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Abstract

The search for superior nuclear radiation detection materials is ongoing. Current

scintillator materials using Thallium doped Sodium Iodide or Cesium Iodide are the

benchmarks for ease of use and quick identification of isotope species. This research

aims to explore Cesium Bromide doped with 1% molar tin (CsBr:Sn-1%) and Cesium

Tin Bromide (CsSnBr3) as candidate materials for a new scintillator. The techniques

of Extended X-Ray Absorption Fine Structure (EXAFS), X-Ray Absorption Near

Edge Structure (XANES) and Cathodoluminescence are used to determine the suit-

ability of CsSnBr3 and CsBr:Sn-1% with Sn4+ as a potential scintillator materials

and explore their crystal and electronic structures. Comparisons with current pub-

lished work by Savchyn et al. [2007] on CsSnBr3 and CsBr:Sn-1% with Sn2+ will

be made. Cathodoluminescence shows the CsBr:Sn-1% with Sn4+ to luminesce at

2.4-eV and 3.0-eV, green and violet respectively, indicating the strong possibility of

using CsBr:Sn-1% as a scintillator.
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THE MATERIAL PROPERTIES OF CsSnBr3 AND CsBr:Sn-1% AND THEIR

POTENTIAL AS SCINTILLATOR DETECTOR MATERIAL

I. Introduction

The search for newer scintillating materials for nuclear detection has been ongoing.

This body of research aims to characterize CsBr doped with 1% molar weight Sn and

CsSnBr3 as candidate scintillation materials. The luminescent properties of CsBr:Sn-

1% and CsSnBr3 has been researched in prior work but has not been characterized

as a scintillator material for nuclear radiation detection [Savchyn et al., 2007].

CsBr:Sn-1% is the focus of this study for a couple of reasons. First, like NaI(Tl),

it is an alkali halide material lending itself to doping. Second, the probablity of

radiation interaction is increased with the high atomic number, or Z number, of

the materials composing CsBr:Sn-1% [Turner, 2007]. Scintillator materials such as

NaI(Tl) and CsI(Tl) are also high Z crystals. Combining these attributes with the

previous cathodoluminescence work by Savchyn et al. [2007] makes CsBr:Sn-1% a

good candidate for scintillation study. Savchyn et al. [2007] states these materials

luminesce in the red and infrared regions and should be studied for luminescent uses.

The work done here will be an extension to research conducted on its crystal structure

using the Extended X-ray Absorption Fine Structure (EXAFS) and X-ray Absorption

Near Edge Structure (XANES) analysis tecniques.

Several analysis techniques are used to describe crystal structure and their as-

sociated electronic structure. EXAFS is the first technique used in this research to

describe the crystal structure. Highly accurate measurements of atomic structure can

be analyzed using EXAFS. For example, distances between atoms within the crystal
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can be measured to within ±0.5-
◦
A. The Sn dopant in the CsBr:Sn-1% crystal is the

main focus of the EXAFS research. The data analysis suggests the Sn to be

3.1±0.2-
◦
A away from the Cs atoms within the crystal. The Sn is also distributed

throughout the crystal. Most CsBr:Sn-1% crystal exhibit a clustering of the tin in

microcrystal strucutcures [Savchyn et al., 2007]. A homogenous distribution of the

Sn may provide a higher probablity of photon interaction as opposed to the clustered

distribution.

Another x-ray absorption structure studied in this work is the XANES structure.

XANES data is taken with EXAFS experiments. Both areas are a part of the en-

tire x-ray absorption structure. The XANES structure is used for fingerprinting the

oxidation state of Sn within the crystals. Samples of SnO+2, SnO2
4+ were used to

perform this analysis due to their known oxidation states. The analysis shows the Sn

within the CsBr:Sn-1% to be in a 4+ oxidation state. The 4+ oxidation state lead

into the luminescence part of this study.

Published literature, Savchyn et al. [2007], shows CsBr:Sn-1% with Sn2+ to lumi-

nesce in the red and infrared when radiated with high energy electrons. Cathodolu-

minescence was used to produce the Savchyn et al. [2007]data and was repeated for

the thesis research on the CsBr:Sn-1% samples containing Sn4+. The data shows a

shift of the luminescence to the violet and blue part of the visible spectrum. The shift

to violet makes the crystal attractive for common nuclear scintillation applications.

Most photomultiplier tubes used in scintillation research are more sensitive to this

part of the visible spectrum.

Current luminescence work, other than CL, for CsBr:Sn-1% or CsSnBr3 with Sn4+

was not found during the literature review. Current work with CsBr species involves

Europium dopants within the matrix [Zorenko et al., 2003]. In the Zorenko et al.

[2003] work the CsBr:Eu samples contained a 0.42% mol Eu concentration. A He-
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Cd laser with excitation wavelength of λ = 325-nm was used [Zorenko et al., 2003].

Light Emitting Diodes (LED), in the UV range, were also explored but never used.

Other Eu dopant photoluminescence experiments shocased this technique [Weidner

et al., 2007]. Photoluminescence experiments using gamma ray sources would be the

next step with the CsBr:Sn-1% and CsSnBr3 research. Some photoluminescence work

was performed for this research but was not included due to its poor quality. This

could be improved by using larger samples of CsBr:Sn-1% and CsSnBr3. The larger

crystals could be cut and formed for optical coupling to a PMT. The crystals used

in this experiment were 5-mm in diameter or less with very rough surfaces. Thus,

optical coupling would be difficult at best.

Impurities were found in the crystals via the EXAFS data. The CsBr:Sn-1% in

particular shows a Calcium K-edge implurity located closely to the Sn L-III edge

which was the edge of interest. To further characterize the impurities in the CsBr:Sn-

1% and CsSnBr3 crystals the X-Ray Fluroescence (XRF) technique was used. Other

impurities were found in the both CsBr species. Yet, there is no evidence suggesting

these impurities affected the outcome of the cathodoluminescence experiments. The

Ca impurity was found in both CsSnBr3 and CsBr:Sn-1% in very small ammounts

of approximately 2% or less. In some experiments it was not even found. The XRF

data can be found in Appendix F.
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There are a few potential benifits to this research. A new crystal with a high

resolution is possible. Faster decay times could also be discovered. Both CsBr:Sn-1%

and CsSnBr3 could prove to be the next scintillator material of choice. The lifetime

of the decay and compton spectrum response need to be measured to draw these

conclusions. The research for this thesis aimed, first, to provide information on the

luminescent properties of these crystals with Sn in the 4+ state. The second goal was

to make a first order assesment on their potential as scintillators.

Both goals were confirmed primarily through cathodoluminescence. The CsBr:Sn-

1% crystal is the predominant candidate crystal using cathodoluminescence. The

CsSnBr3 crystal produced very little returns. The opaque nature of CsSnBr3 leaves

visible light interaction to surface effects at best. A scintillator must be able to

pass the light it generates through its volume for registration in a PMT system.

The cathodoluminescence results for both crystals clearly suggest CsBr:Sn-1% as a

superior scintillator candidate.
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II. Crystal Structure and Luminescence Theory

2.1 Extended X-Ray Absorption Fine Structure (EXAFS)

All elements in the periodic table exhibit a characteristic absorption interaction

with x-rays and other high energy photons such as gamma rays. When these photons

interact with a material a few interaction can occur. The photons can pass through

the material without interacting. They can also reflect off the material. Absorption

can also occur within the material. Finally, the photons can be attenuated in intensity

by absorption and reemission from atoms in the material. The last three interactions

reduce the intensity of the original photon stream. This reduction in initial intensity

is energy and material dependent. Figure 1 shows the absorption edges of Al, Fe,

Sn, Pb, and U from Turner [2007]. These edges occur at the threshold of ionization

energy for the respective shells K, L and M, etc.

Material attenuation is the basic principle where EXAFS theory starts. Textbook

data commonly shows the linear attenuation coefficient, µ/ρ, for a particular photon

or heavy charged particle as shown in Figure 1. The data contains a very fine structure

which is described by EXAFS theory. The material attenuation equation is:

I = Ioe
−µ(E)x, (2.1)

where I is the observed intensity of X-Rays after passing through the material, Io

is the initial intensity, µ(E) is the material linear absorption coefficient dependent on

energy and x is the thickness of the material. Since intensity is a function of energy

and the initial energy is known from the synchrotron source, the equation can be

solved for µ(E)x and plotted as a function of incoming energy to obtain information

found in Figure 2.
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Figure 1. The linear attenuation coefficients of Al, Fe, Sn, Pb, and U are shown here
from Turner [2007]. The absorption edges are up in the upper left of the graph where an
abrupt stair-like structure is noticed. This is the same structure in Figure 2. The lack
of scatter features is noticeable. Figure 2 provides more detail into the fine structure
of the crystal.

The EXAFS analysis typically starts at 100-eV to the right of the absorption edge

and continues for another 1000-eV. Peaks of the oscillations in the spectrum represent

atoms in the crystal. That is, they reveal distances between atoms via scattering.

This occurs when the incoming x-ray excites an inner shell electron. In the L-III case

this means the 2p3/2 shell. Figure 3 shows the incoming photon hitting the electron

atom/electron complex. The photoelectron propagates through the material running

into neighboring atoms and scattering until the photoelectron leaves the material and

is measured.
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Figure 2. Sn L-III x-ray absorption edge. The plot shows the variation of xµ(E) as a
function of x-ray energy-E. This is a very characteristic EXAFS plot and contains much
information about the crystal structure and electronic structure within the crystal. The
fine structure is more noticeable as compared to Figure 1

.

The process shown in Figure 2 is the result of the photoelectric effect. In the case

of Figure 4 an x-ray is used to excite a K shell electron out of its orbit and into the

crystal structure. When the electron leaves the atom into the continuum it behaves

called a photoelectron and exhibits wavelike properties. These combined physical

processes produce the EXAFS and XANES structures.

Some notable features found in Figure 2 need to be discussed. The absorption edge

is the most apparent feature. It is the vertical edge. For Sn, the L-III edge happens

to be 3929-eV. No matter what material Sn is included in, if the monochromator

scans across the L-III edge of Sn this absorption feature will be observed within this

area. Thus, the absorption edge is not dependent on the material Sn is included in.

This feature gives rise to the ability of material identification based on the EXAFS
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Figure 3. The initial photoelectron is shown as the solid circles traveling from the
target atom to the first shell neighbors. The dashed circles are the representation of
the scattered photoelectron. These interactions are revealed in the EXAFS data where
Ro can be measured [Kelly, 2009a].

structure of a material. There is more spectral variations shown in Figure 2 as

compared to Figure 1. These spectral variations are caused by the reflection and

scattering of the photoelectron inside of the material before it leaves the material

and is measured. An illustration of the scattering and reflection is shown in Figure

3. Other features such as the XANES structure can reveal the electronic structure of

the material.

The neighboring atoms scatter in near-symmetry in equidistant shells. The dis-

tance to these shells is one of the primary outcomes of EXAFS analysis. The accuracy

of these distances can be measured to within ±0.5-
◦
A revealing a highly accurate struc-

ture to the crystal. EXAFS analysis can also be used in amorphous matrices to detect

specific bond distances. Doped samples can be analyzed for dopant distribution. This

will be performed in this analysis with the CsBr:Sn-1% samples.
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Figure 4. The photo electric effect is the ejection of an inner shell electron. The K-
edge electron is shown as the ejected electron here. In the Figure 2 example the L-III
electron is ejected from x-ray excitation. The edge feature is caused by the energy
requirement to eject the selected electron. In the L-III case of tin, the energy required
to do this is 3929-eV. The Figure is from Newville [2004].

