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1. Introduction 

Robotic systems with diverse roles, tasks, and operating requirements are being designed for use 
in current and future military operations.  Some of these systems will require active human 
control, whereas others may require high-level supervision with the possibility of intervention.  
No matter the level of autonomy on the robotic platform, Soldiers will be operating these 
systems while conducting other tasks that are essential to mission success, such as team 
communication and maintaining security.  In the most extreme case, Soldiers will operate 
multiple heterogeneous robotics systems while on the move and while under enemy fire.  In all 
cases, the workload will be variable—unpredictable—changing rapidly as a function of the 
military environment.  Because of the likely increase in the cognitive workload demands on the 
Soldier, automation will be needed to support Soldier performance (Parasuraman et al., 2007).  
Automation refers to when a task that was previously completed by an operator is partially or 
entirely completed by a computer (Parasuraman et al., 2000).  Levels of automation can range 
from the lowest level where the computer offers no assistance and the operator makes all the 
decisions to the highest level where the computer makes all the decisions without the human in 
the loop.  To determine the appropriate level of automation, the effects on operator performance 
to include mental workload, situation awareness, and skill degradation need to be evaluated.  
Further, automation can have costs that need to be considered prior to implementation, such as 
loss of situation awareness and operator complacency.  Research is needed in human-robot 
interaction to determine the optimum level of automation and to what functions or tasks it should 
be applied.  The goal of this research is to investigate if and how automation should be 
implemented to support human supervision of unmanned systems so as to fully realize the 
benefits of force multiplication. 

One way automation can be implemented is adaptively.  In adaptive systems, the allocation of 
tasks between the human and machine agent is dynamic (Barnes et al., 2006).  Adaptive 
automation uses mitigation criteria that drive an invocation mechanism to maintain an effective 
mixture of operator engagement and automation.  The invocation mechanism is triggered by 
whatever measurement process is used to represent the current state of the operator and/or task.  
That measurement can be based on critical events, real-time operator performance, a predictive 
model of operator performance, or a hybrid method which combines one or more of these 
different invocation techniques (e.g., critical events and operator performance), so that the 
relative merits of each method can be maximized in order to minimize operator workload and 
maximize performance.  The benefits of adaptive automation have been empirically 
demonstrated in several different domains to include basic multiple-task (i.e., the Multi-Attribute 
Task battery) and aviation environments (see Parasuraman [2000] for a review).  The initial 
studies were designed to investigate whether the performance costs of certain forms of static 
automation, such as reduced situation awareness, complacency, skill degradation, etc., can be 
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mitigated by adaptive automation.  Most of these studies used either a critical event or model-
based approach to adaptive automation.  A task was allocated dynamically to either human or 
machine control at some point in time during a simulated mission, either when some critical 
event occurred, or as dictated by a simple model of operator and system performance.  For 
example, Hilburn et al. (1997) examined the effects of adaptive automation on the performance 
of military air traffic controllers who were provided with a decision aid for determining optimal 
descent trajectories of aircraft—a Descent Advisor (DA).  The DA was either present at all times 
(static automation) or came on only when the traffic density exceeded a threshold.  Hilburn et al. 
found significant benefits for controller workload (as assessed using pupillometric and heart rate 
variability measures) when the DA was provided adaptively during high traffic loads, compared 
to when it was available throughout (static automation) or only at low traffic loads.  In addition 
to physiological measures of workload, other measures can also be used to assess the workload-
leveling effect of adaptive automation.  Kaber and Riley (1999), for example, used a secondary-
task measurement technique to assess operator workload in a target acquisition task.  They found 
that adaptive computer aiding based on the secondary-task measure enhanced performance on 
the primary task.  

Only a small body of work has investigated the benefits (or potential costs) of flexible 
automation strategies, such as adaptive automation, in the context of robotic systems.  There is 
limited work for the specific case of military unmanned systems and very little is known of the 
particular invocation methods that are best suited to this application case.  The literature on 
automation has shown that the utilization and impact of automation on performance is not 
consistent across individuals (Lee and See, 2004).  High workload, trust, and reliability are major 
factors in the efficacy of automation.  When workload is high the operator may trade off 
situation awareness for decreasing his/her workload by depending on the automation aids, even 
in cases when it was not beneficial to do so.  This is not universally true; in some cases 
automation improved overall performance even when the automated task required intervention 
because the operator’s residual cognitive capacity was allocated effectively among the set of 
tasks (Galster and Parasuraman, 2003; Lorenz et al., 2002).  Too often, the loss of situation 
awareness related to inefficient automation monitoring leads not only to performance decrements 
but also to an increasingly impoverished understanding of the work environment which can 
result in catastrophic errors over time (Endsley, 1996; Mosier and Skitka, 1996; Parasuraman 
and Riley, 1997).  During complex multitasking situations there may be an increase in the trust 
and reliance on automation.  Because of the uncertainty and risk associated with military 
environments, the use of automation must be done with extreme caution.  If automation is 
inappropriately applied this can lead to performance decrements.  For example, providing 
automation to an operator during a low task load period can cause complacency.  However, 
returning a task to an operator (i.e., no automation) during this low task load phases can improve 
performance (Parasuraman et al., 1996).  The Soldier and his/her chain of command need to 
maintain Situation Awareness (SA); keeping the Soldiers out of the loop will not only have 
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consequences for the immediate task but also predispose them to miss important cues signaling 
change (Endsley, 1996).  Conversely, requiring Soldiers to engage in multiple tasks could very 
well have the same consequences.  

