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Summary: 

The simply coupled scale analysis method (SCSAM) has been further extended to 
perform fracture analysis of heterogeneous materials and multilayered composite 
materials in particular. This work is based on Breitzman, et al. [1] and Lipton [2,3] 
SCSAM work allowing prediction of the local stress and strain fields inside undamaged 
pre-stressed composites. SCSAM allowed for rigorous micro-level stress bound 
evaluation in the presence of stress gradients, including regions where periodicity is not 
maintained in all directions. This methodology allowed evaluating the strength of 
composite scarf repair and optimizing the repair patch stacking sequence to design repair 
satisfying low observability requirements. Although basic results on repair analysis were 
reported in the previous FY04-06 period, the results of the optimization study were 
obtained later and are included in the present report. Critical development of the present 
project is an extension of SCSAM to simulate the failure process, whereas previously we 
evaluated strength based on stress levels in undamaged composites. Progressive multi- 
crack fracture simulation on each scale is performed by using the mesh-independent 
crack propagation technique and cohesive formulation for crack extension. A 
representative volume element (RVE) approach employed for homogenized stiffness and 
stress concentration factor computation was extended to compute homogenized cohesive 
crack opening relationship on the higher hierarchical scale based on the cohesive 
relationships of the constituents. In the spirit of SCSAM and within the limitation of 
sufficiently small microstructure scale simulation, the coupling of scales is occurring 
through hierarchical computation of homogenized properties, which now include fracture 
properties, whereas the simulation of the failure process on each scale is conducted 
independently. Such an approach is highly practical and applicable to prediction of 
complex phenomena in composite and hybrid materials. An example of application of 
this methodology is simulation of thermo-oxidative cracking in high-temperature 
composites, which we conducted recently in support of the Hybrids for Extreme 
Environments Program in AFRL/RXBC; Marilyn Unroe is the program manager, e-mail: 
Marilyn.Unroe(a),wpafb.af.mil and Dr. Vernon Bechel technical lead, e-mail: 
Vernon.BechelCajwpafb.af.mil. We have also performed simulations of complex failure 
patterns in multilayered composites under more traditional loading in ambient conditions. 

Further research is required to address the anisotropy of the fracture toughness in 
materials with strongly anisotropic homogenized properties and related questions of the 
influence of the RVE on the results of the homogenized cohesive relationship prediction. 
A critical underlying technology for application and development of progressive fracture 
modeling, SCSAM is a technique for modeling complex multiple site initiation and crack 
propagation patterns in three-dimensional formulation, which also requires further 
development. It is also envisioned that the future development path of the SCSAM 
framework should include nonclassical crack models at a small length scale. 
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1. Introduction and State of the Art 

To date, the primary approach used for multi-scale failure prediction in composite 
material is the so-called continuum damage mechanics (CDM) method [4-6]. According 
to this method the effect of damage at each length scale is manifested by local stiffness 
degradation at the higher (coarser) length scale. The attractiveness of this technique is in 
the intuitiveness of its concept and the ease of implementation. One reason for the 
popularity of CDM is the potential ability to model an arbitrary path of damage 
propagation on the macro-scale using numerical schemes based upon a standard finite 
element (FE) formulation. The drawback of these models is their inability to accurately 
describe the local effects of interaction of various damage modes and local effects of 
stress redistribution in the damaged area as discussed by Iarve, et al. [7]. Instead, a 
computational framework based on discrete modeling of arbitrary multiple interacting 
cracking is chosen for development and implementation of SCSAM. 

Several methodologies have been proposed for modeling the kinematics of 
arbitrary cracking. Evolution of a crack front can be captured by traditional FE modeling 
combined with adaptive remeshing techniques [8]. Successful in predicting complex 
crack evolution in metallic structures, its application to predicting crack scenarios in 
laminated composites, where cracks form in different plies in adjacent locations, will 
require remeshing of significant volumes under multiple mesh compatibility constraints. 
An alternative approach to modeling crack-induced displacement discontinuities involves 
mesh independent crack modeling techniques. Early works devoted to mesh independent 
modeling of matrix cracking in composite laminates include [9, 10]. Over the last 
decade, following the pioneering work of Moes, et al. [11] in which the concept of the 
extended Finite Element Method (x-FEM) was proposed, a significant effort to further 
develop these ideas has been put forth. Although most of the research was devoted to 
arbitrary crack propagation in isotropic materials, recent application to composite 
materials includes delamination modeling and textile composite architecture 
representation [12, 13]. 

