_time); 

         
        % precompute times 
        dt = fit_time - fit_time(1); 
        dt2 = dt.^2; 
        dt3 = dt.^3; 
        dt4 = dt.^4; 

         
        % construct A matrix 
        A = []; 
        A(:,1) = ones(numfit,1); 
        A(:,2) = dt; 
        A(:,3) = dt2/2; 
        A(:,4) = dt3/6; 
        A(:,5) = dt4/24; 

         
        % separate b vectors for X,Y,Z of observations 
        bx = fit_eci(:,1); 
        by = fit_eci(:,2); 
        bz = fit_eci(:,3); 

         
        % least squares by Singular Value Decomposition for stability 
        pinv_A = pinv(A); % this is much faster than using svd() and 

pinv() seperately 
        xh_x = pinv_A * bx; 
        xh_y = pinv_A * by; 
        xh_z = pinv_A * bz; 
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        % compile initial guess 
        init_time = fit_time(1); 
        init_sv = [xh_x(1) xh_y(1) xh_z(1) xh_x(2) xh_y(2) xh_z(2) 

xh_x(3) xh_y(3) xh_z(3)]; 

         
        % for initialization purposes, we're assuming free-flight 
        init_sv(7:9) = 0; 

         
        % use the time determined by the 3-D data to include others 
        ff_time = target{tgt}.obs_time(target{tgt}.obs_ff); 
        target{tgt}.obs_ff = target{tgt}.obs_time >= ff_time(1) & ... 
                             target{tgt}.obs_time <= ff_time(end); 

         
    end % end of kaliper_calcinit function 

  
    %KALIPER_EOM - Generatlized equations of motion 
    % 
    %  These equations of motion can be used with ode45 and the state 

to 
    %  propagate the state forward in time. 
    % 
    %  Note: This is a modification to METAL's eom_re and eom_ff.  

Since 
    %  the sensed acceleration is an element in the state vector, these 
    %  EOMs satisfy both free flight and reentry conditions 
    % 
    % 
    function dy = kaliper_eom(t,y)                                         

%#ok<INUSL> 

         
        % change y from single vector to columns of vectors 
        nval = size(y,1); 
        nvec = nval/9; 
        y = reshape(y, 9, nvec); 
        dy = zeros(9, nvec); 

         
        % compute gravitational acceleration 
        grav_acc = calc_grav(y(1:3,:)')'; 

         
        % compute total acceleration 
        tot_acc = grav_acc + y(7:9,:); 

  
        % derivatives 
        dy(1,:) = y(4,:);       % dx/dt   = vx 
        dy(2,:) = y(5,:);       % dy/dt   = vy 
        dy(3,:) = y(6,:);       % dz/dt   = vz 
        dy(4,:) = tot_acc(1,:); % d2x/dt2 = tax 
        dy(5,:) = tot_acc(2,:); % d2y/dt2 = tay 
        dy(6,:) = tot_acc(3,:); % d2z/dt2 = taz 
        % acceleration derivatives = 0 

  
        % change dy back to single column to satisfy ode45 
        dy = reshape(dy, nval, 1); 
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    end % end of kaliper_eom function 

  
    %CALC_STATE_DIST - calculate the state distribution matrix (F) for 

a given SV. 
    %                  used to compute state transition matrix by: Phi 

= I + F*dt 
    function f = calc_state_dist(sv) 

         
        % compute partials of the state, initialize with all zeros 
        f = zeros(9,9); 

         
        % position derivates 
        f(1,4) = 1; f(2,5) = 1; f(3,6) = 1; 

         
        % terms for velocity partials 
        r = sqrt(sv(1)^2 + sv(2)^2 + sv(3)^2); 
        mu = earth.GravConst; 

         
        % x velocity gravity partials (simple gravity) 
        f(4,1) = -mu/r^3 * (1 - 3*sv(1)^2/r^2); 
        f(4,2) = 3*mu*sv(1)*sv(2)/r^5; 
        f(4,3) = f(4,2)/sv(2)*sv(3); 

         