We developed a program of research to examine the potential benefits of automation, specifically 
adaptive automation, on operator performance during complex unmanned systems operations.  
The first step was to develop the capability for evaluating human operator performance in 
managing unmanned air vehicles (UAVs) and unmanned ground vehicles (UGVs) so that 
subsequent evaluations of the efficacy of adaptive automation could be conducted.  Cosenzo et 
al. (2006) developed the Robotic NCO simulation (figure 1) for these performance evaluations 
and subsequent automation experiments.  The simulation requires operators to complete three 
military tasks from the same display space:  UAV sensor use for target detection, UGV 
monitoring, and multi-level communications.  

 

Figure 1.  Robotic NCO simulation. 

Cosenzo et al. (2006) used the Robotic NCO simulation environment to examine the 
multitasking requirements imposed on the operator and to identify tasks that were challenging 
and could benefit from automation.  This experiment was used to establish a baseline level of 
unmanned system and multitask performance.  Cosenzo et al. (2006) found that participants were 
good at integrating information received from the UAV and UGV during a simulated 
reconnaissance mission.  However, the multi-tasking requirements of the Robotic NCO 
simulation decreased performance of the individual tasks that participants had to perform in 
addition to supervising the UVs.  For example, communications task performance (e.g., reaction 
time) was degraded when task load was high (i.e., many UAV targets to process and many UGV 
stops to handle).  Based on the results from the first experiment, Parasuraman et al. (2009) 
implemented an ancillary task, change detection embedded into the situation map of the Robotic 
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NCO display, as a potential trigger for adaptive automation.  The change detection procedure 
required participants to identify when an icon changed location on the SA map.  The rationale 
behind this procedure was that the transient and dynamic changes in the operator’s SA could be 
captured by probing their awareness of the simulated battlefield environment via change 
detection performance.  People often fail to notice changes in visual displays when they occur at 
the same time as various forms of visual transients (Simons and Ambinder, 2005; Simons and 
Rensink, 2005; Durlach, 2004).  This change blindness phenomenon has been demonstrated in 
simple laboratory tasks and complex military tasks.  In real life, a corollary exists in that in many 
tactical military operations the operator’s situation display may often be updated without 
warning, so that the operator may miss the change.  Thus, for the Robotic NCO experiments the 
hypothesis was that if automation could improve SA, then change detection performance should 
be enhanced with appropriately applied automation. 

Using the change detection paradigm, Parasuraman et al. (2009) examined the effect of model-
based and operator performance based automation on operator performance in the Robotic NCO 
simulation.  The automation was an Aided Target Recognition System (ATR) that off-loaded the 
responsibility of identifying targets in the UAV imagery from the participants.  The ATR was 
triggered by two methods, real-time assessment of operator change detection performance and a 
predictive model of operator performance.  Results showed that compared to manual 
performance, both performance based and model based automation led to an increase in change 
detection accuracy and situation awareness and a decrease in workload.  In comparison to the 
model based adaptive approach, there was a further increase in change detection accuracy and a 
concomitant reduction in workload with the performance based approach.  

This current experiment complemented the efforts of Parasuraman et al. (2009) and examined the 
effect of task based automation on operator performance, change detection, in the Robotic NCO 
simulation.  Automation was triggered in this experiment based on the level of task difficulty.  
More specifically, we examined the impact of applying an ATR when task load was high vs. 
when task load was low.  We hypothesized that operator performance would be improved when 
the ATR was invoked relative to the conditions where the ATR was not invoked.  Further, the 
ATR would be more effective when task load was high relative to when task load was low. 

Hypotheses 

Performance (i.e., reaction time and accuracy) will improve on the UGV and communications 
task when the ATR is invoked relative to the conditions where the ATR is not invoked.  

The ATR will be more effective (i.e., increased task performance) when task load is high than 
when task load is low, that is when it is appropriately applied relative to inappropriately applied.  