In the present development we target complex materials where several 
hierarchical scales exist. Two types of cracking need to be generally recognized in such 
systems: the interface cracking and arbitrary three-dimensional intra-phase cracking, as 
shown in Figure 1. This classification is applicable on each hierarchical scale, i.e. Figure 
1 shows a schematic view of a multilayered composite skin. Figure l.b shows both 
interface and intra-phase (ply) cracking on the ply scale level. Interface and intra-phase 



Intra-phaM cracking 
Interface* 

Figure 1. Hierarchical composite structure 

matric cracking on the fiber matrix level is shown in Figure 1 .c. In this case the interface 
cracking is between the matrix and the individual fibers, and the intra-phase cracking is 
inside the matrix. In order to facilitate the SCSAM, a computational framework capable 
of originating and evolving complex interface and intra-phase cracking networks without 
any prior knowledge or assumptions regarding the locations of damage origination is 
required. 

Our analysis is built around a regularized x-FEM formulation (Iarve [14]), which 
is extended to multiple crack initiation and evolution modeling. In a regularized 
formulation, the step function describing the crack surface is replaced by a continuous 
function and consequently allows one to maintain a Gauss integration schema for element 
stiffness matrix computation without regard to crack orientation. In this case the 
connection between two arbitrarily cracked surfaces can be easily established by 
computing integrals of the products of the shape functions on the two surfaces. 

We begin by outlining the regularized mesh independent crack (MIC) modeling 
framework, followed by the nonlinear homogenization of the RVE containing evolving 
cracks. Next we will discuss computation of the homogenized effective stiffness and 
strength and fracture toughness properties of high-temperature unidirectional G3- 
500/PMR15 composites subjected to thermal oxidation. Finally, we illustrate complex 
fracture phenomena in a laminated composite such as is shown in Figure 1. 

2. Mesh Independent Intra-Phase and Interface Crack Modeling 

As mentioned before we seek a framework capable of accommodating the 
initiation and interactive evolution of both intra-phase and interface cracking. Without 
restricting the generality, we shall consider a laminated media, where the interface cracks 
represent delamination and the intra-phase cracks are transverse cracks. An application to 
arbitrary surface geometry, where the interface cracks will represent fiber surfaces, will 
be considered in the next section. 

a. Mesh Independent Crack Modeling 

Consider a partition of unity set of continuous basis functions Xj(x) and a 
displacement approximation on the domain of interest V 



u(x) = £x,(x)U, (1) 
ikin 

Next consider a crack appearing in this volume, as shown in Figure 2, with a surface Ta 

defined, by means of the signed distance function defined as: 

/„ (x) = sign(n(x)(x - x)) min x - x 
ief„ 

(2) 

where n(x) is the normal to the crack surface fa at the point x. The traditional x-FEM 
strong discontinuity formulation is based on the element enrichment with displacement 
modes discontinuous over the crack surface by introducing shape functions multiplied by 
H(fa(\)), where H(x) is the Heaviside step function. Consider a partition of unity set of 
continuous basis functions Xt(\) and a displacement approximation on the domain of 
interest V. 

Figure 2.   Signed distance function for arbitrary matrix crack definition and schematics 
of cross integral computation for adjacent ply interfaces in the regularized 
formulation. 



In the regularized formulation [14] the Heaviside step function is replaced with a 
continuous function H(\) 

//(x) = Xx,(x)//, (3) 

where Xrfx) are the same shape functions as in Eqn. ( 1). The coefficients h, are calculated 
as follows 

h~2\     fJJ/oc(x)|^(x)dx/ (4) 

This definition involves only continuous functions and can be calculated by using 
standard Gauss quadratures. The only coefficients /»,-, which are not equal to 0 or 1, 
correspond to those shape functions that are divided by the crack surface. Let us denote 
the set of such index values (for which ht is not equal to 0 or 1) by Qa. Then the enriched 
approximation for the domain Fand arbitrary crack is defined in the following form 

u = //u(1)+(l-/f)u,2)+u(3) (5) 

u(1) = Xx,U<'\  u(2) = X*,U<2\ (6) 
z'en„ ieCla 

and 

u(3)=   X*,U<3) (7) 
;£n/n„ 

We have also omitted the spatial argument for conciseness. The displacement 
approximation given in Eqn. (9) contains the enrichment in the crack region via 
displacement fields u(1) and u(2) as well as the unchanged displacement field, u,(3) away 
from the crack. Equations ( 5)-( 7) define the enriched displacement approximation by 
replacing each original shape function Xt influenced by the crack, /€ Qa, with two shape 
functions, HX, and (\-H)Xj. This approximation was applied in [14] in conjunction 
with a higher order C° displacement approximation (p-elements) as well as B-spline 
approximation of displacements, where the coefficients Uj do not correspond to nodal 
displacements. The convenience of such representation of the enrichment lies in the 
simplicity of bookkeeping the connectivity, where the two copies of the shape function 
do not interact and are connected with only alike H or (1 - H) multiple copies of the 
other enriched shape function if their supports overlap. 



