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Abstract 

This project addressed the statistical inverse problem of reconstruction of an uncertain 
shape of a scatterer or properties of a medium from noisy observations of scattered 
wavefields. The Bayesian solution of this inverse problem yields a posterior pdf, 
requiring the solution of the forward wave equation to evaluate the probability of 
any point in parameter space. The standard approach is to sample this pdf via 
an MCMC method and then compute statistics of the samples. However, standard 
MCMC methods view the underlying parameter-to-observable map as a black box, 
and thus do not exploit its structure, hence becoming prohibitive for high dimensional 
parameter spaces and expensive simulations. 

A Langevin-accelerated MCMC method for sampling high-dimensional PDE-based 
probability densities was developed. The method builds on previous work in Langevin 
dynamics, which uses gradient information to guide the sampling in useful directions, 
improving convergence rates. The Langevin idea was extended to exploit local Hes- 
sian (of the negative log posterior) information, leading to a stochastic version of 
Newton's method. Fast Hessian approximations were developed for several inverse 
scattering problems. Applications to model inverse medium scattering problems in- 
dicated several orders of magnitude improvement over a reference black-box MCMC 
method. 

1. Approach 

The overall goal of this project has been to create systematic, rigorous, and scal- 
able algorithms for quantifying uncertainties in inverse wave scattering problems. 
These uncertainties reflect our incomplete knowledge of the medium in which the 
waves propagate (inverse medium scattering problem) or the shape of a scatterer (in- 
verse shape scattering problem).  The problem of inferring an uncertain medium or 



shape from observations of scattered wavefields is fundamentally a statistical inverse 
problem. Our lack of knowledge results from noisy measurements, sparse observers, 
uncertain forward models, and uncertain prior model parameter information. Uncer- 
tainty in the reconstructed model parameters is a fundamental feature of ill-posed 
inverse problems. 

The deterministic approach to the inverse scattering problem, which amounts to min- 
imizing a regularized data misfit function, is incapable of accounting for uncertainties 
in the solution of the inverse problem. Bayesian inference provides a systematic 
framework for incorporating uncertainties in observations, forward models, and prior 
knowledge to quantify uncertainties in the model parameters [29,32]. Suppose the 
relationship between output observables y (such as waveforms at sensor locations) 
and uncertain model parameters p (such as those describing a wave speed of a hetero- 
geneous medium or shape of a scatterer) is denoted by y = f(p, e), where e represents 
noise due to measurement and/or modeling errors. In other words, given the model 
parameters p and noise e, the function /(p, e) solves the forward (acoustic, elastic, 
or electromagnetic wave propagation) problem to yield y, the predicted outputs at 
the measurement locations (and time instants). Suppose also that we have the prior 
probability density 7rprjor(p), which encodes the confidence we have in prior infor- 
mation on the unknown model parameters (i.e. independent of present observations), 
and the likelihood function 7r(y0bs|p), which describes the conditional probability that 
the model parameters p gave rise to the actual measurements y0bs- Then Bayes' the- 
orem of inverse problems expresses the posterior probability density of the model 
parameters, 7rpost, given the data y0bs, as the conditional probability 

TTpost(p) = 7r(p|yobs) oc 7rprior(p)7r(yobs|p). (*) 

Expression (1) provides the statistical solution of the inverse problem as a probability 
density for the model parameters p. 

As a specific example, suppose the noise is additive and is modeled as Gaussian 
with zero mean and a covariance matrix CnoiSe, and suppose the prior density of the 
model parameters is represented as Gaussian with pprior as the mean and Cprj0r as the 
covariance matrix, then the posterior probability density of the model parameters is 
given explicitly (within a normalizing constant) by 

7TPost(p) oc exp ~O(/(P) - yobs)TCjse(/(p) - yobs) ~ o(P - Pprior)TCpr[or(p ~ Ppr r\ \J \r /        CJUUB/    — noise w \r /        avuo /        c\ 