Workload and SA may improve when the ATR is invoked relative to the conditions where the 
ATR is not invoked. 
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2. Method 

2.1 Participants 

Twelve civilians (7 men and 5 women) with no prior experience with the Robotic NCO 
simulation participated in this study.  The mean age was 32.6 years (range: 21–40).  Participation 
in the experiment was strictly voluntary and participants could withdraw from the experiment at 
any time without penalty.  

2.2 Instrumentation 

The Robotic NCO simulation consisted of four military-relevant tasks: 

1. UAV target identification task:  A UAV flew following a series of pre-planned waypoints 
during the mission and received electronic hits from potential targets in the area, displayed 
as small white squares on the imagery.  Participants had to locate and identify targets from 
UAV video imagery.   

2. UGV route planning task:  A UGV moved through the area following a series of pre-
planned waypoints and during the mission the UGV stopped at obstacles seven times and 
requested help from the operator.  Participants had to determine the appropriate course of 
action for the UGV, continue on pre-planned path or re-route the UGV around the obstacle.   

3. Communications task with an embedded verbal SA probe task:  Participants were presented 
messages both auditorally and visually.  They had to monitor the messages and 
acknowledge the message when they heard their call sign.  The messages also requested 
updates on the UGV/UAV status and the location of particular targets to assess SA.   

4. Change detection task embedded within a situation map.  At unpredictable times during the 
mission and after the situation map had been populated to a degree, an icon on the situation 
map (a target previously identified by the participants) changed its location.  Participants 
pressed the space bar when they noticed the change. 

The Demographics Questionnaire (appendix A) is a 10-item questionnaire that requests 
information regarding age, vision and hearing, military service, and computer experience.  

NASA-Task Load Index (TLX) (appendix b):  A subjective rating was given at the end of each 
mission on the participants’ perceived workload as measured by the NASA-TLX questionnaire 
(Hart and Staveland, 1987).  The NASA-TLX is a multi-dimensional rating procedure that 
derives an overall workload score based on a weighted average of ratings on six subscales 
(Mental Demand, Physical Demand, Temporal Demand, Own Performance, Effort, and 
Frustration). 
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Cognitive Compatibility Situation Awareness Technique (CC-SART) Questionnaire 
(appendix C):  A subjective rating of perceived SA was given at the end of each mission, as 
measured by the CC-SART Questionnaire (Taylor, 1990).  Participants rated their experience 
with the task on three dimensions:  Activation of Knowledge, Ease of Reasoning, and Level of 
Processing.  Level of Processing is the degree to which the situation involves, at the low level, 
natural automatic, intuitive, and associated processing, or at the high level, analytic, considered, 
conceptual, and abstract processing.  Ease of Reasoning is the degree to which the situation, at 
the low level, is confusing and contradictory, or, at the high level, is straightforward and 
understandable.  Activation of Knowledge is the degree to which the situation, at the low level, is 
strange and unusual, or, at the high level is recognizable and familiar. 

2.3 Procedure 

Prior to the start of the experiment, the participants were briefed on the purpose and procedures 
of the study and read the Volunteer Agreement Affidavit.  They then completed the 
Demographics Questionnaire.  The Robotic NCO simulation was described to the participants 
and functionality of each button in the simulation was explained. 

Participants were asked to take the role of a robotic operator in a Mounted Combat System 
company (MCS).  The participant conducted a reconnaissance mission for the MCS platoon.  
The MCS platoon was allocated an Armed Reconnaissance Vehicle (ARV) and an information 
feed via an UAV.  Therefore, to replicate actual battlefield assets, the participant used two 
robotic systems, a UGV and a UAV, to complete the mission.  Intelligence has identified areas of 
interest (designated on the common operational picture map with letters) and the UGV had been 
waypoint-planned to look at these named areas of interest.  The UAV had also been waypoint-
planned to view around the areas.  

Participants were told that the UAV, UGV, and verbal SA communications tasks in this 
simulation were coordinated tasks that supported the overall goal—a reconnaissance mission in 
which participants had to be aware of friendly and enemy unit movements and of the positions of 
their UAV and UGV assets.  The participants completed two training missions to ensure that 
they understood the task.  After training, the participants completed 16 missions.  Following each 
mission they completed the NASA-TLX and the CC-SART.  