        % y velocity gravity partials 
        f(5,1) = f(4,2); 
        f(5,2) = -mu/r^3 * (1 - 3*sv(2)^2/r^2); 
        f(5,3) = f(5,1)/sv(1)*sv(3); 

         
        % z velocity gravity partials 
        f(6,1) = f(4,3); 
        f(6,2) = f(5,3); 
        f(6,3) = -mu/r^3 * (1 - 3*sv(3)^2/r^2); 

         
        % velocity sensed accel partials 
        f(4,7) = 1; f(5,8) = 1; f(6,9) = 1; 

         
    end % end of calc_state_dist function 

  
end % end of kaliper main function 
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read_data.m 

read_data.m is a MATLAB script written to read in data from truth cases.  Original 

formatting is preserved to maintain functionality when pasted into MATLAB. 

 

function [target,sensor] = read_data(datafile, varargin) 

  
snr = 1; 
tgt = 1; 

  
if nargin == 1 
    target{tgt}.obs = []; 
    target{tgt}.obs_time = []; 
    target{tgt}.obs_snr = []; 
elseif nargin == 3 
    target = varargin{1}; 
    sensor = varargin{2}; 

     
    tgt = length(target) + 1; 
    target{tgt}.obs = []; 
    target{tgt}.obs_time = []; 
    target{tgt}.obs_snr = []; 

     
    for i = 1:length(target) 
        snr = max(max(target{i}.obs_snr), snr); 
    end 
    snr = snr + 1; 
elseif nargin == 4 
    target = varargin{1}; 
    sensor = varargin{2}; 
    snr = varargin{3}; 

     
    tgt = length(target) + 1; 
    target{tgt}.obs = []; 
    target{tgt}.obs_time = []; 
    target{tgt}.obs_snr = []; 
elseif nargin == 5 
    target = varargin{1}; 
    sensor = varargin{2}; 
    snr = varargin{3}; 
    tgt = varargin{4}; 

     
    if ~isfield(target{tgt}, 'obs'), target{tgt}.obs = []; end 
    if ~isfield(target{tgt}, 'obs_time'), target{tgt}.obs_time = []; 

end 
    if ~isfield(target{tgt}, 'obs_snr'), target{tgt}.obs_snr = []; end 
end 

  

fid = fopen(datafile); 
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sen_pos = fgetl(fid); 
dataline = fgetl(fid); 
fclose(fid); 
[sen_lat, sen_lon, sen_alt] = strread(sen_pos, '%n %n %n'); 

  
numdata = length(strread(dataline, '%n')) - 1; 

  
if numdata == 3 
    % RAE 
    [obs_time, obs_r, obs_a, obs_e] = textread(datafile, '%n %n %n %n', 

'headerlines', 1); 
    target{tgt}.obs = [target{tgt}.obs; [obs_r(:), obs_a(:)*pi/180, 

obs_e(:)*pi/180]]; 

     
    sensor{snr}.snr_type = 1; 
    sensor{snr}.stddev = [.002 .03 * pi/180, .03 * pi/180]; 
    sensor{snr}.obs_bias = [0 0 0]; 
elseif numdata == 2 
    % AE 
    [obs_time, obs_a, obs_e] = textread(datafile, '%n %n %n', 

'headerlines', 1); 
    target{tgt}.obs = [target{tgt}.obs; [zeros(size(obs_a(:))) 

obs_a(:)*pi/180, obs_e(:)*pi/180]]; 

     
    sensor{snr}.snr_type = 2; 
    sensor{snr}.stddev = [.03 * pi/180, .03 * pi/180]; 
    sensor{snr}.obs_bias = [0 0]; 
else 
    error(['Unable to identify data file with ' num2str(numdata) ' 

entries per line.']) 
end 

  

target{tgt}.obs_time = [target{tgt}.obs_time; obs_time]; 
target{tgt}.obs_snr = [target{tgt}.obs_snr; repmat(snr, 

size(obs_time))]; 

