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Abstract—In this paper, an adaptive opportunistic routing 
scheme for multi-hop wireless ad-hoc networks is proposed. The 
proposed scheme utilizes a reinforcement learning framework to 
achieve the optimal performance even in the absence of reliable 
knowledge about channel statistics and network model. This 
scheme is shown to be optimal with respect to an expected average 
per packet cost criterion. 
The proposed routing scheme jointly addresses the issues of 
learning and routing in an opportunistic context, where the 
network structure is characterized by the transmission success 
probabilities. In particular, this learning framework leads to 
a stochastic routing scheme which optimally “explores” and 
“exploits” the opportunities in the network.
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Abstract—In this paper, an adaptive opportunistic routing
scheme for multi-hop wireless ad-hoc networks is proposed. The
proposed scheme utilizes a reinforcement learning framework to
achieve the optimal performance even in the absence of reliable
knowledge about channel statistics and network model. This
scheme is shown to be optimal with respect to an expected average
per packet cost criterion.

The proposed routing scheme jointly addresses the issues of
learning and routing in an opportunistic context, where the
network structure is characterized by the transmission success
probabilities. In particular, this learning framework leads to
a stochastic routing scheme which optimally “explores” and
“exploits” the opportunities in the network.

I. INTRODUCTION

Opportunistic routing for multi-hop wireless ad-hoc net-
works has seen recent research interest to overcome deficien-
cies of conventional routing [1]–[6] as applied in wireless
setting. Opportunistic routing decisions are made in an on-line
manner, choosing the next relay based on the actual trans-
mission outcomes as well as a rank ordering of relays. This
on-line and sample-path dependent structure of opportunistic
schemes improves the performance of routing by exploiting
the broadcast nature of wireless transmissions as well as the
inherent path and multi-user diversity present in a network.

The authors in [1], [6] provided a Markov decision theoretic
formulation for opportunistic routing. In particular, it is shown
that the optimal routing decision at any epoch is to select the
next relay node based on an index summarizing the expected-
cost-to-forward from that node to the destination. This index
is shown to be computable in a distributed manner and with
low complexity using the probabilistic description of wireless
links. The study in [1], [6] provides a unifying framework for
almost all versions of opportunistic routing such as SDF [2],
GeRaF [3] and EXOR [4].1

The opportunistic algorithms proposed in [1]–[6] implicitly
depend on a precise probabilistic model of wireless connec-
tions and local topology of the network. In practical setting,
however, these probabilistic models have to be “learned” and

This work was partially supported by the the UC Discovery Grant #com07-
10241, Intel Corp., QUALCOMM Inc., Texas Instruments Inc., and CWC at
UCSD, and NSF CAREER Award CNS-0533035.

1The variations in [2]–[4] are due to the authors’ choices of cost measures
to optimize. For instance an optimal route in the context of EXOR is computed
so as to minimize the expected number of transmissions (ETX), while GeRaF
uses the smallest expected geographical distance from the destination as a
criterion for selecting the next-hop.

“maintained”. With the exception of [7], which provides a
sensitivity analysis of opportunistic routing when channel
models are erroneous, by and large, the question of learn-
ing and estimating channel statistics has not been explored
in the opportunistic routing context. In this paper, using a
reinforcement learning framework, we propose an adaptive
opportunistic routing (AdaptOR) algorithm which minimizes
the expected average per packet cost when zero or erroneous
knowledge of transmission success probabilities and network
topology is available.

The rest of the paper is organized as follows: In Section II,
we discuss the system model and formulate the problem. Sec-
tion III-A formally introduces our proposed routing algorithm,
Adaptive Opportunistic Routing (AdaptOR). We then state the
optimality theorem for AdaptOR algorithm in Section III-B. In
Section IV, we analyze the convergence and optimality of the
algorithm. Finally, we conclude the paper and discuss future
work in Section V.

