
Modular Programming Techniques for Distributed Computing 
Tasks 

 
Anthony Cowley, Hwa-Chow Hsu, Camillo J. Taylor 

GRASP Laboratory 
University of Pennsylvania, Philadelphia, PA, USA, 19104  

 
 

ABSTRACT  
 
This paper describes design patterns used in developing a software 
platform for mobile robot teams engaged in distributed sensing and 
exploration tasks.  The goal of the system presented is to minimize 
redundancy throughout the development and execution pipelines by 
exploring the application of a strong type system to both the 
collaborative development process and runtime behaviors of mobile 
sensor platforms.  The solution we have implemented addresses both 
sides of this equation simultaneously by providing a system for self-
describing inputs and outputs that facilitates code reuse among 
human developers and autonomous agents.  This well-defined 
modularity allows us to treat executable code libraries as atomic 
elements that can be automatically shared across the network.  In this 
fashion, we improve the performance of our development team by 
addressing software framework usability and the performance and 
capabilities of sensor networks engaged in distributed data 
processing.  This framework adds robust design templates and 
greater communication flexibility onto a component system similar 
to TinyOS and NesC while avoiding the development effort and 
overhead required to field a full-fledged web services or Jini-based 
infrastructure.  The software platform described herein has been used 
to field collaborative teams of UGVs and UAVs in exploration and 
monitoring scenarios.   
 
KEYWORDS: sensor network, distributed computing, 
software design 

 
1. INTRODUCTION 
 
As efforts to field sensor networks, or teams of mobile 
robots, become more ambitious [5], [11], [4], 
communication constraints rapidly become the 
bottleneck both in the development effort and execution 
environment.  From a development standpoint, human 
networking becomes clumsy as team sizes grow, putting 
team communications at a premium.  Therefore, effort 
should be spent to optimize away the time developers 
must spend explaining things to each other, specifically, 
how to write code that has already been written or how 
to reuse existing code.  If this aspect of collaborative 
development is not explicitly addressed, the team runs 
the risk of either losing the ability to reuse code, due to a 
lack of shared understanding, or drastically curtailing 

productivity by devoting excessive time to 
documentation efforts.  Ideally, each developer’s efforts 
will be documented extensively enough for others to 
easily reuse the existing code without placing an 
undesirable documentation burden on the original 
developer. 
 
 The desire for software agents to autonomously 
exploit existing code is a subtly parallel goal.  Should an 
agent be able to specify its requirements, it ought to be 
able to identify any existing code that would meet this 
need.  This applies both in the sense of agents 
discovering new sources of data, and that of interactive 
data processing requests.  We wish to field a sensor 
network wherein one sensor can tap into a potentially 
live data stream without any a priori knowledge of other 
nodes or their capabilities, while also giving each node 
on the network the ability to ask questions that require 
the processing of large amounts of data.  In the first 
case, we need to give our agents the ability to identify 
the types of data being exported by other agents.  This is 
addressed by having communication endpoints describe 
the data they trade in.  The latter case involves not only 
finding the correct type of data, but also sending an 
active query to the data rather than saturating the 
network by bringing the data to the query.  Such 
behavior requires descriptions of data sources and sinks, 
as well as the ability to move, command, and control 
executable code across the network. 
 
2. IMPLEMENTATION 
 
A crucial aspect in the development of this framework 
design philosophy is the relationship between the new 
software and that which it is built upon.  We chose to 
develop our high level environment on top of an already 
full-featured platform.  In our case, this platform was 
Microsoft’s .NET technology, which includes a strong 
type system in the .NET CLR (Common Language 
Runtime), an object-oriented language in the form of 
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C#, and many varieties of network functionality in the 
.NET Class Library.  Our design then focused both on 
what functionality we wished to add and that which we 
wished to remove.  Simply put, we want to impose some 
structure on our developers that is not inherent to C#, 
.NET, or any existing platform.  This structure is a 
fundamental part of the ROCI (Remote Objects Control 
Interface) [6], [9] philosophy, and is imposed on the 
ROCI developer as a form of design control that we 
believe adds a level of reliability to the resultant system.  
By imposing a prescribed design on developers, we are 
better able to isolate potential weaknesses and build in 
error detection and handling functionality. 
  
