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ABSTRACT 

 
This paper describes an autonomous Intelligent Controller (IC) 
architecture directly applicable to the design of unmanned 
autonomous vehicles and performance measures associated with 
intelligent autonomy. The vehicles may operate independently or 
cooperate to carry out complex missions involving disparate sensors 
or payload packages.  An approach to measure the performance 
achieved with collaborative control is presented and simulation 
scenarios are provided to demonstrate how the metrics are applied. 
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1. INTRODUCTION 

This paper describes an autonomous Intelligent Controller 
(IC) architecture directly applicable to the design of unmanned 
autonomous vehicles and collaboration and coordination 
between them. Two fundamental issues associated with 
multiple unmanned vehicle control are: how is collaboration 
enabled within the architecture and how is performance 
measured. This paper presents a behavior-based control 
approach for intelligent autonomy for a group of coordinated 
vehicles and it describes a metric for assessing collaborative 
performance. 

There are many variants of behavior-based architectures. 
One of the earliest was the subsumption architecture of 
Rodney Brooks1.  The basic concept is that the control system 
is constructed around a collection of largely independent 
operational capabilities referred to as behaviors or behavior-
generating elements.2,3 Prototype designs of such systems 
have shown that the overall capability of a system can exceed 
that of more conventional architectures, and sometimes to a 
surprising degree.  

For multi-vehicle collaborative control, Chandler and 
Pachter4 summarize research issues involved in autonomous 
control of tactical UAVs. They conclude that decision making 
through planning and management are the essence of the 
autonomous control problem, and they determine that 
hierarchical decomposition is a promising approach.  

Stipanovic et al.5 use decentralized overlapping control 
for a formation of UAVs. The dynamic model of the 
formation with an overlapping information structure constraint 

is treated as an interconnecting system with overlapping 
subsystems.  Their approach, though, does not enable dynamic 
reconfiguration or the ability to reconfigure the mission plan. 

Boskovic et al.6 present a multi-layer control architecture 
for UAVs with four layers: (1) Fault-tolerant redundancy 
management, (2) Trajectory generation, (3) Path planning, and 
(4) Decision making. They propose a model switching method 
to address different failure scenarios. 

Measuring performance of groups of intelligent systems 
is a topic of recent interest. Jacoff et al7 present performance 
metrics for urban search and rescue robots with emphasis on 
pertinent robot capabilities and different robotic 
implementations. Yang et al8 use performance metrics in the 
development of a collision avoidance and warning system. 
Zadeh9 has introduced the concept of machine IQ (MIQ) to 
measure the intelligence of smart machines. However, as a 
metric of intelligence, the MIQ is product specific and does 
not involve the same dimensions as the human IQ.  It is 
relative and the MIQ of a camera made in 1990 would be a 
measure of its intelligence relative to cameras of the same era 
and would be much lower than the MIQ of cameras made 
today.10  

Several workshops on performance metrics for intelligent 
systems have been organized by the National Institute of 
Standards and Technology (NIST) and their results 
encapsulated in proceedings. Evans and Messina11 discuss 
challenges and issues in defining performance metrics for 
intelligent systems. They cite government agencies basing 
major programs on intelligent capabilities and emphasize that 
there is no consensus on how to define or measure an 
intelligent system.  However, they summarize the traits that an 
intelligent controller might have including: adaptability, 
capability of learning, doing the right thing or acting 
appropriately, non-linearity, autonomous symbol 
interpretation, goal-oriented, and knowledge-based.   

An engineering perspective is given by Lee et al12 in 
which they present several questions that should be asked 
prior to the definition of the metric of system intelligence. 
Among those are (1) should the intelligence measure be goal-
dependent or goal-independent (2) should the intelligence 
measure be time-varying or time-invariant and (3) should the 
intelligence measure be resource-dependent or resource-
independent? DeLeo13 proposes measuring classifier 



Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number. 