The strain energy in the volume V with displacement approximation given in Eqn. 
( 5) is written as 

W = f fff(E<D - e)TC(eU - e) + (l - ff)(e(2) - e)T C(e• - e) 
J    L ( o) 

+ (V3> - e)TC{£• -e) + H(eW - e)TC(e• _ e) 

+ (1 - H)(E• - e)
TC(e<3> - e)}dV 

where superscript T means transpose operation, C is the elastic orthotropic stiffness 
tensor, and e is the nonmechanical strain tensor introduced to account for thermal 
processing stresses, so that e=(T-T0)a. Here T and T0 are cure and ambient temperature, 
and a is the thermal expansion tensor. The components of the stiffness tensor in the 
arbitrary coordinate system can expressed according to [15]. The strain tensors e(k) are 
computed from displacement fields «(k) in Eqn. ( 5), so that 

e(*)Bi(Vu(« + tt(«V). (9) 

Expression ( 9) does not contain the interaction energy in the gradient zone, which 
will be considered next. Typically, in a regularized formulation, the MIC propagation is 
governed  by  the   constitutive   properties   in  the   gradient  zone,   in  which |V//| = 

VV// • VH > 0. In the present formulation, the cohesive constitutive relationship [16] 
developed for interface fracture modeling is inserted into the gradient zone of the 
regularized formulation directly. It can be accomplished by using Dirac's delta function 
of signed distance function of the crack surface to express the cohesive energy of the 
crack surface through the volume integral in the gradient zone. Indeed the surface Sv with 
signed distance function fa enclosed in an arbitrary volume v can be expressed as a 
volume integral 

sv = \sD(faW U°) 

where ^D(/a)is the Dirac's delta function of signed distance function. One can also 
establish that for an arbitrary continuous function g(x) defined in volume V, a 
relationship between the surface integral over the crack surface Ta (racV) and a volume 
integral exists so that 

\\g{x)dS = \g{x)8D{fa)dV (ID 



This relationship can be readily established by applying Eqn. ( 10) in small adjoining 
volumes encompassing surface Fa to develop the integral sums representing the left- and 
right-hand side of Eqn. ( 11). In the case of the regularized formulation we compute the 
approximate value of the right-hand side by replacing the Dirac's function 8D{fa) by the 

gradient of the approximate step function| V//|. The continuous function g(x) defined over 
the volume is now replaced with the point wise cohesive energy of crack opening. In the 
traditional interface cohesive formulation, the cohesive energy is a function of the crack 
opening displacement and is also dependent on the ratio of the opening mode I 
(perpendicular to crack surface) and the shearing mode II tangential to the crack surface. 
To separate these modes one needs to know the direction of the normal to the crack 
surface in all points. In the regularized formulation, the displacement gap and the normal 
vector are defined in all points of the gradient zone as 

A«=u(1) - u(2) and n = V/K (12) 

where u^ and u(2)are defined by using the displacement fields in enriched 
approximation ( 5). The cohesive energy of the crack opening g(x) will be considered 
homogeneous and therefore dependent upon the spatial coordinate x only as a function of 
the displacement gap and the normal vector to the crack surface, so that g(x)=g(A«, n). 
Thus the fracture energy of the MIC propagation is expressed as 

M = [|Vtf|g(Au,n)dV. (13) 

b. Cohesive Energy and Interface Crack Modeling 

The shape of the interface cohesive energy function in composite laminates for 
predicting the delamination failure mode has being studied extensively including [16-18]. 
It can be written down in the invariant form a function of the absolute value of the 
displacement gap X.=|An| and a mode mixity parameter, such as 

D (|Aun|+Aun)2 

introduced in [16], where Aun = (AM • n) is the normal component of the displacement 
gap, which is equal to 0 for mode I propagation and 1 for mode II propagation. The shape 
of the relationship g(X,B) can vary; however, to assure the correct crack propagation 
characteristics, it must satisfy the following condition 

g(oo,B)=Gc(B), ( 14) 