 ROCI itself is a high level operating system useful 
for programming and managing sensor networks.  The 
core control element in the ROCI architecture is the 
ROCI kernel.  A copy of the kernel runs on every entity 
that is part of the ROCI network (robots, remote 
sensors, etc.).  The kernel is responsible for handling 
program allocation and injection.  It allows applications 
to be specified and executed dynamically by forming 
communication connections and transferring code 
libraries to the nodes as needed.  The kernel is also 
responsible for managing the network and maintaining 
an updated database of other nodes in the ROCI 
network.  In this way, ROCI acts as a distributed peer-
to-peer system.  Nodes can be dynamically added and 
removed from the network, and information about these 
nodes and the code running on them is automatically 
propagated throughout the system without the need for a 
central repository. 
 
 The control functionality needed by such a kernel is 
made possible by self-contained, reusable modules.  
Each module encapsulates a process which acts on data 
available on its inputs and presents its results on well 
defined outputs.  Thus, complex tasks can be built by 
connecting inputs and outputs of specific modules.  
These connections are made through a pin architecture 
that provides a strongly typed, network transparent 
communication framework.  A good analogy is to view 
each of these modules as an integrated circuit (IC) that 
has inputs and outputs and does some processing.  
Complex circuits can be built by wiring several ICs 
together, and individual ICs can be reused in different 
circuits.  ROCI modules have been developed for a wide 
range of tasks such as: interfacing to low level devices 
like GPS units and cameras, computing position 
estimates based on GPS, IMU and odometry data, 

acquiring stereo panoramas, platform motion control, 
online map building and GPS waypoint navigation. 
 
 ROCI modules are further organized into tasks 
(Figure 1).  A ROCI task is a way of describing an 
instance of a collection of ROCI modules to be run on a 
single node, and how they interact at runtime.  Tasks 
represent a family of modules that work together to 
accomplish some end goal – a chain of building blocks 
that transforms input data through intermediate forms 
and into a useful output.  A task can be defined in an 
XML file which specifies the modules that are needed to 
achieve the goal, any necessary module-specific 
parameters, and the connectivity between these 
modules.  Tasks can also be defined and changed 
dynamically by starting new modules and connecting 
them with the inputs and outputs of other modules. 
 
 

 
Figure 1. A typical ROCI task: a collection of behavior 
modules with loggers connected to specific pin 
connections.  A human operator interfaces with the logs 
via the browser, which may be running on a different 
machine from the task. 

 
 The wiring that connects ROCI modules is the pin 
communication architecture.  Pin communications in 
ROCI are designed to be network transparent yet high 
performance.  Basically, a pin provides the developer 
with an abstract communications endpoint.  These 
endpoints can either represent a data producer or a data 
consumer.  Pins in the system are nothing more than 
strongly typed fields of the module class, and so are 
added to modules with a standard variable declaration 
statement.  Pin communication allows modules to 
communicate with each other within a task, within a 
node or over a network seamlessly.  The base Pin type 
will optimize the connection based on whether or not it 
is local and handle all error detection and handling, 
bandwidth utilization requirements, and optional 
buffering.  The type system enforces pin compatibility at 



run time which makes it impossible to connect inputs 
and outputs of incompatible types. 
 
 This compatibility evaluation is done in an object-
oriented fashion such that, when necessary, output data 
will be transparently up-cast before being transmitted to 
a data sink.  This negotiated compatibility allows for 
what we call “blind polymorphism,” which does not 
require that both nodes have all the same types loaded.  
That is to say, if data can be cast up its inheritance 
hierarchy to the type that the data sink requires, then this 
cast will be done on the source side of the connection, 
thereby not requiring that the sink be aware of the 
inherited type. 
 