(2) 
This latter expression shows that even when the prior, measurement, and modeling 
uncertainties are Gaussian, the posterior density of the model parameters is gener- 
ally not Gaussian, due to the nonlinearity of the parameter-to-observable map, /(p). 
However, this expression exposes a significant connection between statistical and de- 
terministic inversion. Suppose we wish to find the value of the most likely model 
parameters, by maximizing the posterior density (2). This is equivalent to minimiz- 
ing the negative argument of the exponential function—which is precisely the misfit 
function that is minimized by deterministic inverse methods, provided we interpret 



the prior as a regularization and weigh the data misfit by the inverse noise covari- 
ance. Moreover, it is straightforward to show that the inverse of the Hessian matrix 
of the deterministic misfit function approximates the covariance matrix of the poste- 
rior density (the equivalence is exact when f(p) is linear). This connection between 
the Hessian operator of the deterministic inverse problem and the inverse covariance 
matrix of the statistical inverse problem is crucial, and we believe is a key (and un- 
exploited) idea in overcoming the curse of dimensionality associated with uncertainty 
quantification in inverse problems. 

While it is easy to write down expression such as (1) or (2) for the posterior probability 
density, making use of these expressions poses a challenge, because the posterior 
probability density is a surface in high dimensions (equal to the number of model 
parameters p), and because the solution of the forward problem (i.e., computing f(p) 
given p) is required to evaluate the probability of any point in parameter space. 
Straightforward grid-based sampling is out of the question for anything other than 
a few parameters and cheap forward simulations. Special sampling techniques, such 
as Markov chain Monte Carlo (MCMC) methods, have been developed to generate 
sample ensembles that typically require many fewer points than grid-based sampling 
[21,29,32,33]. 

In particular, Metropolis-Hastings (M-H) methods employ a given probability density 
q(pk,y) at each sample point in parameter space pk to generate a proposed sample 
point y. Once generated, the M-H criterion chooses to either accept or reject the 
proposed sample point depending on its probability relative to the probability of the 
current point , and repeats from the new point, thereby generating a chain of samples 
from the posterior density 7rpost(p). For example, a popular choice for the proposal 
density is the isotropic Gaussian q(pk, y) = -^ exp[—|(pfc-y)2]; the resulting method 
is known as Random Walk Metropolis. Though easy to sample from, this choice of 
proposal function is not tailored to the structure of the underlying posterior proba- 
bility, and is therefore typically slow to converge. MCMC methods such as Random 
Walk Metropolis become prohibitive as the complexity of the forward simulation and 
the dimension of the parameter space increase. When the model parameters repre- 
sent a (suitably-discretized) field (such as scatterer shape or medium wave speed), and 
when the forward PDE requires hours to solve on a parallel computer (such as mid- 
to-high frequency 3D wave propagation), the MCMC framework becomes completely 
intractable. 

The central difficulty in scaling up conventional MCMC for large-scale forward sim- 
ulations and high-dimensional parameter spaces is that this is a purely black-box ap- 
proach, i.e. it does not exploit the structure of the parameter-to-observable map f(p). 
Twenty years of advances in algorithms for deterministic large-scale PDE-constrained 
optimization have taught us that making maximal use of derivative information can 
greatly speed up the search process for extremum points (e.g. [7,11,12,13,27,28]). 
In this project we have aimed to overcome the intractability of conventional meth- 
ods for statistical inverse scattering problems by developing scalable algorithms that 
exploit the structure of inverse wave propagation parameter-to-observable operators 



f(p). We have focused on developing preconditioned Langevin methods that exploit 
this structure to greatly speed up sampling (Section 2). A crucial aspect of the suc- 
cess of preconditioned Langevin methods are fast algorithms for approximating the 
inverse Hessian for inverse wave scattering problems (Section 3). 