1. REPORT DATE 
AUG 2004 2. REPORT TYPE 

3. DATES COVERED 
  00-00-2004 to 00-00-2004  

4. TITLE AND SUBTITLE 
Intelligent Autonomy and Performance Measures for Coordinated
Unmanned Vehicles 

5a. CONTRACT NUMBER 

5b. GRANT NUMBER 

5c. PROGRAM ELEMENT NUMBER 

6. AUTHOR(S) 5d. PROJECT NUMBER 

5e. TASK NUMBER 

5f. WORK UNIT NUMBER 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
The Pennsylvania State University,Applied Research Laboratory
(ARL/PSU),State College,PA,16801 

8. PERFORMING ORGANIZATION
REPORT NUMBER 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 

11. SPONSOR/MONITOR’S REPORT 
NUMBER(S) 

12. DISTRIBUTION/AVAILABILITY STATEMENT 
Approved for public release; distribution unlimited 

13. SUPPLEMENTARY NOTES 
Proceedings of the 2004 Performance Metrics for Intelligent Systems Workshop (PerMIS -04),
Gaithersburg, MD on August 24-26 2004 

14. ABSTRACT 
see report 

15. SUBJECT TERMS 

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 
ABSTRACT 
Same as

Report (SAR) 

18. NUMBER
OF PAGES 

7 

19a. NAME OF
RESPONSIBLE PERSON 

a. REPORT 
unclassified 

b. ABSTRACT 
unclassified 

c. THIS PAGE 
unclassified 

Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Std Z39-18 



 2

intelligence by computing the area under the receiver 
operating characteristic (ROC) curve and using the concept of 
the separation index he introduces. Feddema et al. discuss 
their view of emergent behavior with regard to finite state 
machines14. 

Albus15 claims a barrier to the development of intelligent 
systems is the lack of metrics and quantifiable measures of 
performance and that there cannot be a science of intelligent 
systems without standard units of measurement. While the 
determination of performance metrics and measures with 
regard to physical entities is precisely defined and accepted, 
performance metrics and standards for intelligent systems are 
loosely defined and no acceptable standards exist.  This paper 
presents an intelligent control architecture for collaborative 
control and an approach for measuring performance. 

The Intelligent Controller (IC) described in this paper was 
initially based on the subsumption approach, but actual system 
needs presented more challenging requirements. This resulted 
in a newer, more novel approach to intelligent control 
architectures16, 17, 18 .  

Extending the IC architecture for collaborative behaviors 
also resulted in a unique approach for coordinated control. 
This resulted in the derivation of a measure of the 
performance gained by operating as a coordinated group of 
autonomous vehicles vs. a group of autonomous vehicles 
operating on their own accord. This metric is discussed in this 
paper and calculated for two scenarios.   
 
2. INTELLIGENT CONTROLLER (IC) 
ARCHITECTURE 

To appreciate the approach to measuring performance, 
one must understand the underlying architecture. This section 
provides the architecture used for collaborative control. The 
Intelligent Controller (IC) architecture developed at Penn 
State University’s Applied Research Lab (ARL/PSU) is 
composed of two main modules: Perception and Response.  
The Perception module is where sensor data is analyzed, 
information is integrated, and interpretation of the events is 
generated.  The Response module is where the situation is 
assessed, plans are generated, and re-planning or plan 
execution occurs. Figure 1 illustrates the IC modules for a 
single controller. The responses from the Response module 
are in the form of commands and communications to vehicle 
subsystems or to external systems. These systems and 
subsystems may be other ICs, conventional control systems 
(effectors), or human collaborators. 

 
2.1 Perception Module  

The role of the Perception module is to create an internal 
representation of the external world relevant to the IC, using 
sensor data streams as inputs.  A key capability of the 
Perception module is to make correct inferences and recognize 
the existence of properties in the representational objects (e.g., 
obstacles) from incomplete and potentially erroneous input 
data.  The Perception module contains data fusion algorithms 

and Continuous Inference Networks (CINETs).19 CINETs are 
used to infer properties or events, such as "target" or "friend", 
by appropriately combining multiple pieces of information in 
an automatic recognition process.   

 
2.2 Response Module 

The role of the Response module is to plan and execute in 
real time a course of action to carry out a specific mission, 
given the situational awareness derived by the Perception 
module. The Response module is decomposed into three 
levels: A Mission Manager, Behaviors, and Actions.  The 
Mission Manager retains the big picture and specifies a 
mission plan, which is a list of relevant Behaviors to be 
executed.  Each Behavior has its own plan to execute, which is 
a list of Actions to be conducted. Control is cycled and 
interrupted appropriately using an Execution Engine within 
the Response module. The Execution Engine is an application-
independent component of the Response module that calls the 
functions in the Response module in an appropriate order. 
Figure 2 illustrates components of the Response module for a 
UAV with a selected set of Behaviors (blue) and Actions 
(pink).   
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
Figure 1: High Level Decomposition for a Single IC. 
 
 
2.3 Multiple ICs 

Multiple ICs can be integrated in a hierarchy for 
coordinated control. Each IC retains the same architecture yet 
has a different local mission to execute (such as UAVs 
searching different local areas). This replication of 
architecture allows management of complexity and 
considerably simplifies the problem of designing multiple, 
interacting, intelligent controllers for complex systems.   