2.4 Experimental Design 

The experiment was a 2 × 2 × 2 within subjects design.  The within-subjects factors were the 
number of targets to be identified in the UAV Task (low and high), Communications Task (Low 
and High) and Levels of Automation (No Automation and Automation).  For the High and Low 
UAV Task conditions, 20 and 10 targets were presented in the UAV view, respectively.  For the 
Communication task, there were 25 communications received during a mission, 20 callsigns and 
five status questions.  For the High and Low conditions, the participants were presented 
16 callsigns to acknowledge (out of 20) and four callsigns to acknowledge (out of 20), 
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respectively.  In each condition the remaining five communications events were status questions 
about the UGV, UAV, and enemy position.  In the Automation condition, an ATR system was 
invoked at the beginning of the mission, and the participants were not responsible for identifying 
targets in the UAV view.  Participants were instructed to monitor the results of the ATR, since 
they were required at the end of the mission to evaluate the best platoon path to take following 
the reconnaissance mission.  In the No Automation condition, the ATR was not active and the 
participants manually identified UAV targets.  The ATR was invoked in both the high and low 
task load conditions (i.e., UAV and communications) to assess performance during appropriately 
and inappropriately applied automation. 

Participants completed 16 missions (two of each type).  Each mission was 5 min in duration and 
the order of the missions was counterbalanced (see table 1).  

 

Table 1.  Counterbalancing scheme. 

Order 

Participants 
Mission 

1 2 3 4 5 6 7 8 

1,2,3 
High UAV  

Low Comms  
No Automation 

Low UAV  
Low Comms 
Automation 

High UAV 
High Comms 

No Automation

Low UAV 
High Comms 
Automation 

High UAV 
Low Comms 

No Automation

Low UAV  
Low Comms 
Automation 

High UAV 
High Comms 

No Automation 

Low UAV 
High Comms 
Automation 

4,5,6 
High UAV  

High Comms 
No Automation 

Low UAV  
Low Comms 

No Automation 

High UAV 
High Comms 
Automation 

Low UAV  
Low Comms 
Automation 

High UAV 
High Comms 

No Automation

Low UAV  
Low Comms 

No Automation 

High UAV 
High Comms 
Automation 

Low UAV  
Low Comms 
Automation 

7,8,9 
Low UAV  

Low Comms 
Automation 

High UAV 
High Comms 
Automation 

Low UAV  
Low Comms 

No Automation

High UAV 
High Comms 

No Automation

Low UAV  
Low Comms 
Automation 

High UAV 
High Comms 
Automation 

Low UAV  
Low Comms 

No Automation 

High UAV 
High Comms 

No Automation

10,11,12 
Low UAV  

High Comms 
Automation 

High UAV 
High Comms 

No Automation 

Low UAV  
Low Comms 
Automation 

High UAV 
Low Comms 

No Automation

Low UAV 
High Comms 
Automation 

High UAV 
High Comms 

No Automation 

Low UAV  
Low Comms 
Automation 

High UAV 
Low Comms 

No Automation
Order 

Participants 
Mission 

9 10 11 12 13 14 15 16 

1,2,3 
Low UAV  

Low Comms  
No Automation 

High UAV 
Low Comms 
Automation 

Low UAV 
High Comms 

No Automation

High UAV 
High Comms 
Automation 

Low UAV 
Low Comms 

No Automation

High UAV 
Low Comms 
Automation 

Low UAV 
High Comms 

No Automation 

High UAV 
High Comms 
Automation 

4,5,6 
Low UAV  

High Comms 
No Automation 

High UAV 
Low Comms 

No Automation 

Low UAV 
High Comms 
Automation 

High UAV 
Low Comms 
Automation 

Low UAV 
High Comms 

No Automation

High UAV 
Low Comms 

No Automation 

Low UAV 
High Comms 
Automation 

High UAV 
Low Comms 
Automation 

7,8,9 
High UAV  

Low Comms 
Automation 

Low UAV 
High Comms 
Automation 

High UAV 
Low Comms 

No Automation

Low UAV 
High Comms 

No Automation

High UAV 
Low Comms 
Automation 

Low UAV 
High Comms 
Automation 

High UAV 
Low Comms 

No Automation 

Low UAV 
High Comms 

No Automation

10,11,12 
High UAV  

High Comms 
Automation 

Low UAV 
High Comms 

No Automation 

High UAV 
Low Comms 
Automation 

Low UAV 
Low Comms 

No Automation

High UAV 
High Comms 
Automation 

Low UAV 
High Comms 

No Automation 

High UAV 
Low Comms 
Automation 

Low UAV 
Low Comms 

No Automation
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3. Results 

Multivariate analyses of variance (MANOVA) were conducted to examine the effects of UAV 
Task Load, Communication Task Load, and Automation on performance, workload, and SA.  
Performance on the tasks was measured as reaction time and percent correct.  Workload and SA 
were measured by the NASA-TLX and the CC-SART, respectively.  Performance data for the 
UAV task was not analyzed since the participants did not have to identify targets in the UAV 
task for half of the missions.  