2. Fast Hessian-preconditioned Langevin samplers 

We have developed fast sampling methods that build on—and significantly extend— 
ideas from Langevin dynamics, which use gradient information to accelerate sampling 
of a target density, e.g. [10,31]. The Langevin equation is a stochastic differential 
equation, 

dPt = AV log 7rpostdi + V2Al'2dWu (3) 

with 7rpost(p) as an invariant density. Here, Wt is the i.i.d. vector of standard Brow- 
nian motions. Preconditioning by a symmetric positive definite operator A preserves 
the invariance of the density. In practice, we discretize in time with timestep At, 
yielding (e.g. for explicit Euler) the update 

Pfc+i = Pk + AV log 7rpost At + V2AiA1/2A^(0,1) (4) 

where A/"(0,1) is the i.i.d. standard normal density. Discretization in time can add 
bias, so we use the Langevin steps as proposals for a Metropolis-Hastings MCMC 
method. The form (4) shows immediately the connection with deterministic opti- 
mization methods: the gradient term V log 7rpost is a steepest ascent direction for the 
posterior density. In its absence (and in the absence of preconditioning, i.e. A = I) 
we recover a Gaussian random walk from the last term in (3). The addition of the 
gradient term drives the sampling in (the locally steepest) direction of higher prob- 
ability. While bringing in gradient information to accelerate sampling is attractive, 
we know that steepest descent is a poor choice for search directions in large-scale 
optimization (particularly for anisotropic pdfs), and we seek to improve on it. 

Taking the preconditioner A as the inverse of the Hessian of log 7rp0st, we obtain the 
stochastic equivalent of Newton's method. In the common case of Gaussian additive 
noise and prior, the (negative) log of the posterior density is simply the "regular- 
ized" misfit function (the sum of the data misfit and prior/regularization term) that 
deterministic inverse methods seek to minimize. Thus, similar to Newton's locally- 
quadratic approximation of the objective, the Hessian-preconditioned Langevin step 
makes a locally-Gaussian approximation of 7rpost. This endows the sampling process 
with information on the curvature of the posterior density surface, which is crucial in 
high dimensions. This results in a need for substantially fewer sampling points rela- 
tive to a black-box MCMC method, just as deterministic Newton requires substan- 
tially fewer iterations to find the optimum compared to a derivative-free optimization 
method. 

Moreover, it can be shown [20] that in the limiting case when the posterior density 
7rpost is in fact Gaussian (e.g. when the inverse problem is linear and the noise is 
additive and Gaussian), this so-called stochastic Newton method not only samples the 
target density at long times, but accurately samples from 7rpost at every time step. This 
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Figure 1: Comparison of number of points taken for sampling posterior density for a ID inverse 
scattering problem to identify the distribution of the elastic modulus of a heterogeneous medium 
for a 65-dimensional discretization of the medium. DRAM (black), unpreconditioned Langevin 
(blue), and Stochastic Newton (red) sampling methods are compared. Convergence indicator is 
multivariate potential scale reduction factor (MPSRF [18]), for which a value of unity indicates 
convergence. Stochastic Newton requires over three orders of magnitude fewer sampling points. 

means that the Metropolis-Hastings criterion will accept all of the proposed sample 
points, and that a minimum number of points are needed to accurately sample from 
the given distribution. For densities that are not Gaussian, stochastic Newton will 
still provide a substantial speedup over a conventional random walk, since a Gaussian 
approximation (based on a local quadratic approximation of log7TpOSt, or equivalently 
a linearized approximation of the inverse problem) will generally yield more useful 
information on the behavior of 7rp0st than a standard normal density approximation 
(or other heuristic) will. 

We have developed an implementation of the stochastic Newton method, and applied 
it to solve nonlinear inverse medium and shape scattering problems in one and two 
dimensions [20]. For example, for a ID inverse medium problem in which the un- 
certain elastic modulus of the medium is discretized into 64 piecewise linear finite 
elements, Figure 1 indicates just 0(1O2) samples are necessary to adequately sam- 
ple the (non-Gaussian) posterior density, while a reference publicly-available (non- 
derivative) MCMC method (Delayed Rejection Adaptive Metropolis (DRAM)) [25]) 
is nowhere near converged after even 0(1O5) samples. The performance of unpre- 
conditioned Langevin MCMC is similar to that of DRAM, indicating the crucial 
role of the Newton direction vs. steepest descent. Moreover, because the (inverse) 
Hessian captures the (local) covariance structure of the posterior density, this orders- 
of-magnitude speedup is expected to become even larger as the parameter dimension 
increases.   Furthermore, the stochastic Newton method is able to sample a poste- 
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Figure 2: Convergence of stochastic Newton for 1025-dimension problem compared with 65- 
dimension problem (1025-dimension results based on fast low-rank implementation), showing similar 
rates of convergence. Figure implies mesh-independence (i.e. dimension-independence) of stochastic 
Newton method for this problem. 