GC(B) = GIC + (Glc - Gllc)B\ 

10 



where G,c and G„c are experimentally measured fracture toughness values and r|=2.25. 
The functional shape of the fracture energy as a function of the displacement gap is 
defined by the relationship between the cohesive tractions and the displacement gap, 
which in [16] is assumed: 

r = (1 - d)K Au + dK <Au • n>, (15) 

where K is high initial stiffness and d is the damage parameter. The first term in Eqn. 
(15) represents the crack cohesive force, and the second term prevents interpenetration. 
The brackets (x) =-(x+ \x\) represent the McAuley operator. A bilinear relationship is 

assumed for x(k) such that d=0 if A.< Ao and d=l if X> Af. The cohesive energy g(^,B) is 
the area under the r(k) curve, and thereby according to Eqn.( 14), the final value of the 
displacement gap is determined by the its initial value and the fracture toughness as 

Ar2Gc/(KA0) 

The initial value of the displacement gap, beyond which the interface failure begins, is 
defined as 

A0=To/K, 

where To is the initial strength, also depending on the on the mode mixity parameter B as 
follows 

(To)2  _ y,2 + (52 _ y2)B7, 

where Y and S are the transverse and shear strengths, respectively. All parameters 
entering the analysis, such as the fracture toughness and strength values, represent 
material properties and are measured by using standard test methods. The reader is 
referred to reference [16] for full details, and the brief description above is given for 
completeness of the present formulation. 

The cohesive energy associated with the delamination of the plies is computed by 
integrating the cohesive energy over the interface between plies n and n+1, separated by 
the horizontal surface z=zn is 

w/ g(KB)ds (16) 

In this case the normal vector to the crack surface is (0,0,1), and the displacement gap 
between the interfaces is computed by using enriched displacement approximations ( 5) 
in all plies. 

11 



c. Variational Formulation and Problem Solution 

The work of the external traction P applied at the portion Sp of the boundary dV 
is expressed as 

:= \vuds (17) 

To  derive  the  equilibrium  equations  in terms  of the  displacement approximation 
coefficients for a body which contains multiple matrix and delamination cracks, the first 
variation of the potential energy is required to vanish. Combining Eqs. 
( 8),   ( 13), ( 16) and ( 17) for the volume strain energy and the work of the surface 
tractions, and summing over all plies and interfaces, gives, 

SQ]£U(Wn + Mn ) + ?.»=! On - A)=0 ( 18) 

The lower indexes in strain energy Wn and the MIC cohesive energy Mn designate that 
they are computed for the n-th ply; the delamination free energy On is between the n and 
n+l-th ply. Performing the variation, the following system of equations is obtained 

(W+M+Q»U=P+N. ( 19) 

The vector of unknowns is arranged by ply in the order UT=(U(I),U(2),U(3),...)T. The 
matrix W and right-hand-side vector TV are obtained from a variation of Wn and are the 
elastic stiffness matrix and the nonmechanical load vector, where the shape functions 
and/or their derivatives in each integration point are multiplied by H or by (l-H), or 
unmodified. 

In the case when MICs are present in adjacent plies, i.e. n and n+1, the 
displacements un and un+i are enriched according to Eqn. ( 5). When regularized 
enrichment is used, the integration of all shape functions is conducted on the original 
Gauss points, and thereby is straightforward for arbitrary enrichment of displacements in 
the adjacent plies. Two sparse matrices FJJ and FJJ+1 are formed at the interface between 
plies n and n+1. For each integration point (always common for plies n and n+1) on the 
common interface (row index), these matrices contain the values of all nonzero shape 
functions in this point (column index) for the ply n and ply n+1, respectively. These 
matrices have large dimensions but are very sparse. Matrix O can then be represented in 
the following form 

w-i 

* = £ (n+1 " nf D(FZ+1 - FS) ( 20) 
n=l 

12 



The weight matrix D is a diagonal matrix containing the Gauss weights and surface 
Jacobian at the given integration point multiplied by the cohesive stiffness (l-d)K. Note 
that the matrices F„ can also be used to compute the displacement gap Au in each 
integration point by simple multiplication (F"+1 — F%)U. By knowing the displacement 
gap, one can update the damage variable and the coefficients of decohesive stiffness in 
each integration point. 

The matrix M has a structure similar to O. For opening of the MICs, the matrices 
of shape function values in integration points are formed so that F\ and F\ contain the 
functions corresponding to enrichments u(1) and u<2) in Eqn. ( 5), respectively, and the 
components of the weight matrix, which we denote D to distinguish from the 
delamination case D, are the products of Gauss weight, Jacobian, | VH | and the 
decohesive stiffness (l-d)K in the given integration point. Thus the contribution of 
variation of the MIC opening energy can be written as 

N 

M = Yj(F
1

n-F
2

nYD(F1
n-F

2
n). (21) 

n=l 

The loading vector P comprises of applied external stress as well as displacement 
loading. Let the vector of displacement approximation coefficients at the edges x=0, L of 
the thermal expansion problem with the boundary conditions be Q0. Then the load vector 
at the load step k is 

where Qi is a vector of unit vector displacement at x=0,L and Ar are load increments at 
the /-th step. 