 Importantly, the modules in the system are self 
describing so that the kernel can automatically discover 
their input and output pins along with any user-settable 
parameters.  These features of the ROCI architecture 
facilitate automatic service discovery since a module 
running on one ROCI node can query the kernel 
database to find out about services offered by modules 
on other nodes and can connect to these services 
dynamically. 
 

The self describing behavior of module inputs, 
outputs, and parameters is achieved automatically 
through the use of the underlying type system.  This is 
an important element of ROCI’s ability to limit the 
potential for developer error.  In the process of 
identifying necessary input and output pins, the module 
developer naturally defines certain data structures that 
the module takes as input and generates as output.  
These data structures represent a form of design contract 
that tells other users what type of input the module can 
parse, and what type of output it generates.  This 
information is what the pin type system is built upon: a 
particular type of pin is designed to transfer a particular 
type of data.  These types can then be used to verify 
potential connections between pins.  By relying on type 
information that the developer necessarily creates by 
designing module-appropriate data structures, we are 
able to obviate the need for any separate developer-
generated description of a module’s inputs and outputs.  
Such descriptions run the risk of becoming out of date, 
and are not always easily checked.  Relying on the type 
system, however, means that if a module incorrectly 
parses an input data structure, for example, it will not 
compile.  In this way we guarantee that if a Module 
compiles, then it must be compatible with the associated 
data description. 

 
2.1. The Task Programming Model 
 
The abstraction gained by treating modules as primitive 
components allows us to bring compiler-level features to 
bear on ROCI tasks.  Specifically, the idea of type 
checking the input/output connections between modules 
has already been covered, but type checking the 
parameters that govern the behavior of these modules is 
also provided at the task level.   
 

Individual module authors are able to decorate 
class-scope variable declaration statements with 
attributes that specify whether or not a variable is a 
startup parameter, or even if it is a control parameter 
that should be modifiable at run time.  These attributes 
are extracted from compiled code, and are used by the 
ROCI to kernel to expose these variables when 
appropriate.   

 
Variables marked as startup parameters will be 

displayed in the browser UI when a user wishes to start 
a task.  Type checking is performed as the user enters 
new values for these parameters, thus making it far less 
likely that a module will start with invalid parameters.  
Furthermore, the type of the parameter can be used to 
intelligently populate the parameter-setting UI by 
dynamically creating UI elements such as drop-down 
boxes with only valid values as options, as opposed to a 
text field for every parameter.  Variables marked as 
control parameters (dynamic over the course of 
execution) can be modified by another standard browser 
interface.  A running module can be selected, and any 
variables marked as control parameters will populate a 
parameter-setting UI similar to the one described for 
startup parameters.  This functionality, built atop the 
strong type system in .NET, provides a compiler-like 
layer of type checking at all phases of execution, while 
simultaneously making the UI used to interact with a 
ROCI deployment more intuitive for the end user. 
 
2.2. General Instrumentation 
 
The notion of task as program allows for varied 
interesting forms of system-level instrumentation and 
control.  First, by sufficiently isolating individual 
modules such that they can be treated as atomic 
operations, we are able to treat tasks as programs built 
on a language that uses the specified modules as 
statements.  Second, by virtue of its role as provider of 



all inter-module communications, the ROCI kernel is 
capable of rich monitoring and control of all data 
transactions.  These two points both deal with the notion 
of program flow control. 
 
 Program flow control is primarily controlled by the 
sequence of operations specified in the program.  In our 
case, a schedule of modules makes up the procedural 
part of a task program.  As described above, a task is a 
collection of concurrently running modules.  The order 
in which these modules run is not explicitly defined, but 
instead is effectively governed by data dependencies 
between modules.  In general, if module alpha uses data 
from module beta, then module alpha will block until 
that data is available, thus creating a very loose schedule 
in which each iteration of module alpha’s processing 
loop is preceded by at least one iteration of module beta.  
There are no guarantees on the efficiency of this 
schedule; if only module alpha uses module beta’s 
output, then it may be wasteful for module beta to run at 
a higher rate than alpha. 
 