We end this section with a note on the notations used. For a
vector x ∈ RD, D ≥ 1, we use x(l) to denote the lth element
of the vector. We use n+ to denote the time just after the start
of slot [n, n+ 1) and (n+ 1)− to denote the time just before
the end of the slot [n, n+ 1).

II. SYSTEM MODEL

We consider the problem of routing packets from the source
node o to a destination node d in a wireless ad-hoc network
of d + 1 nodes denoted by the set Θ = {o, 1, 2, · · · , d}. The
time is slotted and indexed by n ≥ 0. A packet indexed by
m ≥ 0 is generated at the source node o at time τms according
to an arbitrary distribution with stabilizable rate λ > 0.

We assume that the successful reception of the packet
transmitted by a node occurs according to a fixed conditional
probability distribution over the set of nodes in the network.
Furthermore, we assume that successful transmissions over
different time slots are independent and identically distributed.
In particular we characterize the behavior of the wireless
channel using a probabilistic local broadcast model [6]. The
local broadcast model is defined using the transition prob-
ability P (S|i), S ⊆ Θ, i ∈ Θ, where P (S|i) denotes the
probability of successful reception of packet transmitted by
node i by all the nodes in S. Note that for all S 6= S′,
successful reception at S and S′ are mutually exclusive and∑
S⊆Θ P (S|i) = 1. Logically, node i is always a recipient of
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its own transmission, i.e. P (S|i) = 0 if i /∈ S. Local broadcast
model generalizes the notion of link and allows for correlation
of successful receptions. When successful transmission to
various nodes are independent, P (S|i) can be written as
Πj∈SPij where 0 ≤ Pij ≤ 1 represents the link quality. The
successful reception of the packet by the neighbors is assumed
to be known at the centralized controller with zero error and
propagation delay.

Given a successful transmission from node i to the set
of nodes S, the next (possibly randomized) routing decision
includes 1) retransmission by node i, 2) relaying packet by a
node j ∈ S, or 3) dropping the packet all together. If the
controller decides to use node j for relay, then node j is
assumed to transmit the packet at the next slot, while other
nodes k 6= j, k ∈ S drop that packet.

We assume upon a transmission from node i a fixed
transmission cost ci > 0 is incurred. Transmission cost ci
can be considered to model the amount of energy used for
transmission, the expected time to transmit a given packet, or
the hop count when the cost is equal to unity.

We define the termination event for packet m to be the
event that packet m is either received by the destination or is
dropped by a relay before reaching the destination. We define
termination time τme to be a random variable at which packet
m is terminated. We discriminate amongst the termination
events as follows: We assume that upon the termination of a
packet at the destination (successful delivery of a packet to the
destination), a fixed and given positive reward R is obtained,
while if the packet is terminated (dropped) before it reaches the
destination, no reward is obtained. Let rm denote the random
reward obtained at the termination time τme , i.e. it is either
zero if the packet is dropped prior to reaching the destination
node or R if the packet is received at the destination.

Given the assumptions and model, the routing scheme can
be viewed as selecting a (possibly random) sequence of nodes
{in,m} for relaying packets m = 1, 2, · · · . As such, the
expected average per packet reward associated with routing
packets along sequence of {in,m} is:

lim
N→∞

E

 1
MN

MN∑
m=1

rm −
τm

e −1∑
n=τm

s

cin,m


 , (1)

where MN denotes the number of packets terminated upto
time N , in,m denotes the index of the node which transmits
packet m at time n, and the expectation is taken over the
events of transmission decisions, successful packet receptions,
and packet generation times.2

Problem (P) : We are interested in maximizing (1) by
choosing the sequence of relay nodes {in,m} in the absence
of knowledge about the local broadcast model.