The system of equations (21) contains highly nonlinear components M and G> 
and is solved by using the Newton-Raphson (NR) method at each step. 

3. Intra-Phase (Ply) Mic and Interface Cracking (Delamination) Interaction 
Verification Study 

Numerical results devoted to verification and application of the proposed 
methodology for failure prediction in laminated composites will be presented below. The 
verification will consist of modeling failure in specimens with predefined matrix cracking 
patterns and comparison with experimental data and FE analysis. The purpose of the 
following example is to test the methodology of interface and intra-phase cracking, 
represented by MIC. In this case we are less concerned with hierarchical reproduction of 
the orthotropic unidirectional composite ply properties entering this analysis. However, it 
is pertinent to discuss the set of material properties required for a ply level fracture 
simulation in a composite laminate. These properties pertain to a unidirectional ply and 
are listed for the material system T300/914C in Table 1. We have divided these 
properties in two groups. The first group represents stiffness and thermal expansion 
characteristics, which can be readily computed by using methodology given by 
Breitzman, et al. [1] from the fiber matrix level constituent. It is the second group of 
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properties, homogenization of which we will be discussing in the next section. At present 
we will use the values given in Table 1 obtained experimentally. 

Table 1. Material properties used for validation and strength prediction examples 

Comments Property T300/914C 

Ref. [20] 

IM7/8552 

Ref. [32] 

Group I: 

Stiffness 

and 

Thermal 

Expansion 

Properties 

En(GPa) 139.9 161 

E22, E33 (GPa) 10.1 11.38 

G23(GPa) 3.7 3.98 

Gi2,i3 (GPa) 4.6 5.17 

V23 0.436 0.436 

Vl2,Vl3 0.3 0.32 

a,, ( 1/°C) 0.4x 10"6 0 

a22, 0133 ( 1/°C) 2.5x 10"5 3x 10"5 

Processing T-To    (°C) -150 -150 

Group II: 

Strength 

and 

Fracture 
Toughness 

Y, (MPa) 80 60 

Yc (MPa) 300 260 

S (MPa) 100 90 

G,C(J/M2) 120 200 

G,IC(J/M2) 500 1000 

a. Transverse Crack Tension Test (TCT) 

The TCT specimen described in reference [20] was examined to evaluate the 
accuracy of delamination propagation prediction, which emanates from a MIC. This 
specimen consists of three unidirectional plies with thickness t, 2t and t, respectively, and 
is subjected to axial tension. The middle ply is cut at the center through the width. When 
the tensile loading is applied at the x=0,L edges in the x-direction, the applied stress at 

14 



first increases linearly until the crack in the middle ply will initiate delaminations 
between the middle and the outer plies. These delaminations will then propagate in a 
stable manner keeping the applied stress constant. Finally after the delaminations reach 
the grips, the load will start increasing again but with a different slope. This configuration 
allows one to examine the effect of delamination origination from a single matrix crack 
and was chosen for model validation purposes. The problem was solved both by using the 
standard FE model, shown in Figure 3a, and the MIC model, shown in Figure 3b. In both 
cases, cohesive interfaces were implemented on the surfaces between plies. Only half the 
laminate was modeled, i.e. two plies with equal thickness / and zero z-displacement 
condition on the surface z=0. In the case of the FE model, the crack in the middle ply is 
aligned with a mesh line and simply modeled by using double nodes. No mesh line 
aligned with the initial crack exists in the case of curved nonuniform mesh in Figure 3b, 
and the MIC model is used to insert the crack in the middle ply only. The sign distance 
function is/a=x-L/2. The total number of axial intervals in the two models coincides; 
however, due to mesh nonuniformity, the local density of the MIC mesh varies 
significantly. Applied displacement versus applied load, predicted by the two models, is 
shown in Figure 4 and are nearly identical. 

M (b) 

Figure 3.   Transverse crack tension (TCT) specimen. Conventional model (a) and MIC 
evaluation model with skewed mesh. 
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Figure 4.   Load displacement curves of the TCT specimen testing predicted by using 
conventional FE model and MIC. 