 This issue is addressed by having a task schedule.  
The task schedule merely specifies a linear sequence of 
module iterations, but can be leveraged to obtain far 
greater efficiency that a schedule governed solely by 
dependency blocking.  This schedule is specified in the 
task XML file as a sequence of module names.  The 
names are checked when the task file is loaded to ensure 
that all statements in the schedule are defined module 
names.  This schedule can be used simply to eliminate 
wasted iterations of data producers, but it can also be 
used to obtain non-obvious gains in overall program 
efficiency.  A schedule can include a bias to run a 
particular module more frequently than another if it 
would give the task, taken as a whole, greater efficiency.  
Furthermore, since this schedule is not encoded in 
compiled code, it is fully dynamic.  That is, a user or 
automated process can adjust a task’s schedule at 
runtime to meet changing resource availability or 
execution priorities. 
 
 Such behavior is dependent on information.  This 
information is made available by the instrumentation 
built into task schedules.  The mechanisms that govern 
the execution of a ROCI task are in good position to 
monitor the iteration frequency of the task schedule in 
its entirety, and the resources being used by individual 
modules.  This information can be used to raise alarms 
when a task frequency drops below a specified 
threshold, to throttle iteration frequency, or to modify 

the schedule to make better use of available resources.  
Furthermore, application specific efficacy metrics can 
be utilized by task monitoring modules to initiate new 
schedules to improve efficiency. 
 
  The distributed nature of ROCI deployments 
suggests a form of program flow throttling apart from 
the usual method of CPU resource allocation: network 
resource allocation.  While the scheduling system can be 
used to monitor and control the rate at which a task 
schedule iterates, ROCI’s pin system can throttle 
network communications on a connection-by-
connection basis.  Individual pin connections can be 
monitored to examine the type of data being transmitted, 
the frequency of transmissions, and the bandwidth used.  
Both the frequency of transmission and the overall 
bandwidth used are controllable by the ROCI kernel.  
This allows a controller, human or automated, to give 
network precedence to certain connections, potentially 
allowing greater system effectiveness with limited 
resources.  Note that by throttling network 
communications, the speed at which a networked task 
runs can be controlled.  Especially in a schedule-free 
execution environment, wherein a collection of modules 
have their iteration frequencies mediated by data 
dependencies, the throttling of individual connection 
bandwidth can be used to control the iteration frequency 
of individual modules.  Thus there are two distinct 
methods of controlling performance in an on-demand 
fashion based on mediating CPU or network resource 
allocation. 
 
2.3. Logger Modules 
 
Our sensor database [12], [10] system is implemented 
on top of ROCI through the addition of logger modules. 
These logger modules can be attached to any output pin 
and record the outputs of that pin’s owner module in a 
time-stamped log which can be accessed by external 
processes. These logger modules appear to the system as 
regular ROCI modules which means that they can be 
started and stopped dynamically and can be discovered 
by other ROCI nodes on the system.  This last point is 
particularly salient since it means that robots can learn 
about the records available in other parts of the network 
at run time as those resources become available.  Since 
logger modules can be attached to any output pin, there 
is no meaningful distinction between “low level” sensor 
data such as images returned by a camera module and 
“high level” information such as the output of a position 



estimation module. Any data that is relevant to a task 
can easily be logged through the addition of a logger 
module.   
 

 
Figure 2. Time is a useful index for synchronizing data 
concurrently collected from multiple sources. 