In proposing a solution to the Problem (P), we will need the
following definitions of action space, state space, and reward

2Our main result establishes the existence of an optimal policy which
maximizes the lim in (1) This is a strong notion of optimality and implies
that the proposed algorithm’s expected average reward is greater than the best
case performance (lim sup) of all policies [8, Page 344 ].

function associated with each packet m. The set of all actions,
action space, is given by,

A = Θ ∪ {f},

i.e. the set of relay nodes along with the termination action f .
The state space is given by a set S,

S = ∪i∈Θ{S : P (S|i) > 0} ∪ {F},

denoting the sets of potential reception outcomes from every
node i ∈ Θ together with a termination state F . The termina-
tion state F is the state visited by the system when termination
action f is chosen, i.e. P (F |f) = 1. Given a set S of nodes
that have received a packet from one of the nodes in Θ, the
set of allowable actions is denoted by A(S) = S ∪ {f}.
The allowable action in the termination state F is f , i.e.
A(F ) = {f}. Without loss of generality, the allowable action
associated with any set S ∈ Zd = {S : d ∈ S, S ∈ S} is
restricted to f , i.e. A(S) = {f}.

It remains to define the reward function g : S×A → R to
represent the reward obtained from taking an action at a given
state. In summary, g(S, a) is given as:

g(S, a) =

 −ci a = i ∈ S
R a = f , S ∈ Zd
0 a = f , S /∈ Zd

.

Let Sn,m and an,m be respectively the state of the sys-
tem and the routing decision at time n for packet m.
Let admissible routing policy φ be a sequence of ac-
tions {aτm

s ,m, aτm
s +1,m, · · · } for all packets m taking val-

ues on the allowable action space A(S). For a ∈ A(S),
the event {an,m = a} belongs to the σ-field Hn gener-
ated by ∪m{τms , Sτm

s ,m, aτm
s ,m, · · · , Sn−1,m, an−1,m, Sn,m}

for all m such that τms ≤ n. Furthermore, let Φ denote the set
of admissible policies for Problem (P).

III. THE ALGORITHM AND MAIN RESULTS

A. Algorithm AdaptOR

In this section, we present an Adaptive Opportunistic Rout-
ing (AdaptOR) algorithm to solve Problem (P). At each time
slot n, the algorithm uses a score vector Λn in Rv , where
v =

∑
S∈SA(S) is the cardinality of the domain S×A.

Remark Λn(S, a) evaluated at state S ∈ S and action a ∈
A(S), can be considered to be an estimate of the expected
reward obtained by taking action a at state S at time slot n.

AdaptOR is parametrized by a scaler constant 0 < γ ≤ 1
and a sequence of positive scalers {αn}∞n=1. During any time
slot [n,n+1), the algorithm uses two counting random variables
νn(S, a), Nn(S), and two random sets Wn and Yn to update
the nth iterate Λn. Counting random variables νn(S, a) and
Nn(S) are equal to the number of times state-action pair
(S, a) and state S have been reached upto time n, respectively.
Random set Wn ⊆ Θ denotes the set of transmitting nodes
during time slot [n − 1, n), while random set Yn consists of
the set of potential relays associated with transmissions from
nodes in Wn−1.
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Random counters νn, Nn, random sets Yn, Wn, and Λn are
initialized as follows:

ν0(S, a) = 0, N0(S) = 0,

Y0 = {o},W0 = {o},

Λ0(S, a) =
{
−R if (S, a) = (F, f)
0 otherwise .

To better conceptualize the working of algorithm AdaptOR,
we divide the execution of the algorithm into three stages of
reception, adaptive computation, and relay/transmission.

1) Reception and Acknowledgment Stage:
This stage is assumed to occur at time n. Wn ⊆ Θ
denotes the (random) set of nodes each of which has
transmitted one packet at time n−. For any transmitter
node a ∈ Wn, let San denote the (random) set of
nodes that have successfully received the packet from
node a. In the reception and acknowledgment stage
the successful reception of the transmitted packet is
acknowledged by all the nodes in the set San for all
a ∈Wn. These nodes form the set of potential relays
for node a; collectively they form random set Yn+1,
i.e.

Yn+1 := {San : ∀a ∈Wn}.