rior pdf stemming from a 1025-dimensional problem (in which the wave propagation 
medium is discretized into 1024 finite elements). Figure 2 compares the convergence 
of the stochastic Newton method for the 65-dimensional and 1025-dimensional in- 
verse medium problems. As can be seen in the figure, the convergence behavior for 
the two problems is similar; in other words, the convergence is independent of problem 
size. This behavior is similar to the well-known mesh-independence property of the 
deterministic Newton method. 

The stochastic Newton method has also been used to solve the electromagnetic sta- 
tistical inverse problem of inferring uncertainty in the shape of a scatterer from the 
scattered wavefield. Based on the forward code from [26], we have built a 2D discon- 
tinuous Galerkin spectral element time-domain Maxwell solver, truncated with PMLs 
and enhanced with adjoint-based shape gradient /Hessian capability, and numerically 
integrated in time with a fourth-order, five-stage explicit Runge Kutta scheme. Fig- 
ure 3 compares the uncertain shape reconstructed from scattered noisy waveforms, 
with the "exact" shape. As can be seen from the figure, the statistical solution to the 
inverse problem (implied by grey shading) goes well beyond the deterministic solution 
(see blue1 shape), by conveying information about the confidence we have in the in- 
ferred shape—taking into account any prior knowledge on the shape and noise in the 
data and model. In this case, the front of the scatterer is identified with notably less 

1We are speaking only loosely when we equate the mean shape with the deterministic solution. 
If the noise is additive and Gaussian and the parameter-to-observable map is linear, then the two 
are equivalent; otherwise, they will differ, and the differences will grow as the map becomes more 
nonlinear. 
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Figure 3: Uncertain shape reconstructed from noisy scattered EM observations. Discontinuous 
Galerkin discretization with 3rd order spectral elements in space and 4th-order, 5-stage explicit 
Runge Kutta integration in time. Prior favors shape with small boundary. Shape is parametrized by 
6 cosine modes, r(6) = Y.i=oaicos(8)- Computational domain fi = {{x,y) : — 1 < x,y < 1}. PML 
domain QPML = {(x,y) • 1 < |x|, \y\ < 2}. Kite shape to generate synthetic observations given by 
x = 0.2 [cos(0) + O.65(cos(20) - 1)] ,y = O.3sin(0). Incident wave E[ = cos(8(t-x)), Hx = 0, Hy = 0 
from left. 31 observation points: x = — 0.9,y = linspace{—0.9,0.9,31}. Ez,Hx,Hy are observed 
in 0 < t < n at all time steps with 5% Gaussian noise. At = 10~3, resulting in 3324 time steps. 
Mesh size hm]n = 0.05, resulting in ~135,000 DOF. Left: Snapshot of electric field. Plane wave 
incident from left, receivers located at black dots, scatterer shown in white. Right: Comparison 
of "exact" shape (red) with mean of reconstructed shape (blue) and maximum a posteriori shape 
(black), superposed on gray region indicating 5% and 95% quantiles of shape uncertainty. Note that 
uncertainty in reconstruction is greatest behind the scatterer. 

uncertainty than the back, and in general the recovered shape has large uncertainty, 
stemming primarily from the limited observations. Despite the statistical inverse 
problem's having "only" six parameter, the size of the forward problem (135,000 spa- 
tial unknowns and over 3000 time steps) make forward solution so expensive that the 
problem cannot be solved at all by conventional MCMC. 

