Measuring Collaborative Cognition

Nancy J. Cooke
Arizona State University

CKM Workshop
January 14-16, 2003
Report Documentation Page

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204. Arlington VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.

<table>
<thead>
<tr>
<th>1. REPORT DATE</th>
<th>2. REPORT TYPE</th>
<th>3. DATES COVERED</th>
</tr>
</thead>
<tbody>
<tr>
<td>JAN 2003</td>
<td>00-00-2003 to 00-00-2003</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4. TITLE AND SUBTITLE</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Measuring Collaborative Cognition</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5a. CONTRACT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>5b. GRANT NUMBER</td>
</tr>
<tr>
<td>5c. PROGRAM ELEMENT NUMBER</td>
</tr>
<tr>
<td>5d. PROJECT NUMBER</td>
</tr>
<tr>
<td>5e. TASK NUMBER</td>
</tr>
<tr>
<td>5f. WORK UNIT NUMBER</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)</th>
<th>8. PERFORMING ORGANIZATION REPORT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arizona State University, Tempe, AZ, 85287</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)</th>
<th>10. SPONSOR/MONITOR’S ACRONYM(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>12. DISTRIBUTION/AVAILABILITY STATEMENT</th>
<th>13. SUPPLEMENTARY NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approved for public release; distribution unlimited</td>
<td>Collaboration and Knowledge Management (CKM) Workshop, 14-16 Jan 2003, College Park, MD. U.S. Government or Federal Rights License</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>14. ABSTRACT</th>
<th></th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>15. SUBJECT TERMS</th>
<th></th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>16. SECURITY CLASSIFICATION OF:</th>
<th>17. LIMITATION OF ABSTRACT</th>
<th>18. NUMBER OF PAGES</th>
<th>19a. NAME OF RESPONSIBLE PERSON</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. REPORT</td>
<td>Same as Report (SAR)</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>b. ABSTRACT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c. THIS PAGE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>unclassified</td>
<td>unclassified</td>
<td>unclassified</td>
<td></td>
</tr>
</tbody>
</table>

Standard Form 298 (Rev. 8-98)

Prescribed by ANSI Std Z39-18
Acknowledgements

- **NMSU Faculty**: Peter Foltz
- **NMSU Post Doc**: Brian Bell
- **NMSU Graduate Students**: Janie DeJoode, Jamie Gorman, Preston Kiekel, Rebecca Keith, Melanie Martin, Harry Pedersen
- **US Positioning, LLC**: Steven Shope
- **UCF**: Eduardo Salas, Clint Bowers
- **Sponsors**: Air Force Office of Scientific Research, Office of Naval Research, NASA Ames Research Center, Army Research Laboratory
Overview

❖ What is Collaborative Cognition?
❖ A Focus on Measurement
❖ Assessing Collaborative Performance & Cognition
❖ Toward Diagnosis of Collaborative Performance
❖ Conclusions
What is Collaborative Cognition?
Collaborative Cognition in Practice
Experimental Context

CERTT (Cognitive Engineering Research on Team Tasks) Lab

A Synthetic Task Environment for the Study of Collaborative Cognition

Five Participant Consoles
Experiment Console

January 2003
Collaborative Cognition Framework

Collective level

Individual knowledge

Holistic Level

Team Process Behaviors

Team Knowledge

- Taskwork & Teamwork Knowledge
 - Long-term
 - Fleeting

Team Performance
Defining Collaborative Cognition

- It is more than the sum of the cognition of individual team members.

- It emerges from the interplay of the individual cognition of each team member and team process behaviors.
A Focus on Measurement
Why Measurement?

- **Assessment** of collaborative performance or effectiveness (criterion or dependent measures) often taken for granted.
- **Outcome measures** of collaborative performance do not reveal why performance is effective or ineffective.
- **Process measures** of collaborative behavior are often subjective and lack reliability and validity.
Why Measurement? (continued)

- Collaborative cognition is assumed to contribute to collaborative performance, and especially for growing number of cognitive tasks.
- Understanding the team cognition behind team performance should inform interventions (design, training, selection) to improve that performance.
Measurement Limitations

- Measures tend to assume homogeneous groups
- Measures tend to target collective level
- Aggregation methods are limited
- Measures are needed that target the more dynamic and fleeting knowledge
- Measures are needed that target different types of long-term collaborative knowledge
- A broader range of knowledge elicitation methods is needed
- A need for streamlined and embedded measures
- Newly developed measures require validation
Assessing Collaborative Performance and Cognition
The “Apples and Oranges” Problem

Measures to assess collaborative knowledge often assume knowledge homogeneity among group members.