  
[target{tgt}.obs_time, idx] = sort(target{tgt}.obs_time); 
target{tgt}.obs = target{tgt}.obs(idx,:); 
target{tgt}.obs_snr = target{tgt}.obs_snr(idx); 

  
target{tgt}.numobs = length(target{tgt}.obs_time); 

  
sensor{snr}.pos_lla = [sen_lat*pi/180, sen_lon*pi/180, sen_alt/1000]; 
[sensor{snr}.pos_ecf, sensor{snr}.tm] = calc_sensor(sen_lat*pi/180, 

sen_lon*pi/180, sen_alt/1000); 
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run_kaliper_cases.m 

run_kaliper_cases.m is a MATLAB script written to analyze truth cases and 

demonstrate input syntax.  Original formatting is preserved to maintain functionality 

when pasted into MATLAB. 

 

close all 
clear 

  
%%% Items for computing truth accelerations 
define_air 
read_stdatmos('stdatmos76.dat') 
% RV definition 
rv_beta = 5600; 
rv_hca = 9.5; 
rv_br = 0.24; 
define_berman(rv_hca, rv_br) 
%%% 

  

%%%%%% Scenario 1 - Pure Ballistic 
%%% Case 1 - Single Sensor - 1x Data Rate, along heading 
% files = {'scen1_sen1_pos1_rate1.rae'}; 
%%% Case 2 - Single Sensor - 1x Data Rate, perp to heading 
% files = {'scen1_sen1_pos2_rate1.rae'}; 
%%% Case 3 - Single Sensor - 1x Data Rate, 45 deg to heading 
files = {'scen1_sen2_pos3_rate1.rae'}; 
%%% Case 4 - Single Sensor - 2x Data Rate, best position 
% files = {'scen1_sen1_pos1_rate2.rae'}; 
%%% Case 5 - 2 Sensors - 1x Data Rate, along & along positions 
% files = {'scen1_sen1_pos1_rate1.rae', 'scen1_sen2_pos1_rate1.rae'}; 
%%% Case 6 - 2 Sensors - 1x Data Rate, along & 45 deg to positions 
% files = {'scen1_sen1_pos1_rate1.rae', 'scen1_sen2_pos2_rate1.rae'}; 
%%% Case 7 - 2 Sensors - 1x Data Rate, along & perp to positions 
% files = {'scen1_sen1_pos1_rate1.rae', 'scen1_sen2_pos3_rate1.rae'}; 
%%% Case 8 - 2 Sensors - 1x&2x Data Rate, along & perp to positions 
% files = {'scen1_sen1_pos1_rate1.rae', 'scen1_sen2_pos1_rate2.rae'}; 
%%% Case 9 - 2 Sensors - 2x&1x Data Rate, along & perp to positions 
% files = {'scen1_sen1_pos1_rate2.rae', 'scen1_sen2_pos3_rate1.rae'}; 
%%% Case 10 - 2 Sensors - 2x Data Rate, along & perp to positions 
% files = {'scen1_sen1_pos1_rate2.rae', 'scen1_sen2_pos3_rate2.rae'}; 
%%% Case 11 - 2 Sensors - 2x Data Rate, perp to & perp to positions 
% files = {'scen1_sen1_pos3_rate2.rae', 'scen1_sen2_pos3_rate2.rae'}; 
%%% Case 12 - 3 Sensors - 1x Data Rate, along, along, & along positions 
% files = {'scen1_sen1_pos1_rate1.rae', 'scen1_sen2_pos1_rate1.rae', 

'scen1_sen3_pos1_rate1.rae'}; 
%%% Case 13 - 3 Sensors - 1x Data Rate, along, along, & 45 deg to 

positions 
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% files = {'scen1_sen1_pos1_rate1.rae', 'scen1_sen2_pos1_rate1.rae', 