The X-Ray Near Edge Absorption Structure (XANES), is the first peak-like struc-

ture following the edge structure. If the oxidation state of a truth material is known,

the position of the XANES structure can reveal the oxidation state of the same

atom species in the material of interest. The truth material can be elemental or a

compound. The compounds of SnO2+ and SnO2
4+ were used in this study. The char-

acteristic absorption edge will always appear in the same area for the atomic species

but the XANES can move depending on the oxidation state. The XANES structure

shift is due to the change in the Coulomb force. When the oxidation state of an

atom is higher, or more positive, the required energy to liberate the inner electron

shells, is higher due to the greater attraction of the electrons to the nucleus. Con-

versely, when the oxidation state is lower, the Coulomb force is more balanced. Less

energy is required to achieve excitation when the attractive force is not as great. This

phenomena can be seen in Figure 5.

In this example two oxides containing Chromium exhibit the XANES structure

at different energies. This is due to the different oxidation state of Cr6+ and Cr3+.
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Figure 5. In this Chromium Oxide example the Cr3+ XANES structure appears at a
different energy than the Cr6+ [Newville, 2004].

This attribute will be demonstrated later with the CsSnBr3 and CsBr:Sn-1% data.

A similar example to the XANES technique performed in this research deals with Pu

contamination at Rocky Flats. Rocky Flats was a Pu processing plant for nuclear

weapons until 1989 [Clark, 2002]. Figure 6 shows the XANES analysis performed for

the Rocky Flats cleanup.

XANES structures shown in Figure 6 demonstrate the position of XANES is

proportional to the oxidation state. Higher oxidation states exhibit higher energy

XANES structure peaks. The Pu studies on Rocky Flats led to the appropriate

remediation actions based on the Pu interaction with the water tables in the area

around Rocky Flats. The data sets ultimately saved taxpayers millions of dollars in

unnecessary cleanup actions [Clark, 2002].

The XANES and EXAFS structures are caused by the interference of the scat-

tering atoms in the crystal. If the absorbing atom were isolated the EXAFS the

spectrum would look like sharp edge of U in the 1. The real world case presents a

different set of data. A presentation of the ideal case is in Figure 7.
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Figure 6. Pu standards in oxidation states of 3+, 4+, 5+ and 6+ were used to identify
the Pu pollution in the Rocky Flats area. The identification of the Pu4+ oxidation state
aided environmental models in determining the area affected by Pu the leaks [Clark,
2002].

The initial interaction of the x-ray is shown coming in from the left. The x axis

is the representation of Eo of the target atom. When the energy of the x-ray is

sufficient the target electron is boosted to the higher level continuum in the form

of a photoelectron. The probability of absorption is shown on the right side of the

graph and is the absorption spectra rotated to the vertical. The cross section for

absorption increases drastically until the ionization energy is achieved for the target

electron orbit. The absorption spectrum is featureless due to the lack of neighboring

atoms for the photoelectron to interact with. The EXAFS and XANES structures

are caused by the introduction of neighboring atoms in the crystal.

A few interactions can occur when the photoelectron encounters the neighboring

atoms in the crystal. The photoelectron can be either absorbed, scattered or reflected.

Another case occurs when the photoelectron is first scattered, travels to another
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Figure 7. The initial interaction of the x-ray is shown coming in from the left. The x
axis is the representation of Eo of the target atom. When the energy of the x-ray is
sufficient the target electron is boosted to the higher level continuum in the form of a
photoelectron. The probability of absorption is shown on the right side of the graph
and is the absorption spectra rotated to the vertical. The cross section for absorption
increases drastically until the ionization energy is achieved for the target electron orbit
[Newville, 2004].

atom in the crystal and reflects back to the original absorbing atom. Looking at

the simple reflection case can explain the EXAFS and XANES structure. When the

photoelectron from Figure 7 travels to the first shell neighbor and reflected back to

photoelectron wave function is modified in phase and amplitude. Figure 8 depicts

this interaction.

The properties of the reflected photoelectron wave are dependent on the reflecting

atom [Newville, 2004]. The absorption spectrum shows the constructive and destruc-

tive interference of the ideal photoelectron reflection shown in blue. Thus, the spectra

following the absorption edge is attenuated causing the XANES and subsequent EX-

AFS structures at higher energies.
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Figure 8. The reflected photoelectron wave representation is shown in the red. The
reflecting atom attenuates the photoelectron wave in phase and amplitude. The ab-
sorption spectrum shows the constructive and destructive interference of the ideal
photoelectron reflection shown in blue. Thus, the spectra following the absorption
edge is attenuated causing the XANES and subsequent EXAFS structures at higher
energies.

In the case of the CsBr:Sn-1% the published oxidation state of Sn in the CsBr

matrix is 2+ [Savchyn et al., 2007]. The XANES analysis will show the Sn samples

have an oxidation state of 4+. The published Cathodoluminescence peaks [Savchyn

et al., 2007] for CsBr:Sn-1%, Sn2+, are shifted from red and infrared towards the

violet blue end of the visible spectrum for the Sn4+ samples. Once the raw data is

taken and plotted, as in Figure 2, it is normalized to reduce µ(E) from 0 to 1 to

represent the absorption of one x-ray in one atom [Newville, 2004]. This is performed

in the calculation

χ(E) =
µ(E)− µo(E)

∆µ(Eo)
, (2.2)

where χ(E) term is the normalized oscillatory part of the absorption coefficient µ.

µ(E) is the measured absorption coefficient. The µo(E) term is the theoretical ab-

sorption coefficient. It represents the absorption and interaction of one atom isolated
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from any neighboring atoms. It is the ideal case and is calculated based on a wave

equation which represents the photoelectron traveling away from the atom. The de-

nominator term, ∆µ(Eo) represents the edge step height. That is, the difference of

the pre-edge normalized µ data from the post-edge normalized µ data or basically

the height of the step in the staircase.

The data is then converted into k space using

k =

√
2m(E − Eo)

~2
, (2.3)

where m is the rest mass of the electron, E is the measured energy and Eo is the

ionization energy of the electron level of interest. The data is transformed into k

space in order to solve the governing equation of EXAFS analysis which is covered in

Appendix A. From k space a Fourier Transform is performed on the data. This puts

the data into R space or the radial distribution of the neighboring shells as seen in

Figure 3. Spatial analysis can then be performed on the material. This is done by

taking the background subtracted EXAFS data, defined by the k and R data, and

fitting a pre calculated theoretical model. More detail on this process will be provided

after introducing the EXAFS equation.

The k values are then loaded into the EXAFS equation seen below:

χ(k) =
∑
j

Nje
−2k2σ2

j eRj/λ(k)fj(k)

kR2
sin[2kRj + δj(k)], (2.4)

where Nj is the number of atoms in the shell, e−2k2σ2
j is the Debye-Weller term, eRj/λ(k)

is the scattering interference reduction term, Rj is the radius of the shell, fj is the

amplitude change of the scattered photoelectron wave function and sin[2kRj + δj(k)]

is the modulated function of the original scattered electron wave equation ψ. A

thorough discussion is found in Appendix A for the derivation of Equation A.1. The
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desired end-state is the solutions to the EXAFS equation, A.1, giving the radius to

the neighboring atoms, Ro, the change in the half path phase shift, ∆R, the energy

shift of the edge, Eo, the mean squared displacement term, σ2, and the number of

atoms in the shell, N [Kelly, 2009b]. Some of these terms are not found in the EXAFS

equation but are analogous to the terms within the equation. The Ro is equivalent to

the Rj term for one shell. The ∆R is the difference, or uncertainty, of the theoretical

model to the measured data. N is usually known from the crystal structure. If N

is not known, it can be found by picking the values of the pre-calculated theoretical

models and obtaining a good fit to the data. The σ2 is found in the the Debye-Weller

term and is solved for during the comparison to the theoretical values. The Eo value

is deduced by running the calculated EXAFS data back through the derivation to

Equation 2.2. The theoretical value of Eo, which is actually the starting point of the

entire process, is compared to the measured value which would have given the answers

to the EXAFS equation. Table 1 lists the acceptable limits for these measurements.

Table 1. Acceptable Thresholds for EXAFS Measurements [Kelly, 2009b].

∆R < 0.5-
◦
A

σ2 0.003-0.020-
◦
A

2

∆Eo < 10-eV

The post processed data is then compared to theoretical calculations of the ma-

terial structure. These theoretical calculations are possible if the material structure

is known or even somewhat known. In the case of this study the material is a crystal

with a well known structure.

Most EXAFS analysis can be carried out to the second shell with the ±0.5-
◦
A

uncertainty [Als-Nielsen and McMorrow, 2001]. The third shell information is also

attainable with extensive data. The structure of most materials can be obtained using

a compilation of second shell data of most or all of the atoms in a material. This also
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depends on the atom, the electron shell of interest and synchrotron capabilities.

The pre-knowledge of the crystal shape helps in processing EXAFS data. Crystal

structures are described by a few methods. The ATOMS program, or web service,

uses the space group description of the crystal. First, a crystal space group is chosen.

The space group for CsBr:Sn-1% and CsSnBr3 are both of the Pm3m space group.

This space group contains assorted cubic structures. The CsBr space group was used

to fit the data for the CsBr:Sn-1%. The CsSnBr3 had to be defined based on the

known crystal structure provided by [Cole et al., 1990]. Three lengths (a,b and c) are

needed for describing the faces of a unit crystal structure. If only one measurement

is given, then the other two are equal to this measurement. Three angles are used to

describe the angular distribution between the corners of the unit crystal structure.

Likewise, if one angle is given, the other two are equal to the first angle. Cubes and

other complex structures, for example, can be described in this manner.

Figure 10 shows and example of powder Sn data. The Sn data was used as a

truth sample for XANES analysis and also for practice. The lattice constants for Sn

in the Beta state (βSn) are a=5.81970-
◦
A, b=5.81970-

◦
A and c=3.1750-

◦
A. The crystal

structure of (βSn) is I 41/amd as shown in Figure 9.

The βSn structure gives insight into what is expected in an EXAFS fit. The

3.01617-
◦
A distance described in Figure 9 should be seen as a large peaks in R space.

R space is really a magnitude of the Fourier transform outcome. The R function

has imaginary parts which are lost during the production of the R space plots. The

imaginary and real oscillating functions can be viewed. However, the most meaningful

information is found when the magnitude is taken into account. The results are shown

in Figure 10 and Table 2. The fit in Figure 10 yield results found in Table 2.
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Figure 9. The unit βSn structure shows the Sn atoms throughout the rectangular struc-
ture. The lattice constants define the edge lengths of the rectangular parallelepiped
shape. The figure shows Sn atoms closer than any of the lattice constants. Thus, the

R distance of 3.01617-
◦
A is possible even though it is shorter than any of the lattice

constants. Figure adapted from NRL [2004].

Table 2. Results from first shell fits of βSn.