 
 

The generic logger module logs all incoming data 
based on time, an index relevant and meaningful 
regardless of the data type (Figure 2). Additional 
indexing methods that are specific to a particular data 
type are easily implemented by creating a new type of 
logger module that inherits from the general logger and 
is explicitly usable only with the expected data type.  
For example, a logger module that records the output of 
a GPS unit may also support efficient indexing based on 
position.  Using time as a common key provides a 
simple mechanism for correlating information from 
different channels.  Consider, for example, the problem 
of obtaining all of the images that a robot acquired from 
a particular position.  This can be implemented 
efficiently by first indexing into the GPS log to find the 
times at which the robot was at that location and then 
using those times to index the image log to pull out the 
images taken from that vantage point.  Using time as a 
common index also eliminates the need for a fixed 
database schema on the robots: different logger modules 
can be added or removed from a node as needed without 
having to perform complex surgery on a global table of 
sensor readings.  Since the logger processes do not 
interact directly, they can be started and stopped, added 
and removed independently of each other. 
 
2.4. Query Processing 
 
Once a relevant data log has been found on the network, 
one must then face the problem of executing a query to 
extract information from that archive.  It is often the 

case that the volume of data stored in a log makes it 
unattractive to transfer the data over the network for 
processing.  In these situations we can take advantage of 
the fact that the facilities provided by ROCI can be used 
to support distributed query processing.  Consider the 
example of a UAV that stores a log of images acquired 
as it flies over a site.  If a process on a UGV wanted to 
access this data to search for particular targets in the 
scene, it would be impractical to transfer every image 
frame to the ground unit for processing.  Here it makes 
sense to consider sending an active query to the UAV 
requesting it to process the images and send the target 
locations back to the UGV.  This can be accomplished 
by developing a ROCI module that extracts the targets 
of interest from UAV imagery and then sending this 
module to the UAV as part of a query. The ROCI kernel 
on the UAV would then instantiate a task and use this 
module to process the data in the image log returning 
the results to the UGV.   
 

Sophisticated queries that involve chaining together 
the results of many processing operations or combining 
information from several logs can be handled through 
precisely the same mechanism.  The query takes the 
form of a network of ROCI modules that carry out 
various phases of the query.  The modules in this task 
are distributed to appropriate nodes on the network and 
the final output is returned to the node that initiated the 
request.  This approach allows us to dynamically 
distribute the computation throughout the network in 
order to make more efficient use of the limited 
communication bandwidth.   
 

Another feature of this approach is that it promotes 
code re-use since the modules that are developed for 
carrying out various data processing and analysis 
operations online can also be used to implement queries 
on stored data logs (Figure 3).  This is important not just 
by virtue of facilitating rapid development, but also by 
the robustness and familiarity users have with the 
component modules used in all aspects of a ROCI 
deployment.  By making the same framework pervasive 
throughout the development pipeline, users are able to 
concentrate their efforts on improving core techniques 
because the code only needs to be written once.  Once 
the code has been written, users setting up robot 
behaviors work from the same toolbox as those 
formulating queries at run time and throughout post-
processing.   
 



 
Figure 3. A ROCI query is, in many ways, very similar 
to a real-time task.  In many cases, the inputs of the task 
come from live sensors, while the query gets data from 
logs.  This distinction is transparent to the component 
modules. 

 
The notion of query stages combined with the strong 

type system underlying ROCI module inputs and 
outputs immediately opens the door for a multitude of 
queries that make use of functionality already used by 
robot behaviors.  For example, a robust localization 
routine may be run on all robots as they move around 
the environment.  This routine must update relatively 
quickly to allow the robot to navigate in real-time, thus 
necessitating that it only consider readily available data.  
However, a user or autonomous agent may require an 
alternate estimation of a robot's location at a particular 
time in the past, perhaps utilizing newly acquired data.  
This can be achieved by designing a query wherein a 
localization routine, possibly another instance of the 
original routine, is connected to not only locally 
collected data, but also to any number of data processing 
routines, also specified by the query body, running on 
any number of other nodes.  This localization may take a 
relatively long time to execute, and may not be suitable 
for real time control, but it is available to any 
programmed behavior or human operator that requests 
it.  This query, while complex, automatically benefits 
from the shared toolbox provided by the consistent 
design framework.  Processing modules that already 
exist on data hosts need not be transmitted, while others 
are downloaded from peers on an as-needed basis.  The 
query itself is analogous to a behavior task: it specifies 
processing modules and how they connect.  The ROCI 
kernel handles the work of ensuring that modules exist 
on the nodes that need them, and that those modules are 
properly connected. 