Just as a collection of Behaviors within an IC needs a 
Mission Manager for coordination and arbitration, a collection 
of ICs within a system also requires a supervisor. This role is 
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assumed by a Supervisory IC.   Multiple ICs may also exist 
within a single vehicle in this hierarchical architecture, as 
determined by design decisions. Figure 3 depicts how multiple 
ICs communicate. 

For multiple vehicles, a significant portion of a mission 
may be achieved by having the capability of the individual 
autonomous units carry out their own tasks while operating in 
a group.  Given that the individual vehicles are intelligent and 
capable of inferring the behavior of other cooperating vehicles 
through sensing and observation, only a limited number of 
direct communications may be necessary to achieve 
significant performance enhancements.   

The overall capability of the aggregate system is then an 
emergent property stemming from the collaboration among 
individual vehicles coupled with their own abilities to carry 
out autonomous operations over a range of variations in the 
missions.  For a properly designed collaborative unmanned 
vehicle system, this emergent capability is greater than that of 
a system composed of vehicles acting alone. 
 
 
 
 
 
 
 
 
 
 

  
 
 
 
 
 
Figure 2. Sample Elements of Response Module. 
 

 
Figure 3.  Architecture for Multiple IC Communications. 

3. SYSTEMS OF ICs 
 The capability of a single IC is the aggregate of the 
capabilities of its modules. In particular, its operational 
capability is determined by the aggregate of its Behaviors. To 
expand the scope of its operational capability, a Behavior is 
simply added.  To remove a capability, a Behavior is removed, 
which will not affect operation of the remaining Behaviors.  
 This approach can be extended to a group of  ICs, where 
the architectural relationship between the Mission Manager 
and its set of Behaviors is replicated to define the relationship 
between a Supervisor IC and the set of vehicle ICs under its 
supervision. Figure 3 illustrates this extended Architecture.  
The hierarchy can be expanded arbitrarily in horizontal and 
vertical directions.  
 
3.1 Communications 
  In contrast to the internal communication paths of 
Response, communication between one IC on a vehicle and 
another IC on a separate vehicle may not be possible at a 
given time due to the characteristics of the external medium. 
Consequently, the architecture supports both peer-to-peer 
communications and peer-to-supervisor communications.   
 Permitted message types for peer-to-peer (and peer-to-
supervisor) communications are Sensor-data, External-
Advisories, and Queries. Sensor data passed among ICs serves 
to extend the senses of the receiving IC and consequently 
potentially improves its performance.  Bandwidth limitations 
imposed by the external medium may require that the 
communicated data be in highly processed form for sufficient 
compactness.  External-Advisories may be used by an IC to 
inform partners within communication range of its operational 
status or its interpretation of its local environment.  Queries 
may be sent by an IC to its partners asking for information it 
needs that they may be able to provide.  
 There is no requirement that all ICs understand exactly 
the same language; messages containing Words that are not 
understood by the Perception processing of the receiving IC 
may simply be ignored or routed through a central unit that 
may serve as a translator. 
 
3.2 Collaborative Operations  
 The operating characteristics of a group of autonomous, 
coordinated controllers constitutes an autonomous intelligent 
control system, and their design based on this architecture can 
be summarized as follows. The autonomous system is 
composed of one or more ICs, where one of the ICs may 
possibly be a supervisor ICs. Each IC’s objective is to carry 
out a local mission but in coordination with the global mission 
and defined by the set of Orders for the collective system. 
These Orders may be altered during mission execution by 
receipt of new Orders from a human or a Supervisor IC.  
Within the constraints of its current Orders and its design, 
each IC is operating autonomously. There does not exist an 
"optimal control law" for the system of ICs, and the designers 
do not attempt to derive one.   
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 Rather, the objective in the design of each IC is for it to 
be able to operate “optimally” as an individual, given its 
current set of Orders and its perceived world as created by its 
Perception processing.  This perceived world may include a 
Representational Class, say “Partner,” where an instance of 
“Partner” represents the status of a partner or peer, including 
its operational plans and objectives to the extent known. This 
knowledge will generally be incomplete and changeable.   
 An autonomous intelligent control system such as this 
would appear to constitute a close parallel to biological 
systems such as beehives, ant colonies, and football teams. 
The system is composed of a collection of individuals with 
certain specialized characteristics and with some ability to 
communicate with each other.  Operating together, the 
resulting system can have emergent properties, strengths, and 
survivability that go beyond the sum of that of the individual 
units.   
 The IC architecture also supports collaborative control of 
heterogeneous vehicles with varying architectures and levels 
of autonomy. This is accomplished by developing standard 
interfaces for communications and by providing the level of 
capability of each vehicle to the other vehicles through a 
database, where the database is accessed to determine the 
capabilities of the other vehicles before issuing 