Upon reception and acknowledgment, the counting
random variables are incremented as follows:

Nn(S) =

{
Nn−1(S) + 1 if S ∈ Yn+1

Nn−1(S) if S /∈ Yn+1
,

and

νn(S, a) =

{
νn−1(S, a) + 1 if (S, a) ∈ Yn ×Wn

νn−1(S, a) if (S, a) /∈ Yn ×Wn
.

2) Adaptive Computation Stage:
This stage is assumed to occur at n+. In this stage,
for all (S, a) ∈ Yn ×Wn, Λn is updated as follows:

Λn(S, a) = Λn−1(S, a)+

ανn(S,a)

(
− Λn−1(S, a) + g(S, a)

+ max
j∈A(Sa

n)
Λn−1(San, j)

)
. (2)

For the state-action pair (S, a) /∈ Yn×Wn, Λn remains
unchanged as

Λn(S, a) = Λn−1(S, a).

3) Relay/Transmission Stage:
This stage is assumed to occur at (n + 1)−. In
this stage, the next set of relay nodes (actions) are
selected. In particular, for all S ∈ Yn+1, random action
aSn+1 ∈ A(S) is selected according to the following
(randomized) rule:
• with probability (1− εn(S)),

aSn+1 ∈ arg max
j∈A(S)

Λn(S, j)

is selected,3 and
• with probability εn(S)

|A(S)| , a
S
n+1 ∈ A(S) is selected

randomly, where

εn(S) =
γ

Nn(S) + 1
.

At time (n+1)−, the set of transmitters Wn+1 = {a :
∀S ∈ Yn+1, a ∈ Θ and a = aSn+1} is updated.
All nodes in Wn+1 transmit a packet at time (n+1)−.

B. Optimality of AdaptOR

We will now state our main result on the optimality of
AdaptOR, φ∗ ∈ Φ. Theorem 1 below shows that the expected
reward obtained by φ∗(AdaptOR) maximizes (1).

Theorem 1. For all φ ∈ Φ,

lim
N→∞

Eφ
∗

 1
MN

MN∑
m=1

rm −
τm

e −1∑
n=τm

s

cin,m




≥ lim sup
N→∞

Eφ

 1
MN

MN∑
m=1

rm −
τm

e −1∑
n=τm

s

cin,m




IV. PROOF

In this section, we prove the optimality of AdaptOR in two
steps. In the first step, we show that Λn converges almost
surely. In the second step we use this convergence result to
show that AdaptOR is optimal for Problem (P).

A. Convergence of Λn
Let U : Rv → Rv be an operator on vector Λ such that,

(UΛ)(S, a) = g(S, a) +
∑
S′

P (S′|a) max
j∈A(S′)

Λ(S′, j).

Let Λ∗ ∈ Rv denote the fixed point of operator U ,4 i.e.

Λ∗(S, a) = g(S, a) +
∑
S′

P (S′|a) max
j∈A(S′)

Λ∗(S′, j), (3)

Λ∗(F, f) = −R. (4)

The following theorem establishes the convergence of recur-
sion (2) to the fixed point of U , Λ∗.

Theorem 2. Let

(J1) Λ0(., .) = 0 and Λ0(F, f) = −R,
(J2)

∑∞
l=0 αl =∞,

∑∞
l=0 α

2
l <∞.

Then iterate Λn obtained by the stochastic recursion (2)
converges to Λ∗ almost surely.

Proof: The proof follows using known results on the
convergence of a certain super martingale process presented
in Theorems 1, 2 in [10]. The detailed proof is provided in
[9].

3In case ambiguity, node with smallest index is chosen.
4Existence and uniqueness of Λ∗ is provided in [9].
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B. Proof of optimality

Using the convergence result of Λn, next we show that the
expected average per packet reward under AdaptOR is equal
to the optimal expected average per packet reward obtained
for a genie-aided system where the local broadcast model is
known perfectly.

In proving the optimality of AdaptOR algorithm for Prob-
lem (P), we take cue from known results of a closely related
Auxiliary Problem (AP) wherein the controller has perfect
knowledge of local broadcast model as presented in [1], [6].