3.1 Objective Performance 

3.1.1 UGV Route Planning Task Performance 

Figure 2 is a graph of the mean (standard error) reaction time for the UGV Task.  Results showed 
that that reaction times were shorter in the automation than the no-automation conditions.  The 
decrease in reaction times was larger in the high UAV condition than the low UAV conditions. 

 

 

Figure 2.  Mean (standard error) reaction time for the UGV task. 
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A MANOVA was conducted for UGV task performance.  Results for UGV task performance 
showed a significant interaction of Level of Automation × UAV Task x Communication Task, F 
(2,10) = 3.91, p<.05.  The three way interaction was significant for percent correct, F (1,11) = 
7.85, p<.01 but not for reaction time, p>.10.  There was also a significant interaction of Level of 
Automation x UAV task, F (2,10) = 6.49, p<.01.  The two way interaction was significant for 
reaction time, F (1,11) = 9.51, p<.01 but not for percent correct, p>.10. 

To resolve the interaction of Level of Automation × UAV Task × Communication Task separate 
ANOVAs were conducted for each level of Automation, Communication Task, and UAV Task.  
All three ANOVAs yielded non-significant two-way interactions.  Thus, the three-way 
interaction was not resolvable. 

3.1.2 Communications Task Performance 

Table 2 shows the means (standard errors) for communication task performance.  Performance 
was poorer in the high UAV condition than the low UAV condition,  that is reaction times were 
higher and accuracy was lower. 

A MANOVA was conducted for Communications task performance.  Results for 
Communications task performance showed a significant main effect of UAV task load, F (2,10) 
= 12.78, p<.01.  The main effect for UAV task load was significant for percent correct and 
reaction time, F (1,11) = 6.62, p<.02 and F (1,11) = 14.4, p<.01, respectively.  No other main 
effects or interactions were significant.  

Table 2.  Mean (standard error) communication task performance in 
the low and high UAV task load condition. 

Variable 
 

Level of UAV Task Load 
 

Mean 
(SE) 

Percent Correct 
Low UAV 94.79 (1.76) 
High UAV 90.88 (1.76) 

Reaction Time 
Low UAV 2291.59 (107.35) 
High UAV 2439.08 (89.97) 

3.1.3 Change Detection Performance 

Figure 3 is a graph of the mean (standard error) for the percent of changes detected.  An 
ANOVA was conducted for change detection performance.  Results for change detection showed 
that more icon changes were detected in the Automation condition than the No Automation 
condition.  This pattern was significant for the Low Communication condition but not the High 
condition.  For change detection the interaction of Level of Automation × Communication Task 
and the main effect for Communications Task were significant, F (1, 11) = 5.80, p<.03 and F (1, 
11) = 7.30, p<.02.  Subsequent ANOVAs showed a significant effect of Level of Automation for 
the Low Communication condition, F (1, 11) = 5.88, p<.03 but not the High condition, p>.10. 
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Figure 3.  Mean (standard error) changes detected. 

Results also showed that more icon changes were detected in the Low Communication than the 
High Communication condition when the number of UAV targets was high but not when the 
number of targets was low (see table 3).  More specifically, for change detection, the interaction 
of UAV Task × Communication Task was significant, F (1, 11) = 10.3, p<.01.  Subsequent 
ANOVAs showed a significant effect of Communications Task for the High UAV Task 
condition, F (1, 11) = 12.24, p<.01 but not the Low Task condition, p>.10.  No other interactions 
or main effects were significant. 

Table 3.  Mean (standard error) change detection performance in the low 
and high UAV and communication task load conditions. 

Level of Communication 
Task Load 

 

Level of UAV Task 
Load 

 

 
Mean 
(SE) 

Low 
Low UAV 11.97 (2.76) 
High UAV 15.36 (3.53) 

High Low UAV 9.63 (2.50) 
High UAV 7.03 (1.92) 
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3.1.4 Subjective Performance 

Workload:  figures 4 and 5 are graphs of the mean (standard error) workload scores on the 
subscales and overall score of the NASA-TLX.  

A MANOVA was conducted for the subscales of the NASA-TLX.  Results for subjective 
workload showed a significant main effect for Level of Automation, F (6,6) = 8.72, p<.01.  The 
main effect for Level of Automation was significant for mental demand, temporal demand, 
frustration, effort and performance, F (1,11) = 41.1, p<.01, F (1,11) = 35.1, p<.01, F (1,11) = 
4.74, p<.05, F (1,11) = 12.09, p<.01., and F (1,11) = 15.22, p<.01, respectively. 

 

 

Figure 4.  Mean (standard error) workload scores. 

A second workload analysis was conducted for overall workload (i.e., composite NASA-TLX).  
Overall workload was lower in the Automation condition than the No Automation condition.  
Additionally, the decrease in workload between the Automation and No Automation condition 
was greater when the number of UAV targets was high relative to when the number of targets 
was low (see figure 5).  More specifically, for overall workload the interaction of Level of  
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Figure 5.  Mean (standard error) overall workload.  

