

ESTIMATING CHARACTERISTICS OF A MANEUVERING REENTRY

VEHICLE OBSERVED BY MULTIPLE SENSORS

THESIS

Evan M. Brooks

AFIT/GA/ENY/10-M02

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

The views expressed in this thesis are those of the author and do not reflect the official

policy or position of the United States Air Force, Department of Defense, or the United

States Government. This material is declared a work of the U.S. Government and is not

subject to copyright protection in the United States.

AFIT/GA/ENY/10-M02

ESTIMATING CHARACTERISTICS OF A MANEUVERING REENTRY

VEHICLE OBSERVED BY MULTIPLE SENSORS

THESIS

Presented to the Faculty

Department of Aeronautics and Astronautics

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

In Partial Fulfillment of the Requirements for the

Degree of Master of Science in Astronautical Engineering

Evan M. Brooks, BS

March 2010

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

AFIT/GA/ENY/10-M02

ESTIMATING CHARACTERISTICS OF A MANEUVERING REENTRY

VEHICLE OBSERVED BY MULTIPLE SENSORS

Evan M. Brooks, BS

Approved:

___________________________________ ________

Dr. Richard Cobb (Chairman) Date

___________________________________ ________

Lt. Col. Frederick Harmon, USAF (Member) Date

___________________________________ ________

Lt. Col. Eric Swenson, USAF (Member) Date

iv

AFIT/GA/ENY/10-M02

Abstract

 Post flight analysis of ballistic missile reentry vehicles is an area of focus for the

U.S. Government, especially for those involved in ballistic missile defense. Typically,

this analysis incorporates either a model-driven least squares filter or a data-following

Kalman filter. The research performed here developed a filter that attempts to integrate

the strengths of both filters. A least squares filter operates on observation data collected

during exoatmospheric free flight and a Kalman filter is used to analyze data collected

lower in the atmosphere, where potential maneuvers could be performed. Additionally,

the filter was written to incorporate data from multiple sensors.

 Using this hybrid filter, different scenarios are investigated to determine the

potential benefits of adding additional collectors, increasing the data rate of collecting

sensors, and investigating the effects of different collector geometry on the accuracy of

results.

 Results show that the filter successfully transitions from the least squares to

Kalman filter, using the final values of the free flight propagation for the Kalman filter’s

initial state. Using this filter to investigate different collection scenarios, it was

determined that the best results are achieved when multiple collectors are used, the data

collection rate of the collectors is increased, and collectors are positioned perpendicular

to the reentry vehicle heading.

v

Acknowledgments

I would like to express my sincere appreciation to my faculty advisor, Dr. Richard Cobb,

for his guidance and support throughout the course of this thesis effort. The insight and

experience was certainly appreciated. I would, also, like to thank my friend and

coworker, Paul Precoda, who convinced me to add a smoother pass to my code and

showed me the light at the end of the tunnel. Finally, without the love and support of my

wife I may never have made it to this point.

 Evan M. Brooks

vi

Table of Contents

Page

Abstract .. iv

Table of Contents ... vi

List of Figures .. viii

I. Introduction... 1

Motivation ... 1

Background .. 2

Research Focus and Problem Statement ... 2

Methodology .. 3

Assumptions/Limitations .. 4

Preview .. 5

II. Literature Review ... 6

Chapter Overview .. 6

Relevant Research .. 6

Summary .. 8

III. Methodology .. 9

Chapter Overview .. 9

Filter Phases ... 9

Phase 0 – The Initial Guess. .. 9

Phase 1 – Free Flight Batch Least Squares Filter. .. 11

Phase 2a – Least Squares Sliding Window Discontinuous Filter. 19

Phase 2b – Kalman Filter Forward Pass... 21

Phase 2c – Backward Smoother Pass. ... 29

vii

Phase 3 – Wrap-up and parameter computation. ... 30

Summary .. 31

IV. Analysis and Results .. 32

Chapter Overview .. 32

Results of Simulation Scenarios ... 32

Case 1 – Filter Performance. .. 32

Case 2 – Filter Performance Improvements Through Additional Sensors. 44

Case 3 – Filter Performance Improvements Through Increased Data Rate. 52

Case 4 – Filter Performance Improvements Through Collection Geometry. 61

Investigative Questions Answered .. 68

Summary .. 69

V. Conclusions and Recommendations ... 70

Chapter Overview .. 70

Conclusions of Research .. 70

Significance of Research .. 71

Recommendations for Action ... 71

Recommendations for Future Research .. 72

Summary .. 73

Appendix... 74

Coordinate Frames ... 74

kaliper.m .. 77

read_data.m .. 103

run_kaliper_cases.m ... 105

Bibliography ... 110

viii

List of Figures

Page

Figure 1 – Nonlinear least squares flowchart ... 12

Figure 2 – Least squares sliding window size .. 20

Figure 3 – The Kalman filter flowchart .. 21

Figure 4 – Single sensor collection geometry ... 33

Figure 5 – Single sensor observation residuals ... 34

Figure 6 – Trajectory results with primary sensor .. 36

Figure 7 – Estimated ballistic coefficient ... 37

Figure 8 – Effects of smoother pass on estimates ... 38

Figure 9 – Ballistic coefficient estimated with and without smoother pass. 39

Figure 10 – Trajectory results from scenario 2, maneuvering target 41

Figure 11 – Trajectory results from scenario 3, maneuvering target 43

Figure 12 – Additional sensor collection geometries .. 45

Figure 13 – Trajectory results with addition of sensor 1 ... 47

Figure 14 – Trajectory results with addition of sensor 2 ... 49

Figure 15 – Trajectory results with addition of sensor 3 ... 51

Figure 16 – Trajectory results with primary sensor at increased data rate 54

Figure 17 – Trajectory results with addition of sensor 1 at increased rate 56

Figure 18 – Trajectory results with addition of sensor 2 at increased rate 58

Figure 19 – Trajectory results with addition of sensor 3 at increased rate 60

ix

Figure 20 – Trajectory results from sensor 1 .. 63

Figure 21 – Trajectory results from sensor 2 .. 65

Figure 22 – Trajectory results from sensor 3 .. 67

Figure 23 – Earth-Centered Inertial (ECI) coordinate frame ... 74

Figure 24 – Earth-Centered Earth-Fixed (ECEF) coordinate frame 75

Figure 25 – Latitude/Longitude coordinate frame .. 75

Figure 26 – South, East, Up (SEZ) coordinate frame ... 76

x

List of Tables

Page

Table 1. Random noise applied to simulated observations.. 5

Table 2. Trajectory error values with primary sensor ... 36

Table 3. Reentry scenarios ... 39

Table 4. Trajectory errors from scenario 2, maneuvering target 41

Table 5. Trajectory errors from scenario 3, maneuvering target 43

Table 6. Trajectory errors due to LSSW... 44

Table 7. Observing sensors .. 44

Table 8. Combined trajectory errors with addition of sensor 1 47

Table 9. Combined trajectory errors with addition of sensor 2 49

Table 10. Combined trajectory errors with addition of sensor 3 51

Table 11. Trajectory errors with primary sensor at increased data rate 54

Table 12. Trajectory errors with addition of sensor 1 at increased rate 56

Table 13. Trajectory errors with addition of sensor 2 at increased rate 58

Table 14. Trajectory errors with addition of sensor 3 at increased rate 60

Table 15. Trajectory errors from sensor 1 .. 63

Table 16. Trajectory errors from sensor 2 .. 65

Table 17. Trajectory errors from sensor 3 .. 67

1

ESTIMATING CHARACTERISTICS OF A MANEUVERING REENTRY

VEHICLE OBSERVED BY MULTIPLE SENSORS

I. Introduction

Motivation

Ballistic missiles are among the most advanced technology being currently

developed for the purpose of conducting war. From the relatively small scale missiles in

the arsenals of India and Pakistan to the massive intercontinental ballist ic missiles

(ICBMs) whose silos and mobile launchers dot the remote landscapes of Russia and the

United States, ballistic missile technology exists today on a massive scale and will be a

major component in future conflicts. Additionally, the proliferation of missile

technology to countries that lack the technical manufacturing expertise necessary to

produce ballistic missiles themselves is a reality. For these reasons, the understanding of

the operational capabilities of ballistic missiles and their reentry vehicles (RVs) is

currently one of our nation’s highest priorities
[14]

.

 To meet these priorities, the United States has deployed a wide range of sensor

technologies throughout the world. Combining the data collected by these sensors into a

coherent assessment of a missile system’s capabilities has long been the mission of

intelligence agencies. Almost always, this will require data analysis in the form of

modeling and simulation to determine key characteristics of the missile’s RV.

2

Background

 The RV parameter most commonly estimated is the ballistic coefficient. The

ballistic coefficient can have varying definitions but is generally a ratio between the RV’s

mass and the product of its coefficient of drag and wetted surface area of the form
[9]

 𝛽 =
𝑚

𝐶𝐷𝑆
 (1)

where

β = ballistic coefficient

m = mass

CD = coefficient of drag

S = wetted surface area

In this form, an RV-like object with a large mass to surface area ratio will be

referred to as a high-beta object (5000 ≲ 𝛽 ≲ 15,000 𝑘𝑔
𝑚2); however, some formulations

can define the term to be the inverse of this representation leading to RV-like objects

being characterized by ballistic coefficients that are positive fractions much less than one.

In the intelligence community, the formulation with mass in the numerator, as in

Equation (1), is most commonly used and will be adopted for this thesis.

Research Focus and Problem Statement

 While mass and wetted area can largely be considered constant for an RV flying a

purely ballistic trajectory, the coefficient of drag cannot be. Changes in velocity and

atmospheric density will lead to variations in the coefficient of drag, and thus, the

ballistic coefficient. Estimating the characteristic profile of the ballistic coefficient as it

3

changes throughout the reentry for non-maneuvering RVs is one of the goals of the data

analysis.

 For maneuvering RVs, the ability to determine the accelerations that deviate from

a purely ballistic reentry becomes the focus of analysis. This thesis will investigate

methods of characterizing the magnitude and direction of these sensed accelerations.

 A further challenge in the estimation problem is combining observation data from

multiple sensors that collect data on the same target. The analytical problem that is most

commonly investigated involves the exploitation of single-source radar collections of

azimuth, elevation, range, and potentially range rate. As infrared sensors, or other

sensors that lack the ability to determine range, increasingly monitor reentries,

incorporating data from this sensor type into the estimation problem is an additional goal

of this thesis. In summary, the goal of this thesis is:

Estimate characteristics of reentry vehicles, including the ballistic coefficient and

non-gravitational accelerations, using observation data collected by multiple

sensors.

Methodology

Data analyses of reentering objects typically employ either the method of least

squares
[1,6,7]

 or a Kalman filter
[3,8,9]

. The decision to use one of these filters over the

other is usually determined by the ability to model the vehicle’s dynamics in a

predetermined model. In a situation where a vehicle is only acted on by the forces of

gravity or by constant sensed accelerations, a least squares filter with a model of these

dynamics will rapidly determine the best solution
[1,6]

. Alternatively, a target

4

experiencing unpredictable accelerations that could vary throughout its flight is better

filtered by a Kalman filter which can adapt to changing dynamics
[3,8,9]

.

In this thesis, an attempt will be made to merge these two filters into a single

algorithm. During periods of purely ballistic flight, the accurate and fast solution of the

least squares filter will be utilized. When the target has descended lower into the

atmosphere, where there is a potential for maneuvering, the adaptable Kalman filter will

be incorporated to estimate non-gravitational accelerations. Through the marriage of

these two methods, the strengths of both filters will be exercised.

Assumptions/Limitations

The preliminary implementation of this algorithm will assume separate zones

between the regions of purely ballistic flight and potential maneuverability at a

predetermined altitude. However, this assumption could be invalidated by the firing of

thrusters or an upper stage rocket engine that could be included in the collected data, and

thus a future version of this algorithm could allow for a more detailed breakdown of

regions of ballistic and maneuvering flight to compensate for this. Potentially, allowing

the Kalman filtering portion of the filter to activate during these regions could handle any

such maneuvers.

Alternatively, there could be situations where a vehicle’s performance in the

lower atmosphere is well known and could be modeled. By employing the Kalman filter

during these segments instead of a model driven least squares filter, some accuracy could

potentially be sacrificed. This circumstance is unlikely due to the unpredictable nature of

reentry vehicles and would be unlikely to arise.

5

For all cases investigated, sensors measuring range, azimuth, and elevation (RAE)

or azimuth and elevation (AE) were incorporated. Random noise was applied to

simulated observation data according to Table 1. These values were specified in an

attempt to be representative of these categories of sensors without being specific to any

actual sensor in the real world. Having a priori knowledge of these values is assumed.

Table 1. Random noise applied to simulated observations.

Standard Deviation RAE Sensor AE Sensor

𝜎𝑅𝐴𝑁𝐺𝐸 2 m --

𝜎𝐴𝑍𝐼𝑀𝑈𝑇𝐻 .02 degrees .03 degrees

𝜎𝐸𝐿𝐸𝑉𝐴𝑇𝐼𝑂𝑁 .015 degrees .03 degrees

Preview

 In the following pages, Chapter II will review the published literature covering

previous research on this topic, Chapter III will provide a detailed methodology for the

data filter’s operation, Chapter IV discusses the results of this methodology, and Chapter

V provides conclusions and offers recommendations for future work. After the main

body of the paper, the appendix includes MATLAB code written as a part of this

research.

6

II. Literature Review

Chapter Overview

The purpose of this chapter is to provide an overview of relevant research that has

been conducted in the past ten years pertaining to this topic.

Relevant Research

The research into nonlinear estimation has a long history, arguably dating back

well before the time of Gauss’s development of least squares to the methods of

averaging. The advances in the field have largely mirrored the advances in computing

technology, as described in Nonlinear Filters: Beyond the Kalman Filter
[3]

. Gauss

developed a method to make a single pass through all the available observations at once.

With the advances in the computing technology, engineers increasingly turned to

sequential filters, such as the unscented Kalman filter, to perform real-time estimation.

As advances in computing progress, even more exotic methods have begun to gain in

popularity, such as the particle filter. The particle filter is based off of Monte Carlo

sampling being used to investigate the state space
[3,15]

.

Some research has been performed at the Air Force Institute of Technology

(AFIT) by Holmes
[6]

 and Bittle
[1]

 into the parameter identification of reentry vehicles.

The research of Holmes and Bittle primarily focused on identifying characteristics of

reentry vehicles that were in either flying purely ballistic or performing a constant

maneuver which could be determined from the vehicle’s bank angle
[1,6]

. Both of these

problems lend themselves to the batch processing of the method of least squares, but

7

would not be able to handle the issue of a ballistic coefficient changing as a function of

velocity and altitude. In order to account for these uncertain dynamics, this thesis will

move beyond the batch processing of the method of least squares into a sequential filter,

like the Kalman filter. As will be shown, to maintain the maximum accuracy the

solutions of both a Kalman filter and a nonlinear least squares filter will be combined into

a hybrid solution.

Some work that has been done on hybrid filters, or modified filters
[7,9]

 mostly

focused on the problem of RV interception by an Anti-Ballistic Missile (ABM). Jackson

and Farbman developed an interesting application of the least squares method where data

is processed in small batches instead of as one large data set. This method allowed the

filter to respond to changing dynamics. Jackson and Farbman’s approach could be of

applicability in this problem, but they relied heavily on curve fitting data without regard

to continuity of dynamics between adjacent states. Also, accelerations were modeled as

unknowns in three directions, so further processing would need to take place to determine

the sources of accelerations and what portion of the entire acceleration was due to drag.

Lee and Liu adopted a more hybrid approach, combining a least squares and

Kalman filters
[9]

. Lee and Liu recognized that a Kalman filter is better suited to a target

with large changes in dynamics, but that when such a filter is applied to better behaved

vehicles (slowly changing EOMs) results can degrade greatly. To counter this behavior,

Lee and Liu ran a Kalman filter with a basic state vector through portions of the flight

identified as being nearly ballistic by the companion least squares filter and then switched

modes to a more dynamic state vector for the Kalman filter when the companion least

squares filter identifies potential non-ballistic behavior. This thesis will attempt to utilize

8

the methods of Jackson and Farbman to estimate an initial guess for the state and further

refine this estimate using a Kalman filter similar to that derived by Lee and Liu.

Summary

A lot of research is being done on new methods of data filtering, including

particle filters and other exotic filtering techniques. This thesis will investigate a

combination of the more classical least squares and Kalman filters to take advantage of

their individual strengths. This method is different than what was developed by Lee and

Liu, where the companion least squares filter was only used to modify the makeup of the

Kalman filter’s state vector. A method of performing least squares filtering on a sliding

window of non-ballistic flight will be explored to provide an initial guess at the state for

the Kalman filter to include in its computations. This least squares sliding window

method was pulled from the literature, where it was used to generate the final estimate,

rather than acting as preprocessing for another filter. Furthermore, whereas all of the

reviewed literature assumed a single collector and sometimes simplified observation

models, the algorithm developed here accommodates an unlimited number of sensors and

a variety of data types.

9

III. Methodology

Chapter Overview

The purpose of this chapter is to overview the specific methods and decisions that

were implemented for the filters included in this thesis. A breakdown of the different

filtering phases as well as assumptions and engineering decisions will be described.

Filter Phases

Phase 0 – The Initial Guess.

The phase of flight where the target is exoatmospheric is analyzed by a batch least

squares filter fitting the observations to an oblate Earth gravity model. This phase is

implemented for all observations that are determined to be at an altitude greater than 120

km. The 120 km value is used as a common number with METAL
*
 for consistency. If

the data does not include any observations above this cutoff altitude, the algorithm will

instead consider the highest altitude observations. In this case, the algorithm will select

10% of the entire data set that occurs at the highest altitudes to fit a state vector to.

With the free flight data identified, the initial hurdle for the least squares filter is

determining an initial guess to feed the batch filter. For this thesis, an initial state was

computed using Equation (1)
[7]

, the same equation that will be used for the least squares

sliding window. For this application, this portion of data is taken as the window of

interest and a single computation is done. The equation describing the state’s

* The Mathematical and Engineering Trajectory Analysis Library is a library of mostly MATLAB functions

that was developed at the National Air and Space Intelligence Center that contains tools to accomplish

common trajectory analysis tasks, such as coordinate frame conversions, state vector propagation, and data

manipulation. [2]

10

propagation with constant snap (fourth-derivative of position) is presented in Equation

(2)
[7]

.

 𝑥 𝑚𝑒𝑎𝑠 = 𝑥𝑛 + 𝑥𝑛
(1) ∆𝑡 + 𝑥𝑛

(2)
1

2
∆𝑡2 + 𝑥𝑛

(3)
1

6
∆𝑡3 + 𝑥𝑛

(4)
1

24
∆𝑡4 (2)

where

 𝑥 𝑚𝑒𝑎𝑠 = observed positions

 𝑥𝑛 = initial state to be computed

𝑥𝑛
 𝑖 = i

th
 inertial derivative of the state with respect to time

∆𝑡 = time difference between observations and initial state

Equation (2) can be used to separately solve for the X, Y, and Z components of

position and velocity for the initial state estimate. The procedure for computing the

initial X position and velocity is now described, with the understanding that the

procedure is the same for the Y and Z components.

 In order to compute the position and velocity components of the state, a system of

equations of the form 𝐴𝑥 = 𝑏 is desired so that the least squares solution can be directly

solved for. In this application, the A matrix has as many rows as observation points and

five columns matching the five states defined in Equation (2). The A matrix defines the

coefficients of the derivatives defined by Equation (2) as shown below:

 𝐴 =

1 ∆𝑡1
1

2
∆𝑡1

2 1

6
∆𝑡1

3 1

24
∆𝑡1

4

1 ∆𝑡2
1

2
∆𝑡2

2 1

6
∆𝑡2

3 1

24
∆𝑡2

4

⋮ ⋮ ⋮ ⋮ ⋮

 (3)

11

 The 𝑏 vector is constructed as the X position components of observations that had

been previously identified as being exoatmospheric transformed to an ECI reference

frame. The 𝑏 vector has as many rows as observations and is a single column. With this

information defined, the system of equations is fully defined as:

1 ∆𝑡1
1

2
∆𝑡1

2 1

6
∆𝑡1

3 1

24
∆𝑡1

4

1 ∆𝑡2
1

2
∆𝑡2

2 1

6
∆𝑡2

3 1

24
∆𝑡2

4

⋮ ⋮ ⋮ ⋮ ⋮

𝑥𝑛

𝑥𝑛
(1)

𝑥𝑛
(2)

𝑥𝑛
(3)

𝑥𝑛
(4)

=

𝑥𝑚𝑒𝑎𝑠 1
𝑥𝑚𝑒𝑎𝑠 2

⋮
 (4)

 The ideal solution to this system, when 𝐴 is square and nonsingular, is 𝑥 = 𝐴−1𝑏

however this thesis will take advantage of the Singular Value Decomposition (SVD) to

perform the inversion, which will have the advantage of computing the minimum norm

solution when the A matrix is not invertible
[11]

. This calculation is done easily with

MATLAB using the pinv() command to compute the pseudoinverse of 𝐴. Since the

pseudoinverse equals the inverse in the case where 𝐴 is invertible, this method is

appropriate for all 𝐴.

 Once this procedure has been performed on the X, Y, and Z elements of the

transformed observations, the initial guess of the state is taken as the position and

velocity components of the individual solutions. With this initial guess, the batch least

squares filter is triggered.

 Phase 1 – Free Flight Batch Least Squares Filter.

 The batch least squares filter operates iteratively, improving upon the solution

until further computation cannot achieve a better result. The least squares filter relies on

12

the computation of partial derivatives to compute state updates. In the classical

implementation of the filter, these derivatives are derived analytically
[13]

, but with

today’s computers these derivatives can easily be estimated numerically using a finite

difference method. This thesis will implement numerical partial derivatives for

computing the state updates in the same manner as does portions of METAL
[2]

. With this

decision, the least squares algorithm will proceed as described in Figure 1
[13]

.

 In MATLAB, the current guess at the initial state is taken as 𝑥 𝑟𝑒𝑓 𝑡0 . The

elements of the state used throughout the algorithm are:

Figure 1 – Nonlinear least squares flowchart

13

 𝑥 =

𝑥𝐸𝐶𝐼
𝑦𝐸𝐶𝐼
𝑧𝐸𝐶𝐼
𝑥 𝐸𝐶𝐼
𝑦 𝐸𝐶𝐼
𝑧 𝐸𝐶𝐼
𝑥 𝑆𝐸𝐶𝐼
𝑦 𝑆𝐸𝐶𝐼
𝑧 𝑆𝐸𝐶𝐼

 (5)

where

𝑥𝐸𝐶𝐼 = Earth-Centered Inertial X Position

𝑦𝐸𝐶𝐼 = Earth-Centered Inertial Y Position

𝑧𝐸𝐶𝐼 = Earth-Centered Inertial Z Position

𝑥 𝐸𝐶𝐼 = Earth-Centered Inertial X Velocity

𝑦 𝐸𝐶𝐼 = Earth-Centered Inertial Y Velocity

𝑧 𝐸𝐶𝐼 = Earth-Centered Inertial Z Velocity

𝑥 𝑆𝐸𝐶𝐼 = Earth-Centered Inertial X Sensed Acceleration

𝑦 𝑆𝐸𝐶𝐼 = Earth-Centered Inertial Y Sensed Acceleration

𝑧 𝑆𝐸𝐶𝐼 = Earth-Centered Inertial Z Sensed Acceleration

Note that the accelerations in Equation (5) are sensed accelerations. Sensed

accelerations differ from the total accelerations in that they do not incorporate

gravitational acceleration. Sensed accelerations account for accelerations that are the

result of other body forces that would result in a maneuver away from a ballistic

trajectory.

14

This state is then perturbed individually in the X, Y, and Z positions and

velocities to create six perturbed states denoted 𝑥 𝑝𝑒𝑟𝑡 𝑡0 . The magnitudes of these

perturbations are arbitrarily chosen. For this thesis, perturbations of 1 𝑚 in position and

1 𝑚

𝑠𝑒𝑐
 in velocity are implemented as arbitrary values.

 With the initial state and perturbed states defined, they are then propagated to all

observation times. This is accomplished by basic equations of motion (EOM) defined in

Equations (6-11).