Let Fn be the product σ-field P ×Hn [11], where P is the
borel σ-field generated by the random probability measures
for the local broadcast model.5 For Auxiliary Problem (AP),
let admissible routing policy π be a sequence of actions
{aτm

s ,m, aτm
s +1,m, · · · } for packet m taking values on the

allowable action space A(S) such that the event {an,m = a}
belongs to the σ-field Fn. Furthermore, let Π denote the set
of admissible policies for Auxiliary Problem (AP).

The reward associated with policy π ∈ Π for routing a
single packet m from the source to the destination is then
given by

Jπ({o}) := Eπ

rm −
τm

e −1∑
n=0

cin,m

 |F0

 , (5)

where F0 = P , and the expectation Eπ is taken with respect
to the random events as well as the conditional distributions
over action space defined by policy π. Now, in this setting, we
are ready to formulate the following Auxiliary Problem (AP)
as a classical shortest path Markov decision problem (MDP).

Auxiliary Problem (AP) Find an optimal policy π∗ such
that,

Jπ
∗
({o}) = sup

π∈Π
Jπ({o}). (6)

Auxiliary Problem (AP) has been extensively studied in [1],
[6], [12] and the following theorem is established in [6].

Fact 1 (Theorem 2.1 [6]). There exists a function π∗ : S→ A
such that the policy an,m = π∗(Sn,m) is an optimal solution
for the Auxiliary Problem (AP).6 Furthermore, π∗ is such that

π∗(S) ∈ arg max
j∈A(S)

V ∗(j), (7)

where (value) function V ∗ : A → R is the unique solution to
the following fixed point equation:

V ∗(d) = R (8)

V ∗(i) = max({−ci +
∑
S′

P (S′|i)(max
j∈S′

V ∗(j))}, 0)(9)

V ∗(f) = 0. (10)

5σ-field captures the knowledge of the realization of local broadcast model
and assumes a well-defined prior on these models.

6In other words there exists a stationary, deterministic, and Markov optimal
policy for Auxiliary Problem (AP).

Lastly, V ∗(j) is the maximum expected reward for routing a
packet from node j to destination d:

V ∗(j) = Jπ
∗
({j}) = sup

π∈Π
Jπ({j}).

Lemma 1 below states the relationship between the solution
of Problem (P) and that of the Auxiliary Problem (AP). More
specifically, Lemma 1 shows that V ∗(o) is an upper bound for
the solution to Problem (P).

Lemma 1. Consider any admissible policy φ ∈ Φ for
Problem (P). Then for all N = 1, 2, · · ·

Eφ

 1
MN

MN∑
m=1

rm −
τm

e −1∑
n=τm

s

cin,m


 ≤ V ∗(o).

Proof: The proof is given in [9]. Intuitively the result
holds because the set of admissible policies Φ in (P) is a
subset of admissible policies Π in (AP).

Lemma 2 gives the achievability proof for Problem (P)
by showing that the expected average per packet reward of
AdaptOR is no less than V ∗(o).

Lemma 2. For any δ
′
> 0,

lim inf
N→∞

Eφ
∗

 1
MN

MN∑
m=1

rm −
τm

e −1∑
n=τm

s

cin,m


 ≥ V ∗(o)− δ′ .

Proof: The proof is given in Appendix A.
Lemmas 1 and 2 imply that

lim
N→∞

Eφ
∗

 1
MN

MN∑
m=1

rm −
τm

e −1∑
n=τm

s

cin,m




exists and is equal to V ∗(o). This together with Lemma 1
establishes the proof of Theorem 1.

V. CONCLUSIONS

In this paper, we proposed an adaptive opportunistic routing
scheme which maximizes the expected average per packet
reward from the source to the destination in absence of
knowledge regarding network topology and link qualities.

We would like to point out that AdaptOR can be readily
extended to scenarios in which the routing decisions and
computations are done in a decentralized and asynchronous
manner. We refer interested readers to [9].