R 3.191867-
◦
A

∆R 0.175667-
◦
A

σ2 0.032582-
◦
A

2

So
2 -1.828261

N 4.000000
∆Eo 3.270141-eV

The CsSnBr3 and CsBr:Sn-1% structures are cubicle as compared to the rectan-

galloid structure of βSn. The crystal structure of CsBr can be used to describe the

CsBr:Sn-1% sample. CsBr is a starting point for the both CsSnBr3 and CsBr:Sn-1%.

As the Sn dopant is increased in the CsBr the crystal changes from CsBr:Sn-1% to

CsSnBr3. That is, Sn becomes a regular occurrence in the crystal once the concentra-

tion of Sn is the same as Cs and becomes CsSnBr3. CsSnBr3 and CsBr are members

of the pm3m space group. Although both crystals are part of the pm3m space group

their structures are vastly different. CsSnBr3 is part of the E21 subgroup of pm3m

and CsBr:Sn-1% is part of the B2 subgroup. Figures 11 and 12 will show the differ-

ence between the two crystals. The position of the Br changes in the lattice as Sn is
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Figure 10. The first shell of Sn in the β phase is at 3.01617-
◦
A. The data was processed

in Athena and then fit using Artemis. The blue line is the processed data and the red
line is the first shell fit using the pre-calculated theoretical paths of the photo electron
wave traveling to the first neighbor shell and returning back after reflection.

added. Figure 11 shows the crystal structure of CsBr.
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Figure 11. The unit structure of CsBr is shown here. The pm3m structure places
either Cs or Br at the center. Cs is chosen for simplicity. To balance CsBr there is one
Cs1+ for every Br1−. Figure from [NRL, 2004].

The structure of CsSnBr3 places Sn at the center, Cs on the corners and Br on

the faces of the cube. The distances between the atoms are different as the lattice

constant of CsBr is 4.2953-
◦
A while he lattice constant of CsSnBr3 is 5.8040-

◦
A. Figure

12 shows the structure of CsSnBr3.

Figure 12. The CsSnBr3 structure is in the same pm3m group as CsBr. The difference
is that CsSnBr3 is part of the E21 subgroup while CsBr is of the B2 subgroup. Here,
the grey spheres are the Cs atoms, red spheres are Br atoms and the green sphere is
Sn. Figure from [NRL, 2004]
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2.2 Cathodoluminescence (CL) Theory

Cathodoluminescence can simulate an environment encountered by scintillating

materials. Instead of gamma rays, neutrons or alpha particles the bombarding radi-

ation is a stream of electrons. The excitation is due to the coulomb force interaction

of the stream of electrons penetrating the material [Hawkes, 2007]. The incoming

electrons excite valence band electrons into the conduction band of the material if

the energy threshold for this interaction is met. This energy threshold is usually ap-

proximately 3 times the band gap energy [Hawkes, 2007]. Luminescence occurs when

the excited electron decays back to another interim state or to its original place. This

process is described as the creation of an electron-hole pair [Hawkes, 2007]. When the

electron leaves its shell the vacancy left behind can remain empty or be filled with

another electron from the continuum or the outer shell of the atom. It is advanta-

geous to nuclear detection if it is visible luminescence. X-rays, Auger-electrons and

other electrons are also emitted in the process.

A scintillator works on the same band gap excitation principle [Knoll, 2000]. Cer-

tain crystals demonstrate the ability to accept dopant atoms in their structure. In

the case of scintillators this provides interim states for electrons to excite to. Figure

13 demonstrates this principle.

Figure 13. In most scintillator materials the energy band gap makes the probability
too low for nuclear radiation to excite an electron to the conduction band. A dopant
is added to insert more options for the electron to occupy. These transition levels
can also be a ladder to the conduction band but this is not necessary for scintillation
luminescence as the picture demonstrates. Thallium doped Sodium Iodide is a good
example and is a widely used material. [Knoll, 2000]
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CL is the primary tool for revealing the luminescence properties of the CsBr

crystal species in this study. The published luminosity curves for CL show peaks of

luminosity for CsSnBr3 and CsBr:Sn-1% to range in the red and infrared at room

temperature [Savchyn et al., 2007]. Figure 14 shows the published data [Savchyn

et al., 2007].

Figure 14. This thesis is aimed at comparing the data at 290K. The equipment setup
limited the experiment to room temperature. The figure data shows a response at
2.25-eV for CsBr:Sn-1% which is in the yellow to green region. The CsSnBr3 shows a
peak around 1.75-eV which is around the red region [Savchyn et al., 2007].
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The data taken for this thesis occurred around 290K, or room temperature [Savchyn

et al., 2007]. The lower three graphs of Figure 14 are at the 290K temperature

[Savchyn et al., 2007]. Of more particular interest are the graphs for CsSnBr3 and

CsBr:Sn-1%. The CsSnBr3 exhibits a peak around 1.75-eV which is 709-nm in the

red portion of the visible spectrum. CsBr:Sn-1% exhibits a small peak in the same

area. CsBr:Sn-1% has a more intense peak at 2.25-eV. This falls into the yellow to

green portion of the visible spectrum. The intensity is different for each crystal. The

CsSnBr3 1.75-eV peak is at 75 intensity units while the CsBr:Sn-1% peak is at 7-8

intensity units. This suggests that CsSnBr3 may be a superior choice if intensity is

the most important attribute for scintillation.

The red luminescence of the CsSnBr3 crystal makes it an attractive option for scin-

tillating material [Savchyn et al., 2007]. However, the green emission of the CsBr:Sn-

1% crystal may be of interest also. The fact the Sn is in the different valence, 4+

vs. 2+, makes the research novel. A literature search has shown luminescence and

crystal structure studies on CsBr species with Sn4+ have not been done before.
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III. Experimental Setups

3.1 EXAFS

The synchrotron produces electromagnetic radiation in the ultraviolet to the in-

frared portions of the spectrum. The Double Crystal Monochromator (DCM) line

at CAMD utilizes the X-Ray portion, 1-keV to 12-keV, of the synchrotron radiation

[CAMD, 2008]. Figure 15 shows most of the tuning equipment for the DCM line.

Figure 15. The DCM line is the x-ray line used for EXAFS, XANES and other x-ray
absorption analysis techniques. The double monochromator can be seen on the right
side of the image. X-rays exit the synchrotron at various wavelengths. A monochroma-
tor is used to tune the x-rays to the desired energy, or Io. The entire line is kept under
vacuum to reduce x-ray interactions with air or other molecules before they hit the
samples. The tin foil is used to retain heat during beam line ”baking”. The separate
lines at CAMD are baked intermittently to help release molecules that build up in the
lines. Any liberated molecules are quickly expelled in the vacuum process.

The schematic in Figure 16 shows a clearer depiction of the beam line setup.

The x-rays travel from left to right in Figure 16. The two gates are used for safety.

They are shut when the DCM line is not in use and during experiment setup. This

reduces the exposure to the experimenters. The beam line and experiment hutch are

surrounded by lead-lined walls. Any glass used between radiation areas and personnel

areas also contain lead.
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Figure 16. The schematic of the DCM line shows a couple of gates used for safety. The
double chromatic monochromator tunes the x-ray to the desired energy.

After Io is measured in a helium chamber the X-Rays are free to interact with the

sample in the experiment hutch. A Canberra 13 element High Purity Germanium

(HPGe) diode array detector is used to read the photoelectrons as they leave the

sample with the absorption structure information in the form of attenuated energy

[CAMD, 2008]. Figure 17 shows the setup of the incoming beam line, sample holder

and HPGe instrumentation.

The data taken for this thesis was not obtained during the time of these pictures.

The procedures for executing an experiment are as follows. First, a sample is mounted

on mylar tape. The mount is then placed in the beam line path while the beam line is

shut off. A couple of safety measures are in place to ensure personnel are not exposed

to the beam line when it is operational. Dosimeters are worn at all times while in the

synchrotron facility. After all safety precaution measures have been accomplished a

data run can commence. A DCM specialist usually aids in all of these procedures.

The DCM specialist will then set up the computer acquisition system according to

experimental parameters. These parameters include beginning and ending energy

selection, integration time of the HPGe detector and energy step size. An acquisition
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Figure 17. The High Purity Germanium (HPGe) detector is seen behind the sample
holder. The x-ray beam comes in from the left. The HPGe detector is multichannel
and tuned for specific energies.

cycle can typically take 60-90 minutes depending on the selected parameters. Once

a run is complete the data is ready to process.

The data analysis is done on a number of software packages. The software package

used for this thesis include Artemis, Athena and Hephaestus [Ravel and Newville,

2005]. Artemis and Athena are based on a legacy code written in Fortran called

FEFF [Rehr and Albers, 2000]. FEFF is still in use. Artemis and Athena are a GUI

interface to the FEFF program. FEFF involves changing crystal theoretical physical

parameters to produce multiple scattering paths based on the crystal structure. Key

EXAFS values, as described in the EXAFS theory section, can then be solved for

based on theoretical calculations of these multiple scattering paths. Appendix B

includes a more thorough discussion of how data is processed in these programs.
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3.2 Cathodoluminescence Equipment

Cathodoluminescence is usually performed with a Scanning Electron Microscope

(SEM) [Hawkes, 2007]. It can also be performed using a Cathode Ray Tube (CRT)

[Ozawa, 1990]. However, highly magnified images, up to 500,000 times, are available

via the SEM. The electron energy and current can also be changed quicker with an

SEM. The SEM at AFIT is located in the clean room of building 644. CL is used for

studying semi-conductors, scintillation material and phosphor screens [Ozawa, 1990].

Figure 18 shows the SEM and attached CL instrument setup.

Figure 18. The SEM is capable of providing 500,000 times magnification for sample
imaging. The CL apparatus is on the left side of the image labeled monoCL made by
Gatan. A set of computers to the right of the instrument run the SEM and the Gatan
CL instrument separately.
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The SEM at AFIT is only capable of room temperature measurements. Room

temperature in the clean room is ≈71◦F. The Savchyn et al. [2007] data was taken

at 290K, approximately room temperature, and 77K which is liquid nitrogen tem-

perature. Since cryogenic cooling would not be assumed for a future CsBr:Sn-1%

instrument for this thesis, room temperature was adequate for data acquisition. The

procedures were simplified and the data requirement was reduced.

The procedures for executing an experiment using the SEM/CL instruments are

as follows. First the sample is mounted on a sample pedestal with carbon based tape

as seen in Figure 19. The sample must be less than 1-mm in height. Otherwise the

CL mirror will be damaged when it is used. The pedstool seen in Figure 19 fits into a

mount inside the SEM. The mount can be moved to a desired location and orientation

for imaging with the SEM and analysis with the CL instrumentation.

Figure 19. The sample size for the SEM must be less than 1-mm in height. It also
cannot go over the edges of the pedestal as seen here. The carbon tape is used to keep
the samples from moving during the vacuum process. A pen is included in the picture
for scale.
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The carbon tape is very sticky to keep samples from moving during the vacuum

processes or an accidental tip over of the pedestal during insertion or removal from the

SEM. Removing the crystal samples from the carbon tape sometimes pulverized them.

If this occurs the mess needs to be cleaned up due to the clean room environment.