𝑑

𝑑𝑡
𝑥 = 𝑥 (6)

𝑑

𝑑𝑡
𝑦 = 𝑦 (7)

𝑑

𝑑𝑡
𝑧 = 𝑧 (8)

𝑑

𝑑𝑡
𝑥 = 𝑥 = 𝑔𝑥 (9)

𝑑

𝑑𝑡
𝑦 = 𝑦 = 𝑔𝑦 (10)

𝑑

𝑑𝑡
𝑧 = 𝑧 = 𝑔𝑧 (11)

where

𝑔𝑥 , 𝑔𝑦 , 𝑔𝑧 = x,y,and z ECI components of gravitational acceleration

 During this phase of flight, it is assumed that there is little to no atmosphere and

therefore there are no external body forces and hence no sensed accelerations. The only

changes in velocity are due to the gravitational acceleration. With the current state

estimate and its perturbations propagated, the next step is the computation of the data

residuals.

15

 Computing data residuals is merely an exercise in reference frame

transformations. These functions have been fully implemented in the METAL library,

and were used in this research
[2]

. The propagated states are transformed from Earth-

Centered Inertial (ECI) frame to a sensor-specific Range, Azimuth, and Elevation (RAE)

frame. With this transformation complete, the residuals are calculated from Equation

(12).

 𝑟 = 𝑧 − 𝑥 𝑟𝑒𝑓 𝑅𝐴𝐸
 (12)

where

𝑟 = matrix of residuals

𝑧 = matrix of observations

𝑥 𝑟𝑒𝑓 𝑅𝐴𝐸
 = propagated reference state in RAE frame

 With the residuals computed, statistical editing of outliers can be performed.

With a priori knowledge of a sensor’s performance
†
, residuals outside of an arbitrary

number of standard deviations can be removed. The algorithm produced for this thesis

allows for the number of standard deviations to be input by the user, with the default

settings deleting residuals more than three standard deviations from the computed

reference trajectory.

 With any deleting complete, the residuals matrix must be reshaped into a column

vector to be used in the sum 𝑇𝑖
𝑇𝑄𝑖

−1𝑟 𝑖𝑖 . Note that this action is easily accomplished in

MATLAB with the reshape() function.

† See Table 1 for error values used in the simulated observation data generated for this research.

16

 The 𝑄𝑖 matrix required for the two sums is constructed from the a priori

knowledge of random errors in the sensor observations. The matrix is diagonal and of the

form:

 𝑄 =

1

𝜎𝑅
2 0 0 0 0 …

0
1

𝜎𝐴
2 0 0 0 …

0 0
1

𝜎𝐸
2 0 0 …

0 0 0
1

𝜎𝑅
2 0 …

0 0 0 0
1

𝜎𝐴
2 ⋱

⋮ ⋮ ⋮ ⋮ ⋱ ⋱

 (13)

where

𝑄 = covariance matrix

𝜎𝑅 = sensor standard deviation in range measurements

𝜎𝐴 = sensor standard deviation in azimuth measurements

𝜎𝐸 = sensor standard deviation in elevation measurements

 The 𝑄 matrix in Equation (13) has three of the standard deviations repeated

enough times to make the matrix dimensions equal to the number of observations

multiplied by the number of observation data types, three in the case of a sensor with

range, azimuth, and elevation measurements. For sensors lacking a range component in

the measurement, the range standard deviation is omitted and the 𝑄 matrix is reduced in

size.

 The last element of the sum 𝑇𝑖
𝑇𝑄𝑖

−1𝑟 𝑖𝑖 needed is 𝑇, the observation matrix,

computed with the perturbed trajectories. This matrix is defined as the propagation of the

17

partials of the observation relationships with respect to the different state vector

components, as shown numerically in Equation (14).

 𝑇 = (14)

𝑅𝑟𝑒𝑓 1

−𝑅𝑝𝑒𝑟𝑡 −𝑥1

𝑥𝑝𝑒𝑟𝑡

𝑅𝑟𝑒𝑓 1
−𝑅𝑝𝑒𝑟𝑡 −𝑦 1
𝑦𝑝𝑒 𝑟𝑡

𝑅𝑟𝑒𝑓 1
−𝑅𝑝𝑒𝑟𝑡 −𝑧1

𝑧𝑝𝑒𝑟𝑡

𝑅𝑟𝑒𝑓 1
−𝑅𝑝𝑒𝑟𝑡 −𝑥 1

𝑥 𝑝𝑒𝑟𝑡

𝑅𝑟𝑒𝑓 1
−𝑅𝑝𝑒𝑟𝑡 −𝑦 1

𝑦 𝑝𝑒𝑟𝑡

𝑅𝑟𝑒𝑓 1
−𝑅𝑝𝑒𝑟𝑡 −𝑧 1

𝑧 𝑝𝑒𝑟𝑡

𝐴𝑟𝑒𝑓 1
−𝐴𝑝𝑒𝑟𝑡 −𝑥1

𝑥𝑝𝑒𝑟𝑡

𝐴𝑟𝑒𝑓 1
−𝐴𝑝𝑒𝑟𝑡 −𝑦1

𝑦𝑝𝑒𝑟𝑡

𝐴𝑟𝑒𝑓 1
−𝐴𝑝𝑒𝑟𝑡 −𝑧1

𝑧𝑝𝑒𝑟𝑡

𝐴𝑟𝑒𝑓 1
−𝐴𝑝𝑒𝑟𝑡 −𝑥 1

𝑥 𝑝𝑒𝑟𝑡

𝐴𝑟𝑒𝑓 1
−𝐴𝑝𝑒𝑟𝑡 −𝑦 1

𝑦 𝑝𝑒𝑟𝑡

𝐴𝑟𝑒𝑓 1
−𝐴𝑝𝑒𝑟𝑡 −𝑧 1

𝑧 𝑝𝑒𝑟𝑡

𝐸𝑟𝑒𝑓 1
−𝐸𝑝𝑒𝑟𝑡 −𝑥1

𝑥𝑝𝑒𝑟𝑡

𝐸𝑟𝑒𝑓 1
−𝐸𝑝𝑒𝑟𝑡 −𝑦1

𝑦𝑝𝑒𝑟𝑡

𝐸𝑟𝑒𝑓 1
−𝐸𝑝𝑒𝑟𝑡 −𝑧1

𝑧𝑝𝑒𝑟𝑡

𝐸𝑟𝑒𝑓 1
−𝐸𝑝𝑒𝑟𝑡 −𝑥 1

𝑥 𝑝𝑒𝑟𝑡

𝐸𝑟𝑒𝑓 1
−𝐸𝑝𝑒𝑟𝑡 −𝑦 1

𝑦 𝑝𝑒𝑟𝑡

𝐸𝑟𝑒𝑓 1
−𝐸𝑝𝑒𝑟𝑡 −𝑧 1

𝑧 𝑝𝑒𝑟𝑡

⋮ ⋮ ⋮ ⋮ ⋮ ⋮

where

𝑇 = observation matrix

𝑅𝑟𝑒𝑓 1
 = first range value of the propagated reference trajectory

𝐴𝑟𝑒𝑓 1
 = first azimuth value of the propagated reference trajectory

𝐸𝑟𝑒𝑓 1
 = first elevation value of the propagated reference trajectory

𝑅𝑝𝑒𝑟𝑡 −𝑥1
 = first range value of the x-perturbed trajectory

𝐴𝑝𝑒𝑟𝑡 −𝑥1
 = first azimuth value of the x-perturbed trajectory

𝐸𝑝𝑒𝑟𝑡 −𝑥1
 = first elevation value of the x-perturbed trajectory

𝑥𝑝𝑒𝑟𝑡 = magnitude of perturbation to reference state in x direction

 With all elements of the sums 𝑇𝑖
𝑇𝑄𝑖

−1𝑇𝑖𝑖 and 𝑇𝑖
𝑇𝑄𝑖

−1𝑟 𝑖𝑖 now computed, these

values are now incorporated into the sums and the updates are computed. From Figure

1, these updates are

18

 𝑃𝛿𝑥 = 𝑇𝑖
𝑇𝑄𝑖

−1𝑇𝑖
𝑖

−1

 (15)

 𝛿𝑥 𝑡0 = 𝑃𝛿𝑥 𝑇𝑖
𝑇𝑄−1𝑟𝑖

𝑖
 (16)

where

𝑃𝛿𝑥 = updated covariance matrix

𝛿𝑥 𝑡0 = update to the reference state

 The final step in the batch least squares phase is to check for convergence and

update the reference state. The test for convergence can be accomplished in a couple of

ways, either by checking if the update to the state vector lies within the updated

covariance matrix uncertainty
[13]

or by checking to see if a defined cost function has

stopped improving from one iteration to the next
[2]

. Both of these methods were

investigated, and in the end it was decided that the cost function method typically led to

better results as the covariance method would typically indicate convergence before a

good fit had been achieved.

 The cost function computed for this thesis takes the form:

 𝑐𝑜𝑠𝑡 =
 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 2

𝑂𝐵𝑆𝐸𝑅𝑉𝐴𝑇𝐼𝑂𝑁𝑆

𝜎𝑆𝐸𝑁𝑆𝑂𝑅
𝑆𝐸𝑁𝑆𝑂𝑅𝑆

 (17)

where

𝑐𝑜𝑠𝑡 = cost function used to test for convergence

𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 = observation residual from reference trajectory

𝜎𝑆𝐸𝑁𝑆𝑂𝑅 = standard deviation of sensor observation

19

 This cost function normalizes the data residuals by the sensor’s standard

deviations and gives proper weight to measurements that are more precise than others.

The change in cost function between iterations is computed in each iteration after the

first. Once this change drops below a value defined by the user, the filter is stopped. The

default convergence criterion is a change of less than .01% of the cost function.

 Once the free flight batch least squares filter has converged, the final state is

passed to the next phase of the algorithm, where the sensed accelerations of the target

will be considered variable, and need to be estimated.

 Phase 2a – Least Squares Sliding Window Discontinuous Filter.

 The next phase of the algorithm is divided into three subsections: 2a, 2b, and 2c,

which together filter those observations deep enough into the atmosphere that the target

can experience non-zero sensed accelerations. The first of these subsections in the least

squares sliding window filter. This filter is based off of the paper by Jackson and

Farbman, Trajectory Reconstruction with a Least Squares Sliding Window (LSSW) Filter

[7]
. This subsection is a rapid computation of an approximate state at every observation

that contains a range, azimuth, and elevation measurement. This approximation can be

used in the subsequent subsections of phase two as an initial guess of the state at those

times.

 This section relies on multiple solutions to Equation (2) over different portions of

the observations. Taken as a whole, these solutions are the initial guesses used later.

Other than computing solutions to Equation (2) multiple times, this portion of the

algorithm must determine which portions (windows) of the observations to include in

each run. The method used to determine this window size is similar to that performed by

20

Jackson and Farbman. The window size begins at a defined minimum value, grows to a

nominal value that is used throughout the majority of the observations, and then grows

again as the window approaches the end of the available data. Three values for minimum

window size, window size, and maximum window size are optional user inputs with

default values 5, 30, and 40, respectively. An example of a window size varying by the

position in the observations is presented in Figure 2.

After some trial, it was decided to limit the use of these results in later sections of phase

two to just the position estimates. The velocity and acceleration estimates were found to

have extreme noise, often returning estimates with mean and random errors large enough

that it was unclear if there was any correlation to the truth values. With the positions

estimates determined, the next subsection of phase two is commenced.

0 20 40 60 80 100 120
0

5

10

15

20

25

30

35

40

45

Observation Index

W
in

d
o
w

 S
iz

e

Example LSSW Size

Figure 2 – Least squares sliding window size

21

 Phase 2b – Kalman Filter Forward Pass.

 The main subsection of phase two runs a Kalman filter. The Kalman filter is

executed in a manner described in Figure 3
[13]

.

 The state is propagated using easily defined equations of motion, rather than the

state transition matrix. These equations of motion are

Figure 3 – The Kalman filter flowchart

With a previous estimate, 𝑥 − ,
and its covariance, 𝑃 − , set

𝑥 𝑟𝑒𝑓 𝑡0 = 𝑥 −

Propagate state and covariance,

compute 𝑟𝑧 and 𝐻𝑖 .

𝐾 = 𝑃 − 𝐻𝑇 𝑅 + 𝐻𝑃 − 𝐻𝑇 −1

𝑃 + = 𝐼 − 𝐾𝐻 𝑃 −
𝛿𝑥 + = 𝛿𝑥 − + 𝐾 𝑟 𝑧 −𝐻𝛿𝑥 −

Compute the Kalman gain, covariance, and state update:

𝑥 𝑟𝑒𝑓+1 𝑡0 = 𝑥 𝑟𝑒𝑓 𝑡0 + 𝛿𝑥 𝑡0
Update the propagated state:

22

𝑑

𝑑𝑡
𝑥 = 𝑥 (18)

𝑑

𝑑𝑡
𝑦 = 𝑦 (19)

𝑑

𝑑𝑡
𝑧 = 𝑧 (20)

𝑑

𝑑𝑡
𝑥 = 𝑥 = 𝑔𝑥 + 𝑥 𝑆 (21)

𝑑

𝑑𝑡
𝑦 = 𝑦 = 𝑔𝑦 + 𝑦 𝑆 (22)

𝑑

𝑑𝑡
𝑧 = 𝑧 = 𝑔𝑧 + 𝑧 𝑆 (23)

where

x , y , z = total accelerations in the x, y, and z ECI directions

𝑥 𝑆 , 𝑦 𝑆 , 𝑧 𝑆 = sensed accelerations (due to body forces other than gravity)

 in the x, y, and z ECI directions

 Equations (18-23) differ from Equations (6-11) that were used in the free flight

batch least squares filter in that the sensed accelerations are allowed to be non-zero. This

method of propagating the state is more accurate than the approximation given by the

state transition matrix and is implemented for state propagation. The state transition

matrix must still be computed, however, in order to propagate the state covariance. The

state transition matrix is computed from

23

 Φ =

1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1

+ 𝐹 Δ𝑡 (24)

where

Φ = state transition matrix

𝐹 = state distribution matrix

Δ𝑡 = difference in time between adjacent observations

 The state distribution matrix, 𝐹, is the Jacobian of the state dynamics defined in

Equations (18-23) where the gravitational acceleration is replaced with a simple

approximation with respect to the elements of the state, defined in Equation (5).

 𝑥 = 𝑥 𝑆 + 𝑔𝑥 = 𝑥 𝑆 −
𝜇𝑥

 𝑥2+𝑦2+𝑧2
3

2
 (25)

 𝑦 = 𝑦 𝑆 + 𝑔𝑦 = 𝑦 𝑆 −
𝜇𝑦

 𝑥2+𝑦2+𝑧2
3

2
 (26)

 𝑧 = 𝑧 𝑆 + 𝑔𝑧 = 𝑧 𝑆 −
𝜇𝑧

 𝑥2+𝑦2+𝑧2
3

2
 (27)

where

μ = Earth’s gravitational parameter ≈ 3.986005 ∙ 105 𝑘𝑚
3

𝑠2

 With these values substituted for the gravitational acceleration, the state

distribution matrix is computed by Equation (28).

24

 𝐹 = (28)

0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0

−𝜇𝑅−3 1 − 3𝑥2𝑅−2 3𝜇𝑥𝑦𝑅−5 3𝜇𝑥𝑧𝑅−5 0 0 0 1 0 0

3𝜇𝑥𝑦𝑅−5 −𝜇𝑅−3 1 − 3𝑦2𝑅−2 3𝜇𝑦𝑧𝑅−5 0 0 0 0 1 0

3𝜇𝑥𝑧𝑅−5 3𝜇𝑦𝑧𝑅−5 −𝜇𝑅−3 1 − 3𝑧2𝑅−2 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

where

𝑅 = 𝑥2 + 𝑦2 + 𝑧2 for ease of computation

 With the state distribution matrix, 𝐹, computed, the state transition matrix, Φ, can

be determined. The state transition matrix can then be used to propagate the covariance

matrix to the current time with Equation (29).

 𝑃𝑡𝑛 − = Φ 𝑃𝑡𝑛−1
 + ΦT + Q (29)

where

𝑃𝑡𝑛 − = initial covariance matrix at time 𝑡𝑛

𝑃𝑡𝑛−1
 + = updated covariance matrix at time 𝑡𝑛−1

𝑄 = noise applied to covariance propagation

 A few different methods of computing Q, the covariance propagation noise, were

investigated. In the end, the method employed by the Kinematics And Dynamics

Reconstruction Environment (KADRE)
[4]

 was implemented due to its incorporation of

25

the time step. Due to its explicit dependency on the time step from one data point to the

next, the filter was better behaved when compared to other methods, including a constant

Q. The computation of Q was performed with Equation (30).

 𝑄 =
1

𝑗 !𝑘!
 𝐹𝑖 𝑄0 𝐹𝑇 𝑗 ∆𝑡1+𝑖+𝑗

1

1+𝑖+𝑗

𝑚

𝑗=0

𝑛

𝑖=0

 (30)

where

𝐹 = state distribution matrix

𝑄0 = covariance scaling matrix

∆𝑡 = elapsed time from previous data point

 The scaling matrix, Q0, was implemented as user-defined variables that form the

diagonal matrix shown in Equation (31).

 𝑄0 =

𝑞𝑝 0 0 0 0 0 0 0 0

0 𝑞𝑝 0 0 0 0 0 0 0

0 0 𝑞𝑝 0 0 0 0 0 0

0 0 0 𝑞𝑣 0 0 0 0 0
0 0 0 0 𝑞𝑣 0 0 0 0
0 0 0 0 0 𝑞𝑣 0 0 0
0 0 0 0 0 0 𝑞𝑎 0 0
0 0 0 0 0 0 0 𝑞𝑎 0
0 0 0 0 0 0 0 0 𝑞𝑎

 (31)

where

𝑞𝑝 = position covariance scaling constant

𝑞𝑣 = velocity covariance scaling constant

𝑞𝑎 = acceleration covariance scaling constant

26

 The covariance scaling constants qp , qv , and qa are implemented with default

values of 0, 0, and 0.001, respectively. These values were arbitrarily selected after some

experimentation.

 With the state and covariance propagated to the current data point, the next step

involves the computation of the observation matrix, H, which is a linearization of the

relationship between the state elements and the observation variables. This matrix can be

used to convert both the covariance and state variables to the observation variables

reference frame. As the transformation from ECI state components to RAE observation

variables is easily handled with the METAL library, the exact transformation can be

used. The observation matrix must still be used to transform the propagated covariance

matrix. The observation matrix is computed from Equations (32-47).

𝐻 =

𝜕𝑅

𝜕𝑥

𝜕𝑅

𝜕𝑦

𝜕𝑅

𝜕𝑧

𝜕𝑅

𝜕𝑥

𝜕𝑅

𝜕𝑦

𝜕𝑅

𝜕𝑧

𝜕𝑅

𝜕𝑥

𝜕𝑅

𝜕𝑦

𝜕𝑅

𝜕𝑧

𝜕𝐴𝑧

𝜕𝑥

𝜕𝐴𝑧

𝜕𝑦

𝜕𝐴𝑧

𝜕𝑧

𝜕𝐴𝑧

𝜕𝑥

𝜕𝐴𝑧

𝜕𝑦

𝜕𝐴𝑧

𝜕𝑧

𝜕𝐴𝑧

𝜕𝑥

𝜕𝐴𝑧

𝜕𝑦

𝜕𝐴𝑧

𝜕𝑧

𝜕𝐸𝑙

𝜕𝑥

𝜕𝐸𝑙

𝜕𝑦

𝜕𝐸𝑙

𝜕𝑧

𝜕𝐸𝑙

𝜕𝑥

𝜕𝐸𝑙

𝜕𝑦

𝜕𝐸𝑙

𝜕𝑧

𝜕𝐸𝑙

𝜕𝑥

𝜕𝐸𝑙

𝜕𝑦

𝜕𝐸𝑙

𝜕𝑧

 (32)

𝜕𝑅/𝐴𝑧/𝐸𝑙

𝜕𝑥
 =

𝜕𝑅/𝐴𝑧/𝐸𝑙

𝜕𝑥
 =

𝜕𝑅/𝐴𝑧/𝐸𝑙

𝜕𝑧
= 0 (33)

𝜕𝑅/𝐴𝑧/𝐸𝑙

𝜕𝑥
 =

𝜕𝑅/𝐴𝑧/𝐸𝑙

𝜕𝑦
 =

𝜕𝑅/𝐴𝑧/𝐸𝑙

𝜕𝑧
= 0 (34)

𝜕𝑅

𝜕𝑥
 =

𝑥−𝑥0

𝑅
 (35)

𝜕𝑅

𝜕𝑦
 =

𝑦−𝑦0

𝑅
 (36)

𝜕𝑅

𝜕𝑧
 =

𝑧−𝑧0

𝑅
 (37)

𝜕𝐴𝑧

𝜕𝑥

=
 −𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜔𝑡 −𝑐𝑜𝑠 𝜃 𝑠𝑖𝑛 𝜔𝑡 𝑔𝐴𝑧 − −𝑠𝑖𝑛 𝜑 𝑐𝑜𝑠 𝜃 𝑐𝑜𝑠 𝜔𝑡 +𝑠𝑖𝑛 𝜑 𝑠𝑖𝑛 𝜃 𝑠𝑖𝑛 𝜔𝑡 𝑓𝐴𝑧

 1+
𝑓𝐴𝑧
𝑔𝐴𝑧

2
 𝑔𝐴𝑧

2

(38)

27

𝜕𝐴𝑧

𝜕𝑦

=
 −𝑠𝑖𝑛 𝜃 𝑠𝑖𝑛 𝜔𝑡 +𝑐𝑜𝑠 𝜃 𝑐𝑜𝑠 𝜔𝑡 𝑔𝐴𝑧 − −𝑠𝑖𝑛 𝜑 𝑐𝑜𝑠 𝜃 𝑠𝑖𝑛 𝜔𝑡 −𝑠𝑖𝑛 𝜑 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜔𝑡 𝑓𝐴𝑧

 1+
𝑓𝐴𝑧
𝑔𝐴𝑧

2
 𝑔𝐴𝑧

2

(39)

𝜕𝐴𝑧

𝜕𝑧

=
−𝑐𝑜𝑠 𝜑 𝑓𝐴𝑧

 1+
𝑓𝐴𝑧
𝑔𝐴𝑧

2
 𝑔𝐴𝑧

2

(40)

𝑓𝐴𝑧 = −𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜔𝑡 𝑥 + 𝑠𝑖𝑛 𝜔𝑡 𝑦 − 𝑋0𝐸𝐶𝐸𝐹
 + 𝑐𝑜𝑠 𝜃 −𝑠𝑖𝑛 𝜔𝑡 𝑥 + 𝑐𝑜𝑠 𝜔𝑡 𝑦 − 𝑌0𝐸𝐶𝐸𝐹

 (41)

𝑔𝐴𝑧 = −𝑠𝑖𝑛 𝜑 𝑐𝑜𝑠 𝜃 𝑐𝑜𝑠 𝜔𝑡 𝑥 + 𝑠𝑖𝑛 𝜔𝑡 𝑦 − 𝑋0𝐸𝐶𝐸𝐹

− 𝑠𝑖𝑛 𝜑 𝑐𝑜𝑠 𝜃 −𝑠𝑖𝑛 𝜔𝑡 𝑥 + 𝑐𝑜𝑠 𝜔𝑡 𝑦 − 𝑌0𝐸𝐶𝐸𝐹
 + 𝑐𝑜𝑠 𝜑 𝑧 − 𝑍0𝐸𝐶𝐸𝐹

(42)

𝜕𝐸𝑙

𝜕𝑥

=
 𝑐𝑜𝑠 𝜑 𝑐𝑜𝑠 𝜃 𝑐𝑜𝑠 𝜔𝑡 −𝑐𝑜𝑠 𝜑 𝑠𝑖𝑛 𝜃 𝑠𝑖𝑛 𝜔𝑡 𝑔𝐸𝑙− 𝑥−𝑋0

𝑓𝐸𝑙
𝑔𝐸𝑙

 1−
𝑓𝐸𝑙
𝑔𝐸𝑙

2
 𝑔𝐸𝑙

2

(43)

𝜕𝐸𝑙

𝜕𝑦

=
 𝑐𝑜𝑠 𝜑 𝑐𝑜𝑠 𝜃 𝑠𝑖𝑛 𝜔𝑡 +𝑐𝑜𝑠 𝜑 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜔𝑡 𝑔𝐸𝑙− 𝑦−𝑌0

𝑓𝐸𝑙
𝑔𝐸𝑙

 1−
𝑓𝐸𝑙
𝑔𝐸𝑙

2
 𝑔𝐸𝑙

2

(44)

𝜕𝐸𝑙

𝜕𝑧

=
𝑠𝑖𝑛 𝜑 𝑔𝐸𝑙− 𝑧−𝑍0

𝑓𝐸𝑙
𝑔𝐸𝑙

 1−
𝑓𝐸𝑙
𝑔𝐸𝑙

2
 𝑔𝐸𝑙

2

(45)

𝑓𝐸𝑙
= 𝑐𝑜𝑠 𝜑 𝑐𝑜𝑠 𝜃 𝑐𝑜𝑠 𝜔𝑡 𝑥 + 𝑠𝑖𝑛 𝜔𝑡 𝑦 − 𝑋0𝐸𝐶𝐸𝐹

+ 𝑐𝑜𝑠 𝜑 𝑠𝑖𝑛 𝜃 −𝑠𝑖𝑛 𝜔𝑡 𝑥 + 𝑐𝑜𝑠 𝜔𝑡 𝑦 − 𝑌0𝐸𝐶𝐸𝐹
 + 𝑠𝑖𝑛 𝜑 𝑧 − 𝑍0𝐸𝐶𝐸𝐹

(46)

𝑔𝐸𝑙 = 𝑥2 + 𝑦2 + 𝑧2 (47)

where

𝜑 = sensor geocentric latitude

𝜃 = sensor longitude

𝜔 = Earth angular velocity

𝑋0, 𝑌0, 𝑍0 = sensor ECI position at observation

𝑋0𝐸𝐶𝐸𝐹
, 𝑌0𝐸𝐶𝐸𝐹

, 𝑍0𝐸𝐶𝐸𝐹
 = sensor ECEF position

28

 This fully defines the 𝐻 matrix for range, azimuth, and elevation observations. If

the solution from the LSSW subsection is included in the Kalman filter, those partial

derivatives must be included in 𝐻. Since the LSSW solution is just the state vector

positions, those partials are easily added as shown in Equation (48).