'scen1_sen3_pos2_rate1.rae'}; 
%%% Case 14 - 3 Sensors - 1x Data Rate, along, along, & perp to 

positions 
% files = {'scen1_sen1_pos1_rate1.rae', 'scen1_sen2_pos1_rate1.rae', 

'scen1_sen3_pos3_rate1.rae'}; 
%%% Case 15 - 3 Sensors - 1x Data Rate, along, along, & perp to 

positions 
% files = {'scen1_sen1_pos1_rate1.rae', 'scen1_sen2_pos1_rate1.rae', 

'scen1_sen3_pos2_rate2.rae'}; 
%%% Case 16 - 2 Sensors (RAE & AE) - 1x Data Rate, along & along 

positions 
% files = {'scen1_sen1_pos1_rate1.rae', 'scen1_sen3_pos1_rate1.rae'}; 
%%% Case 17 - 2 Sensors (RAE & AE) - 1x Data Rate, along & 45 deg to 

positions 
% files = {'scen1_sen1_pos1_rate1.rae', 'scen1_sen3_pos2_rate1.rae'}; 
%%% Case 18 - 2 Sensors (RAE & AE) - 1x Data Rate, along & perp to 

positions 
% files = {'scen1_sen1_pos1_rate1.rae', 'scen1_sen3_pos3_rate1.rae'}; 
%%% Case 19 - 2 Sensors (RAE & AE) - 1x&2x Data Rate, along & 45 deg to 

positions 
% files = {'scen1_sen1_pos1_rate1.rae', 'scen1_sen3_pos2_rate2.rae'}; 

  
%%%%%% Scenario 2 - Single Maneuver 
%%% Case 20 - ` Sensors (RAE) - 1x Data Rate, along position 
% files = {'scen2_sen1_pos1_rate1.rae'}; 
%%% Case 21 - ` Sensors (RAE) - 1x Data Rate, 45 deg to position 
% files = {'scen2_sen1_pos2_rate1.rae'}; 
%%% Case 22 - ` Sensors (RAE) - 1x Data Rate, perp to position 
% files = {'scen2_sen1_pos3_rate1.rae'}; 
%%% Case 23 - Single Sensor - 2x Data Rate, best position 
% files = {'scen2_sen1_pos3_rate2.rae'}; 
%%% Case 24 - 2 Sensors - 1x Data Rate, along & along positions 
% files = {'scen2_sen1_pos1_rate1.rae', 'scen2_sen2_pos1_rate1.rae'}; 
%%% Case 25 - 2 Sensors - 1x Data Rate, along & 45 deg to positions 
% files = {'scen2_sen1_pos1_rate1.rae', 'scen2_sen2_pos2_rate1.rae'}; 
%%% Case 26 - 2 Sensors - 1x Data Rate, along & perp to positions 
% files = {'scen2_sen1_pos1_rate1.rae', 'scen2_sen2_pos3_rate1.rae'}; 
%%% Case 27 - 2 Sensors - 1x Data Rate, 45 deg to & along positions 
% files = {'scen2_sen1_pos2_rate1.rae', 'scen2_sen2_pos1_rate1.rae'}; 
%%% Case 28 - 2 Sensors - 1x Data Rate, 45 deg to & 45 deg to positions 
% files = {'scen2_sen1_pos2_rate1.rae', 'scen2_sen2_pos2_rate1.rae'}; 
%%% Case 29 - 2 Sensors - 1x Data Rate, 45 deg to & perp to positions 
% files = {'scen2_sen1_pos2_rate1.rae', 'scen2_sen2_pos3_rate1.rae'}; 
%%% Case 30 - 2 Sensors - 1x&2x Data Rate, 45 deg to & along positions 
% files = {'scen2_sen1_pos2_rate1.rae', 'scen2_sen2_pos1_rate2.rae'}; 
%%% Case 31 - 3 Sensors - 1x Data Rate, along, 45 deg to, & along 

positions 
% files = {'scen2_sen1_pos1_rate1.rae', 'scen2_sen2_pos2_rate1.rae', 

'scen2_sen3_pos1_rate1.ae'}; 
%%% Case 32 - 3 Sensors - 1x Data Rate, along, 45 deg to, & 45 deg to 

positions 
% files = {'scen2_sen1_pos1_rate1.rae', 'scen2_sen2_pos2_rate1.rae', 

'scen2_sen3_pos2_rate1.ae'}; 
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%%% Case 33 - 3 Sensors - 1x Data Rate, along, 45 deg to, & perp to 

positions 
% files = {'scen2_sen1_pos1_rate1.rae', 'scen2_sen2_pos2_rate1.rae', 

'scen2_sen3_pos3_rate1.ae'}; 
%%% Case 34 - 3 Sensors - 1x,2x,2x Data Rate, along, 45 deg to, & perp 

to positions 
% files = {'scen2_sen1_pos1_rate1.rae', 'scen2_sen2_pos2_rate2.rae', 