4. Effective Fracture Toughness Computation 

Fracture toughness of composite materials is a strongly anisotropic characteristic. 
References [21, 22] capture the development of fracture toughness measurement 
standards and the physics of mixed-mode delamination in unidirectional composites. 
Very little work has been performed on experimental investigation of the relationship 
between fracture toughness of the matrix and fiber matrix interfaces and that of the 
effective fracture toughness of the composite [23,24]. Below we attempt to predict these 
characteristics. We first describe the simplest RVE, which is capable of representing the 
stiffness portion of the composite properties, i.e. the Cubic Unit Cell, and on its example, 
the fracture toughness homogenization methodology. As will be shown, the minimum 
requirements to an RVE for fracture toughness characterization are not satisfied for this 
configuration, and next we consider the Hexagonal Unit Cell. We end with the 
application of the developed methodology to Thermal Oxidation, and Future Directions. 
Only Mode-I fracture toughness of a unidirectional composite has been addressed at 
present. 

The Mode I fracture toughness (G[C) of a composite is experimentally determined 
from the double cantilever beam (DCB) test schematically shown in Figure 5.   At a 
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critical tensile load applied to the ligaments, a pre-existing crack is starting to advance. 
This load is recorded and used to evaluate the fracture toughness at the crack tip at the 
propagation onset. The fracture toughness determined from this experiment is defined as 
the Mode I fracture toughness of the composite. 

Figure 5. DCB test schematic for Mode I fracture toughness. 

The purpose of this work is to understand how to predict Mode I fracture 
toughness at the ply length scale from simulations at the fiber/matrix microstructural 
length scale. 

a. Cubic Unit Cell 

Perhaps the simplest unit cell used to represent a fiber-reinforced composite is the 
cubic unit cell. A two-fiber model (see Figure 6) is used to predict ply-level Mode I 
fracture toughness for the composite. The dimensions of the two-fiber model are 
LXLX2L (x><vxz), with the origin of the coordinate system as shown in Figure 6. For 
illustrative purposes, red arrows have been added to show the location of the cohesive 
zone interface. The cohesive zone is the fracture surface for this model. The cohesive 
zone interface model is defined across an interface as a combination of normal 
displacement, total displacement, surface tractions, and fracture toughness as previously 
described. For all simulations in this section, a 60% fiber volume fraction is assumed 
unless otherwise noted. Input stiffness and thermal expansion properties for the fiber and 
matrix phases are summarized in Table 2 and are from reference [24]. We also show the 
Group I stiffness and thermal expansion properties computed according to reference [1]. 
In addition to stiffness and thermal expansion properties, the fracture simulations require 
four additional input properties. These properties are the strength and fracture toughness 
of the matrix material and of the fiber/matrix interface. The matrix strength and fracture 
toughness are 77 MPa and 177 J/m2, respectively. The interface of this material system is 
chemically optimized and is thus quite strong. Without specific data on the correct 
interfacial values, we set the interfacial strength and fracture toughness equal to those of 
the matrix material. We do not allow the fibers to fracture. As a reference, the 
experimentally-determined composite strength and Mode I fracture toughness values to 
which we will be comparing are 66 MPa and 225 J/m2, respectively. 
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Figure 6. Cubic unit cell fracture model. 

Table 2. Constituent properties for IM7/5240-4 cubic cell composite 

IM7 Fiber 5250-4 Matrix Composite 
E^(GPa) 276 3.45 167 
E^E^GPa) 27.6 11.0 

Y*y? Yxz 0.300 0.350 0.320 

Vw 
0.800 0.510 

GwG«(GPa) 138 1.28 5.33 
G.(GPa) 7.67 2.72 
a^(/°C) -0.0360x10"6 0.372x10"6 

alT, azz(l°C) 5.04x10"6 46.8x1 (r6 24.3 xlO"6 

To calculate the Mode I fracture toughness for the unidirectional composite, 
periodic boundary conditions are applied on the x={0, L} and y={0, L} surfaces. The z- 
displacement is constrained on the z=-L surface, and the z-displacement is incrementally 
prescribed on the z=L surface. Denote the applied displacement uz and consider a 
function T(A«) defined parametrically with a parameter u:as follows: 

TfA x      ( T- ((J)zz(uz) 
n*U)-~ \Au = uz- H[(C-H<r))z- thermal (22) 

where (a)zz is the zz-direction volume average stress in the unit cell, H is the height of 
the unit cell (2L in the cubic case), and zthermai is the residual strain due to curing. The 
displacement gap (Au) is the difference between the total displacement and the 
displacement  due  to   linear  elastic  mechanics,   i.e.,   the  displacement  gap   is  the 