 𝐻 =

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0

 (48)

 The final matrix that must be computed before determining the Kalman gain, K, is

the measurement noise matrix, R. For a sensor collecting range, azimuth, and elevation

data, the R matrix is constructed by Equation (49). If the LSSW solution is also included,

its apparent noise is included as shown in Equation (50). The initial implementation of

the algorithm uses a LSSW error standard deviation that is independent of direction. This

could be modified in subsequent work.

𝑅 =
𝜎𝑅 0 0
0 𝜎𝐴𝑧 0
0 0 𝜎𝐸𝑙

 (49)

𝑅 =

𝜎𝑅 0 0 0 0 0
0 𝜎𝐴𝑧 0 0 0 0
0 0 𝜎𝐸𝑙 0 0 0
0 0 0 𝜎𝐿𝑆𝑆𝑊 0 0
0 0 0 0 𝜎𝐿𝑆𝑆𝑊 0
0 0 0 0 0 𝜎𝐿𝑆𝑆𝑊

 (50)

where

𝑅 = measurement noise matrix

𝜎𝑅 = sensor range measurement standard deviation

29

𝜎𝐴𝑧 = sensor azimuth measurement standard deviation

𝜎𝐸𝑙 = sensor elevation measurement standard deviation

𝜎𝐿𝑆𝑆𝑊 = LSSW error standard deviation

 With 𝑃𝑡𝑛 − , H, and R, the Kalman gain, K; the updated covariance, 𝑃𝑡𝑛 + ; and

the state update, 𝛿𝑥 , are computed from Equations (51-53), respectively.

𝐾 = 𝑃 − 𝐻𝑇 𝑅 + 𝐻𝑃 − 𝐻𝑇 −1 (51)

𝑃𝑡𝑛 + = 𝐼 − 𝐾𝐻 𝑃𝑡𝑛 − (52)

𝛿𝑥 = 𝐾 𝑧 − 𝐻𝑥 (53)

where

𝐼 = identity matrix

𝑧 = vector of observations

𝑥 = 9-element vector of the current state

 This completes the Kalman filter subsection. This series of equations is carried

out at every data point until the end of the data set. As the computation takes place, a

time history of the state and covariance are saved for use in the final subsection of phase

two, the backward smoother.

 Phase 2c – Backward Smoother Pass.

 The final subsection of phase two involves a backward traveling smoother pass

using the time history of results from the Kalman filter. This section of code was

30

implemented in the manner described by the KADRE engineering description
[4]

.

Starting at the final time, the filter consists of Equations (54-56).

𝐶 = 𝑃𝑡𝑛 + Φ𝑇𝑃𝑡𝑛+1
 − −1 (54)

𝑃𝑠𝑚𝑜𝑜𝑡 𝑕𝑡𝑛
 = 𝑃𝑡𝑛 + + 𝐶 𝑃𝑠𝑚𝑜𝑜𝑡 𝑕𝑡𝑛+1

− 𝑃𝑡𝑛+1
 − 𝐶𝑇 (55)

𝑥 𝑠𝑚𝑜𝑜𝑡 𝑕𝑡𝑛
 = 𝑥 𝑡𝑛 + 𝐶 𝑥 𝑠𝑚𝑜𝑜𝑡 𝑕𝑡𝑛+1

𝑇
− 𝑥 𝑡𝑛+1

 − 𝑇
𝑇

 (56)

where

𝐶 = C matrix

𝑥 𝑡𝑛+1
 − = pre-update state vector from Kalman filter

 Once the smoother pass is complete, the filtering phases of the code are complete.

Additional code is included to perform analysis on the results, including calculations of

altitude, ballistic coefficient, and Mach number. These calculations makeup the final

phase of the algorithm.

 Phase 3 – Wrap-up and parameter computation.

 The final phase of the algorithm performs calculations that can be useful for the

analysis of results. With the complete time history of the state available, these

calculations are performed rapidly and included in the output. Key among these

parameters for this research is the ballistic coefficient. With the time history of sensed

accelerations, the ballistic coefficient is computed from Equations (57) and (58).

31

𝑉𝑎 = 𝑥 + 𝜔 𝑦 2 + 𝑦 − 𝜔 𝑥 2 + 𝑧 2 (57)

𝛽
=

1
2
 𝜌 𝑉𝑎

2

 𝑥 𝑆
2 + 𝑦 𝑆

2 + 𝑧 𝑆
2

(58)

where

𝑉𝑎 = Air relative velocity magnitude

𝜔 = Earth’s angular velocity about the pole

𝜌 = altitude dependent atmospheric density

 In addition to ballistic coefficient, parameters such as altitude, Mach number, and

the position of the target in latitude and longitude are computed for easier analysis.

Summary

This chapter described the methodology used in the algorithm to filter observation

data. The algorithm operates in two primary filtering phases with a third wrap-up phase.

The first phase filters exoatmospheric observations with a batch least squares filter that

assumes there are no sensed accelerations other than gravity. The second phase filters

endoatmospheric observations with a least squares sliding window filter, a Kalman filter

forward pass, and a backward running smoother. The final, wrap-up phase, calculates

parameters that can be useful for further analysis.

32

IV. Analysis and Results

Chapter Overview

This chapter reviews the analysis that was performed with the filtering algorithm

created following the methodology detailed in Chapter III. The primary goals of the

analysis performed were to validate the filter’s performance in reconstructing an

observed reentering target, to investigate the benefits to accuracy of additional sensors

observing the same target, to investigate the benefits to accuracy of an increased rate of

data collection against targets, and to investigate the benefits to accuracy of different

sensor collection geometries. In each case where the accuracy of the filter is to be

investigated, the filter will be tested against both non-maneuvering and maneuvering

targets.

Results of Simulation Scenarios

 Case 1 – Filter Performance.

The initial goal in reviewing the filter results was to ensure that the filter was

successfully filtering the collected data. To verify filter performance, the residual errors

between the observed data and the reconstructed trajectory were analyzed to ensure that

whenever possible they had a nearly zero mean error, an apparent random scattering in

error about the mean error, and a low standard deviation in error.

In order to assess the performance of the algorithm, a test case was constructed

with a single target reentering which is observed from an altitude of 800 km to an altitude

near impact. The observing sensor collected range, azimuth, and elevation data at a rate

of 2 Hz. An overview of the collection geometry is presented in Figure 4. The target is

33

initially acquired by the sensor over the State of Maine and is tracked to its impact in the

central United States.

 The residual errors between the observed data and the reconstructed state vectors

are presented in Figure 5. The residuals shows the characteristics of near zero mean

error, random scattering about the mean error, and a low standard deviation of error. For

this case, the mean error was -0.0032 m in range, -0.00016 deg in azimuth, and 0.0037

deg in elevation. The residual scattering appears to be nearly random, the error standard

deviation was 1.9 m in range, 0.016 deg in azimuth, and 0.015 deg in elevation.

Figure 4 – Single sensor collection geometry

-120 -110 -100 -90 -80 -70
25

30

35

40

45

50

Longitude (deg)

L
a
ti
tu

d
e
 (

d
e
g
)

Single Sensor Collection Geometry

RV Trajectory

800 km Range Ring

Sensor

34

 The results presented in Figure 5 were typical of other scenarios that were filtered.

With these results satisfying the criteria for the filter performance that were being

investigated, the subsequent focuses of analysis were examined. The errors in the

trajectory estimate from the truth trajectory are presented in Figure 6
‡
 and Table 2 as

reference for analysis performed in the subsequent sections.

‡
 Acceleration units of 𝑘𝑚

𝑠𝑒𝑐2 and 𝑚

𝑠𝑒𝑐2 are used when plotting acceleration values and errors, respectively. In

axes labels these units are labeled 𝑘𝑚 𝑠𝑠 and 𝑚 𝑠𝑠 for clarity when displayed in the MATLAB font.

0 50 100 150 200 250 300 350 400 450
-10

0

10
Single Sensor Observation Residuals

R
a
n
g
e
 (

m
)

0 50 100 150 200 250 300 350 400 450
-0.001

0

0.001

A
z
im

u
th

 (
ra

d
)

0 50 100 150 200 250 300 350 400 450
-0.001

0

0.001

E
le

v
a
ti
o
n
 (

ra
d
)

Time After Initial Data Point (sec)

Figure 5 – Single sensor observation residuals

35

-2000

-1500

-1000

-500

0

500

X
 (

k
m

)

Errors From Truth - X Position

Truth

Computed

0 50 100 150 200 250 300 350 400 450
-100

-50

0

50

X
 E

rr
o
r

(m
)

Time After Initialization (sec)

4750

4800

4850

4900

4950

5000

5050

5100

Y
 (

k
m

)

Errors From Truth - Y Position

Truth

Computed

0 50 100 150 200 250 300 350 400 450
-200

0

200

Y
 E

rr
o
r

(m
)

Time After Initialization (sec)

3800

4000

4200

4400

4600

4800

5000

5200

Z
 (

k
m

)

Errors From Truth - Z Position

Truth

Computed

0 50 100 150 200 250 300 350 400 450
-200

0

200

Z
 E

rr
o
r

(m
)

Time After Initialization (sec)

-1

0

1

2

3

4

5

V
x
 (

 km
/ s

)

Errors From Truth - X Velocity

Truth

Computed

0 50 100 150 200 250 300 350 400 450
-20

0

20
V

x
 E

rr
o
r

(
m

/ s
)

Time After Initialization (sec)

-1

-0.5

0

0.5

1

1.5

2

V
y
 (

 km
/ s

)

Errors From Truth - Y Velocity

Truth

Computed

0 50 100 150 200 250 300 350 400 450
-100

-50

0

50

V
y
 E

rr
o
r

(
m

/ s
)

Time After Initialization (sec)

-4

-3

-2

-1

0

V
z
 (

 km
/ s

)

Errors From Truth - Z Velocity

Truth

Computed

0 50 100 150 200 250 300 350 400 450
-50

0

50

100

V
z
 E

rr
o
r

(
m

/ s
)

Time After Initialization (sec)

36

Table 2. Trajectory error values with primary sensor

𝑋 𝑚 𝑌 𝑚 𝑍 𝑚 𝑉𝑋
𝑚

𝑠
 𝑉𝑌

𝑚

𝑠
 𝑉𝑍

𝑚

𝑠
 𝐴𝑋

𝑚

𝑠2 𝐴𝑌
𝑚

𝑠2 𝐴𝑍
𝑚

𝑠2

53.1 78.5 99.3 2.4 7.7 8.1 1.9 2.9 3.1

Error RMS 𝑚 : 79.3 Error RMS 𝑚
𝑠
 : 6.6 Error RMS 𝑚

𝑠2 : 2.7

 The transition of the filter from least squares to the Kalman filter can be easily

observed in the plots of trajectory errors from the truth reference, presented in Figure 6.

The least squares filter achieves a random scattering of error with a much smaller

standard deviation than the Kalman filter does. Despite this fact, it is also noted that the

Kalman filter appears to do a better job of minimizing the mean error. This is especially

noticeable in the position errors from truth.

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

A
x
 (

 km
/ s

s
)

Errors From Truth - X Acceleration

Truth

Computed

0 50 100 150 200 250 300 350 400 450
-20

0

20

40

A
x
 E

rr
o
r

(
m

/ s
s
)

Time After Initialization (sec)

-0.02

0

0.02

0.04

0.06

0.08

A
y
 (

 km
/ s

s
)

Errors From Truth - Y Acceleration

Truth

Computed

0 50 100 150 200 250 300 350 400 450
-40

-20

0

20

A
y
 E

rr
o
r

(
m

/ s
s
)

Time After Initialization (sec)

-0.1

0

0.1

0.2

0.3

0.4

A
z
 (

 km
/ s

s
)

Errors From Truth - Z Acceleration

Truth

Computed

0 50 100 150 200 250 300 350 400 450
-40

-20

0

20

A
z
 E

rr
o
r

(
m

/ s
s
)

Time After Initialization (sec)

Figure 6 – Trajectory results with primary sensor

37

 Regardless of these errors, the estimated trajectory is very close to the truth

values. With these estimates determined, the ballistic coefficient can be computed from

the sensed acceleration values with Equations (57) and (58). An example of ballistic

coefficient values computed with this method is in Figure 7.

 The computed ballistic coefficient in Figure 7 is typical of an RV’s ballistic

coefficient derived from measurements. At higher altitudes, the ballistic coefficient is

largely unobservable and it climbs towards its actual value as the target descends in

altitude before impact. The results obtained were close enough to the truth values to

conclude that the ballistic coefficient was being properly computed.

 Although initially implemented as optional, the backward smoothing pass,

discussed in Chapter III - Phase 2c, was eventually deemed to be necessary for optimal

results. A comparison of acceleration estimates computed with and without the smoother

020406080100120
0

1000

2000

3000

4000

5000

6000

7000

Altitude (km)

B
a
lli

s
ti
c
 C

o
e
ff

ic
ie

n
t

(k
g
/m

2
)

Computed Ballistic Coefficient

Truth

Computed

Figure 7 – Estimated ballistic coefficient

38

pass enabled appears in Figure 8. While the unsmoothed values appear to be close to the

truth, their mean error has a standard deviation of 6.9 𝑚

𝑠2 compared to 1.9 𝑚

𝑠2 for the

smoothed estimates.

Figure 8 – Effects of smoother pass on estimates

 The benefits of the smoother pass are further revealed when these accelerations

are transformed into the corresponding ballistic coefficient estimates. The ballistic

coefficient estimates from the smoothed and unsmoothed estimates appear in Figure 9.

This zoomed view highlights the errors throughout the unsmoothed results. Whereas the

smoothed accelerations converge to the truth value, the unsmoothed accelerations

overshoot the truth and then overcompensate to a ballistic coefficient that is less than the

truth. For these reasons, the backward smoother pass was deemed integral to achieving

the best results.

-0.4

-0.3

-0.2

-0.1

0

Acceleration Errors with and without Smoother Pass
A

x
 (

 km
/ s

s
)

415 420 425 430 435 440 445
-0.1

0

0.1

Track Time (sec)

A
x
 E

rr
o
r

(
m

/ s
s
)

Truth

Smoothed

Unsmoothed

39

Figure 9 – Ballistic coefficient estimated with and without smoother pass.

To further validate the filter performance, scenarios with maneuvering targets

were constructed to observe the filter’s ability to model non-ballistic accelerations. The

maneuvers performed by the target are summarized in Table 3.

Table 3. Reentry scenarios
§

SCENARIO REENTRY MANEUVERS

1 None

2 Below 40 km alt: 𝑥 = 𝑥 𝑔𝑟𝑎𝑣 − .000980665 𝑎𝑙𝑡 − 40𝑘𝑚

3
Below 40 km alt: 𝑥 = 𝑥 𝑔𝑟𝑎𝑣 − .000980665 𝑎𝑙𝑡 − 40𝑘𝑚

Below 20 km alt: 𝑦 = 𝑦 𝑔𝑟𝑎𝑣 − 2 . 000980665 𝑎𝑙𝑡 − 20𝑘𝑚

 Both scenarios 2 and 3 involved accelerations in the x direction that ramp up from

zero as altitude decreased. Scenario 3 added a level of complexity with a second

§ These reentry scenarios were arbitrarily defined

05101520253035404550
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000
Estimated Ballistic Coefficient with and without Smoother

Altitude (km)

B
a
lli

s
ti
c
 C

o
e
ff

ic
ie

n
t

(k
g
/m

2
)

Truth

Smoothed

Unsmoothed

40

maneuver in the y direction that begins at a lower altitude. This maneuver ramped up

more rapidly than the maneuver in the x direction.

 These scenarios were run through the filter with the same observing sensor. The

results showed that the filter was capable of modeling maneuvering accelerations and had

similar errors to the non-maneuvering case. Error plots are presented in Figure 10 and

Figure 11 while a summary of the fits are in Table 4 and Table 5.

-2000

-1500

-1000

-500

0

500

X
 (

k
m

)

Errors From Truth - X Position

Truth

Computed

0 50 100 150 200 250 300 350 400 450
-100

-50

0

50

X
 E

rr
o
r

(m
)

Time After Initialization (sec)

4750

4800

4850

4900

4950

5000

5050

5100

Y
 (

k
m

)

Errors From Truth - Y Position

Truth

Computed

0 50 100 150 200 250 300 350 400 450
-200

-100

0

100

Y
 E

rr
o
r

(m
)

Time After Initialization (sec)

3800

4000

4200

4400

4600

4800

5000

5200

Z
 (

k
m

)

Errors From Truth - Z Position

Truth

Computed

0 50 100 150 200 250 300 350 400 450
-200

0

200

Z
 E

rr
o
r

(m
)

Time After Initialization (sec)

-1

0

1

2

3

4

5

V
x
 (

 km
/ s

)

Errors From Truth - X Velocity

Truth

Computed

0 50 100 150 200 250 300 350 400 450
-20

0

20

V
x
 E

rr
o
r

(
m

/ s
)

Time After Initialization (sec)

-1

-0.5

0

0.5

1

1.5

2

V
y
 (

 km
/ s

)

Errors From Truth - Y Velocity

Truth

Computed

0 50 100 150 200 250 300 350 400 450
-50

0

50

100

V
y
 E

rr
o
r

(
m

/ s
)

Time After Initialization (sec)

-4

-3

-2

-1

0

V
z
 (

 km
/ s

)

Errors From Truth - Z Velocity

Truth

Computed

0 50 100 150 200 250 300 350 400 450
-50

0

50

100

V
z
 E

rr
o
r

(
m

/ s
)

Time After Initialization (sec)

41

Table 4. Trajectory errors from scenario 2, maneuvering target

𝑋 𝑚 𝑌 𝑚 𝑍 𝑚 𝑉𝑋
𝑚

𝑠
 𝑉𝑌

𝑚

𝑠
 𝑉𝑍

𝑚

𝑠
 𝐴𝑋

𝑚

𝑠2 𝐴𝑌
𝑚

𝑠2 𝐴𝑍
𝑚

𝑠2

39.6 61.1 63.5 2.4 7.5 8.9 1.8 2.9 4.0

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

A
x
 (

 km
/ s

s
)

Errors From Truth - X Acceleration

Truth

Computed

0 50 100 150 200 250 300 350 400 450
-20

0

20

A
x
 E

rr
o
r

(
m

/ s
s
)

Time After Initialization (sec)

-0.02

0

0.02

0.04

0.06

0.08

A
y
 (

 km
/ s

s
)

Errors From Truth - Y Acceleration

Truth

Computed

0 50 100 150 200 250 300 350 400 450
-50

0

50

A
y
 E

rr
o
r

(
m

/ s
s
)

Time After Initialization (sec)

-0.1

0

0.1

0.2

0.3

0.4

A
z
 (

 km
/ s

s
)

Errors From Truth - Z Acceleration

Truth

Computed

0 50 100 150 200 250 300 350 400 450
-50

0

50

A
z
 E

rr
o
r

(
m

/ s
s
)

Time After Initialization (sec)

Figure 10 – Trajectory results from scenario 2, maneuvering target

42

-2000

-1500

-1000

-500

0

500

X
 (

k
m

)

Errors From Truth - X Position

Truth

Computed

0 50 100 150 200 250 300 350 400 450
-100

0

100

X
 E

rr
o
r

(m
)

Time After Initialization (sec)

4750

4800

4850

4900

4950

5000

5050

5100

Y
 (

k
m

)

Errors From Truth - Y Position

Truth

Computed

0 50 100 150 200 250 300 350 400 450
-200

0

200

Y
 E

rr
o
r

(m
)

Time After Initialization (sec)

3800

4000

4200

4400

4600

4800

5000

5200

Z
 (

k
m

)

Errors From Truth - Z Position

Truth

Computed

0 50 100 150 200 250 300 350 400 450
-200

0

200

Z
 E

rr
o
r

(m
)

Time After Initialization (sec)

0

1

2

3

4

5

V
x
 (

 km
/ s

)

Errors From Truth - X Velocity

Truth

Computed

0 50 100 150 200 250 300 350 400 450
-20

0

20

V
x
 E

rr
o
r

(
m

/ s
)

Time After Initialization (sec)

-1

-0.5

0

0.5

1

1.5

2

V
y
 (

 km
/ s

)

Errors From Truth - Y Velocity

Truth

Computed

0 50 100 150 200 250 300 350 400 450
-100

0

100

200

V
y
 E

rr
o
r

(
m

/ s
)

Time After Initialization (sec)

-4

-3

-2

-1

0

V
z
 (

 km
/ s

)

Errors From Truth - Z Velocity

Truth

Computed

0 50 100 150 200 250 300 350 400 450
-100

0

100

200

V
z
 E

rr
o
r

(
m

/ s
)

Time After Initialization (sec)

43

Table 5. Trajectory errors from scenario 3, maneuvering target

𝑋 𝑚 𝑌 𝑚 𝑍 𝑚 𝑉𝑋
𝑚

𝑠
 𝑉𝑌

𝑚

𝑠
 𝑉𝑍

𝑚

𝑠
 𝐴𝑋

𝑚

𝑠2 𝐴𝑌
𝑚

𝑠2 𝐴𝑍
𝑚

𝑠2

46.9 88.9 66.7 2.5 10.1 8.7 1.8 4.6 4.5

 The last discovery made that affected the error of the estimated trajectory

pertained to the least squares sliding window portion of the algorithm. The section of the

filter was intended to provide the Kalman filter with an initial guess for the position of

the target during the maneuvering portion of the data. After analysis of the estimates

computed with the LSSW compared to those computed without the LSSW filter active, it

was determined that the LSSW failed to improve the trajectory results in every scenario.

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

A
x
 (

 km
/ s

s
)

Errors From Truth - X Acceleration

Truth

Computed

0 50 100 150 200 250 300 350 400 450
-20

0

20

40

A
x
 E

rr
o
r

(
m

/ s
s
)

Time After Initialization (sec)

-0.02

0

0.02

0.04

0.06

A
y
 (

 km
/ s

s
)

Errors From Truth - Y Acceleration

Truth

Computed

0 50 100 150 200 250 300 350 400 450
-50

0

50

A
y
 E

rr
o
r

(
m

/ s
s
)

Time After Initialization (sec)

-0.1

0

0.1

0.2

0.3

0.4

A
z
 (

 km
/ s

s
)

Errors From Truth - Z Acceleration

Truth

Computed

0 50 100 150 200 250 300 350 400 450
-50

0

50

100

A
z
 E

rr
o
r

(
m

/ s
s
)

Time After Initialization (sec)

Figure 11 – Trajectory results from scenario 3, maneuvering target

44

As an example of this behavior, the results of the baseline scenario are presented in Table

6 both with and without the LSSW active.