Automation × UAV Task and the main effects of Automation and UAV Task were significant, F 
(1, 11) = 12.85, p<.01, F (1, 11) = 27.0, p<.01, and F (1, 11) = 11.84, p<.01, respectively.  
Subsequent ANOVAs showed a significant effect of Automation for the High UAV condition 
and Low UAV Condition, F (1,11) = 27.5, p <.01 and F (1,11) = 17.9, p<.01.  

No other main effects or interactions of UAV Task Load, Communication Task Load, and 
Automation were significant. 

3.2 Situation Awareness 

A MANOVA was conducted for the subscales of the CC-SART.  Results for perceived SA, 
Level of Processing, showed that the interaction of Level of Automation × UAV Task and the 
main effect of Automation were significant, F (1, 10) = 6.14, p<.03 and F (1, 10) = 9.72, p<.01.  
Subsequent ANOVAs showed a significant effect of Level of Automation for the High UAV 
condition, F (1,10) = 25.4, p =.01, but not the Low UAV condition, p>.10.  In the High UAV 
condition, Level of Processing was higher in the No Automation condition (x = 3.88, S.E = .25) 
than the Automation condition (x = 3.20, S.E. = .21).  There were no significant differences for 
Activation of Knowledge and Ease of Reasoning, p>.10.  No other main effects or interactions of 
UAV Task Load, Communication Task Load, and Automation were significant. 
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4. Conclusions 

The objective of this experiment was to examine the effect of task based automation on operator 
performance, change detection, in the Robotic NCO simulation.  More specifically, we examined 
the impact of applying an ATR when task load was high vs. when task load was low.  This 
experiment complemented the work of Parasuraman et al. (2009).  Parasuraman and colleagues 
(2009) used the same research paradigm and automation (an ATR) which was triggered based on 
an individual’s change detection performance.  When performance dropped below a threshold, 
the ATR was triggered.  In contrast, in this experiment the automation was triggered irrespective 
of individual performance.  The ATR was either always on or off.  We examined the benefit of 
automation under high task load and low task load conditions.  The literature on automation 
suggests that the appropriate application of automation (i.e., only during peak task load) can 
enhance operation performance, SA, and a decrease workload.  In appropriately applied 
automation can lead to unintended performance degradation. 

In this experiment, we hypothesized that the ATR would be more effective (i.e., increased task 
performance) when task load is high than when task load is low, that is when it is appropriately 
applied relative to inappropriately applied.  The results of this experiment partially supported our 
hypotheses.  Operator performance (i.e., change detection) did improve when the ATR was 
invoked relative to when it was not invoked.  In addition, ATR was more effective in the low 
communications task condition (high task load).  This result, though seemingly contrary, is 
consistent with findings by Cosenzo et al. (2006) who showed that when the uncertainty of 
communications was high (low communications load) participants took longer to respond to 
communications when they had many UAV targets and UGV requests.  The high-priority but 
infrequently occurring communications pose a particularly high monitoring load on the operator, 
and as a result this task condition benefits from automation.  The automation enhanced the 
operator’s situation awareness of the icon changes on his SA map during the high task load 
period.  A similar result emerged for performance on the UGV task.  The operator responded 
more quickly to the UGV when the ATR was invoked relative to when it was not.  Further, there 
was a decrease in response time between the non-ATR and ATR conditions, when the task load 
of communication task was high (low communications load).  Automation condition did not 
significantly impact communications task performance directly, although the loading of this task 
did affect the other aspects of the Robotic NCO environment.  

Further, this experiment showed that when automation was appropriately applied (high task load 
conditions) workload and SA decreased significantly.  Task load did not affect self-reported 
workload.  This may be due to the fact that the Robotic NCO environment is challenging.  The 
amount of effort expended to complete the low and high task load conditions are still high. 
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The magnitude of the effect of appropriately applied static automation is not as large as that 
reported by Cosenzo et al. (2006) and Parasuraman et al. (2009) for adaptive automation.  Those 
studies, when compared to this one conducted with the Robotic NCO simulation, indicate that 
automation may be a useful mitigation strategy to help offset the potential deleterious effects of 
high cognitive load on U.S. Army robotic operators in a multitasking environment.  The data also 
suggest an advantage for adaptively automating a task vs. statically automation.  Through 
adaptive automation, we can take into consideration individual differences in performance and 
apply automation only on an as needed basis.  When performance stabilizes, the automation can 
be revoked and the operator can re-engage in that task.  As we further understand the efficacy of 
adaptable or adaptive options in multitasking environments, result from simulations should 
transitioned into increasingly realistic simulations.  
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Demographics Questionnaire 
Participant ID     _____ 
 