'scen2_sen3_pos3_rate2.ae'}; 
%%% Case 35 - 2 Sensors (RAE & AE) - 1x Data Rate, along & along 

positions 
% files = {'scen2_sen1_pos1_rate1.rae', 'scen2_sen3_pos1_rate1.ae'}; 
%%% Case 36 - 2 Sensors (RAE & AE) - 1x Data Rate, along & 45 deg to 

positions 
% files = {'scen2_sen1_pos1_rate1.rae', 'scen2_sen3_pos2_rate1.ae'}; 
%%% Case 37 - 2 Sensors (RAE & AE) - 1x Data Rate, along & perp to 

positions 
% files = {'scen2_sen1_pos1_rate1.rae', 'scen2_sen3_pos3_rate1.ae'}; 
%%% Case 38 - 2 Sensors (RAE & AE) - 1x&2x Data Rate, along & 45 deg to 

positions 
% files = {'scen2_sen1_pos1_rate1.rae', 'scen2_sen3_pos2_rate2.ae'}; 

  
%%%%%% Scenario 3 - Double Maneuver 
%%% Case 39 - ` Sensors (RAE) - 1x Data Rate, along position 
% files = {'scen3_sen1_pos1_rate1.rae'}; 
%%% Case 40 - ` Sensors (RAE) - 1x Data Rate, 45 deg to position 
% files = {'scen3_sen1_pos2_rate1.rae'}; 
%%% Case 41 - ` Sensors (RAE) - 1x Data Rate, perp to position 
% files = {'scen3_sen1_pos3_rate1.rae'}; 
%%% Case 42 - Single Sensor - 2x Data Rate, best position 
% files = {'scen3_sen1_pos2_rate2.rae'}; 
%%% Case 43 - 2 Sensors - 1x Data Rate, along & along positions 
% files = {'scen3_sen1_pos1_rate1.rae', 'scen3_sen2_pos1_rate1.rae'}; 
%%% Case 44 - 2 Sensors - 1x Data Rate, along & 45 deg to positions 
% files = {'scen3_sen1_pos1_rate1.rae', 'scen3_sen2_pos2_rate1.rae'}; 
%%% Case 45 - 2 Sensors - 1x Data Rate, along & perp to positions 
% files = {'scen3_sen1_pos1_rate1.rae', 'scen3_sen2_pos3_rate1.rae'}; 
%%% Case 46 - 2 Sensors - 1x Data Rate, 45 deg to & along positions 
% files = {'scen3_sen1_pos2_rate1.rae', 'scen3_sen2_pos1_rate1.rae'}; 
%%% Case 47 - 2 Sensors - 1x Data Rate, 45 deg to & 45 deg to positions 
% files = {'scen3_sen1_pos2_rate1.rae', 'scen3_sen2_pos2_rate1.rae'}; 
%%% Case 48 - 2 Sensors - 1x Data Rate, 45 deg to & perp to positions 
% files = {'scen3_sen1_pos2_rate1.rae', 'scen3_sen2_pos3_rate1.rae'}; 
%%% Case 49 - 2 Sensors - 1x&2x Data Rate, 45 deg to & along positions 
% files = {'scen3_sen1_pos2_rate1.rae', 'scen3_sen2_pos1_rate2.rae'}; 
%%% Case 50 - 3 Sensors - 1x Data Rate, along, 45 deg to, & along 

positions 
% files = {'scen3_sen1_pos1_rate1.rae', 'scen3_sen2_pos2_rate1.rae', 

'scen3_sen3_pos1_rate1.ae'}; 
%%% Case 51 - 3 Sensors - 1x Data Rate, along, 45 deg to, & 45 deg to 

positions 
% files = {'scen3_sen1_pos1_rate1.rae', 'scen3_sen2_pos2_rate1.rae', 

'scen3_sen3_pos2_rate1.ae'}; 
%%% Case 52 - 3 Sensors - 1x Data Rate, along, 45 deg to, & perp to 

positions 
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% files = {'scen3_sen1_pos1_rate1.rae', 'scen3_sen2_pos2_rate1.rae', 