Table 6. Trajectory errors due to LSSW

𝑋 𝑚 𝑌 𝑚 𝑍 𝑚 𝑉𝑋
𝑚

𝑠
 𝑉𝑌

𝑚

𝑠
 𝑉𝑍

𝑚

𝑠
 𝐴𝑋

𝑚

𝑠2 𝐴𝑌
𝑚

𝑠2 𝐴𝑍
𝑚

𝑠2

56.9 148.7 139.9 2.7 11.4 9.6 1.9 3.8 3.4

Error RMS 𝑚 : 122.4 Error RMS 𝑚
𝑠
 : 8.7 Error RMS 𝑚

𝑠2 : 3.1

Baseline Error: 79.3 Baseline Error: 6.6 Baseline Error: 2.7
Difference: +54.4% Difference: +31.8% Difference: +14.8%

Case 2 – Filter Performance Improvements Through Additional Sensors.

 In order to investigate performance improvements that could result from filtering

data from multiple sensors, three additional sensor locations were defined. The three

additional sensor locations, all equidistant from the impact point, are described in Table 7

and displayed graphically in Figure 12. These sensors incorporate the same random

observation noise as described in Table 1.

Table 7. Observing sensors

SENSOR CHARACTERISTIC

1 Approximately Along Reentry Azimuth, 400km from Impact

2 Approximately 45
o
 to Reentry Azimuth, 400km from Impact

3 Approximately 90
o
 to Reentry Azimuth, 400km from Impact

45

The results of incorporating data from an additional sensor at location 1 are

presented in Figure 13 and a summary of the trajectory errors from the truth are presented

in Table 8. In general, the addition of a second sensor along the reentry azimuth has no

positive effect on the results of the trajectory fit, in this scenario. In fact, the results are

worse than those achieved with the primary sensor alone. It is unclear why the results are

as degraded as they are, but it is assumed that adding a sensor at location 1 adds little

observability to the problem beyond what the primary sensor already provides.

-120 -110 -100 -90 -80 -70
25

30

35

40

45

50

Longitude (deg)

E
le

v
a
ti
o
n
 (

ra
d
)

Additional Sensor Collection Geometries

Figure 12 – Additional sensor collection geometries

2

1
3

-120 -110 -100 -90 -80 -70
25

30

35

40

45

50

Longitude (deg)

L
a
ti
tu

d
e
 (

d
e
g
)

Single Sensor Collection Geometry

RV Trajectory

800 km Range Ring

Sensor

46

-2000

-1500

-1000

-500

0

500

X
 (

k
m

)

Errors From Truth - X Position

Truth

Computed

0 50 100 150 200 250 300 350 400 450
-500

0

500

X
 E

rr
o
r

(m
)

Time After Initialization (sec)

4750

4800

4850

4900

4950

5000

5050

5100

Y
 (

k
m

)

Errors From Truth - Y Position

Truth

Computed

0 50 100 150 200 250 300 350 400 450
-500

0

500

1000

Y
 E

rr
o
r

(m
)

Time After Initialization (sec)

3800

4000

4200

4400

4600

4800

5000

5200

Z
 (

k
m

)

Errors From Truth - Z Position

Truth

Computed

0 50 100 150 200 250 300 350 400 450
-1000

-500

0

500

Z
 E

rr
o
r

(m
)

Time After Initialization (sec)

-1

0

1

2

3

4

5

V
x
 (

 km
/ s

)

Errors From Truth - X Velocity

Truth

Computed

0 50 100 150 200 250 300 350 400 450
-50

0

50

100

V
x
 E

rr
o
r

(
m

/ s
)

Time After Initialization (sec)

-1

-0.5

0

0.5

1

1.5

2

V
y
 (

 km
/ s

)

Errors From Truth - Y Velocity

Truth

Computed

0 50 100 150 200 250 300 350 400 450
-100

-50

0

50

V
y
 E

rr
o
r

(
m

/ s
)

Time After Initialization (sec)

-4

-3

-2

-1

0

V
z
 (

 km
/ s

)

Errors From Truth - Z Velocity

Truth

Computed

0 50 100 150 200 250 300 350 400 450
-100

0

100

200

V
z
 E

rr
o
r

(
m

/ s
)

Time After Initialization (sec)

47

Table 8. Combined trajectory errors with addition of sensor 1

𝑋 𝑚 𝑌 𝑚 𝑍 𝑚 𝑉𝑋
𝑚

𝑠
 𝑉𝑌

𝑚

𝑠
 𝑉𝑍

𝑚

𝑠
 𝐴𝑋

𝑚

𝑠2 𝐴𝑌
𝑚

𝑠2 𝐴𝑍
𝑚

𝑠2

246.2 443.0 381.2 7.8 9.8 17.3 2.5 3.8 5.5

Error RMS 𝑚 : 366.1 Error RMS 𝑚
𝑠
 : 12.3 Error RMS 𝑚

𝑠2 : 4.1

Baseline Error: 79.3 Baseline Error: 6.6 Baseline Error: 2.7
Difference: +361.7% Difference: +86.4% Difference: +51.9%

The results of incorporating data from an additional sensor at location 2 are

presented in Figure 14 and a summary of the trajectory errors from the truth are presented

in Table 9. In general, the addition of a second sensor approximately 45 degrees off of

the reentry azimuth has a positive effect on the results of the trajectory fit. The position,

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

A
x
 (

 km
/ s

s
)

Errors From Truth - X Acceleration

Truth

Computed

0 50 100 150 200 250 300 350 400 450
-40

-20

0

20

A
x
 E

rr
o
r

(
m

/ s
s
)

Time After Initialization (sec)

-0.02

0

0.02

0.04

0.06

0.08

A
y
 (

 km
/ s

s
)

Errors From Truth - Y Acceleration

Truth

Computed

0 50 100 150 200 250 300 350 400 450
-50

0

50

A
y
 E

rr
o
r

(
m

/ s
s
)

Time After Initialization (sec)

-0.1

0

0.1

0.2

0.3

0.4

A
z
 (

 km
/ s

s
)

Errors From Truth - Z Acceleration

Truth

Computed

0 50 100 150 200 250 300 350 400 450
-50

0

50

A
z
 E

rr
o
r

(
m

/ s
s
)

Time After Initialization (sec)

Figure 13 – Trajectory results with addition of sensor 1

48

velocity, and acceleration errors are all improved over the results achieved using only the

primary sensor.

-2000

-1500

-1000

-500

0

500

X
 (

k
m

)

Errors From Truth - X Position

Truth

Computed

0 50 100 150 200 250 300 350 400 450
-20

-10

0

10

X
 E

rr
o
r

(m
)

Time After Initialization (sec)

4750

4800

4850

4900

4950

5000

5050

5100

Y
 (

k
m

)

Errors From Truth - Y Position

Truth

Computed

0 50 100 150 200 250 300 350 400 450
-200

-100

0

100

Y
 E

rr
o
r

(m
)

Time After Initialization (sec)

3800

4000

4200

4400

4600

4800

5000

5200

Z
 (

k
m

)

Errors From Truth - Z Position

Truth

Computed

0 50 100 150 200 250 300 350 400 450
-100

0

100

Z
 E

rr
o
r

(m
)

Time After Initialization (sec)

-1

0

1

2

3

4

5

V
x
 (

 km
/ s

)

Errors From Truth - X Velocity

Truth

Computed

0 50 100 150 200 250 300 350 400 450
-20

0

20

V
x
 E

rr
o
r

(
m

/ s
)

Time After Initialization (sec)

-1

-0.5

0

0.5

1

1.5

2

V
y
 (

 km
/ s

)

Errors From Truth - Y Velocity

Truth

Computed

0 50 100 150 200 250 300 350 400 450
-50

0

50

V
y
 E

rr
o
r

(
m

/ s
)

Time After Initialization (sec)

-4

-3

-2

-1

0

V
z
 (

 km
/ s

)

Errors From Truth - Z Velocity

Truth

Computed

0 50 100 150 200 250 300 350 400 450
-50

0

50

V
z
 E

rr
o
r

(
m

/ s
)

Time After Initialization (sec)

49

Table 9. Combined trajectory errors with addition of sensor 2

𝑋 𝑚 𝑌 𝑚 𝑍 𝑚 𝑉𝑋
𝑚

𝑠
 𝑉𝑌

𝑚

𝑠
 𝑉𝑍

𝑚

𝑠
 𝐴𝑋

𝑚

𝑠2 𝐴𝑌
𝑚

𝑠2 𝐴𝑍
𝑚

𝑠2

12.2 109.2 28.7 1.8 4.3 3.8 2.0 2.0 2.3

Error RMS 𝑚 : 65.6 Error RMS 𝑚
𝑠
 : 3.5 Error RMS 𝑚

𝑠2 : 2.1

Baseline Error: 79.3 Baseline Error: 6.6 Baseline Error: 2.7
Difference: -17.3% Difference: -47.0% Difference: -22.2%

The results of incorporating data from an additional sensor at location 3 are

presented in Figure 15 and a summary of the trajectory errors from the truth are presented

in Table 10. In general, the addition of a second sensor approximately 90 degrees off of

the reentry azimuth has a positive effect on the results of the trajectory fit, similar to the

results achieve with additional sensor 2. The position, velocity, and acceleration errors

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

A
x
 (

 km
/ s

s
)

Errors From Truth - X Acceleration

Truth

Computed

0 50 100 150 200 250 300 350 400 450
-20

0

20

40

A
x
 E

rr
o
r

(
m

/ s
s
)

Time After Initialization (sec)

-0.02

0

0.02

0.04

0.06

0.08

A
y
 (

 km
/ s

s
)

Errors From Truth - Y Acceleration

Truth

Computed

0 50 100 150 200 250 300 350 400 450
-20

0

20

A
y
 E

rr
o
r

(
m

/ s
s
)

Time After Initialization (sec)

-0.1

0

0.1

0.2

0.3

0.4

A
z
 (

 km
/ s

s
)

Errors From Truth - Z Acceleration

Truth

Computed

0 50 100 150 200 250 300 350 400 450
-40

-20

0

20

A
z
 E

rr
o
r

(
m

/ s
s
)

Time After Initialization (sec)

Figure 14 – Trajectory results with addition of sensor 2

50

are all improved over the results achieved using only the primary sensor, and when

averaged are slightly better than those achieved with additional sensor 2.

-2000

-1500

-1000

-500

0

500

X
 (

k
m

)

Errors From Truth - X Position

Truth

Computed

0 50 100 150 200 250 300 350 400 450
-20

-10

0

10

X
 E

rr
o
r

(m
)

Time After Initialization (sec)

4750

4800

4850

4900

4950

5000

5050

5100

Y
 (

k
m

)

Errors From Truth - Y Position

Truth

Computed

0 50 100 150 200 250 300 350 400 450
-200

-100

0

100

Y
 E

rr
o
r

(m
)

Time After Initialization (sec)

3800

4000

4200

4400

4600

4800

5000

5200

Z
 (

k
m

)

Errors From Truth - Z Position

Truth

Computed

0 50 100 150 200 250 300 350 400 450
-100

0

100

Z
 E

rr
o
r

(m
)

Time After Initialization (sec)

-1

0

1

2

3

4

5

V
x
 (

 km
/ s

)

Errors From Truth - X Velocity

Truth

Computed

0 50 100 150 200 250 300 350 400 450
-20

0

20

V
x
 E

rr
o
r

(
m

/ s
)

Time After Initialization (sec)

-1

-0.5

0

0.5

1

1.5

2

V
y
 (

 km
/ s

)

Errors From Truth - Y Velocity

Truth

Computed

0 50 100 150 200 250 300 350 400 450
-20

0

20

40

V
y
 E

rr
o
r

(
m

/ s
)

Time After Initialization (sec)

-4

-3

-2

-1

0

V
z
 (

 km
/ s

)

Errors From Truth - Z Velocity

Truth

Computed

0 50 100 150 200 250 300 350 400 450
-50

0

50

V
z
 E

rr
o
r

(
m

/ s
)

Time After Initialization (sec)

51

Table 10. Combined trajectory errors with addition of sensor 3

𝑋 𝑚 𝑌 𝑚 𝑍 𝑚 𝑉𝑋
𝑚

𝑠
 𝑉𝑌

𝑚

𝑠
 𝑉𝑍

𝑚

𝑠
 𝐴𝑋

𝑚

𝑠2 𝐴𝑌
𝑚

𝑠2 𝐴𝑍
𝑚

𝑠2

13.7 102.9 33.4 1.9 3.6 3.2 2.2 1.8 2.0

Error RMS 𝑚 : 63.0 Error RMS 𝑚
𝑠
 : 3.0 Error RMS 𝑚

𝑠2 : 2.0

Baseline Error: 79.3 Baseline Error: 6.6 Baseline Error: 2.7
Difference: -20.6% Difference: -54.5% Difference: -25.9%

 These results show that accuracy can be improved by collecting data from an

additional sensor, although there are geometry considerations. A secondary sensor added

along the reentry azimuth was detrimental to the accuracy of the combined results, but a

secondary sensor located either 45 or 90 degrees to the reentry azimuth improved the

accuracy of the results. Alternative scenarios were investigated that did not show the

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

A
x
 (

 km
/ s

s
)

Errors From Truth - X Acceleration

Truth

Computed

0 50 100 150 200 250 300 350 400 450
-20

0

20

40

A
x
 E

rr
o
r

(
m

/ s
s
)

Time After Initialization (sec)

-0.02

0

0.02

0.04

0.06

0.08

A
y
 (

 km
/ s

s
)

Errors From Truth - Y Acceleration

Truth

Computed

0 50 100 150 200 250 300 350 400 450
-20

0

20

A
y
 E

rr
o
r

(
m

/ s
s
)

Time After Initialization (sec)

-0.1

0

0.1

0.2

0.3

0.4

A
z
 (

 km
/ s

s
)

Errors From Truth - Z Acceleration

Truth

Computed

0 50 100 150 200 250 300 350 400 450
-40

-20

0

20

A
z
 E

rr
o
r

(
m

/ s
s
)

Time After Initialization (sec)

Figure 15 – Trajectory results with addition of sensor 3

52

addition of a sensor along the reentry azimuth to be detrimental, but the trend of better

results being achieved by shifting a secondary sensor away from the reentry azimuth was

consistently found throughout these alternatives.

 This was anticipated based on general knowledge of data filtering. By adding a

second sensor along the trajectory’s azimuth, there is little added information that was not

already present from the primary sensor. By adding that sensor orthogonal to the

azimuth, the amount of new information added to the filter is maximized.

 Case 3 – Filter Performance Improvements Through Increased Data Rate.

 The next variation to the standard collection scheme is the modification of the

data rate at which the sensor or sensors collect observations. For these cases, the rate of

collection will be increased from 2 to 3 Hz in order to investigate what effects this may

have.

 The first scenario that will be modified is the initial scenario whose results are

presented in Figure 6 and Table 2. The single, primary sensor collects data at the

increased rate; the results of this are presented in Figure 16 and Table 11.

53

-2000

-1500

-1000

-500

0

500

X
 (

k
m

)

Errors From Truth - X Position

Truth

Computed

0 50 100 150 200 250 300 350 400 450
-200

0

200

X
 E

rr
o
r

(m
)

Time After Initialization (sec)

4750

4800

4850

4900

4950

5000

5050

5100

Y
 (

k
m

)

Errors From Truth - Y Position

Truth

Computed

0 50 100 150 200 250 300 350 400 450
-400

-200

0

200

Y
 E

rr
o
r

(m
)

Time After Initialization (sec)

3800

4000

4200

4400

4600

4800

5000

5200

Z
 (

k
m

)

Errors From Truth - Z Position

Truth

Computed

0 50 100 150 200 250 300 350 400 450
-200

0

200

400

Z
 E

rr
o
r

(m
)

Time After Initialization (sec)

-1

0

1

2

3

4

5

V
x
 (

 km
/ s

)

Errors From Truth - X Velocity

Truth

Computed

0 50 100 150 200 250 300 350 400 450
-10

0

10

20

V
x
 E

rr
o
r

(
m

/ s
)

Time After Initialization (sec)

-1

-0.5

0

0.5

1

1.5

2

V
y
 (

 km
/ s

)

Errors From Truth - Y Velocity

Truth

Computed

0 50 100 150 200 250 300 350 400 450
-50

0

50

V
y
 E

rr
o
r

(
m

/ s
)

Time After Initialization (sec)

-4

-3

-2

-1

0

V
z
 (

 km
/ s

)

Errors From Truth - Z Velocity

Truth

Computed

0 50 100 150 200 250 300 350 400 450
-50

0

50

V
z
 E

rr
o
r

(
m

/ s
)

Time After Initialization (sec)

54

Table 11. Trajectory errors with primary sensor at increased data rate

𝑋 𝑚 𝑌 𝑚 𝑍 𝑚 𝑉𝑋
𝑚

𝑠
 𝑉𝑌

𝑚

𝑠
 𝑉𝑍

𝑚

𝑠
 𝐴𝑋

𝑚

𝑠2 𝐴𝑌
𝑚

𝑠2 𝐴𝑍
𝑚

𝑠2

67.8 107.5 104.8 2.0 6.8 5.0 1.6 3.3 2.2

Error RMS 𝑚 : 95.1 Error RMS 𝑚
𝑠
 : 5.0 Error RMS 𝑚

𝑠2 : 2.5

2Hz Error: 79.3 2Hz Error: 6.6 2Hz Error: 2.7
Difference: +19.9% Difference: -24.2% Difference: -7.4%

 The single sensor results show improvements in velocity and acceleration at the

increased data rate, with reduced accuracy in position. The next modified scenario will

increase the data rates of secondary sensors that are collecting data from different

locations than the primary sensor. The first of these will recreate the geometry whose

results are presented in Figure 13 and Table 8 with the secondary sensor at location 1.

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

A
x
 (

 km
/ s

s
)

Errors From Truth - X Acceleration

Truth

Computed

0 50 100 150 200 250 300 350 400 450
-20

0

20

A
x
 E

rr
o
r

(
m

/ s
s
)

Time After Initialization (sec)

-0.02

0

0.02

0.04

0.06

0.08

A
y
 (

 km
/ s

s
)

Errors From Truth - Y Acceleration

Truth

Computed

0 50 100 150 200 250 300 350 400 450
-50

0

50

A
y
 E

rr
o
r

(
m

/ s
s
)

Time After Initialization (sec)

-0.1

0

0.1

0.2

0.3

0.4

A
z
 (

 km
/ s

s
)

Errors From Truth - Z Acceleration

Truth

Computed

0 50 100 150 200 250 300 350 400 450
-40

-20

0

20

A
z
 E

rr
o
r

(
m

/ s
s
)

Time After Initialization (sec)

Figure 16 – Trajectory results with primary sensor at increased data rate

55

The results of this geometry with the secondary sensor now collecting at 3 Hz are

presented in Figure 17 and Table 12.

-2000

-1500

-1000

-500

0

500

X
 (

k
m

)

Errors From Truth - X Position

Truth

Computed

0 50 100 150 200 250 300 350 400 450
-500

0

500

X
 E

rr
o
r

(m
)

Time After Initialization (sec)

4750

4800

4850

4900

4950

5000

5050

5100

Y
 (

k
m

)

Errors From Truth - Y Position

Truth

Computed

0 50 100 150 200 250 300 350 400 450
-500

0

500

1000

Y
 E

rr
o
r

(m
)

Time After Initialization (sec)

3800

4000

4200

4400

4600

4800

5000

5200

Z
 (

k
m

)

Errors From Truth - Z Position

Truth

Computed

0 50 100 150 200 250 300 350 400 450
-1000

-500

0

500

Z
 E

rr
o
r

(m
)

Time After Initialization (sec)

-1

0

1

2

3

4

5

V
x
 (

 km
/ s

)

Errors From Truth - X Velocity

Truth

Computed

0 50 100 150 200 250 300 350 400 450
-50

0

50

100

V
x
 E

rr
o
r

(
m

/ s
)

Time After Initialization (sec)

-1

-0.5

0

0.5

1

1.5

2

V
y
 (

 km
/ s

)

Errors From Truth - Y Velocity

Truth

Computed

0 50 100 150 200 250 300 350 400 450
-100

-50

0

50

V
y
 E

rr
o
r

(
m

/ s
)

Time After Initialization (sec)

-4

-3

-2

-1

0

V
z
 (

 km
/ s

)

Errors From Truth - Z Velocity

Truth

Computed

0 50 100 150 200 250 300 350 400 450
-100

0

100

200

V
z
 E

rr
o
r

(
m

/ s
)

Time After Initialization (sec)

56

Table 12. Trajectory errors with addition of sensor 1 at increased rate

𝑋 𝑚 𝑌 𝑚 𝑍 𝑚 𝑉𝑋
𝑚

𝑠
 𝑉𝑌

𝑚

𝑠
 𝑉𝑍

𝑚

𝑠
 𝐴𝑋

𝑚

𝑠2 𝐴𝑌
𝑚

𝑠2 𝐴𝑍
𝑚

𝑠2

237.6 433.2 367.5 8.5 11.3 19.5 3.1 3.4 9.0

Error RMS 𝑚 : 355.5 Error RMS 𝑚
𝑠
 : 13.9 Error RMS 𝑚

𝑠2 : 5.8

2Hz Error: 366.1 2Hz Error: 12.3 2Hz Error: 4.1
Difference: -2.9% Difference: +13.0% Difference: +41.5%

 While the trajectory results still show a significant error when compared to the

results from the primary sensor alone, the results show mixed improvement with respect

to those obtained when a sensor at location 1 operated at the nominal collection rate. In

this case, the position error is improved by 2.9% while the velocity and acceleration

errors worsened by 13.0% and 41.5%, respectively. These results do not show promise

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

A
x
 (

 km
/ s

s
)

Errors From Truth - X Acceleration

Truth

Computed

0 50 100 150 200 250 300 350 400 450
-20

0

20

40

A
x
 E

rr
o
r

(
m

/ s
s
)

Time After Initialization (sec)

-0.04

-0.02

0

0.02

0.04

0.06

0.08

A
y
 (

 km
/ s

s
)

Errors From Truth - Y Acceleration

Truth

Computed

0 50 100 150 200 250 300 350 400 450
-40

-20

0

20

A
y
 E

rr
o
r

(
m

/ s
s
)

Time After Initialization (sec)

-0.1

0

0.1

0.2

0.3

0.4

A
z
 (

 km
/ s

s
)

Errors From Truth - Z Acceleration

Truth

Computed

0 50 100 150 200 250 300 350 400 450
-100

0

100

A
z
 E

rr
o
r

(
m

/ s
s
)

Time After Initialization (sec)

Figure 17 – Trajectory results with addition of sensor 1 at increased rate

57

for an increased collection rate being a means of achieving increased accuracy, but with

such poor errors to begin with, it may be an unsuitable case for comparison.

 The next modified scenario will operate a sensor at location 2, similar to the

results presented in Figure 14 and Table 9, at the increased data rate of 3 Hz. Results

from this scenario are presented in Figure 18 and Table 13.