 
1.  AGE:  _____  
 
 
2.  GENDER:  ___Male   ___ Female 
 
 
3.  Do you wear glasses? ___ Yes ___ No 
 
 
4.  Is your vision corrected to 20/20 with eyeglasses or contacts? ___Yes  ___ No 
 
 
5.  Do you have an apparent hearing impairment?  ___Yes  ___No 
 
  
6.  Are you in the Army?  ___Yes  ___No 
 

If yes, for how many years?  ___Less than 5 years  ___5-10 years ___ 11-15 years     ___16-
20 years ___ 20 years or more 
 

 
7.  What is your rank?  _____  What is your MOS?  ___________________  
 
 
8.  How often do you use a computer?    
 
     ___Never ___Daily  ___Weekly  ___Monthly  ___Once or twice a year 
 
 
9.  Do you use the computer to play games?   ___Yes  ___No   
 
     If yes, how often?  ___Daily  ___Weekly  ___Monthly  ___Once or twice a year 
 
 
10.  Do you play console games (e.g. Playstation2, etc)? ___Yes  ___No     
 
     If yes, how often?  ___Daily  ___Weekly  ___Monthly  ___Once or twice a year 
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Appendix B.  NASA-TLX 
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NASA TLX Questionnaire 
 
 

Participant ID:________________ 
 

TLX Workload Scale 
 
Please rate your workload by putting a mark on each of the six scales at the point which matches 
your experience. 
 
 
 
 
Mental Demand 
 
 
 
 
 
 
Physical Demand 
 
 
 
 
 
Temporal Demand  
 
 
 
 
 
Performance 
 
 
 
 
 
Effort 
 
 
 
 
 
Frustration 
 

Good   Poor 

Low   High 

Low   High 

Low   High 

Low   High 

Low   High 
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Appendix C.  CC-SART 
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CC-SART 
 
 

Participant ID:________________ 
 

For each dimension below please place a mark under the rating value that matches your 
experience with the task you just completed.  
 
 
 
 

Dimension Rating 
 

L
ow

   
 

      H
ig

h 
   

   
   

 1 2 3 4 5 6 7 
 
Level of Processing: 
Degree to which the situation involves at the low level natural 
automatic, intuitive, and associated processing, or at the high 
level, analytic, considered, conceptual and abstract processing. 
 

       

        
 
Ease of Reasoning: 
Degree to which the situation at the low level, is confusing and 
contradictory, or, at the high level, is straightforward and 
understandable.  

       

        
 
Activation of Knowledge: 
Degree to which the situation at the low level, is strange and 
unusual, or , at the high level is recognizable and familiar. 
 

       

 
 
 
 
 
 
 



 
 
NO. OF  
COPIES ORGANIZATION  
 

23 

 1 DEFENSE TECHNICAL 
 (PDF INFORMATION CTR 
 only) DTIC OCA 
  8725 JOHN J KINGMAN RD 
  STE 0944 
  FORT BELVOIR VA 22060-6218 
 
 1 DIRECTOR 
  US ARMY RESEARCH LAB 
  IMNE ALC HRR 
  2800 POWDER MILL RD 
  ADELPHI MD 20783-1197 
 
 1 DIRECTOR 
  US ARMY RESEARCH LAB 
  RDRL CIM L 
  2800 POWDER MILL RD 
  ADELPHI MD 20783-1197 
 
 1 DIRECTOR 
  US ARMY RESEARCH LAB 
  RDRL CIM P 
  2800 POWDER MILL RD 
  ADELPHI MD 20783-1197 
 
 

ABERDEEN PROVING GROUND 
 
 1 DIR USARL 
  RDRL CIM G (BLDG 4600) 
 
 
 



 
 
NO. OF NO. OF 
COPIES ORGANIZATION COPIES ORGANIZATION 
 

24 

 1 ARMY RSCH LABORATORY – HRED 
  RDRL HRM A    J MARTIN 
  MYER CENTER  BLDG 2700  RM 2D311 
  FORT MONMOUTH NJ 07703-5601 
 
 1 ARMY RSCH LABORATORY – HRED 
  RDRL HRM C    A DAVISON 
  320 MANSCEN LOOP  STE 115 
  FORT LEONARD WOOD MO 65473 
 
 1 ARMY RSCH LABORATORY – HRED 
  RDRL HRM DI    T DAVIS 
  BLDG 5400  RM C242 
  REDSTONE ARSENAL AL 35898-7290 
 
 1 COMMANDANT USAADASCH 
  ATSA CD 
  RDRL HRM DE    DR HAWLEY 
  5800 CARTER RD 
  FORT BLISS TX 79916-3802  
 
 1 ARMY RSCH LABORATORY – HRED 
  RDRL HRS EA    DR V J RICE 
  BLDG 4011  RM 217 
  1750 GREELEY RD 
  FORT SAM HOUSTON TX 78234-5002 
 