Figure 20. The sample exchange chamber is where a vacuum is drawn on the sample
and then inserted into the SEM chamber via the pushrod seen protruding from the
chamber. The sample pedestal is seen in the foreground with a measuring standard.
The entire height of the sample and pedestal must be less than 1-inch to fit under the
monoCL mirror for CL analysis. Otherwise, damage can occur to the mirror when it
is brought into position for analysis.
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Next, the pedestal is screwed on to the sample placement rod and drawn into

the sample exchange chamber as seen in Figure 21. The exchange chamber slides

up against the SEM vacuum chamber. The exchange chamber is then evacuated

equivalent to the vacuum of the SEM. Vacuum pressures are necessary to reduce

electron interaction with atoms in the atmosphere.

Figure 21. The pedestal is screwed onto the pushrod. The pushrod is then pulled back
into the exchange chamber. The knob below the MV1 sticker opens the door between
the SEM and sample exchange chambers. The door can only be opened when a vacuum
is pulled on the sample exchange chamber. After the sample is pulled back into the
exchange chamber, the exchange chamber is pushed against the SEM and the vacuum
is pulled.

Next, a door between the sample exchange chamber and the SEM chamber is

opened and the sample pedestal is pushed into a mount located below the area where

SEM beam will be active. Once the placement rod is removed the door between the

sample exchange chamber and the SEM chamber is closed. The high voltage can then

be turned on to begin SEM imaging and CL analysis.
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After the pedestal mounted in the SEM, imaging of the samples can begin. To

get a really good focus it is best to focus at the highest magnification. This is done

so that the sample is in focus at lower magnification levels. A good focus is needed

to determine which parts of the crystal are being illuminated during CL analysis.

A software package controls pedestal position and the imaging specifications for the

SEM. The detailed procedures will not be provided here. A lab technician must train

and certify a user before they are allowed to use the SEM machine. This is also

needed for the CL instrument which is run off a separate computer system. A few

images were acquired using the SEM but not used for analysis. They are provided

here as a sense of microscopic material characteristics.

Figure 22. The CsBr:Sn-1% sample is shown close up. The first notable feature is the
fleck of The CsBr:Sn-1% to the upper right. Both CsBr:Sn-1% and CsSnBr3 are both
brittle. The surface is rough for both samples, as also seen in the right figure. The
CsBr:Sn-1% seems to luminesce very brightly under the SEM conditions shown here.
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Once the SEM images have been acquired the CL analysis can be executed. CL

analysis is performed via the Gatan monoCL instrument attached to the SEM. A

different software package controls the CCD data acquisition. The CCD is Si based

and has a response between 380-900-nm. Calibration is performed with a well char-

acterized visible light lamp. The instrument can be calibrated with other wavelength

sources but they are not available. The data produced is intensity in counts versus

wavelength in 0.22-nm intervals. The data must be converted by the user if energy

units are desired instead of wavelength. Appendix D covers this process. The inte-

gration time and number of frames can be changed in the software.

The experiments executed for this thesis were primarily done in the 380-620-nm

range. This was done as there was very little response from the crystals past 620-

nm. All data runs were summed frames of 100 second integrations over three frames.

That is, each data run took 300 seconds, or five minutes. This integration scheme

was found to be optimal to get the sharpest peak data for the shortest ammount of

time. An example of a data frame can be seen in Figure 23.

Figure 23. In this image the raw data counts are shown with two regions of interest
(ROI). Gaussian fits put the peaks at 402-nm (3.1-eV) and 523-nm (2.4-eV).
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The software analysis package includes some features such as the Gaussian fitting

routine. An ROI must be defined around the peak of interest. The data shown in

Figure 23 has a double peak according to the Gaussian fitting routine. As mentioned

in the CL theory section these wavelengths translate to 3.0-eV and 2.4-eV, or the

violet and green parts of the visible spectrum. The Gatan monoCl SP software also

computes the intensities as a function of energy in electron volts. A MATLAB code

was used to mesh two separate spectrums for a range of 1.6-eV to 3.5-eV. A MATLAB

routine was also written to find the energy peaks as an exercise in converting intensity

as a function of wavelength to intensity vs. energy. This is done employing Equation

6.4 found in Appendix D. In order to perform this, the data needs to be saved in the

program as a text file. It can then be read into MATLAB and analyzed according to

any numerical analysis routine desired by the experimenter.

The equipment details for the SEM and the monoCL instrument can be found

in Table 3. Specialized training from a laboratory technician is required for both

instruments. Training is also needed for building 644 and clean room access.

Table 3. Cathodoluminescence Equipment.

Equipment Model Serial Number
Hitachi SEM S-4700 6063

Gatan monoCL 7343-0001 2804040001
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IV. Results and Analysis

4.1 EXAFS and XANES Results

The ease of fitting EXAFS data depends on a few factors. The first factor is the

cleanliness of the data. If the data is noisy it will be difficult to get a good fit in the R

space. Smooth k space, and E space data prior to K, means smoother R space data

via the Fourier transform. Second, the length of the data after the absorption edge

determines how much information is obtainable from the data. EXAFS can extend

to 1000-eV after the absorption edge [Kelly, 2009b]. In the case of the data presented

here, a 200-300-eV extension is available. The data still produced enough information

for first and second shell fits.

The analysis for the EXAFS data included the Cs centered and Sn centered data

for both CsSnBr3 and CsBr:Sn-1%. With these data sets the structure of the crystals

can be found. CsSnBr3 was used as a reference crystal, due to its well known structure,

for finding the structure of the CsBr:Sn-1% in this analysis. The main focus of the

analysis was to find the position of the Sn using the EXAFS data and the charge of

the Sn using XANES analysis for the CsBr:Sn-1% crystal.

The CsSnBr3 data was fit first. Procedures for EXAFS and XANES data fitting

are found in Appendix B. Figure 24 shows the R space fitting of the Cs centered

CsSnBr3 data. Tables 4 and 5 are the numerical results of the fitting.
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Figure 24. The second peak of this fit is the first shell neighbor of Br atoms at 4.1-
◦
A.

Sn second shell neighbors at the third peak at 5.0-
◦
A. The first peak is a half path

interference of the Sn shell.

Table 4. Results from first shell fits of CsSnBr3 Cs centered. The first shell is Br Atoms

R 4.02-
◦
A

∆R -0.08-
◦
A

σ2 0.033-
◦
A

2

N 12
∆Eo 10.1-eV
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Table 5. Results from Second shell fits of CsSnBr3 Cs centered. The second shell is Sn
Atoms

R 4.94-
◦
A

∆R -0.08-
◦
A

σ2 0.033-
◦
A

2

N 8
∆Eo 10.1-eV

The values reported in EXAFS analysis are the closest fit to theoretical calcula-

tions. Table 4 shows that the first shell R position according to the data is at 4.02-
◦
A.

The accepted value is 4.1-
◦
A. Thus, the ∆R reflects the displacement of the data from

theory. The σ2 value is the relative disorder of the crystal due to atomic vibration.

The value for σ2 of 0.033-
◦
A

2

is a little over the maximum acceptable value for σ2

or 0.02-
◦
A

2

. The ∆Eo of 10.1-eV is also just outside the acceptable limit of 10-eV.

The out of range values of σ2 and ∆Eo suggest a better fit could be obtained. Many

attempts were tried while constraining some values such as σ2. These values were

constrained to within the acceptable limits to get a better and quicker determination

of the R and ∆R functions. This approach was taken due to the focus on the position

of the atoms rather than their properties of vibration and overall absorption energy

shift. Finding the Sn position in the CsBr:Sn-1% is the most important part of this

analysis. Having good position data on the CsSnBr3 crystal will be a good place to

start.
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The Sn centered data for CsSnBr3 is shown next. The Sn data was noisier than

the Cs data for both crystals. A good explanation for this is not available. After

processing, the Sn data produced some results which later led to the idea of where

the Sn was in the CsBr:Sn-1% crystal. Figure 25 shows the best fit for Sn.

Figure 25. The numerical results for the Sn centered fit in Table 6 are outside of the
threshold values typically acceptable for EXAFS data as listed in Table 1.

Table 6. Results from 1st shell fits of CsSnBr3 Sn centered. The first shell is Br Atoms

R 2.1-
◦
A

∆R -0.81-
◦
A

σ2 1.9-
◦
A

2

N 6
∆Eo -1.3-eV

The Sn centered data for CsSnBr3 shows an out of range value of -0.81-
◦
A for

∆R. Although it was important to fit the data for R accurately, this was the best fit

achieved. However, the data still offered clues to the structure of CsBr:Sn-1%. The

Sn fits in the CsBr is actually closer to the accepted value of 2.9-
◦
A of CsSnBr3.
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In Figures 5 and 25 the first shell neighbors are Br atoms. The Br atoms are the

closest atoms to both Sn and Cs. A structure of the crystal can be deduced from these

relative positions. The Sn second shell available in the Cs centered data confirms the

well known structure of the CsSnBr3 crystal. The CsSnBr3 Cs and Sn fits were used

to see if there were any similarities to the CsBr:Sn-1% structure. The rationale is

that the base crystal is CsBr where Sn is progressively added in molecular weight

percentage until its concentration matches Cs ultimately producing CsSnBr3. That

is, there is a transition from CsBr to CsBr:Sn-1% to CsSnBr3 as Sn is added to the

crystal as a dopant. A plot of several Sn centered CsBr:Sn-1% spectra on top of a

Sn centered CsSnBr3 spectrum was made to see if any similarities exist. This can be

seen in Figure 26.

Figure 26. The CsSnBr3, Sn centered, plot is show in purple. The other plots are Sn
centered CsBr:Sn-1%. In all cases the distance to the Br peak is shown. There is a
little difference in the position of the Br shell between CsSnBr3 and CsBr:Sn-1%.

The close values of the Br peaks when CsSnBr3 and CsBr:Sn-1% are compared

for Sn centered data show the similarity of the distance between Sn and Br. The

Sn-Br distance in CsBr:Sn-1% is a little larger by inspection. The first shell of Br is
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at 4.1-
◦
A in CsSnBr3 as shown by the red line in Figure 27. The second shell made

up of Sn is at 5.0-
◦
A. The blue line represents the CsBr:Sn-1% data. The first shell

of Br in both cases are pretty close. However, the CsBr:Sn-1% is missing the second

shell of Sn. Figure 27 will show this.

Figure 27. The fits for both CsBr:Sn-1% in blue and CsSnBr3 in red show a missing
third shell in the CsBr:Sn-1% data.

The data shown here for both Cs and Sn for CsBr:Sn-1% indicates the lack of Sn

in the third shell for Cs and Br at the same location for both Cs and Sn. This suggests

a couple of scenarios for where the Sn could be in the crystal. First, it could be shown

that the Cs is missing in the Sn centered data which should be about 5.0-
◦
A. The

data does not produce any shells past the first shell due to the data truncation for

the Ca impurity for CsBr:Sn-1%. This means the Cs could be where it’s expected to

be. However, the Cs centered data suggests another scenario. Since the Sn is missing

and the Br shell is relatively close to where it is supposed to be in both Sn and Cs

data for CsSnBr3 the Sn could be taking the place of Cs in the crystal structure as a

dopant.
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The second scenario is likely due to the probability of the crystal structure shift

from CsBr to CsSnBr3 as higher concentrations of Sn is added as a dopant. In this

experiment only 1% molar weight Sn is in the CsBr matrix. As the dopant percentage

increases the Sn molar weight equals Cs when it reaches CsSnBr3.