 
 

4. MEASURING EMERGENT 
COLLABORATIVE CAPABILITIES 
4.1 The Collaborative Gain Metric 

Collaborative gains result from the communication 
between platforms, where exchange and interpretation of 
information is crucial, and from coordinated mission control. 
Collaboration involves interpretive and behavioral adaptation 
among the platforms as a result of integrating communicated 
data into the internal representations of the central system.   

Multi-platform collaboration should increase the 
likelihood of achieving mission objectives of the system over 
and above that achievable by a base capability.  However, a 
collaborative gain is not automatically positive, since it is 
possible to design a system in which the communication and 
collaboration results in conflicts, causing deterioration in the 
system’s ability to perform its mission.   

One approach to evaluating the collaborative contribution 
of a system involves defining an index to measure the 
collaborative gain ( CG ) of this system. One such metric is:  

 

 ∑
=

=
M

i
iii TCG

1

βα ,              (1) 

where iα is a weight reflecting the importance of the task to 
the overall mission, iβ denotes the success (0 or 1) of the task, 

and iT is the ith of M mission tasks. The goal is to maximize 
the CG.  

For example, consider two UAVs, A and B, that are 
similarly capable of identifying a target. Assume platforms A's 
target has a higher priority and that A has been damaged and 
incapable of fulfilling its top priority. If B is about to identify 
its target but has only enough fuel to identify platform A's 
target, its priority will be reconfigured so that its original 
target will be ignored and its new target will be that originally 
assigned to A. Based on the extent of damage to A, platform A 
might be reassigned to another lower priority task. This type 
of cooperation leads to controlled emergent behavior, but 
mathematically quantifying it is an open task.  By changing 
B’s target, then iβ for A is 1 instead of 0 resulting in a higher 
CG. 
 In cases where it is possible to measure partial success of 
an unmanned vehicle accomplishing its mission, the value of 

iβ becomes a variable, i.e.,  
 
 10 ≤≤ iβ  (2) 
 
This allows partial success of an individual UAV or group of 
UAVs to be captured within the context of this same measure. 
 
4.2 Multiple, Coordinated UAV Control and Evaluation 

Controllers based on the IC architecture have been 
designed for multiple UAVs capable of executing an 
individual mission and collaborating with other UAVs to 
execute a larger, overall mission.  Performance of one such 
design is described below. 

For this collection of UAVs, the functional capabilities of 
the prototype group include Navigation, Avoidance, Search, 
Investigate, Attack, Assist, Communicate, and Supervise. 
Each of these operations is implemented as an independent 
Behavior that operates autonomously within its scope, where 
each conducts real-time planning and analysis of the situation 
relative to mission execution, and each responds appropriately 
to the results of that analysis.  
Each behavior has one or more Actions that are responsible 
for carrying out sub-operations and reacting directly to objects 
of interest as represented in the Perception module. These 
reactions consist of commands to vehicle subsystems such as 
an autopilot or sensor control system.   

The initial UAV controllers developed are actual 
controllers operating closed-loop in a virtual environment 
consisting of a simulation of the external world and vehicle 
subsystems.  These simulated subsystems include an assumed 
set of sensor systems, effector systems (e.g., an autopilot or 
other conventional control systems), vehicle dynamics, and 
interfaces.  This closed-loop operation, in which actual 
controllers are stimulated with synthetic data, allows for issues 
to be addressed that are indicative of those expected to be 
encountered by a collaborating group of UAVs. 

Multi-UAV control was exercised and evaluated by using 
a simulation of the external environment and vehicle 
subsystems, including assumed sensing systems for 
navigation, avoidance, and target detection. The simulation 
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stimulated the actual controllers. The operational functionality 
of the prototype collaborative UAV control capabilities was 
exercised in various scenarios during the design process. Two 
of these scenarios are described below. 

 
 

 
 
Figure 4: Screen Capture of Three UAVs Collaborating to 
Search and Attack Large and Small Targets. 