18 



displacement due to fracture of the composite. It is clear from equation (22) that the 
composite stiffness and thermal parameters must be known a priori to calculate the 
displacement gap. The unidirectional properties are computed according to [1], and thus 
the effective stiffness matrix ((f) components can be determined from the auxiliary 
problems for the RVE according to the formula 

where Q represents the unit cell, and the w functions are (5-periodic solutions to the basis 
unit strains e1' solving the six equations 

dlv[C(y){e(w») + el>)} = 0. (24) 

Additionally, the effective composite thermal expansion coefficients can be determined 
by an additional computation using the six basis solutions W\ namely 

»fi = jji iQ [CmnopW ((e(M'0'))op + 4):«»«(») dy. (25) 

In this case the auxiliary RVE problem is 

div{C(y)[e(r,) - e(y)]} = 0, (26) 

where e(y) is the inelastic strain due to the mismatch of constituent thermal expansion 
coefficients. Here, r\ is Q-periodic and e(rf) gives the thermal strains. Figure 7 illustrates 
the results of the cubic cell model fracture simulation. The strength of the composite is 
predicted by the maximum of the volume average stress value or max4ueK{T(Au)}. The 
fracture toughness of the composite is calculated by integrating the volume average stress 
over the real number line with respect to the displacement gap (the area under the curve 
in Figure 7), or 

c,c = 4r(Au)d(Au) (27) 

The predicted composite strength for the cubic model is 77 MPa, and the predicted 
fracture toughness is 177 J/m2. The experimentally determined composite strength and 
fracture toughness values are 66 MPa and 225 J/m2, respectively. Simulations were 
performed at both the stress-free temperature and room temperature, with no difference 
being realized by including the thermal prestress in the computation. The AT for the 
room temperature simulations was -150°C. The result of this model yielded no ability to 
predict realistic strength and fracture toughness of the composite. 

We concluded a more realistic microstructure and crack path is necessary to 
move this solution toward the experimental values. 
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Figure 7. Traction-displacement gap plot for cubic unit cell. 

b. Hexagonal Unit Cell 

After the cubic unit cell failed to produce realistic strength and fracture toughness 
predictions, a slightly more complicated two-fiber (total) hexagonally packed cell model 
was employed. The dimensions of this rectangular prism cell were L-\/3 x LV3 X L 
(xxyxz), with the origin of the coordinate system shown in Figure 8. The location of the 
cohesive zone (fracture surface for this model) is again indicated by the red arrows. As in 
the cubic model, periodic boundary conditions were applied on the x={0, LV3} and>-={(), 
LV3} surfaces, while the z-displacement was constrained on the z=0 surface, and the z- 
displacement was incrementally prescribed on the z=L surface. The input properties for 
the fiber, matrix, and fiber/matrix interface domains were identical to those used in the 
cubic unit cell section (see Table 2), however the ply level stiffness and thermal 
expansion properties varied slightly from the cubic model (see Table 3). These 
differences are a result of the different fiber microstructure and are not a reflection upon 
the resolution of the simulation. The traction-displacement gap simulation results for the 
hexagonal RVE are given in Figure 9. Simulations were performed at the stress-free 
temperature and at room temperature, with no difference in the prediction realized by 
including the thermal prestress. The composite strength and mode-I fracture toughness 
predicted by this model are 91.8 MPa and 222 J/m2, respectively. In this case the 
predicted mode-I fracture toughness is actually within 2% of the experimental value, 225 
J/m2. However, the predicted composite strength moved in the wrong direction and is 
now 39% higher than the experimental value, 66 MPa. 
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Figure 8. Hexagonal unit cell fracture model. 

Table 3. Ply level properties for the IM7/5250-4 hexagonal cell composite 

Composite 
E^ (GPa) 167 
Evv, E77 (GPa) 9.70 

»jrv» Yitz 0.317 
V„z 0.557 
G^G^GPa) 4.97 
Gvz(GPa) 3.12 
a., (/°C) 0.369xl0"6 

avv, azz(/°C) 24.8* 10~6 
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Figure 9. Traction-displacement gap plot for hexagonal unit cell. 
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Encouraged by the fracture toughness result on the hexagonal cell, we observed 
that our fracture surface was not particularly realistic for such a fiber microstructure and 
could thus be adversely affecting our predicted strength value. We investigated strength 
and fracture toughness according to the total crack length. The influence of the intra- 
phase or matrix crack path on the predicted values of the strength and fracture toughness 
was investigated next. The fiber packing, material, and interfacial properties are identical 
to the previous hexagonal cell model. The configuration of the fracture surface is shown 
in Figure 10. Here, cohesive zone interfaces are included on all fiber/matrix interfaces, 
Figure lO.a, and two mesh independent cracks (MICs - previously described) are used to 
connect the interfacial cohesive zones (see Figure 10.b) to create a contiguous composite 
fracture surface. 