 1 ARMY RSCH LABORATORY – HRED 
  RDRL HRM DG    R SPINE 
  BLDG 333 
  PICATINNY ARSENAL NJ 07806-5000 
 
 1 ARMY RSCH LABORATORY – HRED 
  ARMC FIELD ELEMENT 
  RDRL HRM CH    C BURNS 
  THIRD AVE  BLDG  1467B  RM 336 
  FORT KNOX KY 40121 
 
 1 ARMY RSCH LABORATORY – HRED 
  AWC FIELD ELEMENT 
  RDRL HRM DJ    D DURBIN 
  BLDG 4506 (DCD)  RM 107 
  FORT RUCKER AL 36362-5000  
 
 1 ARMY RSCH LABORATORY – HRED 
  RDRL HRM CK    J REINHART 
  10125 KINGMAN RD 
  FORT BELVOIR VA 22060-5828 
 
 1 ARMY RSCH LABORATORY – HRED 
  RDRL HRM AY    M BARNES 
  2520 HEALY AVE  
  STE 1172  BLDG 51005 
  FORT HUACHUCA AZ 85613-7069

 1 ARMY RSCH LABORATORY – HRED 
  RDRL HRM AP    D UNGVARSKY 
  POPE HALL  BLDG 4709  
  BCBL 806 HARRISON DR 
  FORT LEAVENWORTH KS 66027-2302 
 
 1 ARMY RSCH LABORATORY – HRED 
  RDRL HRM AJ    J HANSBERGER 
  JFCOM FE 
  115 LAKEVIEW PKWY  STE B 
  SUFFOLK VA 23435 
 
 1 ARMY RSCH LABORATORY – HRED 
  RDRL HRM DQ    M R FLETCHER 
  NATICK SOLDIER CTR 
  AMSRD NSC WS E  BLDG 3  RM 343 
  NATICK MA 01760-5020 
 
 1 ARMY RSCH LABORATORY – HRED 
  RDRL HRM AT    J CHEN 
  12423 RESEARCH PKWY 
  ORLANDO FL 32826 
 
 1 ARMY RSCH LABORATORY – HRED 
  RDRL HRM AT    C KORTENHAUS 
  12350 RESEARCH PKWY 
  ORLANDO FL 32826 
 
 1 ARMY RSCH LABORATORY – HRED 
  RDRL HRM AS    C MANASCO 
  SIGNAL TOWERS 
  BLDG 29808A  RM 303 
  FORT GORDON GA 30905-5233 
 
 1 ARMY RSCH LABORATORY – HRED 
  RDRL HRM CU 
  6501 E 11 MILE RD  MS 284 
  BLDG 200A  2ND FL  RM 2104 
  WARREN MI 48397-5000 
 
 1 ARMY RSCH LABORATORY – HRED 
  FIRES CTR OF EXCELLENCE  
  FIELD ELEMENT 
  RDRL HRM AF    C HERNANDEZ 
  3040 AUSTIN RD RM 221 
  FORT SILL OK 73503-9043 
 
 1 ARMY RSCH LABORATORY – HRED 
  RDRL HRM AV    S MIDDLEBROOKS 
  91012 STATION AVE  RM 348 
  FORT HOOD TX 76544-5073 
 



 
 
NO. OF  
COPIES ORGANIZATION  
 

25 

 1 ARMY RSCH LABORATORY – HRED 
  RDRL HRM DW    E REDDEN 
  BLDG 4  CL 60 
  FORT BENNING GA  31905-5400 
 
 1 ARMY RSCH LABORATORY – HRED 
  RDRL HRM CN    R SPENCER 
  DCSFDI HF 
  HQ USASOC  BLDG E2929 
  FORT BRAGG NC 28310-5000 
 
 1 ARMY G1 
 (CD DAPE MR    B KNAPP 
 only) 300 ARMY PENTAGON  RM 2C489 
  WASHINGTON DC 20310-0300 
 
 

ABERDEEN PROVING GROUND 
 
 11 DIR USARL 
  RDRL CIM G 
   S FOPPIANO 
  RDRL HR 
   T LETOWSKI 
  RDRL HRM B 
   J LOCKETT 
  RDRL HRM D 
   D HARRAH 
  RDRL HRS 
   L ALLENDER 
  RDRL HRS D 
   B AMREIN 
  RDRL HRS E 
   K COSENZO (5 CPS) 
 
 
 



 

26 

INTENTIONALLY LEFT BLANK. 