- Shared knowledge = similar knowledge
- Accuracy is relative to single referent
The Groups We Study Consist of “Apples and Oranges”
“Shared” Knowledge

Shared = Common and Complementary
An Approach to the *Apples and Oranges* Problem

Measures of team knowledge with heterogeneous accuracy metrics
Experimental Context

- **Five studies:** Two different 3-person tasks: UAV (Uninhabited Air Vehicle) and Navy helicopter rescue-and-relief
- **Procedure:** Training, several missions, knowledge measurement sessions
- **Manipulate:** co-located vs. distributed environments, training regime, knowledge sharing capabilities, workload
Experimental Context

MEASURES

- Team performance: composite measure
- Team process: observer ratings and critical incident checklist
- Other: Communication (flow and audio records), video, computer events, leadership, demographic questions, working memory, situation awareness
- Taskwork & Teamwork Knowledge
Scores from completed missions for all teams

<table>
<thead>
<tr>
<th>Mission</th>
<th>Team Performance Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>907.96</td>
</tr>
<tr>
<td>2</td>
<td>902.83</td>
</tr>
<tr>
<td>3</td>
<td>898.21</td>
</tr>
<tr>
<td>4</td>
<td>886.13</td>
</tr>
<tr>
<td>5</td>
<td>812.09</td>
</tr>
<tr>
<td>6</td>
<td>809.52</td>
</tr>
<tr>
<td>7</td>
<td>802.37</td>
</tr>
<tr>
<td>8</td>
<td>799.42</td>
</tr>
<tr>
<td>9</td>
<td>790.93</td>
</tr>
<tr>
<td>10</td>
<td>768.18</td>
</tr>
<tr>
<td></td>
<td>660.31</td>
</tr>
</tbody>
</table>
Factual Tests

The camera settings are determined by a) altitude, b) airspeed, c) light conditions, d) all of the above.

Psychological scaling

How related is airspeed to restricted operating zone?
Long-term Teamwork Knowledge

Given a specific task scenario, who passes what information to whom?

Teamwork Checklist

___AVO gives airspeed info to PLO
___DEMPC gives waypoint restrictions to AVO
___PLO gives current position to AVO

AVO = Air Vehicle Operator
PLO = Payload Operator
DEMPC = Navigator
Traditional Accuracy Metrics

Team Referent

Team Member: Air Vehicle Operator

50% ACCURACY
Heterogeneous Accuracy Metrics

Team Referent

AVO Referent

PLO Referent

DEMPC Referent

Team Member: AVO

ACCURACY
Overall: 50%
Positional: 100%
Interpositional: 17%

AVO = Air Vehicle Operator
PLO = Payload Operator
DEMPC = Navigator
Results Across Studies

- Taskwork knowledge is predictive of team performance

But...

- True for psychological scaling, not factual tests
- Timing of knowledge test is critical
Knowledge Profiles of Two Tasks

Knowledge profile characterizing effective teams depends on task (UAV vs. Navy)

<table>
<thead>
<tr>
<th>Knowledge metric</th>
<th>Knowledge Profile</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall accuracy</td>
<td>+</td>
</tr>
<tr>
<td>Intrateam similarity</td>
<td>+</td>
</tr>
<tr>
<td>Positional accuracy</td>
<td>+</td>
</tr>
<tr>
<td>Interposit. accuracy</td>
<td>+</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Knowledge metric</th>
<th>Common (UAV)</th>
<th>Distributed (Navy helicopter)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall accuracy</td>
<td>+</td>
<td>0</td>
</tr>
<tr>
<td>Intrateam similarity</td>
<td>+</td>
<td>0</td>
</tr>
<tr>
<td>Positional accuracy</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Interposit. accuracy</td>
<td>+</td>
<td>0</td>
</tr>
</tbody>
</table>
Knowledge Profiles of Two Tasks

UAV Task
- Command-and-Control
- Interdependent Knowledge sharing

Navy Helicopter Task
- Planning and Execution
- Less interdependent Face-to-Face
A Cross-Training Study in Retrospect

- Examined effects cross-training vs. other training regimes on collaborative performance and cognition
- Unlike previous studies, cross-training had no performance benefit
- Cross-training, did increase interpositional taskwork and teamwork knowledge
- Perhaps knowledge profile for that task (specialization) was at odds with cross-training
- Demonstrates benefits of assessing collaborative cognition
However...

The descriptive information associated with cognitive assessment is not sufficiently diagnostic

Symptoms vs. Diagnoses?

- Expert chess players can remember many more meaningful chess positions than chess novices
- Experienced fighter pilots and undergraduate pilot trainees organize flight maneuver concepts differently
- Good UAV teams have interpositional knowledge
- Effective teams communicate less than ineffective ones
Toward Diagnosis of Collaborative Performance
To Move From Assessment to Diagnosis

Need to connect clusters of symptoms to diagnosis of team dysfunction or excellence

For example...