 
 
Scenario 1: A screen capture of the first scenario is presented 
in Figure 4. In this scenario, three UAVs are provided search 
areas (red boxes) with the objective being to attack large and 
small targets. The UAVs are authorized to attack large targets 
(tanks) without independent target confirmation. However, 
they are required to obtain independent target confirmation 
prior to attacking small targets (jeeps). Included in this 
scenario are way points (x) and an obstacle (large circle), so 
that the Navigation and Avoidance behaviors are activated. 
Also in this scenario, towards the end of the overall mission, 
UAV #1 is shot down before completing its mission. The 
other UAVs re-plan their missions to ensure the mission of 
UAV #1 is completed even after it has been removed from the 
engagement. Such a scenario allows evaluation of the 
collaborative capability of the multiple UAVs to execute the 
overall mission of clearing out targets in the specified area.  

The performance associated with this scenario can be 
captured in the Collaborative Gain metric given by equation 
(1).  If the gain is measured by individual UAV success, and 
where iα , iβ , and iT  are associated with UAV #i, i=1,2,3, 
then the performance of the individuals is given by summing 
the success of each individual unit accomplishing its mission.  
In this example, for the individual performances,  
 

iα  = 1, i = 1,2,3 

β1 = 0, β2 = 1, β3 = 1 
 
so that without collaboration, the performance of the units is 
given by: 

CG = 2. 
 
If partial success is allowed to be measured (e.g., using 
equation (2)), then  

1β  ~ .42, 
where 1β  includes the success of eliminating the targets 
(highest priority that had a 0.833 success rate) followed by 
successfully returning to a rendevous point for updates (lower 
priority with 0 success). Thus, the performance of the 
individual UAVs is given by 
 

CG ~ 2.42. 
 
When the UAVs are allowed to cooperate to execute the 
mission, UAV #2 completes the mission of UAV #1, so that  

β1 = 1 
and 

CG = 3. 
Thus, enabling collaboration between the units provides a 
level of payoff in mission success. 

 
Scenario 2: As another example of the coordinated control, 
one of the evaluation scenarios evolved as follows: Five 
UAVs were collaborating. UAV #1 was designated as the 
supervisor and delegated missions (search areas and 
rendezvous points) to the five individual UAVs. See Figure 5.  
During the course of operations, UAVs #2, #4, and #5 crash, 
and UAVs #1 and #3 return to a rendezvous point. The 
supervisor UAV requests the status of individual UAVs and 
reassigns the search areas of the downed UAVs to itself (UAV 
#1) and to UAV #3.  See Figure 6. To further demonstrate the 
collaboration, the scenario then has UAV #3 go down.  When 
the supervisor returns to the rendezvous point and identifies 
that UAV #3 is unresponsive, it re-plans and searches the area 
that UAV #3 was responsible for, and it completes the overall 
mission. 

The performance associated with this scenario can also be 
captured in the Collaborative Gain metric given by equation 
(1). If the gain is measured by individual UAV success, and 
where αi, βi, and Ti are associated with UAV #i, i=1,..,5, then 
the performance of the individuals is given by summing the 
success of each individual unit accomplishing its mission. In 
this example, for the individual performances,  

 
iα  = 1, i = 1,…,5 

1β = 3β = 1 

iβ  = 0, i=2 ,4, 5 
 

so that without collaboration, the performance of the units is 
given by: 

 



 6

CG = 2. 
 
If partial success is incorporated into this metric, the 
performance will be slightly higher, but not as high as for 
cooperating units. When the units are allowed to cooperate to 
execute the mission, UAV #1 completes the mission of the 
other UAVs, so that  

iβ = 1, i=1,…,5 
 
and 

CG = 5. 
 

Again, enabling collaboration between the units provides a 
level of payoff in mission success. 
 

 
 
 
 
 
 
 
 
 
 
 
 
Figure 5: Screen Capture of Five Collaborating UAVs and 
Their Assigned Search Areas. 
 
 
5. CONCLUSIONS 

ARL/PSU’s experience in unmanned vehicles lead to the 
development of a unique, robust, universal architecture for the 
design of intelligent autonomous vehicles.  This IC 
architecture provides a reliable approach to the design of a 
single unmanned vehicle or of a system of autonomous 
intelligent units that collaborate with each other and with 
humans to carry out complex missions.  
 When this high level of intelligent autonomy is integrated 
into a system of collaborating, unmanned vehicles, an even 
larger gain results. This gain is measured with the quantity 
called Collaborative Gain. Examples indicate that the 
performance of collaborating units can exceed that of 
individual units operating on their own accord, and the 
improvements can be significant. 
 
 

 
 
 
 
 
 
 
 

 

 
 
 
 
 
 
Figure 6: Screen Capture of Two Collaborating UAVs 
Completing the Missions of Three Downed UAVs. 
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