The critical role that inverse Hessian preconditioning plays is that it brings to the 
statistical sampling process the power of Newton-type deterministic optimization 
methods—which for a large class of PDE-based inverse problems can deliver solu- 
tions at the cost of a constant number of forward solves, independent of problem 
size, e.g. [4,5,6,7,9,16,17,19,23]. However, stochastic Newton carries the added 
cost of having to compute the deterministic Newton step (i.e. solve linear systems 
having the Hessian as coefficient matrix) as well as find a square root of the inverse 
of the Hessian at each sample point, as seen in Equation (4). Thus the cost of a 
stochastic Newton sample point can be significantly more expensive than that of a 
non-derivative MCMC method. Explicitly constructing the (formally dense) Hessian 
operator and factoring it is completely out of the question for large-scale problems, 
since this would require a number of forward solves equal to the number of uncertain 
model parameters. However, the key to the success of Newton methods for determin- 
istic inverse problems is to recognize that for ill-posed inverse problems, the Hessian 



(or its Gauss-Newton approximation) is usually the sum of a compact operator (the 
data misfit part, since the data typically provide limited information on the model 
parameter fields) and a differential part (since the regularization/prior is typically 
smoothing, and its inverse is seen by the Hessian). Thus, when preconditioned by the 
prior, the Hessian often behaves like a compact perturbation of the identity, and fast 
approximations (e.g. using low rank [8] or multilevel approximations [1,5], or spec- 
tral representations [14]) can be combined with Krylov methods to find the action of 
the inverse Hessian on a vector in a mesh-independent (and often small) number of 
forward solves. Moreover, these ideas can be extended to rapidly find a square root 
of the inverse Hessian [20], which is needed to draw samples from the local Gaussian 
approximation of the posterior. 

Incorporating Hessian information in Langevin dynamics-based sampling as above 
permits explicit separation of (1) the data misfit contribution to the posterior, which 
typically provides "sparse" information, i.e. information on a limited number of direc- 
tions in parameter space (a reflection of the ill-posed nature of the inverse problem), 
meaning that the expensive forward simulations—needed to relate model parameters 
to observables—can be limited to just these directions, and (2) the prior contribution 
to the posterior, which often provides "dense" information in parameter space, but 
this information is independent of the forward model, and thus is cheap to evaluate. 
The typically small and bounded dimension of the range space of the data misfit 
component of the Hessian thus plays a critical role in dimensionality reduction, and 
we believe is key to overcoming the curse of dimensionality for PDE-based statistical 
inverse problems. Clearly an important issue is the construction of fast low rank 
estimates of the data misfit portion of the Hessian for different classes of inverse op- 
erators, and in particular for inverse wave propagation. This is discussed in Section 
3 for time harmonic inverse medium scattering. 

Finally, all of the important computational kernels of stochastic Newton resemble 
those of large-scale deterministic Newton-based inverse solvers (notably the solution 
of forward and adjoint state problems, and the combination of their solutions to form 
gradients and actions of Hessians on vectors). This permits the exploitation of highly 
scalable parallel data structures, algorithms, and implementations that have been 
developed for deterministic inverse problems, and have been used to solve the PDE- 
based inverse problems with up to (D(108) inversion parameters on multi-thousand 
processor systems [4,5,6,7,23]. 

3. Fast Hessian approximations for time-harmonic inverse medium scat- 
tering 

As discussed above, the ability to cheaply approximate the Hessian of the data mis- 
fit functional is critical to the success of the stochastic Newton method. Here we 
describe FalMS (Fast Inverse Medium Solver), a novel algorithm for the construc- 
tion of fast Hessian approximations for the low-frequency Helmholtz inverse medium 
problem with broadband and multi-point illuminations. Inverse medium problems 
are encountered in acoustic, elastic, and electromagnetic wave propagation. We use 
a Lippmann-Schwinger formulation, which we discretize using a quadrature method. 
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Figure 4: FalMS is a fast method for the solution of a Born approximation inverse medium 
problem in the low frequency regime. The medium perturbation is represented by a set 
of point scatterers (red squares) in a 3-D domain H. The data consist of measurements 
of scattered fields due to several different incident fields. For example, in subfigure (A) 

we depict a single-source, single-frequency illumination, in (B) we depict a multiple-source, 
multiple-frequency illumination in which we collect data for each different frequency and 
in (c) we depict the case of multiple-source multiple-frequency illumination. The detectors 
can be located in arbitrary positions (c). 

We consider small perturbations of the background medium. 