- Inefficient communication and low teamwork knowledge \rightarrow poor team situation awareness

- Poor positional taskwork knowledge and coordination failures \rightarrow faulty mental model
To Move From Assessment to Diagnosis

Also, in operational environments diagnosis is valuable to the extent that it is...

- Conducted in real time with task performance (i.e., task-embedded, automated measures)
- Or better yet ...prior to task performance (based on performance precursors)
 - Leading indicator
 - Resident pathogens
 - Non-routine events
Communication as a Window to Collaborative Cognition

- Observable; Think aloud “in the wild”
- Reflects collaborative cognition at the holistic level; is collaborative cognition
- Embedded in the task
- But... labor intensive transcription, coding, and interpretation
- Exploit its richness by automating analyses
Our Approach to Communication Analysis

- Communication Flow Analysis
- Content Analysis Using Latent Semantic Analysis
Team members use push-to-talk intercom buttons to communicate. At regular intervals speaker and listener identities are logged.
Analyzing Flow: ProNet--Procedural Networks

- Nodes define events that occur in a sequence
- An Example from UAV study: 6 nodes: Abeg, Aend, Pbeg, Pend, Dbeg, Dend
- ProNet: Find representative event sequences

Quantitative: Chain lengths-->Performance
Mission 2: \(R^2 = .509, F(2, 8) = 4.144, p = .058 \)
Mission 3: \(R^2 = .275, F(1, 9) = 3.415, p = .098 \)
Mission 5: \(R^2 = .628, F(2, 8) = 5.074, p = .051 \)
Analyzing Flow: ProNet--Procedural Networks

Qualitative: Communication patterns predictive of performance

Team 2 before PLO-DEMPC’s fight

Team 2 after PLO-DEMPC’s fight

AVO = Air Vehicle Operator
PLO = Payload Operator
DEMPC = Navigator
Analyzing Flow: Other Approaches

- Measure of speaker dominance
- Deviations from ideal flow
- Clustering model-based patterns
Content Analysis with Latent Semantic Analysis (LSA)

- A tool for measuring cognitive artifacts based on semantic information.
- Provides measures of the semantic relatedness, quality, and quantity of information contained in discourse.
- Automatic and fast.
- We can derive the meaning of words through analyses of large corpora.

Landauer, Foltz, & Laham, 1998
Content Analysis with Latent Semantic Analysis (LSA) (continued)

- Large constraint satisfaction problem of estimating the meaning of many passages based on their contained words (like factor analysis)
- Method represents units of text (words, sentences, discourse, essays) as vectors in a high dimensional semantic space based on correlations of usage across text contexts
- Compute degree of semantic similarity between any two units of text
Content Analysis with Latent Semantic Analysis (LSA)

An Example from UAV Study 1

- 67 Transcripts from missions 1-7
 - XML tagged with speaker and listener information
 - ~2700 minutes of spoken dialogue
 - 20,545 separate utterances (turns)
 - 232,000 words (660 k bytes of text)

- Semantic Space: 22,802 documents
 - Utterances from dialogues
 - Training material
 - Interviews with domain experts

- Derived several statistical measures of the quality of each transcript
Content Analysis with Latent Semantic Analysis (LSA)

Team 1 Mission 3
Score: 750

Team 3 Mission 4
Score: 620

Team 8 Mission 6
Score 560

Team 7 Mission 3
Score 580

Team 6 Mission 3
Score 490

Team 5 Mission 4
Score 460

Team 8 Mission 3
Score ????

LSA-based communication score predicts performance (r = .79).
Other Significant Variables

- Variance of scores of similar dialogues $r = -0.58$
- Vector length, $r = -0.35$
- Number of words, $r = -0.34$
- Zipf R^2, $r = -0.47$
- Percent non-function words, $r = 0.34$
- ...

- Five factor RMMR model: $r = 0.76$

Conclusion: We can accurately predict team performance from dialogues as a whole.
Analyzing Content: Other Approaches

- Automatic transcript coding
- Coherence in team dialogue
- Measures of individual contributions
Implications of Communication Work

- Collaborative cognition is revealed through discourse
- Measurement of the team as a whole, as well as individuals
- Techniques move toward automated analyses of the content of team dialogues
- Avoids tedious hand coding, keeps high reliability
- Automation will allow for task-embedded measures that assess and diagnose in real-time
Conclusions
Summary

- Understanding collaborative cognition is critical for diagnosis of team dysfunction or excellence and later intervention
- Assessment is only a first step
- Diagnostic information is needed
- In operational environments diagnosis needs to be task-embedded, automatic, and forward-looking
Implications & Applications

- Suggestions for aiding collaborative cognition through training or technology.
- Selecting/composing teams for optimal collaboration
- On-line monitoring of collaborative cognition in high-risk environments
Questions or Comments?
Contact
Nancy J. Cooke
Arizona State University

ncooke@asu.edu

http://psych.nmsu.edu/CERTT/