 
By applying distributed database methods and 

techniques, the architecture presented here frees 
designers from having to create a static, all-
encompassing communications scheme capable of 
satisfying a set of pre-specified query types.  Instead, 

individual developers are able to utilize all sensor 
network resources in a modular, dynamic fashion 
through the use of active distributed database queries. 
 
3. APPLICATIONS 
 
ROCI technology is being used throughout the GRASP 
Lab to power a variety of robotics projects.  The 
structure supported by ROCI facilitates the design of 
complex single-platform systems, high-performance 
real-time behaviors, and relatively simple static sensors.  
Projects such as the Smart Wheelchair utilize ROCI to 
organize and make sense of the data collected by dozens 
of sensors on a single mobile platform.  Teams of small 
truck-like robots (Clodbusters) use ROCI for everything 
from collaborative error minimization to vision-based 
obstacle avoidance.  Even a fixed camera becomes far 
more useful when plugged into a computer running 
ROCI.  ROCI immediately provides logging capabilities 
as well as the ability to expose the camera’s data stream 
to the network.  Teams of ROCI-powered vehicles made 
up of Clodbusters, fixed wing UAVs, and an 
autonomous blimp have been successfully fielded in 
exploration and navigation experiments under adverse 
network conditions as part of the DARPA-funded 
MARS2020 program. 
 

Current database-related work involves visualization 
and exploitation of data generated by a heterogeneous 
team of ground and air robots equipped with cameras, 
GPS receivers, IMU readers, altimeters and other 
sensors.  For visualization purposes, this data can be 
fused in an on-demand fashion through visualization 
modules a human operator can interact with.  In this 
way, one can quickly bring up images taken by a UAV 
flying over a particular location by joining a GPS log 
with an image log over a time index.  Of note is what 
data is sent over the network to meet a particular 
demand.  To minimize network usage, one might use a 
map location selected by the user to index into a GPS 
log to see when the robot was at the desired location, if 
it ever was.  The resultant time indices can be used to 
index into the image database, thus avoiding the need to 
transfer unnecessary images.   
 

An alternate formulation of this scenario that still 
maintains network efficiency, while improving usability, 
is to obtain the time indices of all images taken within 
some timeframe.  These indices can be used to index 
into the GPS log to present the user with a map marked 



up with the locations where pictures were taken.  The 
user can select one of these locations, thus providing the 
database system with a time index to use in obtaining a 
particular image.  This solution exploits the fact that 
both time indices and GPS data are far more compact 
than image data.  The goal is to transmit as narrow a 
subset of the largest data log, in this case the image log, 
as possible.  This setup is what is used at the GRASP 
Lab to intuitively scan data collected during a team 
operation. 

 
A behavior-oriented application of the logging 

functionality can be found in a mobile target acquisition 
behavior.  In this scenario, periodically placed overhead 
camera nodes log their image data which is made 
accessible to mobile robots when a network route to the 
camera node exists.  Given a piece of code for visually 
identifying a target, a mobile robot can move to within 
routed radio range of overhead camera nodes and inject 
the target identification code as part of an image log 
query.  The results of this query can simply be the time 
indices when the target was visible to the overhead 
camera.  This information can be used to improve the 
efficacy of visual target searches – an extremely data-
intensive process -- while minimizing the burden placed 
on the network.  Under lab conditions, a two-node 
network, using a technology based on 802.11b ad-hoc 
networks, may be expected to manage 300KB/sec data 
transfer rates.  This would mean that a single, 
uncompressed 1024x768 color image (2.25MB) would 
take over 7 seconds to transfer.  While compression can 
greatly help, any resultant artifacts could cripple the 
effectiveness of a given processing algorithm.  
Regardless, a factor of 10 gained in compression is more 
than lost when faced with an image log of thousands of 
images.  Compare this to the 20-50KB size of a typical 
ROCI module DLL, and it is clear that transferring the 
code rather than the data often presents considerable 
advantages. 
 