-2000

-1500

-1000

-500

0

500

X
 (

k
m

)

Errors From Truth - X Position

Truth

Computed

0 50 100 150 200 250 300 350 400 450
-20

-10

0

10

X
 E

rr
o
r

(m
)

Time After Initialization (sec)

4750

4800

4850

4900

4950

5000

5050

5100

Y
 (

k
m

)

Errors From Truth - Y Position

Truth

Computed

0 50 100 150 200 250 300 350 400 450
-200

-100

0

100
Y

 E
rr

o
r

(m
)

Time After Initialization (sec)

3800

4000

4200

4400

4600

4800

5000

5200

Z
 (

k
m

)

Errors From Truth - Z Position

Truth

Computed

0 50 100 150 200 250 300 350 400 450
-50

0

50

100

Z
 E

rr
o
r

(m
)

Time After Initialization (sec)

-1

0

1

2

3

4

5

V
x
 (

 km
/ s

)

Errors From Truth - X Velocity

Truth

Computed

0 50 100 150 200 250 300 350 400 450
-20

0

20

V
x
 E

rr
o
r

(
m

/ s
)

Time After Initialization (sec)

-1

-0.5

0

0.5

1

1.5

2

V
y
 (

 km
/ s

)

Errors From Truth - Y Velocity

Truth

Computed

0 50 100 150 200 250 300 350 400 450
-50

0

50

V
y
 E

rr
o
r

(
m

/ s
)

Time After Initialization (sec)

-4

-3

-2

-1

0

V
z
 (

 km
/ s

)

Errors From Truth - Z Velocity

Truth

Computed

0 50 100 150 200 250 300 350 400 450
-40

-20

0

20

V
z
 E

rr
o
r

(
m

/ s
)

Time After Initialization (sec)

58

Table 13. Trajectory errors with addition of sensor 2 at increased rate

𝑋 𝑚 𝑌 𝑚 𝑍 𝑚 𝑉𝑋
𝑚

𝑠
 𝑉𝑌

𝑚

𝑠
 𝑉𝑍

𝑚

𝑠
 𝐴𝑋

𝑚

𝑠2 𝐴𝑌
𝑚

𝑠2 𝐴𝑍
𝑚

𝑠2

14.1 104.4 32.6 1.8 3.8 2.4 2.2 2.6 1.9

Error RMS 𝑚 : 63.7 Error RMS 𝑚
𝑠
 : 2.8 Error RMS 𝑚

𝑠2 : 2.3

2Hz Error: 65.6 2Hz Error: 3.5 2Hz Error: 2.1
Difference: -2.9% Difference: -20.0% Difference: +9.5%

 Similar to the results achieved for increasing the collection rate of a sensor at

location 1, the error in position was improved and the error in acceleration was worsened

by increasing the collection rate of a sensor at location 2. However, unlike the previous

scenario, the error in velocity was improved. Error in position and velocity were

improved by 2.9% and 20.0%, respectively, while error in acceleration worsened by

9.5%. This reduction in acceleration accuracy is much less than the 41.5% reduction in

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

A
x
 (

 km
/ s

s
)

Errors From Truth - X Acceleration

Truth

Computed

0 50 100 150 200 250 300 350 400 450
-50

0

50

A
x
 E

rr
o
r

(
m

/ s
s
)

Time After Initialization (sec)

-0.02

0

0.02

0.04

0.06

0.08

A
y
 (

 km
/ s

s
)

Errors From Truth - Y Acceleration

Truth

Computed

0 50 100 150 200 250 300 350 400 450
-20

-10

0

10

A
y
 E

rr
o
r

(
m

/ s
s
)

Time After Initialization (sec)

-0.1

0

0.1

0.2

0.3

0.4

A
z
 (

 km
/ s

s
)

Errors From Truth - Z Acceleration

Truth

Computed

0 50 100 150 200 250 300 350 400 450
-40

-20

0

20

A
z
 E

rr
o
r

(
m

/ s
s
)

Time After Initialization (sec)

Figure 18 – Trajectory results with addition of sensor 2 at increased rate

59

acceleration accuracy computed from the previous scenario, but it is unclear why the

results are consistently worse in acceleration in these two scenarios.

 The last modified scenario will operate a sensor at location 3, similar to the results

presented in Figure 15 and Table 10. Results from this scenario are presented in Figure

19 and Table 14.

-2000

-1500

-1000

-500

0

500

X
 (

k
m

)

Errors From Truth - X Position

Truth

Computed

0 50 100 150 200 250 300 350 400 450
-40

-20

0

20

X
 E

rr
o
r

(m
)

Time After Initialization (sec)

4750

4800

4850

4900

4950

5000

5050

5100

Y
 (

k
m

)

Errors From Truth - Y Position

Truth

Computed

0 50 100 150 200 250 300 350 400 450
-200

-100

0

100

Y
 E

rr
o
r

(m
)

Time After Initialization (sec)

3800

4000

4200

4400

4600

4800

5000

5200

Z
 (

k
m

)

Errors From Truth - Z Position

Truth

Computed

0 50 100 150 200 250 300 350 400 450
-100

0

100

Z
 E

rr
o
r

(m
)

Time After Initialization (sec)

-1

0

1

2

3

4

5

V
x
 (

 km
/ s

)

Errors From Truth - X Velocity

Truth

Computed

0 50 100 150 200 250 300 350 400 450
-40

-20

0

20

V
x
 E

rr
o
r

(
m

/ s
)

Time After Initialization (sec)

-1

-0.5

0

0.5

1

1.5

2

V
y
 (

 km
/ s

)

Errors From Truth - Y Velocity

Truth

Computed

0 50 100 150 200 250 300 350 400 450
-20

0

20

40

V
y
 E

rr
o
r

(
m

/ s
)

Time After Initialization (sec)

-4

-3

-2

-1

0

V
z
 (

 km
/ s

)

Errors From Truth - Z Velocity

Truth

Computed

0 50 100 150 200 250 300 350 400 450
-20

0

20

V
z
 E

rr
o
r

(
m

/ s
)

Time After Initialization (sec)

60

Table 14. Trajectory errors with addition of sensor 3 at increased rate

𝑋 𝑚 𝑌 𝑚 𝑍 𝑚 𝑉𝑋
𝑚

𝑠
 𝑉𝑌

𝑚

𝑠
 𝑉𝑍

𝑚

𝑠
 𝐴𝑋

𝑚

𝑠2 𝐴𝑌
𝑚

𝑠2 𝐴𝑍
𝑚

𝑠2

11.8 99.4 28.1 1.5 3.0 2.5 2.0 1.6 1.8

Error RMS 𝑚 : 60.0 Error RMS 𝑚
𝑠
 : 2.4 Error RMS 𝑚

𝑠2 : 1.8

2Hz Error: 63.0 2Hz Error: 3.0 2Hz Error: 2.0
Difference: -4.8% Difference: -20.0% Difference: -10.0%

 Improving on the results achieved for increasing the collection rate of sensor 2,

the results from increasing the collection rate of sensor 3 show improvement in position,

velocity, and now acceleration. Errors were improved by 4.8% in position, 20.0% in

velocity, and 10.0% in acceleration. The review of these four scenarios suggest that an

increase in the collection rate of a sensor can affect the resulting trajectory results either

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

A
x
 (

 km
/ s

s
)

Errors From Truth - X Acceleration

Truth

Computed

0 50 100 150 200 250 300 350 400 450
-50

0

50

A
x
 E

rr
o
r

(
m

/ s
s
)

Time After Initialization (sec)

-0.02

0

0.02

0.04

0.06

0.08

A
y
 (

 km
/ s

s
)

Errors From Truth - Y Acceleration

Truth

Computed

0 50 100 150 200 250 300 350 400 450
-50

0

50

A
y
 E

rr
o
r

(
m

/ s
s
)

Time After Initialization (sec)

-0.1

0

0.1

0.2

0.3

0.4

A
z
 (

 km
/ s

s
)

Errors From Truth - Z Acceleration

Truth

Computed

0 50 100 150 200 250 300 350 400 450
-20

0

20

A
z
 E

rr
o
r

(
m

/ s
s
)

Time After Initialization (sec)

Figure 19 – Trajectory results with addition of sensor 3 at increased rate

61

positively or negatively and seem to be highly influenced by the collection geometry.

Further analysis into this phenomenon could be carried out focusing on data rates other

than those selected here. For many collectors, data rates in excess of 10 or 20 Hz are not

unheard of, and could show great improvement over the values presented here.

 Case 4 – Filter Performance Improvements Through Collection Geometry.

 When investigating the effects of increasing the rate of data collection, it was

noted that the results showed significant variation depending on the geometry of the

collecting sensor. In that case, the addition of a sensor 90 degrees off of the reentry

azimuth was of most benefit to the accuracy of the trajectory fit. To further analyze this

case, the filter is rerun for the sensors located at locations 1, 2, and 3 without the primary

sensor. The results of these three fits can be compared to discover trends in accuracy

based solely on a single sensor’s collection geometry.

 The first scenario reviewed places the sensor at location 1, along the reentry

azimuth, operating at the standard data rate of 2 Hz. The results of this scenario are

presented in Figure 20 and Table 15.

62

-2000

-1500

-1000

-500

0

500

X
 (

k
m

)

Errors From Truth - X Position

Truth

Computed

0 50 100 150 200 250 300 350 400 450
-100

-50

0

50

X
 E

rr
o
r

(m
)

Time After Initialization (sec)

4750

4800

4850

4900

4950

5000

5050

5100

Y
 (

k
m

)

Errors From Truth - Y Position

Truth

Computed

0 50 100 150 200 250 300 350 400 450
-200

-100

0

100

Y
 E

rr
o
r

(m
)

Time After Initialization (sec)

3800

4000

4200

4400

4600

4800

5000

5200

Z
 (

k
m

)

Errors From Truth - Z Position

Truth

Computed

0 50 100 150 200 250 300 350 400 450
-200

0

200

Z
 E

rr
o
r

(m
)

Time After Initialization (sec)

-1

0

1

2

3

4

5

V
x
 (

 km
/ s

)

Errors From Truth - X Velocity

Truth

Computed

0 50 100 150 200 250 300 350 400 450
-20

0

20
V

x
 E

rr
o
r

(
m

/ s
)

Time After Initialization (sec)

-1

-0.5

0

0.5

1

1.5

2

V
y
 (

 km
/ s

)

Errors From Truth - Y Velocity

Truth

Computed

0 50 100 150 200 250 300 350 400 450
-50

0

50

100

V
y
 E

rr
o
r

(
m

/ s
)

Time After Initialization (sec)

-4

-3

-2

-1

0

V
z
 (

 km
/ s

)

Errors From Truth - Z Velocity

Truth

Computed

0 50 100 150 200 250 300 350 400 450
-50

0

50

100

V
z
 E

rr
o
r

(
m

/ s
)

Time After Initialization (sec)

63

Table 15. Trajectory errors from sensor 1

𝑋 𝑚 𝑌 𝑚 𝑍 𝑚 𝑉𝑋
𝑚

𝑠
 𝑉𝑌

𝑚

𝑠
 𝑉𝑍

𝑚

𝑠
 𝐴𝑋

𝑚

𝑠2 𝐴𝑌
𝑚

𝑠2 𝐴𝑍
𝑚

𝑠2

57.5 163.5 107.6 2.7 6.2 6.8 2.0 2.9 3.3

Error RMS 𝑚 : 117.8 Error RMS 𝑚
𝑠
 : 5.5 Error RMS 𝑚

𝑠2 : 2.8

 The results from this scenario will be used as a baseline for the results achieved

when the sensor is placed at locations 2 and 3. Deviations from these results will be used

to determine whether collection geometry has a noticeable effect on the accuracy of the

reconstructed trajectories.

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

A
x
 (

 km
/ s

s
)

Errors From Truth - X Acceleration

Truth

Computed

0 50 100 150 200 250 300 350 400 450
-20

0

20

40

A
x
 E

rr
o
r

(
m

/ s
s
)

Time After Initialization (sec)

-0.02

0

0.02

0.04

0.06

0.08

A
y
 (

 km
/ s

s
)

Errors From Truth - Y Acceleration

Truth

Computed

0 50 100 150 200 250 300 350 400 450
-40

-20

0

20

A
y
 E

rr
o
r

(
m

/ s
s
)

Time After Initialization (sec)

-0.1

0

0.1

0.2

0.3

0.4

A
z
 (

 km
/ s

s
)

Errors From Truth - Z Acceleration

Truth

Computed

0 50 100 150 200 250 300 350 400 450
-50

0

50

A
z
 E

rr
o
r

(
m

/ s
s
)

Time After Initialization (sec)

Figure 20 – Trajectory results from sensor 1

64

 The next scenario places the sensor at location 2, approximately 45 degrees off of

the reentry azimuth, operating at the standard data rate of 2 Hz. The results of this

scenario are presented in Figure 21 and

Table 16.

-2000

-1500

-1000

-500

0

500

X
 (

k
m

)

Errors From Truth - X Position

Truth

Computed

0 50 100 150 200 250 300 350 400 450
-100

0

100

X
 E

rr
o
r

(m
)

Time After Initialization (sec)

4750

4800

4850

4900

4950

5000

5050

5100

Y
 (

k
m

)

Errors From Truth - Y Position

Truth

Computed

0 50 100 150 200 250 300 350 400 450
-100

-50

0

50

Y
 E

rr
o
r

(m
)

Time After Initialization (sec)

3800

4000

4200

4400

4600

4800

5000

5200

Z
 (

k
m

)

Errors From Truth - Z Position

Truth

Computed

0 50 100 150 200 250 300 350 400 450
-50

0

50

100

Z
 E

rr
o
r

(m
)

Time After Initialization (sec)

-1

0

1

2

3

4

5

V
x
 (

 km
/ s

)

Errors From Truth - X Velocity

Truth

Computed

0 50 100 150 200 250 300 350 400 450
-100

-50

0

50

V
x
 E

rr
o
r

(
m

/ s
)

Time After Initialization (sec)

-1

-0.5

0

0.5

1

1.5

2

V
y
 (

 km
/ s

)

Errors From Truth - Y Velocity

Truth

Computed

0 50 100 150 200 250 300 350 400 450
-20

0

20

40

V
y
 E

rr
o
r

(
m

/ s
)

Time After Initialization (sec)

-4

-3

-2

-1

0

V
z
 (

 km
/ s

)

Errors From Truth - Z Velocity

Truth

Computed

0 50 100 150 200 250 300 350 400 450
-50

0

50

100

V
z
 E

rr
o
r

(
m

/ s
)

Time After Initialization (sec)

65

Table 16. Trajectory errors from sensor 2

𝑋 𝑚 𝑌 𝑚 𝑍 𝑚 𝑉𝑋
𝑚

𝑠
 𝑉𝑌

𝑚

𝑠
 𝑉𝑍

𝑚

𝑠
 𝐴𝑋

𝑚

𝑠2 𝐴𝑌
𝑚

𝑠2 𝐴𝑍
𝑚

𝑠2

25.3 36.4 24.9 9.8 4.1 5.7 5.1 1.9 3.2

Error RMS 𝑚 : 29.4 Error RMS 𝑚
𝑠
 : 7.0 Error RMS 𝑚

𝑠2 : 3.6

Baseline Error: 117.8 Baseline Error: 5.5 Baseline Error: 2.8
Difference: -75.0% Difference: +27.3% Difference: +28.6%

 With the sensor at location 2, the position accuracy was improved by 75.0% while

the velocity and acceleration results both suffered degradations in accuracy, when

compared to the truth reference, of 27.3% and 28.6%, respectively.

 The other scenario that was tested involved the placement of a sensor at location

3, approximately perpendicular to the reentry azimuth, operating at the standard data rate

of 2 Hz. The results from this scenario are presented in Figure 22 and

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

A
x
 (

 km
/ s

s
)

Errors From Truth - X Acceleration

Truth

Computed

0 50 100 150 200 250 300 350 400 450
-50

0

50

100

A
x
 E

rr
o
r

(
m

/ s
s
)

Time After Initialization (sec)

-0.02

0

0.02

0.04

0.06

0.08

A
y
 (

 km
/ s

s
)

Errors From Truth - Y Acceleration

Truth

Computed

0 50 100 150 200 250 300 350 400 450
-20

0

20

A
y
 E

rr
o
r

(
m

/ s
s
)

Time After Initialization (sec)

-0.1

0

0.1

0.2

0.3

0.4

A
z
 (

 km
/ s

s
)

Errors From Truth - Z Acceleration

Truth

Computed

0 50 100 150 200 250 300 350 400 450
-50

0

50

A
z
 E

rr
o
r

(
m

/ s
s
)

Time After Initialization (sec)

Figure 21 – Trajectory results from sensor 2

66

Table 17.

-2000

-1500

-1000

-500

0

500
X

 (
k
m

)
Errors From Truth - X Position

Truth

Computed

0 50 100 150 200 250 300 350 400 450
-100

-50

0

50

X
 E

rr
o
r

(m
)

Time After Initialization (sec)

4750

4800

4850

4900

4950

5000

5050

5100

Y
 (

k
m

)

Errors From Truth - Y Position

Truth

Computed

0 50 100 150 200 250 300 350 400 450
-100

-50

0

50

Y
 E

rr
o
r

(m
)

Time After Initialization (sec)

3800

4000

4200

4400

4600

4800

5000

5200

Z
 (

k
m

)

Errors From Truth - Z Position

Truth

Computed

0 50 100 150 200 250 300 350 400 450
-200

-100

0

100

Z
 E

rr
o
r

(m
)

Time After Initialization (sec)

-1

0

1

2

3

4

5

V
x
 (

 km
/ s

)

Errors From Truth - X Velocity

Truth

Computed

0 50 100 150 200 250 300 350 400 450
-100

-50

0

50

V
x
 E

rr
o
r

(
m

/ s
)

Time After Initialization (sec)

-1

-0.5

0

0.5

1

1.5

2

V
y
 (

 km
/ s

)

Errors From Truth - Y Velocity

Truth

Computed

0 50 100 150 200 250 300 350 400 450
-50

0

50

V
y
 E

rr
o
r

(
m

/ s
)

Time After Initialization (sec)

-4

-3

-2

-1

0

V
z
 (

 km
/ s

)

Errors From Truth - Z Velocity

Truth

Computed

0 50 100 150 200 250 300 350 400 450
-20

0

20

V
z
 E

rr
o
r

(
m

/ s
)

Time After Initialization (sec)

67

Table 17. Trajectory errors from sensor 3

𝑋 𝑚 𝑌 𝑚 𝑍 𝑚 𝑉𝑋
𝑚

𝑠
 𝑉𝑌

𝑚

𝑠
 𝑉𝑍

𝑚

𝑠
 𝐴𝑋

𝑚

𝑠2 𝐴𝑌
𝑚

𝑠2 𝐴𝑍
𝑚

𝑠2

39.6 75.4 58.6 5.3 4.8 2.5 3.0 2.4 1.7

Error RMS 𝑚 : 59.7 Error RMS 𝑚
𝑠
 : 4.4 Error RMS 𝑚

𝑠2 : 2.4

Baseline Error: 117.8 Baseline Error: 5.5 Baseline Error: 2.8
Difference: -49.3% Difference: -20.0% Difference: -14.3%

 As in the previous scenario, the position accuracy was improved over the

baseline, this time showing a 49.3% improvement. Furthermore, the velocity and

acceleration results for this scenario showed an improvement in accuracy. Velocity and

acceleration errors, when compared to the truth reference, were reduced by 20.0% and

14.3%, respectively.

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

A
x
 (

 km
/ s

s
)

Errors From Truth - X Acceleration

Truth

Computed

0 50 100 150 200 250 300 350 400 450
-50

0

50

A
x
 E

rr
o
r

(
m

/ s
s
)

Time After Initialization (sec)

-0.02

0

0.02

0.04

0.06

0.08

A
y
 (

 km
/ s

s
)

Errors From Truth - Y Acceleration

Truth

Computed

0 50 100 150 200 250 300 350 400 450
-20

0

20

40

A
y
 E

rr
o
r

(
m

/ s
s
)

Time After Initialization (sec)

-0.1

0

0.1

0.2

0.3

0.4

A
z
 (

 km
/ s

s
)

Errors From Truth - Z Acceleration

Truth

Computed

0 50 100 150 200 250 300 350 400 450
-20

0

20

A
z
 E

rr
o
r

(
m

/ s
s
)

Time After Initialization (sec)

Figure 22 – Trajectory results from sensor 3

68

 Reviewing these scenarios collectively, it is noted that position errors were

reduced in both cases where the sensor was not operating at a location along the reentry

azimuth. However, while the position errors showed a trend that encouraged the

placement of the sensor farther from the reentry azimuth, the results in velocity and

acceleration were mixed and may require further analysis to investigate subtle trends.

Investigative Questions Answered

After validating the filter’s performance against different scenarios, several

scenario adjustments were investigated to determine any benefits that could be derived.

Initially, it was determined that including observations from a second sensor could

improve the filter’s accuracy, but this varied with the placement of the second sensor.

The greatest improvement was derived from placing the sensor perpendicular to the

reentry azimuth of the target.

After investigating the effects of a second sensor, the data rate of the collecting

sensors were varied. It was determined that increasing the data rate of either the primary

or secondary sensors could improve the filter’s accuracy. This result was expected as it

increases the filter’s knowledge of the target during the same time period.

The final scenario modification involved further investigation of sensor geometry.

When adding additional sensors to the primary collector, it was noted that the location of

the second sensor could vary the resulting filter accuracy. This phenomenon was further

investigated by considering data only from the secondary sensor at reduced range. The

sensor was operated at the three different collection locations and the resulting filter

69

accuracy was reviewed. In the scenarios investigated, the filter achieved its best accuracy

when the single sensor was operated perpendicular to the target’s reentry azimuth.

Summary

This chapter investigated the accuracy of the filter by comparing its output to

truth data used to generate the observations that were fed to the filter. Several different

scenarios were investigated, including adding a second sensor, increasing the data

collection rate, and changing the sensor collection geometry. The results of these

modifications were reviewed and summarized.

70

V. Conclusions and Recommendations

Chapter Overview

This chapter will cover the general conclusions that were drawn from the analysis

section of the paper. Additionally, recommendations for future action and research are

presented.

Conclusions of Research

The filter developed for this thesis combined the strengths of the least squares and

Kalman filters. The least squares filter operates rapidly and accurately on the free-flight

portions of flight. The Kalman filter provides greater flexibility for the state’s

acceleration components to vary lower in the atmosphere. The filter successfully

transitioned from the least squares to Kalman filter, using the final values of the free

flight propagation for the Kalman filter’s initial state.

The developed algorithm includes a least squares sliding window filter that

estimates an initial guess of position during the maneuvering phase of flight. After

investigation of the effects of computing these initial guesses, it was determined that they

consistently had a detrimental effect on the filter estimates. After this was concluded, the

least squares sliding window was not implemented for the results presented in Chapter

IV.

Once the filter was validated against both maneuvering and non-maneuvering

targets, the filter was used to investigate other collection scenario modifications and their

effects. The filter achieved varying levels of accuracy when the scenario was modified

71

with a different number of sensors, increasing data collection rates, and different

collection geometries.

After investigating these scenarios, it was determined that the best results were

achieved with additional collectors, by increasing the data collection rate, and by moving

the collector position perpendicular to the reentry azimuth.

Significance of Research

This research expands on the work of previous Air Force Institute of Technology

(AFIT) graduate students’ work in the area of data filtering of collections of reentry

vehicles. Whereas previous research only addressed non-maneuvering or simple

maneuvering targets with fixed bank angles, this work allows for the study of complex

maneuvering targets with varying accelerations.

Of further significance, the filter algorithm allows for the inclusion of multiple

sensors. Including all of the available data into the filter estimates ensures that the best

results can be achieved.

Recommendations for Action

While several scenarios were investigated to determine the effects of

modifications to the number of collectors, their data rates, and their collection geometry,

more work could be done to further investigate these areas. The accuracy of the filter

results varied significantly in all scenarios, so subtler investigation could identify trends

and true optimums. Error contour plots could be generated for different scenarios in

order to better illustrate results.

72

Additionally, further modifications could be investigated beyond those introduced

here. The algorithm was written to accommodate multiple targets simultaneously, but is

not investigated here. Another major area that could be investigated is the benefit of

range, azimuth, and elevation sensors over sensors that only measure azimuth and

elevation. The algorithm is written to manage both of these types of sensors and this

could be a major area of investigation.

Recommendations for Future Research

As discussed in the filter performance section of the analysis and conclusions, the

least squares filter is not performing as well on the non-maneuvering portion of the

trajectory as the Kalman filter is performing on the lower regions of flight. There may be

ways of improving this performance. Areas to investigate could include modifications to

the numerical partial derivatives that are used. These could either be altered with

different perturbation sizes or replaced by analytical solutions to the partials. One

possibility could be adjusting the perturbation magnitudes as the targets approach

convergence. If this portion of the filter performed better, the overall performance would

likely be greatly improved.

Other modifications that could be researched include the inclusion of further data

types. The algorithm as written addresses two data types: range, azimuth, and elevation

sensors and azimuth and elevation-only sensors. There are situations where additional

data types could be available and it would be a benefit to incorporate these data types into

the analysis. One easy data type that could be included would be GPS or other position

information obtained from the operator of the test. Another data type that could be

73

included would be right-ascension and declination angle measurements that are typical of

overhead sensors. This data type could easily be incorporated due to its similarity to the

azimuth and elevation data type.

Summary

This chapter reviewed the research and offered some general conclusions that

were derived and suggested future work that could be performed. In the previous

chapters, the filter is derived and validated against various scenarios. Future work could

be done in either the areas of collection optimization using the filter as it currently exists,

or filter modification to either improve performance or accommodate data types from

sensor types that were not considered for this thesis.

74

Appendix

Coordinate Frames

 All computation is done in an Earth-Centered Inertial (ECI) reference frame when

possible, most notably in the EOMs which, when expressed in ECI are simplified to those

in Equations (6-11). When this is not possible, as in the case of Equation (32), it is

important to realize the coordinate frames being referenced. This section does not define

the algorithms to transform from one frame to another, but simply defines the reference

frames.

Figure 23 – Earth-Centered Inertial (ECI) coordinate frame

75

Figure 24 – Earth-Centered Earth-Fixed (ECEF) coordinate frame

Figure 25 – Latitude/Longitude coordinate frame

76

Figure 26 – South, East, Up (SEZ) coordinate frame

77

kaliper.m

kaliper.m is the main filter code written in the MATLAB scripting language.