The distance of the Sn to Br in the CsBr:Sn-1% was found by averaging the four

distances found in the data presented in Figure 26. The distance values fell very close

to each other. Thus, a new theoretical value for distance needs to be established

for this type of crystal. The distance between Sn and Br is 3.1±0.2-
◦
A. The value

presented here is in between the distance of 4.1-
◦
A Cs and Br of the CsSnBr3 and a

distance of 3.7-
◦
A between Cs and Br in CsBr with no Sn.

As the Sn4+ is inserted into the crystal a phase change occurs as the Sn dopant

concentration is increased. The closer distance of the Sn to Br atoms suggests the

greater attraction due to the oxidation state of 4+ as opposed to 2+. This does not

balance the oxidation of the CsBr or CsSnBr3 unit crystal. That is, Cs1+ + Sn4+ +

3Br1− leaves the charge balance at 2+. The Sn4+ does not have to fit into the unit

crystal and balance the oxidation state. The positional data points to a modified

crystal structure of CsBr existing in a somewhat modified state with a tetrahedral

SnBr4 appearing in the matrix in 1% of the concentration. This was suggested in

email conversations with Dr. Peter Dowben.
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As described earlier, the XANES structure shows the oxidation state of an atom

in X-Ray absorption data. By taking truth samples of Sn, SnO2+ and tin dioxide

SnO2
4+ and comparing them to the CsSnBr3 and CsBr:Sn-1% samples the oxidation

state of the tin is found to be 4+. The EXAFS data for each of these species is

plotted below in Figure 28.

Figure 28. The CsBr:Sn-1% EXAFS data is plotted with SnO2+ and SnO2
4+ powder

data. As discussed previously, EXAFS interactions are element specific. Thus the
chemical interactions of the oxygen, cesium and bromine atoms, respectively, do not
contribute to the shift in the XANES structure. The shift is due to the lack of two
electrons as compared with Sn2+. The CsBr:Sn-1% with the Sn2+ configuration has
been studied in previous literature [Savchyn et al., 2007]. Thus it is easy to deduce the
oxidation of the Sn4+ oxidation in the CsBr:Sn-1% samples.
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The CsBr:Sn-1% EXAFS data is plotted with SnO2+ and SnO2
4+ powder data.

As discussed previously, EXAFS interactions are element specific. Thus the chemical

interactions of the oxygen, cesium and bromine atoms, respectively, do not contribute

to the shift in the XANES structure. The shift is due to the lack of two electrons as

compared with Sn2+. The CsBr:Sn-1% with the Sn2+ configuration has been studied

in previous literature [Savchyn et al., 2007]. Thus it is easy to deduce the oxidation

of the Sn4+ oxidation in the CsBr:Sn-1% samples. The following figures break this

concept down to see the shift in the XANES structure. First, a comparison of SnO2+

to the CsBr:Sn-1% is plotted.

Figure 29. The CsBr:Sn-1% EXAFS data is plotted with SnO2+ powder data. The
SnO2+ XANES structure shows up to the right of the Sn4+ of the CsBr:Sn-1%.

Figure 29 is a clearer example much like the Chromium example shown in Figure 5.

The different valence state of the tin changes the band structure of the crystal. Thus

the scintillation product is different as shown in the Cathodoluminescence results

section. Further studies need to be carried out to map the band structure of this

material in the Sn+4 configuration.
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Figure 30 shows the comparison of CsBr:Sn-1% to SnO2
4+. The XANES struc-

tures in this examples line up at the exact same energy. Since, the X-Ray interaction

with the L-III edge of Sn, and more specifically Sn+4, the XANES comparison of Sn

in different materials can be made.

Figure 30. The CsBr:Sn-1% EXAFS data is plotted with SnO2
4+ powder data. The

SnO2
4+ XANES structure overlays the Sn4+ of the CsBr:Sn-1%.

The XANES fingerprinting analysis is straight forward as long as well character-

ized truth samples are available. Along with SnO2 and SnO powder samples, an Sn

powder sample was also used. The Sn was used as a practice set of data to learn

EXAFS processing. There were plenty of samples of known oxidation used in this

study.
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4.2 Cathodoluminescence Results

The CL for CsBr:Sn-1% provided some interesting results. The oxidation state of

Sn in 4+ was expected to change the expected results for the CL curves as compared

to the Savchyn et al. [2007] data which has Sn in the 2+ oxidation state. The peaks

were expected to shift to slightly higher energies due to the higher Coulomb force on

the pulling on the inner electrons. This was observable in the main peak when the

experimental data is compared to Savchyn et al. [2007] data. Figure 31 is the Savchyn

et al. [2007] data a 290K.

Figure 31. Here is the published data from Savchyn et al. [2007] for comparison with
the thesis data. The graph of interest is the top graph.
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The most notable peak occurs around 2.2 to 2.3-eV. Another minor peak occurs

at 1.8-eV. These peaks occur at the green and red portion of the electromagnetic

spectrum respectively. These crystals could be used for scintillation research as pho-

tomultiplier tubes sensitive in this region. Most PMTs are sensitive in the blue region

of the electromagnetic spectrum. The green peak would work well with a Si based

focal plane array detector like a Hamamatsu MPPC module (See Appendix E for a

description of the Hamamatsu MPPC module). The CsBr:Sn 1% crystal used in this

thesis show some promise in this respect. Figure 32 displays the results of the CL

data analysis.

Figure 32. The data for CsBr:Sn-1% shows a peak at 2.4-eV which is at arrow 1. A
second peak occurs at 3.1-eV at arrow 2. This Figure was produced using the Gatan
monoCL SP Software. These peaks occur close to the Savchyn et al. [2007] peaks in
Figure 31. The y-axis is in arbitrary units.
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There is overlap between the responses of the Savchyn et al. [2007] data and the

experimental data around 2.3-eV. The dominant peak occurs around 2.4-eV as figure

32 shows for the thesis data. A subtle shift towards the blue end of the visible part of

the electromagnetic spectrum is noticed. Yet, this change was expected to be a little

more drastic due to the oxidation state of the Sn in 4+. Another peak is found at

about 3.1-eV which is in the violet part of the visible spectrum. Although less intense

than the green peak, the violet peak may be used for further scintillation research. It

is not known if either peak is a short decay or the product of a long decay.

It is questionable if the 1.8-eV peak in the Savchyn et al. [2007] data was repro-

duced in the data taken during experimentation. The monoCL instrument is sensitive

in the region including 1.8-eV. The electron excitation state for the 1.8-eV may not

exist in the CsBr:Sn-1% with Sn4+ sample. Further studies in electronic structure

for the occupied orbital states for when the crystal is excited are needed. Figure 33

shows the data below 2.0-eV for CsBr:Sn-1%.

Figure 33. The 1.8-eV peak may be showing in this figure. Figure 34 shows a MATLAB
mesh of the data. The negative values suggest a poor response of the monoCL instru-
ment in this range. The calibration only covers the visible range out to red. Any value
beyond this is questionable as the linear response of the CCD cannot be guaranteed.
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The negative values of intensity in Figure 33 can be explained by poor detector

response in the regions they occur in. The 1.8-eV peak would be found in this area.

There are some positive counts in this area. A MATLAB code was used to mesh the

two data frames together to see if the 1.8-eV peak existed. A couple of points should

be noticed first. The data in Figure 33 spans 1.6 to 2.02-eV as compared to 1.9 to

3.4-eV of Figure 32. When the two data sets are merged the intensity of a possible

1.8-eV peak becomes apparent. Figure 34 shows the merged data sets.

Figure 34. When the two separate CL data sets for CsBr:Sn-1% are merged and scaled
the 1.8-eV peak found in the Savchyn et al. [2007] data starts to show. The scaling
factor was 104.

If there is a 1.8-eV peak it is a very weak response. The Savchyn et al. [2007] data

also shows a low response for the 1.8-eV peak. A Gaussian fit could not be performed

in Figure 33. The response in the 1.8-eV region in Figure 34 doesn’t appear to be

Gaussian and rather looks like a noisy response. Thus it is debatable if it exists in the
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thesis data. A calibration source for this area of the spectrum may help obtain better

data. The calibration source available with the SEM goes to 680-nm, or 1.8-eV. So

the calibration ends right at the region of interest.
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V. Conclusions

5.1 Experimental Review

The first objectives of this thesis were to find the structure of the CsBr:Sn-1%

crystal and associated Sn oxidation state. This was done through EXAFS and XANES

analysis. A comparison to the known structure of CsSnBr3 and CsBr was used to

determine the position of the Sn in the CsBr:Sn-1% crystal. It was found to be

distributed fairly regularly throughout the crystal structure. The XANES analysis

lead into the possibility of spectrum changes in CL data. This was observed in the

experimental data.

The second objective was to take CL data on CsBr:Sn-1% and CsSnBr3 to compare

the results to the published data from Savchyn et al. [2007]. It was expected to see a

shift to higher energies for the predominant peaks for both crystals as the Sn was in

the 4+ oxidation state. The advantage of higher energies in the spectrum suggests

the use of these crystals with traditional PMT systems or Si detector systems for

nuclear detection.

Secondary objectives of impurity studies and photoluminescence were also per-

formed. The XRF technique was used to search the crystals for a Ca impurity which

was indicated in the EXAFS data for CsBr:Sn-1%. Calcium was found in both crys-

tals at very low concentrations. The effect of these impurities was not explored. Due

to the very small amounts, there probably was no effect. Further research should

confirm this.

Photoluminescence using gamma ray producing isotopes was also performed. These

experiments should be performed again with a couple of changes. First, attenuators

should be used between the source and the crystal. This should increase the chance of

gamma ray interaction. Larger crystals should also be used to increase the interaction
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probability. The use of a UV excitation source could also be benificial. The energy

required to excite electrons to cause the spectra noticed in CL measurements lies in

the UV range. Reproducing the CL data with photon source, such as UV or gamma

ray sources, would be interesting for comparison with CL spectra.

5.2 EXAFS and XANES

The EXAFS data suggests the structure of the CsBr:Sn-1% places the Sn atoms

3.1±0.2-
◦
A from the Br atoms while taking the place of a Cs atom in the matrix.

This only occurs 1% of the time as the dopant is 1% of the molar weight. The only

limitation of the EXAFS data is the lack of data beyond k values of 7-
◦
A

−1

. EXAFS is

easier and more accurate with k values out to 12-
◦
A

−1

or more [Kelly, 2009a]. This is

a limitation in the case of the CsBr:Sn-1%, Sn centered data. A Ca impurity tainted

the data at 4040-eV. The data was truncated per procedure leaving k data values to

around 7-
◦
A

−1

. The other crystals in the study, including the Sn known comparison

samples, were also lacking in higher k values. Higher k values make the fitting of

theoretical calculations more accurate. The first shell fits are not difficult with the

data provided for this study. Measurement past the second shell was not obtainable.

Knowing the electronic structure has lead to some insight on the shift of the

CsBr:Sn-1% CL data with the Sn4+ configuration. With two less electrons in the

outer shells of the Sn, the inner shell electrons would be more tightly bound due to

Coulomb force attraction. A higher energy is needed to excite the new electron shell

positions. Thus, the spectrum is blue shifted. The CsBr:Sn-1% with Sn4+ is superior

to Sn2+ due to the ease of detecting blue light via PMT than red or infrared light

found in these crystals at Sn2+.
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5.3 Cathodoluminescence

The CL data provided some interesting results as compared to the Savchyn et al.