The broadcast model used in this paper assumes a decou-
pled operation at the MAC and network layer. While this
assumption seems reasonable for many popular MAC schemes
based on random access philosophy, it ignores the potentially
rich interplays between scheduling and routing which arises in
many TDM based schemes such as [13]. The joint design of
MAC and routing remains an important area of future research.
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APPENDIX

A. Proof of Lemma 2

Proof: From (3), (4), (8), (9) we obtain the following
equality

arg max
j∈A(S)

V ∗(j) = arg max
j∈A(S)

Λ∗(S, j). (11)

Let

b = min
S∈S

min
i,j∈A(S)

Λ∗(S,i)6=Λ∗(S,j)

|Λ∗(S, i)− Λ∗(S, j)|
2

. (12)

Theorem 2 implies that, in an almost sure sense, there exists
packet index m1 <∞ such that for all n > τm1

s ,

|Λn(S, a)− Λ∗(S, a)| ≤ b ∀S ∈ S, a ∈ A(S). (13)

Therefore, from time τm1
s onwards, given any set of S, prob-

ability that algorithm AdaptOR chooses an action a ∈ A(S)
such that Λ∗(S, a) 6= maxj∈A(S) Λ∗(S, j) is upper bounded
by εn(S). Furthermore, since each state is visited infinitely
often [9] (Nn(S) → ∞) there exists packet index m2 < ∞
almost surely such that for all n > τm2

s , maxS εn(S) < δ for
a given δ > 0.

Let m0 = max{m1,m2}. For all packets with index
m ≤ m0 the overall expected reward is upper-bounded by

m0Rmax <∞ and lower-bounded by −m0
λ dmaxi ci > −∞,

hence their presence does not impact the expected average
reward. Consequently, we only need to consider the errors
due to random decisions of policy φ∗ (exploration) for packets
m > m0.

Consider the mth packet generated at the source. Let Bmk
be an event for which there exist k instances at which routing
algorithm routes packet m differently from the possible set of
optimal actions. Mathematically speaking, event Bmk occurs
iff there exists instances τms ≤ nm1 ≤ nm2 · · ·nmk ≤ τme such
that for all l = 1, 2, · · · , k

Λ∗(Snm
l
, anm

l
) 6= max

j∈A(Snm
l

)
Λ∗(Snm

l
, j),

where Snm
l

is the set of nodes which have successfully
received packet m at time nml . We call such events Bmk a
mis-routing of order k. It is straight-forward to show that for
m > m0,

Prob(Bmk ) ≤ δk.

For any packet m, m > m0, let us consider the expected
differential reward under policies π∗ and φ∗:

Eπ
∗

rm −
τm

e −1∑
n=τm

s

cin,m
|F0


−Eφ

∗

rm −
τm

e −1∑
n=τm

s

cin,m




= V ∗(o)−Eφ
∗

rm −
τm

e −1∑
n=τm

s

cin,m




=
∞∑
k=0

Eφ
∗

V ∗(o)−
rm −

τm
e −1∑
n=τm

s

cin,m

 |Bmk


×Prob(Bmk )

≤
∞∑
k=0

k R Prob(Bmk ) (14)

≤ R

∞∑
k=1

kδk (15)

= δ′, (16)

where δ′ = δR
(1−δ)2 . Inequality (14) is obtained by noticing

that maximum loss in the reward occurs if algorithm AdaptOR
decides to drop packet m (no reward) while there exists a node
j in the set of potential forwarders such that V ∗(j) ≈ R.

Thus the expected average per packet reward under policy
φ∗ is bounded as

lim inf
N→∞

Eφ
∗

 1
MN

MN∑
m=1

rm −
τm

e −1∑
n=τm

s

cin,m




≥ lim inf
N→∞

∑MN

m=1(V ∗(o)− δ′)
MN

≥ V ∗(o)− δ′.


	Memorandumoftransmittal_Milstein1.pdf
	Reportdocumentationpage_milstein1.pdf
	javidi16.pdf