Original formatting is preserved to maintain functionality when pasted into MATLAB.

function varargout = kaliper(varargin)
%KALIPER - Kalman filter And Least squares Integrated Parameter

Estimation Routine
%
% -- Usage --
% state = kaliper(target, sensor, koptions)
% [state, target] = kaliper(target, sensor, koptions)
% [state, target, stats] = kaliper(target, sensor, koptions)
%
% -- Input definition --
% target - data structure defining observed targets of the form:
% target{tgt}.obs - metric observations (numobs x 3)
% target{tgt}.obs_time - metric observation times (numobs x 1)
% target{tgt}.obs_snr - indices of sensors for all obs (numobs x 1)
% target{tgt}.obs_ff - logical array specifying free flight obs

(numobs x 1)
% target{tgt}.numobs - number of metric observations (1)
% target{tgt}.init_time - time of initial guess state vector
% target{tgt}.init_sv - initial guess state vector (1x10)
%
% sensor - data structure defining observing sensors of the form:
% sensor{snr}.snr_type - sensor type, one of:
% 1: stationary ranged (range,az,el)
% 2: stationary two-angle (az,el)
% 3: moving range (range,az,el)
% 4: moving two-angle (az,el)
% sensor{snr}.pos_lla - LLA sensor position (1x3) OR (numeph x

3)
% (geod lat, lon, alt) - (rad, rad, km)
% sensor{snr}.pos_ecf - ECEF sensor position (1x3) OR (numeph x

3)
% sensor{snr}.pos_time - moving sensor ephemeris times (numeph x

1)
% sensor{snr}.tm - SEZ to ECEF rot matrix (3x3) OR (numeph

x 9)
% sensor{snr}.stddev - standard deviations of obs (1x3)
% sensor{snr}.obs_bias - constant observation biases (1x3)
%
% koptions - data structure defining kaliper run options (Optional)
% koptions.echo - true/false flag to echo status to

command (1)
% {default value = false(1)}
% koptions.sig_edit - number of std deviations for editting

(1)
% {default value = 3}

78

% koptions.max_iter - maximum number of least squares

iterations (1)
% {default value = 40}
% koptions.conv_tol - convergence tolerance for least squares

(1)
% {default value = .0001}
% koptions.lssw - true/false flag to use LSSW results in

KF (1)
% {default value = true(1)}
% koptions.window_size - sliding window nominal size for LSSW

pass (1)
% {default value = 30}
% koptions.min_window_size - sliding window minimum size for LSSW

initialization (1)
% {default value = 5}
% koptions.max_window_size - sliding window maximum size for LSSW

termination (1)
% {default value = 40}
% koptions.qp - KF position plant noise scale factor

(1)
% {default value = 0.0}
% koptions.qv - KF velocity plant noise scale factor

(1)
% {default value = 0.0}
% koptions.qa - KF acceleration plant noise scale

factor (1)
% {default value = 0.001}
%
%
% -- Output definition --
% state - data structure defining state vector components
% state{tgt}.time - metric observation times (numobs x 1)
% state{tgt}.sv - state vector solution (numobs x 9)
% {1-3} - ECI positions (km), ECI epoch @ 0 GMT

day of collect
% {4-6} - ECI velocities (km/s)
% {7-9} - ECI sensed accelerations (km/s2) (total

accel - gravity)
% state{tgt}.sv_smooth - smoothed state vector solution (numobs

x 9)
% {1-3} - ECI positions (km), ECI epoch @ 0 GMT

day of collect
% {4-6} - ECI velocities (km/s)
% {7-9} - ECI sensed accelerations (km/s2) (total
% accel - gravity)
%
% target - if requested, target structure is returned with updated

parameters
%
% stats - data structure detailing estimation statistics
% stats{iter,tgt}.cost_func - Weighted cost function of target by

iteration
% stats{iter,tgt}.cov - covariance update computed by target

and iteration

79

% stats{iter,tgt}.res{snr} - residual vectors by iteration, target,

and sensor

% variables persistent to this function for subsequent calls
persistent target sensor koptions earth

% define earth parameters for later use
earth = define_earth;

% define atmospheric parameters
read_stdatmos('stdatmos76.dat')

% accept input
if nargin == 2
 target = varargin{1};
 sensor = varargin{2};
 % options undefined, will be filled with defaults
 koptions = [];
elseif nargin == 3
 target = varargin{1};
 sensor = varargin{2};
 koptions = varargin{3};
else
 error('Input should either be target & sensor or target, sensor,

and koptions')
end

% fill undefined components of the options structure with default

values
if isempty(koptions)
 koptions.echo = false(1);
 koptions.sig_edit = 3;
 koptions.max_iter = 40;
 koptions.conv_tol = .0001;
 koptions.lssw = true(1);
 koptions.window_size = 30;
 koptions.min_window_size = 5;
 koptions.max_window_size = 40;
 koptions.qp = 0;
 koptions.qv = 0;
 koptions.qa = 0.001;
else
 if ~isfield(koptions, 'echo') || isempty(koptions.echo)
 koptions.echo = false(1);
 end
 if ~isfield(koptions, 'sig_edit') || isempty(koptions.sig_edit)
 koptions.sig_edit = 3;
 end
 if ~isfield(koptions, 'max_iter') || isempty(koptions.max_iter)
 koptions.max_iter = 40;
 end
 if ~isfield(koptions, 'conv_tol') || isempty(koptions.conv_tol)
 koptions.conv_tol = .0001;
 end

80

 if ~isfield(koptions, 'lssw') || isempty(koptions.lssw)
 koptions.lssw = true(1);
 end
 if ~isfield(koptions, 'window_size') ||

isempty(koptions.window_size)
 koptions.window_size = 30;
 end
 if ~isfield(koptions, 'min_window_size') ||

isempty(koptions.min_window_size)
 koptions.min_window_size = 5;
 end
 if ~isfield(koptions, 'max_window_size') ||

isempty(koptions.max_window_size)
 koptions.max_window_size = 40;
 end
 if ~isfield(koptions, 'qp') || isempty(koptions.qp)
 koptions.qp = 0;
 end
 if ~isfield(koptions, 'qv') || isempty(koptions.qv)
 koptions.qv = 0;
 end
 if ~isfield(koptions, 'qa') || isempty(koptions.qa)
 koptions.qa = 0.001;
 end
end

% optional plot of residuals
if koptions.echo
 figure;
 resax1 = subplot(3,1,1);
 resax2 = subplot(3,1,2);
 resax3 = subplot(3,1,3);
end

% number of targets in structure
numtgt = length(target);

% time pad to add to observations at the same time value
time_pad = 1e-10;

% loop through targets
for tgt = 1:numtgt

 % number of observations of this target
 numobs = length(target{tgt}.obs_time);

 % number of sensors for this target
 tgtsnr = unique(target{tgt}.obs_snr);
 numsnr = length(tgtsnr);

 % add small time intervals on to any observations at the same time
 repeat_idx = diff(target{tgt}.obs_time) == 0;
 repeat_idx = [false(1); repeat_idx];

%#ok<AGROW>

81

 while any(repeat_idx)
 target{tgt}.obs_time(repeat_idx) =

target{tgt}.obs_time(repeat_idx) + time_pad;
 repeat_idx = diff(target{tgt}.obs_time) == 0;
 repeat_idx = [false(1); repeat_idx];

%#ok<AGROW>
 end

 % convert 3-D observations to ECI frame for SV initial guess
 target{tgt}.obs_eci = repmat(NaN, numobs, 3); % NaN padding

 % locate 3-D observations of stationary and moving sensors
 for snridx = 1:numsnr

 % index of this sensor
 snr = tgtsnr(snridx);

 % observations from this sensor, and those observation times
 obsidx = target{tgt}.obs_snr == snr;
 obs_time = target{tgt}.obs_time(obsidx);

 % stationary range, az, el observations
 if sensor{snr}.snr_type == 1
 obs_sez = tm_rae2sez(target{tgt}.obs(obsidx,:));
 obs_ecf = tm_sez2ecr(obs_sez, sensor{snr}.pos_ecf,

sensor{snr}.tm);
 % moving range, az, el observations
 elseif sensor{snr}.snr_type == 3
 obs_sez = tm_rae2sez(target{tgt}.obs(obsidx,:));

 % interpolate sensor positions at observation times
 interp_lat = interp1(sensor{snr}.pos_time,

sensor{snr}.pos_lla(:,1), obs_time, 'spline');
 interp_lon = interp1(sensor{snr}.pos_time,

sensor{snr}.pos_lla(:,2), obs_time, 'spline');
 interp_alt = interp1(sensor{snr}.pos_time,

sensor{snr}.pos_lla(:,3), obs_time, 'spline');
 [sensor_pos, sensor_tm] = calc_sensor_move(interp_lat,

interp_lon, interp_alt);

 % moving transformation
 obs_ecf = tm_sez2ecr_move(obs_sez, sensor_pos, sensor_tm);
 else
 % sensor without 3-D observation, move to next sensor
 continue;
 end

 % convert ecef to eci
 obs_eci = tm_ecr2eci(obs_ecf, 0, obs_time, 0);

 % insert transformation into structure
 target{tgt}.obs_eci(obsidx,:) = obs_eci;
 end

82

 % check if initial guess has been specified, otherwise compute it
 if ~isfield(target{tgt}, 'init_sv') ||

~isempty(target{tgt}.init_sv)
 [init_time, init_sv] = kaliper_calcinit(tgt);
 target{tgt}.init_time = init_time;
 target{tgt}.init_sv = init_sv;
 end
end

%%%%
%%%% Phase 1 state vector estimation - Free Flight - Sensed Accels = 0
%%%%

if koptions.echo
 disp('** Entering Phase 1 - Free-Flight Estimation **')
end

% set free flight ode45 options
options = odeset('RelTol', 1e-6, 'Vectorized', 'on');

% initialize least squares run
ls_iter = 1;
converged = false(size(target));

% begin estimation
while any(~converged) && ls_iter <= koptions.max_iter

 if koptions.echo
 disp([' * Iteration ' num2str(ls_iter)])
 end

 for tgt = 1:numtgt

 if koptions.echo
 disp([' -Target ' num2str(tgt)])
 end

 % initialize running sums for this target
 TtQiT = zeros(6);
 TtQir = zeros(6,1);
 cost_func = 0;

 % time series to propagate to, first value is time of SV
 prop_time = [target{tgt}.init_time;

target{tgt}.obs_time(target{tgt}.obs_ff)];
 if prop_time(1) == prop_time(2), prop_time(1) = []; end

 % propagate SV to all FF observation times, ignoring any sensed

accelerations
 [calc_time,calc_sv] = ode45(@kaliper_eom, prop_time,

target{tgt}.init_sv', options);

83

 % propagate perturbed SVs for numerical partial derivates to

form H matrix
 sv_pert = [.001 .001 .001 .0001 .0001 .0001]; % accelerations

not perturbed
 pert_init_sv = repmat(target{tgt}.init_sv, 6, 1) +

[diag(sv_pert) zeros(6,3)];
 [pert_time,pert_sv] = ode45(@kaliper_eom, prop_time,

pert_init_sv', options);

 % transform propagated SVs to sensor data reference, compute

TtQiT and TtQir
 for snridx = 1:numsnr

 % index of this sensor
 snr = tgtsnr(snridx);

 % observations from this sensor, and those observation

times
 obsidx = target{tgt}.obs_snr(target{tgt}.obs_ff) == snr;
 %obs_time =

target{tgt}.obs_time(target{tgt}.obs_ff(obsidx));
 obs_time = target{tgt}.obs_time(target{tgt}.obs_ff);
 obs_time = obs_time(obsidx);
 numobs = length(obs_time);

 if numobs == 0, continue, end

 % stationary range, az, el OR az, el observations
 if sensor{snr}.snr_type == 1 || sensor{snr}.snr_type == 2

 % convert ECI SV positions to stationary RAE
 calc_eci = calc_sv(obsidx,1:3);
 calc_ecf = tm_eci2ecr(calc_eci, 0, obs_time, 0);
 calc_sez = tm_ecr2sez(calc_ecf, sensor{snr}.pos_ecf,

sensor{snr}.tm);
 calc_rae = tm_sez2rae(calc_sez);

 % same for perturbed states
 pert_eci = pert_sv(obsidx,:);
 pert_eci = reshape(pert_eci', 9, [])'; % 1 vec / row
 pert_ecf = tm_eci2ecr(pert_eci(:,1:3), 0, ...
 reshape(repmat(obs_time, 1, 6)', [], 1), 0);
 pert_sez = tm_ecr2sez(pert_ecf, sensor{snr}.pos_ecf,

sensor{snr}.tm);
 pert_rae = tm_sez2rae(pert_sez);

 % moving range, az, el OR az, el observations
 elseif sensor{snr}.snr_type == 3 || sensor{snr}.snr_type ==

4

 % interpolate sensor positions at observation times
 interp_lat = interp1(sensor{snr}.pos_time,

sensor{snr}.pos_lla(:,1), obs_time, 'spline');

84

 interp_lon = interp1(sensor{snr}.pos_time,

sensor{snr}.pos_lla(:,2), obs_time, 'spline');
 interp_alt = interp1(sensor{snr}.pos_time,

sensor{snr}.pos_lla(:,3), obs_time, 'spline');
 [sensor_pos, sensor_tm] = calc_sensor_move(interp_lat,

interp_lon, interp_alt);

 % convert ECI SV positions to moving RAE
 calc_eci = calc_sv(obsidx,1:3);
 calc_ecf = tm_eci2ecr(calc_eci, 0, obs_time, 0);
 calc_sez = tm_ecr2sez_move(calc_ecf, sensor_pos,

sensor_tm);
 calc_rae = tm_sez2rae(calc_sez);

 % same for perturbed states
 pert_eci = pert_sv(obsidx,:);
 pert_eci = reshape(pert_eci', 9, [])'; % 1 vec / row
 pert_ecf = tm_eci2ecr(pert_eci(:,1:3), 0, ...
 reshape(repmat(obs_time, 1, 6)', [], 1), 0);
 pert_sez = tm_ecr2sez_move(pert_ecf, sensor_pos,

sensor_tm);
 pert_rae = tm_sez2rae(pert_sez);

 else
 error(['Unrecognized sensor type ID: '

num2str(sensor{snr}.snr_type)])
 end

 % use calculated RAE values to compute residuals vectors
 if sensor{snr}.snr_type == 1 || sensor{snr}.snr_type == 3
 % range, azimuth, and elevation observations
 obs_rae = target{tgt}.obs(target{tgt}.obs_ff,:);
 res = obs_rae(obsidx,:) - calc_rae;
 % save residuals
 stats{ls_iter,tgt}.res{snr} = res;

%#ok<AGROW>

 % plot residuals
 if koptions.echo
 if snr == 1
 cla(resax1), plot(resax1, obs_time, res(:,1),

'r.'), hold(resax1, 'on')
 cla(resax2), plot(resax2, obs_time, res(:,2),

'r.'), hold(resax2, 'on')
 cla(resax3), plot(resax3, obs_time, res(:,3),

'r.'), hold(resax3, 'on')
 drawnow
 else
 cols = 'rbmk'; nc = length(cols);
 plot(resax1, obs_time, res(:,1), [cols(mod(snr-

1,nc)+1) '.'])
 plot(resax2, obs_time, res(:,2), [cols(mod(snr-

1,nc)+1) '.'])

85

 plot(resax3, obs_time, res(:,3), [cols(mod(snr-

1,nc)+1) '.'])
 drawnow
 end
 end

 % statistical editting of outliers based on sensor std

dev
 if ls_iter > 1
 res(abs(res(:,1)) >

sensor{snr}.stddev(1)*koptions.sig_edit, 1) = 0;
 res(abs(res(:,2)) >

sensor{snr}.stddev(2)*koptions.sig_edit, 2) = 0;
 res(abs(res(:,3)) >

sensor{snr}.stddev(3)*koptions.sig_edit, 3) = 0;
 end

 % mark editted points
 if koptions.echo
 edit1 = abs(stats{ls_iter,tgt}.res{snr}(:,1)) >

sensor{snr}.stddev(1)*koptions.sig_edit;
 edit2 = abs(stats{ls_iter,tgt}.res{snr}(:,2)) >

sensor{snr}.stddev(2)*koptions.sig_edit;
 edit3 = abs(stats{ls_iter,tgt}.res{snr}(:,3)) >

sensor{snr}.stddev(3)*koptions.sig_edit;
 if any(edit1), plot(resax1, obs_time(edit1),

stats{ls_iter,tgt}.res{snr}(edit1,1), 'kx'), end
 if any(edit2), plot(resax2, obs_time(edit2),

stats{ls_iter,tgt}.res{snr}(edit2,2), 'kx'), end
 if any(edit3), plot(resax3, obs_time(edit3),

stats{ls_iter,tgt}.res{snr}(edit3,3), 'kx'), end
 end

 % cost function update
 cost_func = cost_func + ...
 sqrt(sum(res(:,1).^2)) / sensor{snr}.stddev(1)

+ ...
 sqrt(sum(res(:,2).^2)) / sensor{snr}.stddev(2)

+ ...
 sqrt(sum(res(:,3).^2)) / sensor{snr}.stddev(3);

 elseif sensor{snr}.snr_type == 2 || sensor{snr}.snr_type ==

4
 % azimuth and elevation observations
 obs_ae = target{tgt}.obs(target{tgt}.obs_ff,2:3);
 res = obs_ae(obsidx,:) - calc_rae(:,2:3);
 % save residuals
 stats{ls_iter,tgt}.res{snr} = res;

%#ok<AGROW>

 % plot residuals
 if koptions.echo
 if snr == 1

86

 cla(resax2), plot(resax2, obs_time, res(:,1),

'r.'), hold(resax2, 'on')
 cla(resax3), plot(resax3, obs_time, res(:,2),

'r.'), hold(resax3, 'on')
 drawnow
 else
 cols = 'rbmk'; nc = length(cols);
 plot(resax2, obs_time, res(:,1), [cols(mod(snr-

1,nc)+1) '.'])
 plot(resax3, obs_time, res(:,2), [cols(mod(snr-

1,nc)+1) '.'])
 drawnow
 end
 end

 % statistical editting of outliers based on sensor std

dev
 if ls_iter > 1
 res(abs(res(:,1)) >

sensor{snr}.stddev(1)*koptions.sig_edit, 1) = 0;
 res(abs(res(:,2)) >

sensor{snr}.stddev(2)*koptions.sig_edit, 2) = 0;
 end

 % mark editted points
 if koptions.echo
 edit1 = abs(stats{ls_iter,tgt}.res{snr}(:,1)) >

sensor{snr}.stddev(1)*koptions.sig_edit;
 edit2 = abs(stats{ls_iter,tgt}.res{snr}(:,2)) >

sensor{snr}.stddev(2)*koptions.sig_edit;
 if any(edit1), plot(resax2, obs_time(edit1),

stats{ls_iter,tgt}.res{snr}(edit1,1), 'kx'), end
 if any(edit2), plot(resax3, obs_time(edit2),

stats{ls_iter,tgt}.res{snr}(edit2,2), 'kx'), end
 end

 % cost function update
 cost_func = cost_func + ...
 sqrt(sum(res(:,1).^2)) / sensor{snr}.stddev(1)

+ ...
 sqrt(sum(res(:,2).^2)) / sensor{snr}.stddev(2);

 % remove computed range values
 calc_rae(:,1) = [];
 pert_rae(:,1) = [];
 else
 error(['Unrecognized sensor type ID: '

num2str(sensor{snr}.snr_type)])
 end

 % resize residuals matrix to a vector
 res = reshape(res',[],1);

87

 % use perturbed trajectories to compute observation

matrices (Ti)
 %
 % each observation time has as many entries as is has
 % components of range, azimuth, or elevation
 % (Range, Az, & El - 3 entries per obs time)
 % (Az & El - 2 entries per obs time)
 %
 partials_x = calc_rae - pert_rae(1:6:end,:);
 partials_x = reshape(partials_x', [], 1);

 partials_y = calc_rae - pert_rae(2:6:end,:);
 partials_y = reshape(partials_y', [], 1);

 partials_z = calc_rae - pert_rae(3:6:end,:);
 partials_z = reshape(partials_z', [], 1);

 partials_vx = calc_rae - pert_rae(4:6:end,:);
 partials_vx = reshape(partials_vx', [], 1);

 partials_vy = calc_rae - pert_rae(5:6:end,:);
 partials_vy = reshape(partials_vy', [], 1);

 partials_vz = calc_rae - pert_rae(6:6:end,:);
 partials_vz = reshape(partials_vz', [], 1);

 % construct the observation matrix: dX(i)/dt
 T = [partials_x/sv_pert(1) partials_y/sv_pert(2)

partials_z/sv_pert(3) ...
 partials_vx/sv_pert(4) partials_vy/sv_pert(5)

partials_vz/sv_pert(6)];

 % construct the covariance matrix
 Q = diag(repmat(1./sensor{snr}.stddev.^2, 1, numobs));
 Qi = inv(Q);

 % add to running sums
 TtQiT = TtQiT + T'*Qi*T;
 TtQir = TtQir + T'*Qi*res;
 end % end of loop through sensors

 % compute state vector update
 cov_update = pinv(TtQiT);
 sv_update = cov_update * TtQir;

% % check for target convergence - covariance method
% cov_diag = reshape(cov_update,[],1);
% cov_diag = cov_diag(1:7:end);
% converged(tgt) = all(sv_update <= sqrt(cov_diag)*1e-7);

 % check for target convergence - cost function method
 if ls_iter > 1

88

 converged(tgt) = abs((stats{ls_iter-1,tgt}.cost_func -

cost_func) / stats{ls_iter-1,tgt}.cost_func) < koptions.conv_tol;

 % if cost function improved, apply correction
 if cost_func < stats{ls_iter-1,tgt}.cost_func
 target{tgt}.init_sv = target{tgt}.init_sv - [sv_update'

0 0 0];
 end
 else
 % first run, apply correction
 target{tgt}.init_sv = target{tgt}.init_sv - [sv_update' 0 0

0];
 end

 if koptions.echo && converged(tgt)
 disp(' Convergence Criteria Met.')
 end

 % save statistics
 stats{ls_iter,tgt}.cost_func = cost_func;

%#ok<AGROW>
 stats{ls_iter,tgt}.cov = cov_update;

%#ok<AGROW>

 % increment iteration number
 ls_iter = ls_iter + 1;
 end % end of loop through targets

end % end of iteration while loop

% fill state structure with states during free-flight
for tgt = 1:numtgt

 % time series to propagate to, first value is time of SV
 prop_time = [target{tgt}.init_time-time_pad;

target{tgt}.obs_time(target{tgt}.obs_ff)];

 % propagate converged state vector
 [calc_time,calc_sv] = ode45(@kaliper_eom, prop_time,

target{tgt}.init_sv', options);

 % save values
 state{tgt}.time = target{tgt}.obs_time;

%#ok<AGROW>
 state{tgt}.sv = zeros(length(target{tgt}.obs_time),9);

%#ok<AGROW>
 state{tgt}.sv(target{tgt}.obs_ff,:) = calc_sv(2:end,:);

%#ok<AGROW>
 state{tgt}.cov = zeros(length(target{tgt}.obs_time),81);

%#ok<AGROW>
 full_cov = zeros(9,9);
 full_cov(1:6,1:6) = stats{end,tgt}.cov;
 acc_cov = 0.001;

89

 full_cov(7,7) = acc_cov; full_cov(8,8) = acc_cov; full_cov(9,9) =

acc_cov;
 state{tgt}.cov(target{tgt}.obs_ff,:) = repmat(...
 reshape(full_cov,1,[]), ...
 length(find(target{tgt}.obs_ff)), 1);

%#ok<AGROW>
end

%%%%
%%%% Phase 2 state vector estimation - Reentry - Sensed Accels ~= 0
%%%%

if koptions.echo
 disp('** Entering Phase 2 - Non-Ballistic Estimation **')
end

%%%%
%%%% Phase 2a - least squares sliding window discontinuous estimation
%%%%

% check whether LSSW should be performed
if koptions.lssw

 if koptions.echo
 disp(' * Phase 2a - LSSW Beginning *')
 end

 % loop through targets
 for tgt = 1:numtgt

 % this will only function on 3D observations, others will have

to be interpolated
 all_time = target{tgt}.obs_time(~target{tgt}.obs_ff);
 all_eci = target{tgt}.obs_eci(~target{tgt}.obs_ff,:);
 all_sv = zeros(length(all_time), 9);

 % strip out NaNs associated with non-3D observations
 fit_idx = find(~isnan(all_eci(:,1)));