[2007] data. The subtle blue shift of the predomiinant green peak from 2.25-eV to

2.4-eV and a new peak at 3.1-eV make the crystal attractive for scintillation use.

The blue shift is probably due to the closer electron orbits caused by the Sn4+ in the

crystal as found through XANES. Mating the crystals to visible PMTs sensitive in

the blue region or Si based detectors sensitive in the green region, like a Hamamatsu

MPPC detector would be benificial. Some Hamamatsu MPPC data was take and is

presented in Appendix G.

Future studies could include a look into the CsBr material response at cryogenic

temperatures to compare with the Savchyn et al. [2007] data . Room temperature was

used in this study as the material would be intended to be used at this environment.

Cryogenic cooling was not performed due to the SEM/CL instrumentation. The

SEM/CL instrumentation only supports room temperature measurement. However,

a CL instrument is being assembled by the Physics department and will be completed

in the near future.
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5.4 Recommendations for Future Research

In summary, the use of CsBr:Sn-1% as a scintillator material looks promising. The

crystal has a low light yield, as found in CL experiments, but the relaxation times of

the electrons need to be studied. Measuring the decay time could prove an advantage

of using CsBr:Sn-1% as a scinitillator. Other experiments should be performed to

measure linearity, resolution, efficiency and light yield. Larger crystals with favorable

geometries would make these measurements possible. A larger crystal size provides

an increased probability of gamma ray interaction. A large cylindrical shaped crystal

could be optically coupled to a PMT for better analysis.
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Appendix A. EXAFS and XANES

This section will derive, in short, the physics and math behind EXAFS analysis.

The basic physics behind x-ray and subsequent photoelectron interaction were de-

scribed earlier. The derivation of the math is based on quantum physics treatments

with fairly straight forward outcomes. A good treatment can be found in Als-Nielsen

and McMorrow [2001].

χ(k) =
∑
j

Nje
−2k2σ2

j eRj/λ(k)fj(k)

kR2
sin[2kR + δj(k)] (A.1)

A quantum mechanical treatment can be used to derive the EXAFS equation.

This derivation is taken from Newville [2004] and Als-Nielsen and McMorrow [2001].

The Newville [2004] work has a quicker and easier to understand version.

First, it is assumed the initial photoelectron wave has an initial state ı. When

acted on by the operator H and a final state. This is proportional to µ(E) described

Fermi’s Golden rule.

µ(E) ∝ |〈i|H |f〉|2 (A.2)

Taking the neighboring atoms into account on the final state of the atom, f can

be broken into fo for the interaction with the isolated target atom case and ∆f for

the expected interaction with the neighbor represented here:

|f〉 = |fo + ∆f〉 (A.3)

When Equation A.3 is expanded a few terms become apparent.

µ(E) ∝ |〈i|H |fo〉|2
[
1 + 〈i|H |∆f〉 〈fo|H|i〉

∗

|〈i|H |fo〉|2
+ Comp.Cong.

]
(A.4)
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A few relationships fall out of this equation. The first term is the initial absorption.

That is, it is the ideal case of the isolated target atom. Thus µo = |〈i|H |fo〉|2. Using

some bra-ket math it can be shown that:

µ(E) = µo(E)[1 + χ(E)] (A.5)

The H operator is just a change of momentum Energy states which is expected in

an excitation, scatter or reflection. Newville [2004] describes the H operator reducing

to eikr. Since the wave form is a wave term dependent on energy the term χ(E) which

is the fine structure representation. It can be shown as Equation A.6.

χ(E) = 〈i|H |∆f〉 (A.6)

Equation A.6 makes sense as it shows the operator changing the initial state into

the scattered states resulting in the fine structure. Switching the bra-ket notation

into integral form Equation A.6 turns into:

χ(E) ∝
∫
drδ(r)eikrψscatt.(r) = ψscatt.(0) (A.7)

where ψscatt.(r) is the wave function of the scattered electron.

The outgoing photoelectron from the originating atom can be represented as a

spherical wave function. This is done to evaluate the EXAFS at the neighboring

atoms causing the wave-like variation in the post absorption edge structure. ψ of the

outgoing photoelectron is shown as:

ψ(k, r) =
eikr

kr
(A.8)

Capital R is used to represent the distances to the neighboring shells. Let’s

consider the first shell for simplicity so r=R. Since the χ term is the wave after
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the scatter we take ψ r=0, but at k or more succinctly put χ(k) = ψ(k, r = 0). In

order to get the scattering in the equation and atomic interactions with the incoming

photoelectron the scattered χ term is evaluated as a direct reflection back to the

originating atom as this situation is a probability. It also makes the math nicer.

Taking all these terms together produces Equation A.9.

χ(k) =
eikR

kR

[
2kf(k)eiδ(k)

] eikR
kR

(A.9)

Where f(k) and δ(k) are scattering properties of the scattering atom. The complex

conjugate is also added the right of the equation which simplifies to:

χ(k) =
f(k)

kR2
sin[2kR + δ(k)] (A.10)

Yet, there is one more atom in the lattice. The N term is introduced to account

for the number of atoms per shell distance R away from the scattering atom. The

Debye-Weller, e−2k2σ2
, term is also introduced to account for thermal vibrations in the

lattice and also covers minute disorder. Subscripts are added to N , R, σ, f(k) and

δ. This is done to account for each individual atom’s contribution to the final χ(k).

Inelastic scattering must also be accounted for. A mean free path term is introduced

to describe the distance a photoelectron travels before scattering. Newville [2004]

describes the process in more detail. In short, a factor of eRj/λ(k) is multiplied into

the equation to account for these interactions. Each atomic contribution is then

summed and the EXAFS equation is derived as:

χ(k) =
∑
j

Nje
−2k2σ2

j eRj/λ(k)fj(k)

kR2
sin[2kR + δj(k)] (A.1)
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A switch to k space is made for the Fourier transform which produces the R data

and graphs for visual analysis during fitting. It also solves for the terms described

earlier in Table 1. A reverse Fourier transform can be applied to get a cleaner k space

sometimes referred to as q space.
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Appendix B. EXAFS Data Processing

The suite of programs producing the EXAFS data used in this research include

Hephaestus, Athena, Artemis and Atoms [Ravel and Newville, 2005]. Athena and

Artemis are the primary programs for data manipulation and theoretical calculation.

They are based on the legacy code of IFFETT which is still the basis for most EXAFS

processing codes (IFFETT source). A top level overview will be given for processing

familiarity.

Calibration of the raw intensity data is the first step in EXAFS process. In the

data sets used for the CsSnBr3 and CsBr:Sn-1% were usually within ±1-eV of the

expected absorption edge of Cs or Sn data. The data must be smoothed before

it is calibrated. The Athena program has an automated function for smoothing,

calibration and background subtraction. The first two options are found in the Data

menu. The unprocessed and smoothed data is shown below in Figure 35.

Figure 35. The CsSnBr3, Sn centered raw data is the blue line while the smoothed
data is drawn in red. Smoothing is done for calibration purposes. The smoothed data
can be used for data processing. An offset value in the y-direction has been used for
ease of viewing. Both data sets are normalized.

56



Smoothing is done to get a cleaner spectrum for calibration of the data. The

calibration depends on the absorption edge occurring at a maximum derivative of

the data around the theoretical edge. A second derivative is taken to find the zero

crossing point. If the raw data is noisy it is difficult to ascertain the absorption edge

maximum in the first derivative. The next series of images will illustrate the process.

Figure 36. Athena selects a peak around 3840-eV which is far from the 3929-eV value
for Sn. Variations in Eo on the order of 10-eV can occur but it is unlikely the case here.
There is a maximum closer to 3929-eV which is probably the most likely candidate
value for the 3929-eV edge.
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From here the second derivative is taken to find the zero crossing point. The

zero crossing point is the place where to edge of the absorption for Sn occurs. The

calibration of Sn data gives a common reference for EXAFS analysis. The Second

derivative is shown in Figure 37.

Figure 37. The zero crossing point is the maximum of the first derivative from Figure
36. The second derivative provides a closer value to finding the absorption edge. In this
image the zero crossing point has been found automatically with Find Zero Crossing
Point option with the Second Derivative feature selected in Athena. The

Once the zero point is found from the second derivative the data is calibrated

to the desired energy absorption edge. The data can now be processed further in

Athena. The next few steps of processing define the values to be included in EXAFS

analysis. Picking too much data leads to noisy R data and shifting of peaks. Both of

these factors can lead to large variances in error.
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The next step of EXAFS data processing involves a background subtract of the

data and picking a window of k values for the Fourier transform. The background

subtract is defined by a handful of factors which are inter-related. Picking the values

of these factors is mostly physics based but can also take an artful approach as no

two EXAFS data runs are exactly the same. Finding the appropriate k window is

totally dependent on the smoothness of the data. Both processes have a profound

impact on the data fitting in Artemis.

The background subtraction of the data is first based on the splines of the pre

and post edge data in E space. This brings back Equation 2.2. The pre-edge spline,

taken from the data before the absorption edge, and the post edge spline, taken from

the data after the absorption edge define the ∆µ(Eo) term. The pre and post edges

must be a straight line or very close to the form of y = m∗x+ b. Figure 38 shows the

pre and post edge splines.

Figure 38. The pre and post edge splines are used to define the edge step term in
Equation 2.2, ∆µ(Eo) The lines must be close to the form y = m∗x+ b. The pre edge
spline is the green line. The purple line is the post edge spline and the red line is the
background result of Equation 2.2.
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The background subtract is done to smooth the data. Picking the pre and post

edge splines is important in ensuring certain information is not filtered out. Equation

2.2 is equivalent to the EXAFS equation, Equation 2.4. So the background fit is

a theoretical, ideal fit to the data. When it is subtracted, it leaves the very fine

structure for analysis. The pre and post edge splines used in defining ∆µ(Eo) also

represents the normalization of the data. Normalization is the process of reducing

the effects of several x-rays down to one x-ray. This also reduces the photoelectron

scattering process down to one photoelectron resulting from the one x-ray on the

target atom.

The next process is picking the k window. The k window is a filter of data for

EXAFS processing past the absorption edge. The EXAFS structure begins around

100-eV past the absorption edge. The XANES structure does contain some first shell

reflection but its amplitude is too large to account for EXAFS interactions. These

first shell reflections and scatters are also contained in the EXAFS region so they are

not lost by filtering out the high amplitude information. Thus the lowest k value is

chosen where the fine structure data does not vary widely. This is done by varying

Eo by small amounts with a small k-weight factor, usually 1. The lower k values are

closer to the XANES structure. Thus, there is great variability in the amplitude of

the data. By finding the point at which the k data is consistent, or close, the high

amplitude data can be filtered out. Varying the Eo parameter shifts the k drastically

in the XANES structure but not in the EXAFS data. Figure 39 shows the graphical

process.

The k weight is a multiplier of the χ(k) function after the Fourier transform.