If Nu is the number of excitation frequencies, Ns the number of different source loca- 
tions for the point illuminations, Nd the number of detectors, and N the scatterer dis- 
cretization size, a dense singular value decomposition for the overall input-output map 
(roughly speaking, the square root of the Hessian) will require (9([min(A/sA

r
u;A^d, iV)]2 x 

max.(NsNuNd, N)) operations, without accounting for the costs of solving the for- 
ward problem. We have developed a fast SVD approach that brings the cost down 
to OiNsN^NdN) thus, providing orders of magnitude improvements over a black-box 
dense SVD. The method is also more robust and readily parallelizable when com- 
pared to Krylov-based SVD approaches. FalMS builds on our previous work on fast 
Hessian [1,2,3,15] approximations and can be combined with multigrid methods such 
as the ones developed in [1,5]. The work is described in detail in [22]. Here, we give 
some details on the problem statement and some representative results. 

Given Na point sources that generate A^A^ incident fields (spherical waves) {tf(r; s, o>)}^! 
at A^ different frequencies, we measure the scattered field 0(r<i;s,u>) at Nd detector 
locations {Yd}dly We seek to recover the medium perturbation 77(f), by solving 

,NU 
1,U>=1' 

cj)(Td;s,u) = / G{rd,r;uj)r]{r)u{r,s,uj)dr, 
JH 

u) U>i, ,^NW = l,...,Na.     (5) 

This is a Born-approximation Lippmann-Schwinger scattering equation, where G(-, •;u) 
is the Green's function (in the reference medium) at frequency u, H is the support of 
the medium perturbation 77, and r is a point in H. This equation is discretized using 
A^ quadrature points. The problem setup is summarized in Figure 4. 

One solution approach would be to use a dense SVD factorization. However, such an 
approach is prohibitively expensive, as the complexity of a dense SVD is [min(NgNuNd, A^)]2 x 
max(NaNuNd,N) [24]. (For example, if A^ = 10, Ns = 100, Nd = 102, and Af = 1003, 
we will need over one month of computation to compute the SVD on a single-core, 



Figure 5: We consider a scatterer perturbation with a cross-geometry, with a 10% contrast 
with the background medium and we consider different scatterer sizes, up to ten wave- 
lengths. In this experiment, we verify the accuracy and efficiency of our scheme. We test 
FalMS by comparing its reconstruction (subfigure A,c) to the one obtained by solving the 
output least squares inverse problem using the LSQR algorithm (A) and (B) corresponding 
to the case in which the cross size is one wavelength. Subfigures (c) and (D) correspond 
to the case in which the cross size is ten wavelengths. In both cases, we are able to achieve 
excellent reconstruction accuracy using FalMS at considerably cheaper cost. 

two-Gigaflops/sec machine.) Our goal is to design an algorithm that reconstructs f] 
and scales well with N, Ns, N^ and Nd, for the low frequency regime. Our main 
contribution is the construction of an approximate singular value decomposition that 
is valid for arbitrary distributions of sources, detectors and frequencies, as long as the 
detectors are well separated from the support of the scatterer. Our construction is 
based on the following algorithmic components: 

rank-revealing randomized factorization ideas; 

• preprocessing of the incident field u using SVD to transform the incoming field 
and data and reduce the dimension of N„; 
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• and a novel recursive SVD algorithm that can be used to compute the SVD of 
M = [Mi M2] given the SVDs of Mi and M2. 

Using these components, we propose an approximate SVD factorization whose total 
work complexity is 0(NsNlJjNliN). The main idea is to decompose the Hessian oper- 
ator into iVs x Nu smaller submatrices of size Nd x N (1 < u < Nw, 1 < s < N3). 
We compute the SVD of each small matrix by using the randomized SVD proposed 
in [30]. We apply a low rank approximation whenever possible, leading to a com- 
pression of the matrix and a speed up of the computations. Then, we recursively 
compute the SVD of the Hessian given the SVDs of the smaller submatrices, using 
a novel method we have devised. The SVD provides a precise characterization of 
the inverse problem since it allows us to easily apply pseudo-inverse of the Hessian 
to the data. An example of the accuracy of this approximate SVD is presented in 
Figure 5. Fast and accurate Hessian approximations such as this play an important 
role in making the Hessian-preconditioned Langevin method of Section 2 scalable to 
large problem sizes. 
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