 % data to fit with sliding window
 fit_time = all_time(fit_idx);
 fit_eci = all_eci(fit_idx,:);
 numobs = length(fit_time);

 % compute lssw window size for each observation
 win_pt = [1, koptions.window_size/2, numobs-

koptions.window_size/2, numobs];
 win_win = [koptions.min_window_size, koptions.window_size,

koptions.window_size koptions.max_window_size];
 win_size = ceil(interp1(win_pt, win_win, 1:numobs));

 for obs = 1:numobs

90

 win_max = min(numobs, max(1+win_size,

obs+ceil(win_size/2)));
 win_min = win_max - win_size;

 win_time = fit_time(win_min:win_max);
 win_eci = fit_eci(win_min:win_max,:);
 numfit = length(win_time);

 % precompute times
 dt = win_time - win_time(1);
 dt2 = dt.^2;
 dt3 = dt.^3;
 dt4 = dt.^4;

 % construct A matrix
 A = [];
 A(:,1) = ones(numfit,1);
 A(:,2) = dt;
 A(:,3) = dt2/2;
 A(:,4) = dt3/6;
 A(:,5) = dt4/24;

 % separate b vectors for X,Y,Z of observations
 bx = win_eci(:,1);
 by = win_eci(:,2);
 bz = win_eci(:,3);

 % least squares by Singular Value Decomposition for

stability
 pinv_A = pinv(A); % this is much faster than using svd()

and pinv() seperately
 xh_x = pinv_A * bx;
 xh_y = pinv_A * by;
 xh_z = pinv_A * bz;

 all_sv(fit_idx(obs),:) = [xh_x(1) xh_y(1) xh_z(1) xh_x(2)

xh_y(2) xh_z(2) xh_x(3) xh_y(3) xh_z(3)];

% % subtract gravity acceleration from computed

accelerations
% grav_acc = calc_grav([xh_x(1) xh_y(1) xh_z(1)]);
% all_sv(fit_idx(obs),7:9) = all_sv(fit_idx(obs),7:9) -

grav_acc;

 end

 state{tgt}.lssw_std = std(all_sv(fit_idx,1:3)-fit_eci(:,1:3));

 % save SV solutions to use as initial solutions in Phase 2b
 state{tgt}.sv(~target{tgt}.obs_ff,1:3) = all_sv(:,1:3);
 end

 if koptions.echo

91

 disp(' * Phase 2a - LSSW Complete *')
 end
end

%%%%
%%%% Phase 2b - Kalman Filter pass with weighted LSSW results
%%%%

if koptions.echo
 disp(' * Phase 2b - KF Beginning *')
end

% loop through targets
for tgt = 1:numtgt

 % non-free flight indeces
 kf_idx = find(~target{tgt}.obs_ff);

 for i = 1:length(kf_idx)

 % index of this observation in the overall array
 obsidx = kf_idx(i);
 obs_time = target{tgt}.obs_time(obsidx);
 snridx = target{tgt}.obs_snr(obsidx);

 % pull out previous state vector for easy access
 prev_sv = state{tgt}.sv(obsidx-1,:);

 % propagate previous state to this time for the prediction
 [prop_time,prop_sv] = ode45(@kaliper_eom,

target{tgt}.obs_time(obsidx-1:obsidx), prev_sv', options);

 X_minus = prop_sv(end,:);

 % compute state transition matrix to propagate covariance from

prev state
 delta_t = diff(target{tgt}.obs_time(obsidx-1:obsidx));
 F = calc_state_dist(state{tgt}.sv(obsidx-1,:));
 Phi = eye(9) + F * delta_t;

 % compute noise on covariance propagation
 % KADRE Q Method
 cov_noise = zeros(9);
 q_scale = diag([koptions.qp koptions.qp koptions.qp ...
 koptions.qv koptions.qv koptions.qv ...
 koptions.qa koptions.qa koptions.qa]);
 for j = 0:2
 for k = 0:2
 cov_noise = cov_noise + 1/(factorial(j) * factorial(k))

* ...
 F^j * q_scale * (F')^k * delta_t^(1+j+k)/(1+j+k);
 end
 end

92

% % MSIC Q Method
% tot_acc = kaliper_calcaccel(prev_sv);
% acc_mag = sqrt(tot_acc(1)^2 + tot_acc(2)^2 + tot_acc(3)^2);
% cov_pos = koptions.qp * tot_acc * delta_t^4 / acc_mag;
% cov_vel = koptions.qv * tot_acc * delta_t^2 / acc_mag;
% cov_acc = koptions.qa * tot_acc / acc_mag;
% cov_noise = diag([cov_pos cov_vel cov_acc]);

 % propagate previous covariance as the prediction
 if i == 1
 init_cov = diag([0.01 0.01 0.01 0.001 0.001 0.001 0.001

0.001 0.001]);
 P_minus = Phi * init_cov * Phi' + cov_noise;
 else
 P_minus = Phi * reshape(state{tgt}.cov(obsidx-1,:),9,9) *

Phi' + cov_noise;
 end

 % compute observation matrix, H
 %
 % | (X-X0)/R (Y-Y0)/R (Z-Z0)/R 0 0 0 0 0 0|
 % H = | dAz/dX dAz/dY dAz/dZ 0 0 0 0 0 0|
 % | dEl/dX dEl/dY dEl/dZ 0 0 0 0 0 0|
 %
 % R = [(X-X0)^2 + (Y-Y0)^2 + (Z-Z0)^2]^(1/2)
 % (X0,Y0,Z0) - Inertial location of observer @ observation

time
 %

 % determine position of observing sensor
 if sensor{snridx}.snr_type == 1 || sensor{snridx}.snr_type == 2
 % stationary sensor
 sen_eci = tm_ecr2eci(sensor{snridx}.pos_ecf, 0, obs_time,

0);
 sen_ecf = sensor{snridx}.pos_ecf;
 sen_lla = tm_ecr2lla(sensor{snridx}.pos_ecf);
 sen_lla(1) = geoc2geod(sen_lla(1));
 sen_tm = sensor{snridx}.tm;
 elseif sensor{snridx}.snr_type == 3 || sensor{snridx}.snr_type

== 4
 % moving sensor, interpolate sensor position at obs_time
 interp_lat = interp1(sensor{snr}.pos_time,

sensor{snr}.pos_lla(:,1), obs_time, 'spline');
 interp_lon = interp1(sensor{snr}.pos_time,

sensor{snr}.pos_lla(:,2), obs_time, 'spline');
 interp_alt = interp1(sensor{snr}.pos_time,

sensor{snr}.pos_lla(:,3), obs_time, 'spline');

 sen_lla = [interp_lat, interp_lon, interp_alt];
 [sen_ecf, sen_tm] = calc_sensor(interp_lat, interp_lon,

interp_alt);
 sen_eci = tm_ecr2eci(sen_ecf, 0, obs_time, 0);

93

 end

 % compute range
 rng = sqrt((X_minus(1)-sen_eci(1))^2 + (X_minus(2)-

sen_eci(2))^2 + (X_minus(3)-sen_eci(3))^2);

 % convert X_minus to the observation variables
 sim_ecf = tm_eci2ecr(X_minus(1:3), 0, obs_time, 0);
 sim_sez = tm_ecr2sez(sim_ecf, sen_ecf, sen_tm);
 sim_rae = tm_sez2rae(sim_sez);

 % determine whether we need the range component
 if target{tgt}.obs(obsidx,1) ~= 0
 H = zeros(3,9);

 % fill in range partials
 H(1,1:3) = (X_minus(1:3)-sen_eci) / rng;

 % row indeces to compute Az and El partials in
 azi = 2;
 eli = 3;

 % define simulated & actual observations - full RAE
 sim_z = sim_rae;
 obs_z = target{tgt}.obs(obsidx,:);
 else
 H = zeros(2,9);

 % row indeces to compute Az and El partials in
 azi = 1;
 eli = 2;

 % define simulated & actual observations - only AE
 sim_z = sim_rae(2:3);
 obs_z = target{tgt}.obs(obsidx,2:3);
 end

 % fill in azimuth partials (see appendix)
 % compute common terms contained in partials:
 % sin & cos of sensor position
 slat = sin(sen_lla(1));
 clat = cos(sen_lla(1));
 slon = sin(sen_lla(2));
 clon = cos(sen_lla(2));
 % sin & cos of ECI->ECEF angle
 st = sin(earth.AngVel * obs_time);
 ct = cos(earth.AngVel * obs_time);
 % predicted SV position components
 x = X_minus(1);
 y = X_minus(2);
 z = X_minus(3);

 % azimuth partials

94

 numer_Az = -slon*(ct*x+st*y-sen_ecf(1))+clon*(-st*x+ct*y-

sen_ecf(2));
 denom_Az = -slat*clon*(ct*x+st*y-sen_ecf(1))-slat*slon*(-

st*x+ct*y-sen_ecf(2))+clat*(z-sen_ecf(3));
 dAz_base = 1/(1 + (numer_Az/denom_Az)^2); % derivative of inv

tan

 % dAz/dX, dY, dZ
 H(azi,1) = dAz_base * ((-slon*ct-clon*st)*denom_Az - (-

slat*clon*ct+slat*slon*st)*numer_Az) / denom_Az^2;
 H(azi,2) = dAz_base * ((-slon*st+clon*ct)*denom_Az - (-

slat*clon*st-slat*slon*ct)*numer_Az) / denom_Az^2;
 H(azi,3) = dAz_base * (-clat*numer_Az) / denom_Az^2;

 % elevation partials
 numer_El = clat*clon*(ct*x+st*y-sen_ecf(1))+clat*slon*(-

st*x+ct*y-sen_ecf(2))+slat*(z-sen_ecf(3));
 denom_El = rng;
 dEl_base = 1/sqrt(1 - (numer_El/denom_El)^2); % derivative of

inv sin

 % dEl/dX, dY, dZ
 H(eli,1) = dEl_base * ((clat*clon*ct - clat*slon*st)*denom_El -

(x-sen_eci(1))/denom_El*numer_El) / denom_El^2;
 H(eli,2) = dEl_base * ((clat*clon*st + clat*slon*ct)*denom_El -

(y-sen_eci(2))/denom_El*numer_El) / denom_El^2;
 H(eli,3) = dEl_base * (slat*denom_El - (z-

sen_eci(3))/denom_El*numer_El) / denom_El^2;

 % if a solution from the LSSW pass was computed, add it to the

calculation
 if koptions.lssw && ~all(state{tgt}.sv(obsidx,1:3) == 0)
 % add SV components to observation & simulation variables
 obs_z = [obs_z state{tgt}.sv(obsidx,1:3)];
 sim_z = [sim_z X_minus(1:3)];

 % add derivatives to H matrix
 % H = [H; zeros(6,3), eye(6,6); zeros(3,9)]; % (complete

SV)
 H = [H; eye(3,3), zeros(3,6)]; % (position SV)

 % construct measurement noise matrix w/ SV components
 R = diag([sensor{snridx}.stddev.^2,

state{tgt}.lssw_std.^2]);
 else
 % construct measurement noise matrix
 R = diag(sensor{snridx}.stddev.^2);
 end

 % with H&R computed, calculate the Kalman Gain
 K = P_minus*H' * pinv(H*P_minus*H' + R);

 % compute SV update
 X_plus = X_minus(:) + K*(obs_z(:) - sim_z(:));

95

 % compute covariance update
 P_plus = (eye(9) - K*H)*P_minus;

 % save results from this data point
 state{tgt}.sv_minus(obsidx,:) = X_minus';
 state{tgt}.cov_minus(obsidx,:) = P_minus(:)';
 state{tgt}.sv(obsidx,:) = X_plus';
 state{tgt}.cov(obsidx,:) = P_plus(:)';

 if koptions.echo
 disp(['Completed KF Pass - Filter Time = '

num2str(obs_time)])
 end
 end
end

if koptions.echo
 disp(' * Phase 2b - KF Complete *')
end

if koptions.echo
 disp(' * Phase 2c - Smoother Beginning *')
end

%%%%
%%%% Phase 2c - Smoother
%%%%

% loop through targets
for tgt = 1:numtgt

 % non-free flight indeces
 kf_idx = find(~target{tgt}.obs_ff);
 state{tgt}.cov_smooth = state{tgt}.cov;
 state{tgt}.sv_smooth = state{tgt}.sv;

 % run smoother backwards
 for i = length(kf_idx)-1:-1:1

 % index of this observation in the overall array
 obsidx = kf_idx(i);
 obs_time = target{tgt}.obs_time(obsidx);

 % compute state transition matrix to propagate covariance from

prev state
 delta_t = diff(target{tgt}.obs_time(obsidx:obsidx+1));
 F = calc_state_dist(state{tgt}.sv(obsidx,:));
 Phi = eye(9) + F * delta_t;

 C = reshape(state{tgt}.cov(obsidx,:),9,9) * Phi' * ...
 pinv(reshape(state{tgt}.cov_minus(obsidx+1,:),9,9));
 P_smooth = reshape(state{tgt}.cov(obsidx,:),9,9) + C * ...

96

 (reshape(state{tgt}.cov_smooth(obsidx+1,:),9,9) - ...
 reshape(state{tgt}.cov_minus(obsidx+1,:),9,9)) * C';

 state{tgt}.cov_smooth(obsidx,:) = P_smooth(:)';
 state{tgt}.sv_smooth(obsidx,:) = state{tgt}.sv(obsidx,:) + ...
 (C * (state{tgt}.sv_smooth(obsidx+1,:)' -

state{tgt}.sv_minus(obsidx+1,:)'))';

 if koptions.echo
 disp(['Completed KF Pass - Smoother Time = '

num2str(obs_time)])
 end
 end
end

if koptions.echo
 disp(' * Phase 2c - Smoother Complete *')
end

%%%%
%%%% Phase 3 - Wrap up, Parameter Computation
%%%%

if koptions.echo
 disp('** Phase 3 - Parameter Computation **')
end

% loop through targets
for tgt = 1:numtgt

 %%%% compute residuals
 sv_ecf = tm_eci2ecr(state{tgt}.sv_smooth(:,1:3), 0,

state{tgt}.time, 0);
 sv_sez = zeros(size(sv_ecf));

 % number of sensors for this target
 tgtsnr = unique(target{tgt}.obs_snr);
 numsnr = length(tgtsnr);

 % loop through sensors, computing SEZ information
 for snridx = 1:numsnr
 snr = tgtsnr(snridx);

 % observations from this sensor, and those observation times
 obsidx = target{tgt}.obs_snr == snr;
 obs_time = target{tgt}.obs_time(obsidx);

 % stationary range, az, el OR az, el observations
 if sensor{snr}.snr_type == 1 || sensor{snr}.snr_type == 2

 % convert ECEF SV positions to stationary SEZ
 sv_sez(obsidx,:) = tm_ecr2sez(sv_ecf(obsidx,:),

sensor{snr}.pos_ecf, sensor{snr}.tm);

97

 % moving range, az, el OR az, el observations
 elseif sensor{snr}.snr_type == 3 || sensor{snr}.snr_type == 4

 % interpolate sensor positions at observation times
 interp_lat = interp1(sensor{snr}.pos_time,

sensor{snr}.pos_lla(:,1), obs_time, 'spline');
 interp_lon = interp1(sensor{snr}.pos_time,

sensor{snr}.pos_lla(:,2), obs_time, 'spline');
 interp_alt = interp1(sensor{snr}.pos_time,

sensor{snr}.pos_lla(:,3), obs_time, 'spline');
 [sensor_pos, sensor_tm] = calc_sensor_move(interp_lat,

interp_lon, interp_alt);

 % convert ECEF SV positions to moving SEZ
 sv_sez(obsidx,:) = tm_ecr2sez_move(sv_ecf(obsidx,:),

sensor_pos, sensor_tm);
 else
 error(['Unrecognized sensor type ID: '

num2str(sensor{snr}.snr_type)])
 end
 end

 % compute RAE state
 sv_rae = tm_sez2rae(sv_sez);
 target{tgt}.res = repmat(NaN, size(sv_rae));

 % loop through sensors, computing residuals
 for snridx = 1:numsnr
 snr = tgtsnr(snridx);

 % observations from this sensor
 obsidx = target{tgt}.obs_snr == snr;

 if sensor{snr}.snr_type == 1 || sensor{snr}.snr_type == 3
 % range, azimuth, and elevation observations
 target{tgt}.res(obsidx,:) = target{tgt}.obs(obsidx,:) -

sv_rae(obsidx,:);

 elseif sensor{snr}.snr_type == 2 || sensor{snr}.snr_type == 4
 % azimuth and elevation observations
 target{tgt}.res(obsidx,2:3) = target{tgt}.obs(obsidx,2:3) -

sv_rae(obsidx,2:3);
 end
 end

 % plot residuals, if requested
 if koptions.echo
 figure, hold on

 % loop through sensors, computing residuals
 for snridx = 1:numsnr
 snr = tgtsnr(snridx);

98

 % observations from this sensor
 obsidx = target{tgt}.obs_snr == snr;
 if snr == 1
 subplot(3,1,1), hold on
 plot(target{tgt}.obs_time(obsidx),

target{tgt}.res(obsidx,1), 'r.')
 subplot(3,1,2), hold on
 plot(target{tgt}.obs_time(obsidx),

target{tgt}.res(obsidx,2), 'r.')
 subplot(3,1,3), hold on
 plot(target{tgt}.obs_time(obsidx),

target{tgt}.res(obsidx,3), 'r.')
 else
 cols = 'rbmk'; nc = length(cols);
 subplot(3,1,1)
 plot(target{tgt}.obs_time(obsidx),

target{tgt}.res(obsidx,1), [cols(mod(snr-1,nc)+1) '.'])
 subplot(3,1,2)
 plot(target{tgt}.obs_time(obsidx),

target{tgt}.res(obsidx,2), [cols(mod(snr-1,nc)+1) '.'])
 subplot(3,1,3)
 plot(target{tgt}.obs_time(obsidx),

target{tgt}.res(obsidx,3), [cols(mod(snr-1,nc)+1) '.'])
 end
 end
 end

 %%%% compute lat/lon/alt positions
 state{tgt}.lla = tm_eci2vel(state{tgt}.sv_smooth(:,1:3),

state{tgt}.time);
 state{tgt}.lla(:,3) = state{tgt}.lla(:,3)/1000;

 %%%% compute altitude
 state{tgt}.alt = state{tgt}.lla(:,3);

 %%%% compute ballistic coefficient
 % atmospheric values
 [temp, pres, dens] = calc_atmos(state{tgt}.alt);

%#ok<NASGU>

 % air relative velocity for dynamic pressure
 vxa = state{tgt}.sv_smooth(:,4) +

earth.AngVel.*state{tgt}.sv_smooth(:,2);
 vya = state{tgt}.sv_smooth(:,5) -

earth.AngVel.*state{tgt}.sv_smooth(:,1);
 vz = state{tgt}.sv_smooth(:,6);
 va = sqrt(vxa.^2 + vya.^2 + vz.^2);

 % dynamic pressure (convert dens from kg/m3 to kg/km3)
 dynpres = .5 * 1000^3 * dens .* va.^2;

 % magnitude of drag acceleration

99

 drag_mag = sqrt(state{tgt}.sv_smooth(:,7).^2 +

state{tgt}.sv_smooth(:,8).^2 + state{tgt}.sv_smooth(:,9).^2);

 % ballistic coefficient in kg/m2
 state{tgt}.beta = dynpres ./ drag_mag / 1000^2;

 %%%% Mach number (non-dim)
 gamma = 1.4;
 gas_const = 284;
 state{tgt}.mach = va ./ sqrt(gamma * gas_const * temp) * 1000;
end

if koptions.echo
 disp('** KALIPER Run Complete **')
end

% set output variables
if nargout == 1
 % one output requested
 varargout{1} = state;
elseif nargout == 2
 % two outputs requested
 varargout{1} = state;
 varargout{2} = target;
elseif nargout == 3
 % three outputs requested
 varargout{1} = state;
 varargout{2} = target;
 varargout{3} = stats;
end

 %KALIPER_CALCINIT - compute initial guess for state
 %
 % Initial guess based on least squares solution to equations of

motion
 % assuming constant 4th derivative of position:
 % x_measured =
 % x_true +
 % x_true(1) * T +
 % x_true(2) * T^2 / 2 +
 % x_true(3) * T^3 / 6 +
 % x_true(4) * T^4 / 24 + noise
 %
 % Note: number in () is the nth derivative
 %
 function [init_time, init_sv] = kaliper_calcinit(tgt)

 numobs = length(target{tgt}.obs_time);

 % check if free flight observations have been predetermined
 if isfield(target{tgt}, 'obs_ff')
 target{tgt}.obs_ff = false(numobs,1);
 end

100

 if ~isfield(target{tgt}, 'obs_ff') || ~any(target{tgt}.obs_ff)
 % initial attempt will be to select observations outside of

the
 % Eath's atmosphere
 obs_alt = calc_alt(target{tgt}.obs_eci);
 num_3d = length(find(~isnan(obs_alt)));

 target{tgt}.obs_ff = obs_alt >= earth.AtmAlt;

 % check to see if there is still nothing defined
 if ~any(target{tgt}.obs_ff)
 % select highest altitude points until 10% of available

are
 % selected (arbitrary)
 alt_step = -1;
 cutoff_alt = max(obs_alt) + alt_step;
 while length(find(target{tgt}.obs_ff))/num_3d < .1
 target{tgt}.obs_ff = obs_alt >= cutoff_alt;
 cutoff_alt = cutoff_alt + alt_step;
 end
 end
 end

 % compute least squares solution
 fit_time = target{tgt}.obs_time(target{tgt}.obs_ff);
 fit_eci = target{tgt}.obs_eci(target{tgt}.obs_ff,:);
 numfit = length(fit_time);

 % precompute times
 dt = fit_time - fit_time(1);
 dt2 = dt.^2;
 dt3 = dt.^3;
 dt4 = dt.^4;

 % construct A matrix
 A = [];
 A(:,1) = ones(numfit,1);
 A(:,2) = dt;
 A(:,3) = dt2/2;
 A(:,4) = dt3/6;
 A(:,5) = dt4/24;

 % separate b vectors for X,Y,Z of observations
 bx = fit_eci(:,1);
 by = fit_eci(:,2);
 bz = fit_eci(:,3);

 % least squares by Singular Value Decomposition for stability
 pinv_A = pinv(A); % this is much faster than using svd() and

pinv() seperately
 xh_x = pinv_A * bx;
 xh_y = pinv_A * by;
 xh_z = pinv_A * bz;

101

 % compile initial guess
 init_time = fit_time(1);
 init_sv = [xh_x(1) xh_y(1) xh_z(1) xh_x(2) xh_y(2) xh_z(2)

xh_x(3) xh_y(3) xh_z(3)];

 % for initialization purposes, we're assuming free-flight
 init_sv(7:9) = 0;

 % use the time determined by the 3-D data to include others
 ff_time = target{tgt}.obs_time(target{tgt}.obs_ff);
 target{tgt}.obs_ff = target{tgt}.obs_time >= ff_time(1) & ...
 target{tgt}.obs_time <= ff_time(end);

 end % end of kaliper_calcinit function

 %KALIPER_EOM - Generatlized equations of motion
 %
 % These equations of motion can be used with ode45 and the state

to
 % propagate the state forward in time.
 %
 % Note: This is a modification to METAL's eom_re and eom_ff.