The k weight emphasizes shells depending on the chosen weight. Lower k numbers

emphasize closer shells. Conversely, higher k weights emphasize further shells. The

correspondence between k weight and shell number is pretty much close to 1:1. That
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Figure 39. Picking the low k value for the Fourier transform involves some eyeball
work. The data provided for the thesis is noisy. Yet, getting close enough will have to

suffice. The low k value which fits the criteria would be about 3.5-
◦
A

−1

. This is where
the data does not change drastically based on small Eo shifts. The usual low k values

are between 2-4-
◦
A

−1

[Kelly, 2009a].

is, a k weight of 2 corresponds to the second shell. This is true for crystals with

largely spaced radial distributions. Radial spacing greater than 1-
◦
A were found to

follow this correspondence. The k weight is not a direct multiplier but rather an

power multiplier. A k weight of 2 means the χ(k) function will be multiplied by k2.

A k value of zero is also possible.

The selection of low and high k values is not to include too much data to create

noise. Conversely, excluding data with a narrow k window will leave out important

information on neighboring shell information. Having k data which extends far is a

must. Achieving high k values means scanning into higher energies past the absorption

edge. The EXAFS region can extend to 1000-eV. Maximum k window values are

usually between 10-14-
◦
A

−1

[Kelly, 2009a]. Maximum k window values are chosen

by a similar process as the minimum k window values. The difference is using the
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highest k weight at which the data will be analyzed. The Eo value does not have to

be changed due to its small effect on k data past 5-
◦
A

−1

or so. The max overall k

values for the data provided for this thesis didn’t go past 7-
◦
A

−1

very much.

Another important factor is the choice of R-Background defined as the value Rbkg

in Athena. The Rbkg number removes the Fourier components below the desired value

[Ravel and Newville, 2005]. Usually, the Rbkg is half the distance to the first shell

[Kelly, 2009a]. Choosing an Rbkg too far from this value will reduce the amplitude

of the R value in the shells [Ravel and Newville, 2005].

After the appropriate values are determined in Athena the data is passed into the

program Artemis. Artemis is where the theoretical calculations of crystal structure

are made and compared to the real world data. The crystal structure is defined by

the space group and atom distribution within the crystal group. The web service

ATOMS is used for defining the crystal structure. ATOMS is imbedded with Artemis

but is easier to use on the world wide web. The web service also includes a library of

crystal structures. The only crystal structures available in the library for this thesis

were for the βSn, SnO and SnO2 powders. An example for Cs centered CsSnBr3 is

shown in Figure 40.

The crystal properties, as described earlier, are entered into the top half of the

template. The CsSnBr3 atoms file is being created in this example. Cesium is the

central atom for this file and is put at the origin. The Br atoms are found on faces

of the cube structure. To define the Br positions only one position is needed. The

software does the work of placing the other Br atoms in their correct position. The

Br atoms are half the crystal lattice constant distance in one dimension and half the

distance in another. The xy plane was chosen here. The Sn atom is another half

distance in the z direction. The run button is clicked and a text file is generated

which can be cut and pasted into the Artemis program or saved for later in a ∗.txt
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Figure 40. Creating a crystal structure in the webATOMS service and copying the
output into Artemis is the easiest way to get the theoretical calculations started.

file. Another ATOMS file is needed for the Sn centered data. This is due to the radial

distribution differences from a Sn centered perspective. In a Cs centered crystal the

closest, first shell Br atoms are ≈ 4.1-
◦
A. In a Sn centered perspective the first shell

Br atoms are ≈ 2.9-
◦
A. The R plots in EXAFS will look drastically different between

Cs and Sn centered perspectives.

After the EXAFS data has been processed in Athena it is loaded directly into

Artemis for theoretical comparison. The ATOMS file is loaded under the Theory

menu, New FeFF template option. Once the calculate button is hit the photoelectron

paths are generated. Usually, 10 paths or less are used to fit the first 2 or 3 shells. It

is usually best to use paths that are less than or equal to the shells being analyzed.

The paths are displayed in Figure 41.

The fit for this run of CsSnBr3, focusing on Cs, is shown in Figure 42. The

first shell is actually the third peak from the left. The first two peaks are half

scattering paths of the first and second shells. An option of fitting the background
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Figure 41. The lower left box shows the paths generated from the ATOMS file obtained
from the web. A total of 27 atoms in 3 neighboring shells were used to generate the
paths. Path 1 is to the first neighbor atoms of Br. The last two pats are made up of
scatter paths. For example, path 4 is the scattering path of the photoelectron scattering
off a Sn atom and then a Br atom.

function suppresses the Fourier transform window that was defined in Athena. The

suppression will include the background data before the Rbkg value for fitting.

64



Figure 42. This is a close to good CsSnBr3 fit using the Fit Background option.

Table 7. Close CsSnBr3 fit

R 4.2-
◦
A

∆R 0.12-
◦
A

σ2 0.034-
◦
A

2

N 12
∆Eo 1.04-eV

The final fits are presented in the analysis section for CsSnBr3. The fits are much

different do to the resizing of the k window. It was found that after several fits closer

values for R and σ2 could be obtained if the
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Appendix C. XANES Analysis of CsSnBr3

The charge of the Sn in CsBr:Sn-1% was a particular focus of the thesis study.

The change of Sn oxidation state was thought to have an effect on the luminescent

properties of CsBr:Sn-1%. CsSnBr3 was not looked at as a scintillator due to its

opaque nature. Thus, the charge state and the related effects were not looked at.

This appendix will take a quick look to show the Sn is also in a 4+ oxidation state

in the CsSnBr3 crystal. Following the procedures described earlier, the CsSnBr3 was

compared to Sn02+ and Sn02
4+. Figure 43 compares the x-ray aborption spectra of

all three structures.

Figure 43. In this figure a comparison of all three compound x-ray absorption spectra
are shown. The Sn in the CsSnBr3 is found to be in the 4+ oxidation state. Figures
44 and 45 show a closer look.

Comparing the CsSnBr3 with SnO and SnO2 individually is shown in Figures 44

and 45. The XANES structures of SnO2 and CsSnBr3 line up to indicate the Sn in

the 4+ oxidation state.
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Figure 44. The data for SnO2 was truncated at 4040-eV. The data before this point
was causing the normalization of the spectra to be much higher than what it should be.
The XANES structures lineup showing the Sn in the CsSnBr3 to be in the 4+ state.

The SnO XANES structure is found to the left the CsSnBr3 XANES structure. As

with CsBr:Sn-1% a different structure may be possible to allow Sn4+. However, the

EXAFS analysis showed the CsSnBr3 structure to match the Pm3m crystal structure

as expected. Figure 45 shows the shift of the CsSnBr3 XANES structure as compared

to SnO.

The charge imbalance phenomena may have a couple of explanations. In the case

of CsBr:Sn-1% the Sn4+ may be bonded in tetrahedral structures throughout the

crystal per communications with Dr. Peter Dowben. Instead of Cs in a unit crystal,

Sn my take its place to make a SnB44 structure within the CsBr crystal lattice. In

the case of CsSnBr3, a Cs may be missing from the unit crystal structure to allow a

Sn4+ atom.
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Figure 45. The SnO XANES shows the shift of the Sn in CsSnBr3 to 4+ oxidation
state.
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Appendix D. Cathodoluminescence Data Processing

A conversion from wavelength to energy requires a multiplicative factor of λ2.

This can be seen by looking at the quantum theory of light with respect to energy as

a function of wavelength. Equation D.1 shows the dependence of E:

E =
hc

λ
, (D.1)

where E is energy, h is Planck’s constant, c is the speed of light and λ is the wave-

length. The conversion from wavelength to energy must be taken with respect as a

change of energy over a change in wavelength between intensity differences. So the

derivative of Equation D.1 must be taken as

dE

dλ
= −hc

λ2
. (D.2)

Since energy can be related to intensity by a constant multiplier a change of intensity

per change in wavelength can be substituted into Equation D.1 as:

dI

dλ
= K

1

λ2
. (D.3)

where the K multiplication factor absorbs the negative sign and the constants of hc.

The value of dI is the change of intensity. When this is solved for the change of

wavelength, which is a function of energy, the relation turns into:

dλ = Kλ2 ∗ dI, (D.4)

where K is still an arbitrary constant. Thus, for any change in wavelength as a

function of energy the intensity at a particular wavelength must be multiplied by a

factor of λ2.
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Appendix E. Photoluminescence Data

The photoluminescence data taken on CsBr:Sn-1% and CsSnBr3 showed noise

throughout the visible range. A few improvements are needed in these experiments to

make the photoluminescence results conclusive. The use of attenuators could provide

a higher probability of gamma ray interaction. A larger crystal would also help

in this matter. Once these requirements are met, further experimentation should

be performed. The experiments did provide some insight on other crystals with

scintillation potential.

Half way through the research newer samples of CsI(CdI2) were provided by Dr.

Peter Dowben. These materials are novel with their dopant. CsI is most commonly

doped with Tl or Na. Both of these CsI materials are well used and characterized

[Knoll, 2000]. The CsI(CdI2) were also thin but were more efficient at scintillating as

results in Figure 46 shows.
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Figure 46. There is a definite difference with the CsI(CdI2) sample. Sodium-22 was
used for the excitation. The frame shows the results of 4 averaged runs with 2 second
integrations per nanometer step. The peak occurs around 525-nm in the blue.

Figure 47. 60Co was used in this example. A peak is shown to be in the same place
with the 22Na data. A clearer picture is shown in Figure 48
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Figure 48. The data is scaled in this figure. The values are set to zero after 701-nm to
achieve the same scale as Figure 46. This data set was shorter due to the essence of time.
Like the previous two figures the integration time was 2 seconds over 1-nm intervals.
The 300-nm bandwidth covered here takes 600 seconds. Four runs are averaged here
taking a total of 2400 seconds.
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Photoluminescence can be used to measure the visible to infrared, and some UV,

luminescent properties of a material when it interacts with a source light or isotope

source. In some experimental setups, excitation and relaxation times can be mea-

sured. This cannot be done on the AFIT photoluminescence detector located in

Building 470. Upgrading and modernizing these capabilities should be considered if

excitation and decay times are desired. Figure 49 shows the current system setup.

Figure 49. The noise floor once the instrumment is cooled is around 5 photons per
second per nanometer band gap. In this image the photomultiplier, optics and CCD
are located under the black cloth. The sample chamber is under the blue cover. A
calibration/source lamp is a couple of modules to the right of the computer. The lamp
was only used as a calibration source. Gamma sources such as 137Cs and 60Co were
used as excitation sources. These isotopes were mounted with the sample as shown in
Figure 50 and then put into the sample chamber facing the PMT box. In order to aid
the 5-photon/sec noise floor, the lights would had to be turned out.
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Even though there were limitations in the setup of the light table system, meaning-

ful quantitative data can be taken. The light table setup was used as a scintillating

detector. That is, it was setup to perform as a scintillating detector. Instead of

NaI(Tl) being the scintillating material, the CsBr:Sn-1% was used. The PMT was

not optically coupled to the CsBr:Sn-1%. Efficiency due to loss of photons was highly

evident as the detectable signal was 20 photons per second. This is a far from what

is compared with NaI(Tl) which has 38,000 photons per MEV per interaction [Knoll,

2000].

Figure 50. One of three mounting methods is shown here. A custom plastic holder was
built to hold planchette sources in order to gain consistency.
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The sample mount provided with the light table was not designed to hold the

planchette sources and samples all at one time. Teflon tape was used to hold the

samples in front of the active region of the planchette source. The planchette source

and sample pair were mounted in the sample holder. The teflon tape proved difficult

to work with as the samples could slide out of the active region on the planchette

source very easily. Inconsistent results were obtained due to the mounting scheme.