'scen3_sen3_pos3_rate1.ae'}; 
%%% Case 53 - 3 Sensors - 1x,2x,2x Data Rate, along, 45 deg to, & 45 

deg to positions 
% files = {'scen3_sen1_pos1_rate1.rae', 'scen3_sen2_pos2_rate2.rae', 

'scen3_sen3_pos2_rate2.ae'}; 
%%% Case 54 - 2 Sensors (RAE & AE) - 1x Data Rate, along & along 

positions 
% files = {'scen3_sen1_pos1_rate1.rae', 'scen3_sen3_pos1_rate1.ae'}; 
%%% Case 55 - 2 Sensors (RAE & AE) - 1x Data Rate, along & 45 deg to 

positions 
% files = {'scen3_sen1_pos1_rate1.rae', 'scen3_sen3_pos2_rate1.ae'}; 
%%% Case 56 - 2 Sensors (RAE & AE) - 1x Data Rate, along & perp to 

positions 
% files = {'scen3_sen1_pos1_rate1.rae', 'scen3_sen3_pos3_rate1.ae'}; 
%%% Case 57 - 2 Sensors (RAE & AE) - 1x&2x Data Rate, along & 45 deg to 

positions 
% files = {'scen3_sen1_pos1_rate1.rae', 'scen3_sen3_pos2_rate2.ae'}; 

  
% indeces for truth comparisons 
scen = 1; 
rate = [1,1,1]; 

  
% read in data files 
[target,sensor] = read_data(files{1}); 
for i = 2:length(files) 
    [target,sensor] = read_data(files{i},target,sensor,i,1); 
end 

  
% run kaliper 
% koptions.echo = true(1); 
koptions.max_iter = 15; 
% koptions.conv_tol = .00001; 
koptions.lssw = false(1); 
koptions.sig_edit = 20; 
koptions.qp = 0.0; 
koptions.qv = 0.0; 
koptions.qa = 0.001; 

  

tic, [state, target] = kaliper(target, sensor, koptions); toc 

  
load all_case_truth 

  
eci = []; 
acc = []; 
comp = []; 
ts = []; 

  
for i = 1:length(files) 

     
    traj_acc = calc_accel(traj_eci{scen,rate(i)}, rv_beta*10^6, 0, 0); 
    traj_acc = traj_acc - calc_grav(traj_eci{scen,rate(i)}); 
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    if scen == 2 
        alt = calc_alt(traj_eci{scen,rate(i)}); 
        traj_acc(alt <= 40,1) = traj_acc(alt <= 40,1) - (40 - alt(alt 

<= 40))/20*0.0098; 

         
    elseif scen == 3 
        alt = calc_alt(traj_eci{scen,rate(i)}); 
        traj_acc(alt <= 40,1) = traj_acc(alt <= 40,1) - (40 - alt(alt 

<= 40))/20*0.0098; 
        traj_acc(alt <= 20,2) = traj_acc(alt <= 20,2) - (20 - alt(alt 

<= 20))/5*0.0098; 
    end 

     
    eci = [eci; traj_eci{scen,rate(i)}]; 
    acc = [acc; traj_acc]; 
    ts = [ts; traj_time{scen,rate(i)}]; 

     
    snridx = target{1}.obs_snr == i; 
    comp = [comp; state{1}.sv_smooth(snridx,:)]; 
end 

  
[ts,id] = sort(ts); 
eci = eci(id,:); 
acc = acc(id,:); 
comp = comp(id,:); 

  
stateerr = comp - [eci, acc]; 
staterms = sqrt( mean( (stateerr).^2 ) ) * 1000; 

  
% easy to copy from: 
fprintf('%.1f\n', staterms) 
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