Since
 % the sensed acceleration is an element in the state vector, these
 % EOMs satisfy both free flight and reentry conditions
 %
 %
 function dy = kaliper_eom(t,y)

%#ok<INUSL>

 % change y from single vector to columns of vectors
 nval = size(y,1);
 nvec = nval/9;
 y = reshape(y, 9, nvec);
 dy = zeros(9, nvec);

 % compute gravitational acceleration
 grav_acc = calc_grav(y(1:3,:)')';

 % compute total acceleration
 tot_acc = grav_acc + y(7:9,:);

 % derivatives
 dy(1,:) = y(4,:); % dx/dt = vx
 dy(2,:) = y(5,:); % dy/dt = vy
 dy(3,:) = y(6,:); % dz/dt = vz
 dy(4,:) = tot_acc(1,:); % d2x/dt2 = tax
 dy(5,:) = tot_acc(2,:); % d2y/dt2 = tay
 dy(6,:) = tot_acc(3,:); % d2z/dt2 = taz
 % acceleration derivatives = 0

 % change dy back to single column to satisfy ode45
 dy = reshape(dy, nval, 1);

102

 end % end of kaliper_eom function

 %CALC_STATE_DIST - calculate the state distribution matrix (F) for

a given SV.
 % used to compute state transition matrix by: Phi

= I + F*dt
 function f = calc_state_dist(sv)

 % compute partials of the state, initialize with all zeros
 f = zeros(9,9);

 % position derivates
 f(1,4) = 1; f(2,5) = 1; f(3,6) = 1;

 % terms for velocity partials
 r = sqrt(sv(1)^2 + sv(2)^2 + sv(3)^2);
 mu = earth.GravConst;

 % x velocity gravity partials (simple gravity)
 f(4,1) = -mu/r^3 * (1 - 3*sv(1)^2/r^2);
 f(4,2) = 3*mu*sv(1)*sv(2)/r^5;
 f(4,3) = f(4,2)/sv(2)*sv(3);

 % y velocity gravity partials
 f(5,1) = f(4,2);
 f(5,2) = -mu/r^3 * (1 - 3*sv(2)^2/r^2);
 f(5,3) = f(5,1)/sv(1)*sv(3);

 % z velocity gravity partials
 f(6,1) = f(4,3);
 f(6,2) = f(5,3);
 f(6,3) = -mu/r^3 * (1 - 3*sv(3)^2/r^2);

 % velocity sensed accel partials
 f(4,7) = 1; f(5,8) = 1; f(6,9) = 1;

 end % end of calc_state_dist function

end % end of kaliper main function

103

read_data.m

read_data.m is a MATLAB script written to read in data from truth cases. Original

formatting is preserved to maintain functionality when pasted into MATLAB.

function [target,sensor] = read_data(datafile, varargin)

snr = 1;
tgt = 1;

if nargin == 1
 target{tgt}.obs = [];
 target{tgt}.obs_time = [];
 target{tgt}.obs_snr = [];
elseif nargin == 3
 target = varargin{1};
 sensor = varargin{2};

 tgt = length(target) + 1;
 target{tgt}.obs = [];
 target{tgt}.obs_time = [];
 target{tgt}.obs_snr = [];

 for i = 1:length(target)
 snr = max(max(target{i}.obs_snr), snr);
 end
 snr = snr + 1;
elseif nargin == 4
 target = varargin{1};
 sensor = varargin{2};
 snr = varargin{3};

 tgt = length(target) + 1;
 target{tgt}.obs = [];
 target{tgt}.obs_time = [];
 target{tgt}.obs_snr = [];
elseif nargin == 5
 target = varargin{1};
 sensor = varargin{2};
 snr = varargin{3};
 tgt = varargin{4};

 if ~isfield(target{tgt}, 'obs'), target{tgt}.obs = []; end
 if ~isfield(target{tgt}, 'obs_time'), target{tgt}.obs_time = [];

end
 if ~isfield(target{tgt}, 'obs_snr'), target{tgt}.obs_snr = []; end
end

fid = fopen(datafile);

104

sen_pos = fgetl(fid);
dataline = fgetl(fid);
fclose(fid);
[sen_lat, sen_lon, sen_alt] = strread(sen_pos, '%n %n %n');

numdata = length(strread(dataline, '%n')) - 1;

if numdata == 3
 % RAE
 [obs_time, obs_r, obs_a, obs_e] = textread(datafile, '%n %n %n %n',

'headerlines', 1);
 target{tgt}.obs = [target{tgt}.obs; [obs_r(:), obs_a(:)*pi/180,

obs_e(:)*pi/180]];

 sensor{snr}.snr_type = 1;
 sensor{snr}.stddev = [.002 .03 * pi/180, .03 * pi/180];
 sensor{snr}.obs_bias = [0 0 0];
elseif numdata == 2
 % AE
 [obs_time, obs_a, obs_e] = textread(datafile, '%n %n %n',

'headerlines', 1);
 target{tgt}.obs = [target{tgt}.obs; [zeros(size(obs_a(:)))

obs_a(:)*pi/180, obs_e(:)*pi/180]];

 sensor{snr}.snr_type = 2;
 sensor{snr}.stddev = [.03 * pi/180, .03 * pi/180];
 sensor{snr}.obs_bias = [0 0];
else
 error(['Unable to identify data file with ' num2str(numdata) '

entries per line.'])
end

target{tgt}.obs_time = [target{tgt}.obs_time; obs_time];
target{tgt}.obs_snr = [target{tgt}.obs_snr; repmat(snr,

size(obs_time))];

[target{tgt}.obs_time, idx] = sort(target{tgt}.obs_time);
target{tgt}.obs = target{tgt}.obs(idx,:);
target{tgt}.obs_snr = target{tgt}.obs_snr(idx);

target{tgt}.numobs = length(target{tgt}.obs_time);

sensor{snr}.pos_lla = [sen_lat*pi/180, sen_lon*pi/180, sen_alt/1000];
[sensor{snr}.pos_ecf, sensor{snr}.tm] = calc_sensor(sen_lat*pi/180,

sen_lon*pi/180, sen_alt/1000);

105

run_kaliper_cases.m

run_kaliper_cases.m is a MATLAB script written to analyze truth cases and

demonstrate input syntax. Original formatting is preserved to maintain functionality

when pasted into MATLAB.

close all
clear

%%% Items for computing truth accelerations
define_air
read_stdatmos('stdatmos76.dat')
% RV definition
rv_beta = 5600;
rv_hca = 9.5;
rv_br = 0.24;
define_berman(rv_hca, rv_br)
%%%

%%%%%% Scenario 1 - Pure Ballistic
%%% Case 1 - Single Sensor - 1x Data Rate, along heading
% files = {'scen1_sen1_pos1_rate1.rae'};
%%% Case 2 - Single Sensor - 1x Data Rate, perp to heading
% files = {'scen1_sen1_pos2_rate1.rae'};
%%% Case 3 - Single Sensor - 1x Data Rate, 45 deg to heading
files = {'scen1_sen2_pos3_rate1.rae'};
%%% Case 4 - Single Sensor - 2x Data Rate, best position
% files = {'scen1_sen1_pos1_rate2.rae'};
%%% Case 5 - 2 Sensors - 1x Data Rate, along & along positions
% files = {'scen1_sen1_pos1_rate1.rae', 'scen1_sen2_pos1_rate1.rae'};
%%% Case 6 - 2 Sensors - 1x Data Rate, along & 45 deg to positions
% files = {'scen1_sen1_pos1_rate1.rae', 'scen1_sen2_pos2_rate1.rae'};
%%% Case 7 - 2 Sensors - 1x Data Rate, along & perp to positions
% files = {'scen1_sen1_pos1_rate1.rae', 'scen1_sen2_pos3_rate1.rae'};
%%% Case 8 - 2 Sensors - 1x&2x Data Rate, along & perp to positions
% files = {'scen1_sen1_pos1_rate1.rae', 'scen1_sen2_pos1_rate2.rae'};
%%% Case 9 - 2 Sensors - 2x&1x Data Rate, along & perp to positions
% files = {'scen1_sen1_pos1_rate2.rae', 'scen1_sen2_pos3_rate1.rae'};
%%% Case 10 - 2 Sensors - 2x Data Rate, along & perp to positions
% files = {'scen1_sen1_pos1_rate2.rae', 'scen1_sen2_pos3_rate2.rae'};
%%% Case 11 - 2 Sensors - 2x Data Rate, perp to & perp to positions
% files = {'scen1_sen1_pos3_rate2.rae', 'scen1_sen2_pos3_rate2.rae'};
%%% Case 12 - 3 Sensors - 1x Data Rate, along, along, & along positions
% files = {'scen1_sen1_pos1_rate1.rae', 'scen1_sen2_pos1_rate1.rae',

'scen1_sen3_pos1_rate1.rae'};
%%% Case 13 - 3 Sensors - 1x Data Rate, along, along, & 45 deg to

positions

106

% files = {'scen1_sen1_pos1_rate1.rae', 'scen1_sen2_pos1_rate1.rae',

'scen1_sen3_pos2_rate1.rae'};
%%% Case 14 - 3 Sensors - 1x Data Rate, along, along, & perp to

positions
% files = {'scen1_sen1_pos1_rate1.rae', 'scen1_sen2_pos1_rate1.rae',

'scen1_sen3_pos3_rate1.rae'};
%%% Case 15 - 3 Sensors - 1x Data Rate, along, along, & perp to

positions
% files = {'scen1_sen1_pos1_rate1.rae', 'scen1_sen2_pos1_rate1.rae',

'scen1_sen3_pos2_rate2.rae'};
%%% Case 16 - 2 Sensors (RAE & AE) - 1x Data Rate, along & along

positions
% files = {'scen1_sen1_pos1_rate1.rae', 'scen1_sen3_pos1_rate1.rae'};
%%% Case 17 - 2 Sensors (RAE & AE) - 1x Data Rate, along & 45 deg to

positions
% files = {'scen1_sen1_pos1_rate1.rae', 'scen1_sen3_pos2_rate1.rae'};
%%% Case 18 - 2 Sensors (RAE & AE) - 1x Data Rate, along & perp to

positions
% files = {'scen1_sen1_pos1_rate1.rae', 'scen1_sen3_pos3_rate1.rae'};
%%% Case 19 - 2 Sensors (RAE & AE) - 1x&2x Data Rate, along & 45 deg to

positions
% files = {'scen1_sen1_pos1_rate1.rae', 'scen1_sen3_pos2_rate2.rae'};

%%%%%% Scenario 2 - Single Maneuver
%%% Case 20 - ` Sensors (RAE) - 1x Data Rate, along position
% files = {'scen2_sen1_pos1_rate1.rae'};
%%% Case 21 - ` Sensors (RAE) - 1x Data Rate, 45 deg to position
% files = {'scen2_sen1_pos2_rate1.rae'};
%%% Case 22 - ` Sensors (RAE) - 1x Data Rate, perp to position
% files = {'scen2_sen1_pos3_rate1.rae'};
%%% Case 23 - Single Sensor - 2x Data Rate, best position
% files = {'scen2_sen1_pos3_rate2.rae'};
%%% Case 24 - 2 Sensors - 1x Data Rate, along & along positions
% files = {'scen2_sen1_pos1_rate1.rae', 'scen2_sen2_pos1_rate1.rae'};
%%% Case 25 - 2 Sensors - 1x Data Rate, along & 45 deg to positions
% files = {'scen2_sen1_pos1_rate1.rae', 'scen2_sen2_pos2_rate1.rae'};
%%% Case 26 - 2 Sensors - 1x Data Rate, along & perp to positions
% files = {'scen2_sen1_pos1_rate1.rae', 'scen2_sen2_pos3_rate1.rae'};
%%% Case 27 - 2 Sensors - 1x Data Rate, 45 deg to & along positions
% files = {'scen2_sen1_pos2_rate1.rae', 'scen2_sen2_pos1_rate1.rae'};
%%% Case 28 - 2 Sensors - 1x Data Rate, 45 deg to & 45 deg to positions
% files = {'scen2_sen1_pos2_rate1.rae', 'scen2_sen2_pos2_rate1.rae'};
%%% Case 29 - 2 Sensors - 1x Data Rate, 45 deg to & perp to positions
% files = {'scen2_sen1_pos2_rate1.rae', 'scen2_sen2_pos3_rate1.rae'};
%%% Case 30 - 2 Sensors - 1x&2x Data Rate, 45 deg to & along positions
% files = {'scen2_sen1_pos2_rate1.rae', 'scen2_sen2_pos1_rate2.rae'};
%%% Case 31 - 3 Sensors - 1x Data Rate, along, 45 deg to, & along

positions
% files = {'scen2_sen1_pos1_rate1.rae', 'scen2_sen2_pos2_rate1.rae',

'scen2_sen3_pos1_rate1.ae'};
%%% Case 32 - 3 Sensors - 1x Data Rate, along, 45 deg to, & 45 deg to

positions
% files = {'scen2_sen1_pos1_rate1.rae', 'scen2_sen2_pos2_rate1.rae',

'scen2_sen3_pos2_rate1.ae'};

107

%%% Case 33 - 3 Sensors - 1x Data Rate, along, 45 deg to, & perp to

positions
% files = {'scen2_sen1_pos1_rate1.rae', 'scen2_sen2_pos2_rate1.rae',

'scen2_sen3_pos3_rate1.ae'};
%%% Case 34 - 3 Sensors - 1x,2x,2x Data Rate, along, 45 deg to, & perp

to positions
% files = {'scen2_sen1_pos1_rate1.rae', 'scen2_sen2_pos2_rate2.rae',

'scen2_sen3_pos3_rate2.ae'};
%%% Case 35 - 2 Sensors (RAE & AE) - 1x Data Rate, along & along

positions
% files = {'scen2_sen1_pos1_rate1.rae', 'scen2_sen3_pos1_rate1.ae'};
%%% Case 36 - 2 Sensors (RAE & AE) - 1x Data Rate, along & 45 deg to

positions
% files = {'scen2_sen1_pos1_rate1.rae', 'scen2_sen3_pos2_rate1.ae'};
%%% Case 37 - 2 Sensors (RAE & AE) - 1x Data Rate, along & perp to

positions
% files = {'scen2_sen1_pos1_rate1.rae', 'scen2_sen3_pos3_rate1.ae'};
%%% Case 38 - 2 Sensors (RAE & AE) - 1x&2x Data Rate, along & 45 deg to

positions
% files = {'scen2_sen1_pos1_rate1.rae', 'scen2_sen3_pos2_rate2.ae'};

%%%%%% Scenario 3 - Double Maneuver
%%% Case 39 - ` Sensors (RAE) - 1x Data Rate, along position
% files = {'scen3_sen1_pos1_rate1.rae'};
%%% Case 40 - ` Sensors (RAE) - 1x Data Rate, 45 deg to position
% files = {'scen3_sen1_pos2_rate1.rae'};
%%% Case 41 - ` Sensors (RAE) - 1x Data Rate, perp to position
% files = {'scen3_sen1_pos3_rate1.rae'};
%%% Case 42 - Single Sensor - 2x Data Rate, best position
% files = {'scen3_sen1_pos2_rate2.rae'};
%%% Case 43 - 2 Sensors - 1x Data Rate, along & along positions
% files = {'scen3_sen1_pos1_rate1.rae', 'scen3_sen2_pos1_rate1.rae'};
%%% Case 44 - 2 Sensors - 1x Data Rate, along & 45 deg to positions
% files = {'scen3_sen1_pos1_rate1.rae', 'scen3_sen2_pos2_rate1.rae'};
%%% Case 45 - 2 Sensors - 1x Data Rate, along & perp to positions
% files = {'scen3_sen1_pos1_rate1.rae', 'scen3_sen2_pos3_rate1.rae'};
%%% Case 46 - 2 Sensors - 1x Data Rate, 45 deg to & along positions
% files = {'scen3_sen1_pos2_rate1.rae', 'scen3_sen2_pos1_rate1.rae'};
%%% Case 47 - 2 Sensors - 1x Data Rate, 45 deg to & 45 deg to positions
% files = {'scen3_sen1_pos2_rate1.rae', 'scen3_sen2_pos2_rate1.rae'};
%%% Case 48 - 2 Sensors - 1x Data Rate, 45 deg to & perp to positions
% files = {'scen3_sen1_pos2_rate1.rae', 'scen3_sen2_pos3_rate1.rae'};
%%% Case 49 - 2 Sensors - 1x&2x Data Rate, 45 deg to & along positions
% files = {'scen3_sen1_pos2_rate1.rae', 'scen3_sen2_pos1_rate2.rae'};
%%% Case 50 - 3 Sensors - 1x Data Rate, along, 45 deg to, & along

positions
% files = {'scen3_sen1_pos1_rate1.rae', 'scen3_sen2_pos2_rate1.rae',

'scen3_sen3_pos1_rate1.ae'};
%%% Case 51 - 3 Sensors - 1x Data Rate, along, 45 deg to, & 45 deg to

positions
% files = {'scen3_sen1_pos1_rate1.rae', 'scen3_sen2_pos2_rate1.rae',

'scen3_sen3_pos2_rate1.ae'};
%%% Case 52 - 3 Sensors - 1x Data Rate, along, 45 deg to, & perp to

positions

108

% files = {'scen3_sen1_pos1_rate1.rae', 'scen3_sen2_pos2_rate1.rae',

'scen3_sen3_pos3_rate1.ae'};
%%% Case 53 - 3 Sensors - 1x,2x,2x Data Rate, along, 45 deg to, & 45

deg to positions
% files = {'scen3_sen1_pos1_rate1.rae', 'scen3_sen2_pos2_rate2.rae',

'scen3_sen3_pos2_rate2.ae'};
%%% Case 54 - 2 Sensors (RAE & AE) - 1x Data Rate, along & along

positions
% files = {'scen3_sen1_pos1_rate1.rae', 'scen3_sen3_pos1_rate1.ae'};
%%% Case 55 - 2 Sensors (RAE & AE) - 1x Data Rate, along & 45 deg to

positions
% files = {'scen3_sen1_pos1_rate1.rae', 'scen3_sen3_pos2_rate1.ae'};
%%% Case 56 - 2 Sensors (RAE & AE) - 1x Data Rate, along & perp to

positions
% files = {'scen3_sen1_pos1_rate1.rae', 'scen3_sen3_pos3_rate1.ae'};
%%% Case 57 - 2 Sensors (RAE & AE) - 1x&2x Data Rate, along & 45 deg to

positions
% files = {'scen3_sen1_pos1_rate1.rae', 'scen3_sen3_pos2_rate2.ae'};

% indeces for truth comparisons
scen = 1;
rate = [1,1,1];

% read in data files
[target,sensor] = read_data(files{1});
for i = 2:length(files)
 [target,sensor] = read_data(files{i},target,sensor,i,1);
end

% run kaliper
% koptions.echo = true(1);
koptions.max_iter = 15;
% koptions.conv_tol = .00001;
koptions.lssw = false(1);
koptions.sig_edit = 20;
koptions.qp = 0.0;
koptions.qv = 0.0;
koptions.qa = 0.001;

tic, [state, target] = kaliper(target, sensor, koptions); toc

load all_case_truth

eci = [];
acc = [];
comp = [];
ts = [];

for i = 1:length(files)

 traj_acc = calc_accel(traj_eci{scen,rate(i)}, rv_beta*10^6, 0, 0);
 traj_acc = traj_acc - calc_grav(traj_eci{scen,rate(i)});

109

 if scen == 2
 alt = calc_alt(traj_eci{scen,rate(i)});
 traj_acc(alt <= 40,1) = traj_acc(alt <= 40,1) - (40 - alt(alt

<= 40))/20*0.0098;

 elseif scen == 3
 alt = calc_alt(traj_eci{scen,rate(i)});
 traj_acc(alt <= 40,1) = traj_acc(alt <= 40,1) - (40 - alt(alt

<= 40))/20*0.0098;
 traj_acc(alt <= 20,2) = traj_acc(alt <= 20,2) - (20 - alt(alt

<= 20))/5*0.0098;
 end

 eci = [eci; traj_eci{scen,rate(i)}];
 acc = [acc; traj_acc];
 ts = [ts; traj_time{scen,rate(i)}];

 snridx = target{1}.obs_snr == i;
 comp = [comp; state{1}.sv_smooth(snridx,:)];
end

[ts,id] = sort(ts);
eci = eci(id,:);
acc = acc(id,:);
comp = comp(id,:);

stateerr = comp - [eci, acc];
staterms = sqrt(mean((stateerr).^2)) * 1000;

% easy to copy from:
fprintf('%.1f\n', staterms)

110

Bibliography

1. Bittle, N. M. (2009, March). Estimating the Aerodynamic and Heating Properties of an

Unknown Reentry Vehicle Using Least Squares Filtering. AFIT/GSS/ENY/07-M01 .

Wright-Patterson AFB, OH: School of Engineering, Air Force Institute of

Technology.

2. Brooks, E., Hill, J., Meiss, A., Merchant, J., Precoda, P., & Valentine, C. (n.d.).

Mathematical and Engineering Trajectory Analysis Library. Wright-Patterson AFB,

OH: NASIC.

3. Daum, F. (2005, August). Nonlinear Filters: Beyond the Kalman Filter. 20 (8) , 57-69.

Aerospace and Electronic Systems Magazine, IEEE.

4. Donald, R. G., Stirling, W. C., & & Westmiller, J. C. (1983, Dec 23). KADRE:

Mathematical Theory and Engineering Description, Ver B.1. Sunnyvale, California:

ESL Inc, Subsidary of TRW.

5. Hicks, K. D. (2008, Summer Quarter). Astrodynamic Reentry. Wright-Patterson AFB,

OH: School of Engineering and Management, Air Force Institute of Technology.

6. Holmes, L. M. (2006, March). Estimating the Aerodynamic Properties of an Unknown

Reentry Vehicle Using Least Squares Filtering. AFIT/GA/ENY/06-M04 . Wright-

Patterson AFB, OH: Air Force Institute of Technology.

7. Jackson, K., & Farbman, M. (2007, August 20-23). Trajectory Reconstruction with a

Least Squares Sliding Window (LSSW) Filter. AIAA Guidance, Navigation and

Control Conference and Exhibit . Hilton Head, South Carolina.

8. Kawase, T. T. (2001). A Kalman Tracker with a Turning Acceleration Estimator. 84

(1) , 1-11.

9. Lee, S., & Liu, C. (1999, November-December). Trajectory Estimation of Reentry

Vehicles by Use of On-Line Input Estimator. Journal of Guidance, Control, and

Dynamics , 22 (6) , 808-815.

10. Minvielle, P. (2005). Decades of Improvement in Re-entry Ballistic Vehicle

Tracking. 20 (8) , 1-14.

11. Strang, G. (2006). Linear Algebra and Its Applications. Brooks/Cole.

111

12. U.S. Standard Atmosphere. (1976). 53-59. National Aeronautics and Space

Administration.

13. Wiesel, W. E. (2003). Modern Orbit Determination. Beavercreek, OH: Aphelion

Press.

14. Wynne, M. &. (2008). Fiscal Year 2009 Air Force Posture Statement. Retrieved

December 20, 2009, from USAF Website:

http://www.posturestatement.af.mil/shared/media/document/AFD-080310-037.pdf

15. Yu, Y. a. (2006). Particle Filters for Maneuvering Target Tracking Problem. Signal

Processing , 86 , 195-203.

REPORT DOCUMENTATION PAGE
Form Approved
OMB No. 074-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments
regarding this burden estimate or any other aspect of the collection of information, including suggestions for reducing this burden to Department of Defense,
Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington,
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to an penalty for failing to comply
with a collection of information if it does not display a currently valid OMB control number.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)

25-03-2010
2. REPORT TYPE

Master’s Thesis

3. DATES COVERED (From – To)

June 2008 – March 2010

TITLE AND SUBTITLE

Estimating Characteristics of a Maneuvering Reentry
Vehicle Observed by Multiple Sensors

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

Evan M. Brooks

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(S)

 Air Force Institute of Technology
 Graduate School of Engineering and Management (AFIT/ENY)
 2950 Hobson Way, Building 640
 WPAFB OH 45433-8865

8. PERFORMING ORGANIZATION
 REPORT NUMBER

 AFIT/GA/ENY/10-M02

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

 This field intentionally left blank

10. SPONSOR/MONITOR’S
ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
 APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

 Post flight analysis of ballistic missile reentry vehicles is an area of focus for the U.S. Government, especially for those involved

in ballistic missile defense. Typically, this analysis incorporates either a model-driven least squares filter or a data-following

Kalman filter. The research performed here developed a filter that attempts to integrate the strengths of both filters. A least

squares filter operates on observation data collected during exoatmospheric free flight and a Kalman filter is used to analyze data

collected lower in the atmosphere, where potential maneuvers could be performed. Additionally, the filter was written to

incorporate data from multiple sensors.

 Using this hybrid filter, different scenarios are investigated to determine the potential benefits of adding additional collectors,

increasing the data rate of collecting sensors, and investigating the effects of different collector geometry on the accuracy of

results.

 Results show that the filter successfully transitions from the least squares to Kalman filter, using the final values of the free flight

propagation for the Kalman filter’s initial state. Using this filter to investigate different collection scenarios, it was determined that

the best results are achieved when multiple collectors are used, the data collection rate of the collectors is increased, and collectors

are positioned perpendicular to the reentry vehicle heading.

15. SUBJECT TERMS

 maneuvering, reentry, Kalman, least squares, hybrid filter, collection geometry, radar

16. SECURITY CLASSIFICATION
OF:

17. LIMITATION
OF
 ABSTRACT

UU

18.
NUMBER
OF PAGES

123

19a. NAME OF RESPONSIBLE PERSON

Dr. Richard Cobb
a.
REPORT

U

b.
ABSTRACT

U

c. THIS
PAGE

U

19b. TELEPHONE NUMBER (Include area code)

(937) 255-6565, ext 4559
(Richard.Cobb@afit.edu)

 Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39-18