Thus, the plastic holder in Figure 51 was designed to eliminate most of the hassle of

getting the source and sample in the right position.

Figure 51. The customized plastic mount made it easier to change samples and isotope
planchette sources. The planchette source holder on the right had a bore down the
middle to reduce gamma ray attenuation. If an irregular target sample was used the
center block in the frame was used to hold the source in the path of the gammas coming
from the bore. Although efficiency was lost due to solid angle losses the consistency
of results improved. The mounting scheme worked well for the wafer-like shape of the
CsI(CdI2) samples as demonstrated in Figure ??.
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Figure 52. The wafer-like shape of the CsI(CdI2) samples fit well in the front of the
holder. Hobby craft FunFoam was used to stabilize any samples and hold them in place.
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Appendix F. X-ray Fluoresence Spectroscopy (XRF)

XRF Theory

X-ray fluorescence spectroscopy works with the same principle of the photo-electric

effect as EXAFS. That is, an x-ray is used to liberate inner shell electrons and observe

what residual x-rays are given off as a result. The residual x-rays are produced

when outer shell electrons collapse to the vacancies left behind. These x-rays are

characteristic to the atom and the electron shells of the atom. The analysis produces

the identification of the atoms and relative percentages of the atom mass fraction are

given. Concentrations in the part per billion can be determined with this technique.

However, well known standards or sample spiking with a known quantity of an element

are needed for comparison to obtain this level of analysis [Skoog et al., 2007].

The XRF analysis was used to identify any impurities in the CsSnBr3 and CsBr:Sn-

1% samples and to identify the relative percentages of the atom species present. The

reason for including x-ray fluorescence analysis came from the spectrum seen in Figure

53 where the Sn centered EXAFS scan of CsBr:Sn-1% produced the signature of the

Ca K shell electron absporption edge.

In Figure 53 a second absorption edge is found past the Sn L-III edge. Since all

absorption edges are fairly well known, a third program called Hephaestus can be

used to look up the edge of the second edge in the plot. (There are other published

sources as well to find this information.) At 4038-eV this turns out to be the Ca

K edge. Fortunately, this data can be subtracted off the end due to Sn EXAFS

analysis dependency on the Sn atom spectrum. That is, the x-ray and photoelectron

interactions of the Sn are not dependent on any other atom species in the matrix

except for their radial positions.
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Figure 53. The Ca K absorption edge is the stair-step like structure on the right while
the Sn absorption edge used for EXAFS analysis on CsBr:Sn-1% is on the left. Ca is
determined to be the element via the signature energy of the Ca K edge which is at
4038-eV.
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XRF Equipment

The XRF data were taken on a Horiba XGT-7000V (S/N: F0X0A50J) located in

building 470 at AFIT. Samples are mounted on a platform with double sided tape.

The tape will cause noise and rhodium spikes in the data. These data can sometimes

be filtered out by taking longer measurements of the sample. The noise and back-

ground elements will disappear into the background. Elements of low concentration,

low Z, or both can be washed out also during long runs. This may be the reason Ca

was rarely observed in the spectra.

Figure 54. The Horiba XRF machine is shown here. The composition of materials can
be analyzed for atoms above Z > 8 [Skoog et al., 2007]. To find quantitative concen-
trations of a matrix it is necessary to obtain well known standards with compositions
close to the material [Skoog et al., 2007].

As with the SEM machine a vacuum is required for the XRF machine to reduce

x-ray interaction with the air or other sources of atoms. Both sources of interference

can cause false indications of atoms in a sample which may not be present. The

x-ray beam energy can be adjusted in order to excite the electron shells of differing

Z number atoms. Higher Z atoms require more energy to get K,L and M excitations.

The beam size can be either 10 or 100µm. Integration time can also be customized
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for desired spectrum intensity results. That is, longer integration times mean higher

counts.

The beam scanning can be tailored to perform spot analysis or element scanning.

Element scanning was used to find Ca in the crystal samples for this thesis. In most

cases, the Ca returns were too low as a mass percentage to be reported. However,

the scanning feature would always detect impurities. The scanning feature makes a

map of the atomic distribution of a sample.
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XRF Results

The XRF results are given in mass as a percentage of all other atomic concen-

trations detected during a data run. A spectrograph is also produced which shows

the atomic electron shell (K, L or M, etc.) and the relative intensity of the indica-

tion in counts. Due to broad Gaussian distributions and more abundant molecules,

impurities can get washed out of a data run. Figure 55 illustrates these points.

Figure 55. Much like the CL graphs a plot of energy vs. intensity is produced. The
elements are identified by their characteristic x-ray fluorescent emissions. This phe-
nomena is the same mechanism by which EXAFS works. The XRF technique is much
faster as absorption versus energy dependence is not measured over several energies.
An XRF run takes seconds compared to over an hour for an EXAFS run. The Ca is
not present in this data sample of CsBr:Sn-1%. The intensity side of the graph is in
units of counts. The predominant atoms in the crystal react more often with the x-rays
than the impurities. Thus, the Ca signal can be washed out during long runs of data.

Table 8. XRF Results for CsBr:Sn-1%

Element Mass%
Cs 45.89
Sn 2.66
Br 36.04
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The Ca is not present in this data sample of CsBr:Sn-1%. The predominant atoms

in the crystal react more often with the x-rays than the impurities. Thus, the Ca

signal can be washed out during long runs of data. Oddly enough, Ca was found in

the CsSnBr3 sample. Figure 56 below shows the graph for a CsSnBr3 scan.

Figure 56. The change in Sn concentration is reflected in Table ??. As Sn becomes
more prevalent in the CsBr structure it equals the percentage of Cs. The Ca impurity
shows up in this data.

Table 9. XRF Results for CsSnBr3 scan showing calcium impurity

Element Mass%
Cs 28.73
Sn 25.95
Br 45.32
Ca 2.04

The scanning feature was used on the CsBr:Sn-1% samples to investigate impu-

rities. Calcium would show up in the CsBr:Sn-1% samples on occasion. Figures 57,

58, 59 and 60 show the mapping of a CsBr:Sn-1% against the XRF mount. The Ca

shows up very sparsely in Figure 58.
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Figure 57. The Cs is very evident throughout the CsBr:Sn-1% crystal in this atom
map of the sample. The black part of the image is the background which is tape.

Figure 58. The Ca shows up very rarely in the crystal. The minium concentration to
register for XRF is just below 1%. Despite Ca not showing up in the analysis report
it is present in the crystal.
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Figure 59. The 1% concentration of Sn is shown evenly distributed throughout the
crystal. The response as seen in the image is not as intense as seen for Cs in Figure
57. This is expected as it occurs only 1% of the time in the matrix.

Figure 60. The Br is shown here for completeness. Br is very prevalent in the crystal
structure as shown here.
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Thus, there is Ca in both CsBr:Sn-1% and CsSnBr3. The effect of the Ca on the

luminescence was not researched. The CL data came close to the Savchyn et al. [2007]

data. The Savchyn et al. [2007] paper did not investigate the effects of impurities,

nor were any impurities discussed.
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Appendix G. Other Crystals and Equipment for

Scintillation Research

During this research a few more crystals were sent from University of Nebraska,

Lincoln as potential crystals for EXAFS and/or luminescence studies. An attempt

was made to characterize CsI:CdI2-0.5% as a scintillator material for comparison with

CsBr:Sn-1%. Table 10 shows other crystals for possible research. These crystals can

be obtained from the ENP department at AFIT.

Table 10. Other Crystals for Potential Scintillation Research.

Crystal General Clearness/Opacity Potential Scintillator Candidate?
CsI:CdI2-0.5% Very Clear Yes

CsI:Pb-1% Somewhat Clear Yes
CsI:Sn-1% Opaque Maybe

A brief set of experiments were performed on a Hamamatsu MPPC module. The

Hamamatsu MPPC module works like a focal plane array (FPA) found in remote

sensing systems or a typical digital camera. The FPA is a silicon detector with 100-

µm on a side pixels. Each pixel is run in a Geiger counter mode. that is, each pixel is a

photon counter. Silicon is primarily a visible to near IR light sensor. The bandwidth

and efficiency of the Hamamatsu MPPC module is shown in Figure 61.

The module has the capability to be interfaced with a multi-channel analyzer

(MCA). A Compton energy spectrum of an isotope can then be obtained. Unfortu-

nately, when this part of the experiment was attempted the expected Compton energy

readings from the module were nonexistent. Due to the lateness of the experiment in

the research quarter, it was never repeated.

The Hamamatsu MPPC module was used to measure the light yield of different

candidate scintillator materials. The software provided with the module records pho-

ton counts per unit time. A threshold of sensitivity can be set between 0.5 and 3.5
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Figure 61. Photon detection efficiency of the Hamamatsu MPPC module as a function
of wavelength. The module was used to measure the light yield of different candidate
scintillator materials [Division, 2010].

photon events (p.e.). The integration time can be set between 1-ms to 100-ms. The

module is very sensitive. The module and material sample were placed in a black

electronics project box to block any light. The 22Na and 60Co isotopes listed in Ap-

pendix C were used as excitation sources. Figure 62 shows the readout of NaI(Tl)

with 22Na as the excitation source.

Figure 63 shows the results of NaI(Tl) with 60Co. This time the source was brought

in twice over the experiment. The MPPC can be run indefinitely. Shorter data sets

are desirable. The module is creating a data point at every time integration. A point

every millisecond, for example, for a couple of seconds is two thousand points. Letting

the instrument go for a minute produces a mountain of data.

The CsBr:Sn-1% samples were also tested with the MPPC module. The resulting
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Figure 62. Photon detection efficiency of the Hamamatsu MPPC module as a function
of wavelength. The module was used to measure the light yield of different candidate
scintillator materials. This graph is intensity vs 100-ms time steps. A 22Na source
was moved in by the detector from a great distance. The crown like structure is the
effective number of photons per 100-ms. A background, or dark frame, was taken and
averaged. The averaged value was then subtracted from each value to give the effective
count above the background.

counts are no greater than background noise. 60Co was used in this experiment

with comparable settings to the NaI(Tl) experiment in Figure 63. The samples were

not optically coupled during the experiments. This was not done to increase speed

changing between samples. The CsBr:Sn-1% samples were not properly shaped for

optical coupling also.
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Figure 63. The same technique used in Figure 62 was used twice here. 60Co was used
giving similar results. There is a difference in integration scale. With the shorter scale,
NaI(Tl) still gives a very strong response.
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Figure 64. The counts shown here do not vary much farther above the background
noise when the 60Co source was brought into close proximity of the target sample.
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Appendix H. Table Of Nuclear Isotopes

Table 11. Nuclear Isotopes Used in Photoluminescence Experiment (Activities as of
25 Jan 2010)

Isotope Activity (×105Bq) Activity (µCurries)
22Na 20. 54.
60Co 2.0 5.5
57Co 0.41 1.2
137Cs 2.9 7.8
109Cd 3.6 9.8

Most Isotopes in Table 11 did not produce usable data. The CsBr species samples

did not produce any useful photoluminescence as described in the results section. The

CsI(CdI2) did react with all of the isotopes. The 22Na produced the best results with

its considerably higher activity.
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