4. EVALUATION 
 
The primary benefit of ROCI is the development 
process it suggests.  Developing high level applications 
from reusable, modular components is a well-
understood concept, but one whose acceptance has faced 
real difficulties as popular programming technologies 
have not kept up with the requirements of modern 
design techniques.  ROCI represents an attempt to push 
the field forward by taking full advantage of powerful 

hardware as well as relatively modern programming 
techniques such as object-oriented programming and 
strong type systems.  By building consistent support for 
the type system into our high level framework we have 
successfully allowed loosely structured development 
teams to collaborate on large-scale projects with more 
reliable results than is usual.  The task-module-pin 
design structure encourages engineers without strong 
computer science backgrounds to contribute to larger 
projects without having to worry about their lack of 
understanding of the underlying system.  Most 
developers concentrate on the specifics of what their 
module does, not how it fits into a larger system, or how 
any of the internal mechanisms – such as scheduling, 
communications, or user interface – work. 
 
4.1 Related Work 
 
 Similar systems exist for other application 
scenarios.  TinyOS is an open-source effort to provide 
OS-level support for sensor platforms with extremely 
limited hardware.  In fact, the fundamental design 
concepts of TinyOS and ROCI have much in common, 
primarily the encouraging of modular software design 
[1].  However, TinyOS specifically targets limited 
hardware platforms, which imposes limits on what can 
be attempted with it.  We have chosen to target much 
more capable hardware – we use consumer-level laptop 
computers on many of our robots – and we are therefore 
able to distance ourselves from many of the difficulties 
faced by the mote programmer. 
 
 Distributed computing infrastructures that target 
more powerful hardware can also be found.  Several 
Grid computing efforts are making large strides towards 
harnessing the computational power of thousands of 
computers over the Internet [3].  These efforts tend to be 
of a much more general slant than what we have 
undertaken.  We have found that by focusing on the 
needs of our developers, we are better able to define 
constraints on the development process that significantly 
improve reliability.  While the event-based pin 
communications infrastructure ROCI employs works 
well for sensor platforms exchanging data, it is not 
necessarily optimal for all computing needs.  Further, 
we do not provide any tools for automating the 
distribution of a single computation over a very large 
network. 
 



 Sun’s Jini system for Java is an architecture that 
attempts to bridge the gap between embedded systems 
and services running on general purpose computers [2].  
While this system boasts many of the same benefits as 
ROCI, we feel that it requires somewhat more effort on 
the part of the developer to make use of.  The simplest 
ROCI deployments involve minimal usage of ROCI API 
calls.  There is a template module that an author fills 
out, and then each pin connection in a task is specified 
in one line of XML.  This type of deployment is an 
example of how the ROCI kernel is designed to handle 
most common usage patterns with minimal developer 
action. 
 
4.2 Final Words 
 
 The ROCI system is evidence that a strong type 
system paired with solid software design fundamentals 
can yield substantial improvements in software 
reliability, reuse, and ease of use.  While still primarily 
used in robotics efforts, projects that seek to stretch 
ROCI design methods in new directions, such as limited 
hardware devices and schedule optimization, are now 
underway.  By defining the ROCI kernel itself in a 
modular fashion with well-defined interfaces, we are 
able to extend the offered functionality, usually without 
breaking backwards compatibility.  This extensibility, 
both in terms of novel task-level applications and kernel 
extensions, is a validation of the design methods 
presented above. 
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