(a) 

(b) 

Figure 10. Configuration of the fracture surface in the hexagonal unit cell. 

The location of the MICs connecting the interfacial cohesive zones was varied to 
change the crack length. Figure 11 shows a schematic of the different MICs and includes 
their relative crack lengths. Only the top half of the hexagonally packed cell is included 
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in this schematic. The angles that are used to describe the MICs are measured from the 
horizontal through the center point of the central fiber. For, example, the 60° MIC 
originates at the central fiber fiber/matrix interface at a 60° angle measured from the 
horizontal of the central fiber and terminates at the upper right fiber fiber/matrix interface 
at a 240° measured from the horizontal of the center of the upper right fiber. A 
symmetric MIC was used to connect the central fiber interfacial cohesive zone to the 
upper left fiber interfacial cohesive zone. The 65° crack is essentially the crack that is 
tangent to both fibers and thus produces the shortest overall crack length. 

Crack Path Crack Length (urn) 
Original 13.500982 
20° 14.907036 
25° 13.710899 
30° 12.766051 
35° 12.140393 
40° 11.783425 
50° 11.594759 
55° 11.499033 
60' 11.433152 
65° 11.426480 

Figure 11. Schematic of mesh independent cracks connecting interfacial cohesive zones. 

The traction-displacement gap results of the MIC fracture simulations for various 
crack path angles are shown in Figure 12. It is clear that both composite strength and 
composite fracture toughness are affected by crack length/crack path. Note that the 20° 
and 25° crack paths are longer than the original crack path and have larger strength and 
fracture toughness, while all crack paths shorter than the original predict decreased 
strength and fracture toughness. In general, strength and fracture toughness appear to be 
linearly related to the crack length for this microgeometry and the set of MIC definitions. 
Minimizing the crack length decreased the predicted composite strength from 91.8 MPa 
(original crack) to 75.2 MPa (65° crack), which is now only 14% too large. While this is 
a massive improvement over the original 39% error, this result is not satisfactory. The 
main problem is that by minimizing the crack length, the fracture toughness prediction 
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also decreased and now has a 20% error. These concerns will be addressed in the Future 
Directions section and are attributed to the necessity of looking at more complex RVE. 

Volume Average Stress vs Displacement Gap 
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Figure 12. Traction-displacement gap plot for crack path experiment. 

c. Application to Thermal Oxidation 

Although further work is needed to improve and validate the homogenization of 
the fracture toughness and strength based on RVE fracture simulation, a strong need for 
such methodology prompted an early application of the proposed technique. This section 
applies the computational machinery discussed above to a thermal oxidation problem for 
the AFRL/RXBC Hybrid Materials for Extreme Environments Program. An in-depth 
discussion of the harsh service environments of high-temperature composite materials is 
beyond the scope of this report, however, references [27-28] describe some recent micro- 
mechanical work that has been performed relative to these environments and will provide 
a good background. The main issue is that at high temperatures, the resin system will 
oxidize, altering the mechanical properties of the composite. From a mechanics 
standpoint the oxidized resin becomes slightly stiffer and most importantly significantly 
shrinks. This shrinkage causes effective shrinkage of the composite and creates 
significant stresses. These stresses, in turn, lead to crack initiation, which provides 
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additional pathways for oxidation, etc. To evaluate the cracking stresses and simulate the 
crack propagation on the ply level effective composite properties, both Group I and 
Group II properties are required. In the case of traditional composites, as was discussed in 
the comments pertaining to properties in Table 2, they can be measured directly. A 
completely different situation is encountered in the problem at hand. Obtaining a 
uniformly oxidized state in a sufficiently large composite sample without significant 
amount of cracking is not possible. Only the neat resin sample can be tested in this 
condition. Thus application of multi-scale analysis may be the only approach to solving 
coupled thermal oxidation cracking problems in composite and hybrid materials. In the 
present section only effective property predictions will be addressed. Both Group I and II 
effective properties for G3-500/PMR15 composite material system in both the oxidized 
and nonoxidized regions were computed as discussed below. The hexagonal fiber 
packing geometry was used, with a fiber diameter of 7 urn and a fiber volume fraction of 
51%. The 65° (tangent) crack path is used for the MICs. The nonoxidized and oxidized 
properties of the G3-500 fiber, PMR15 resin, and resulting composites are listed in Table 
4. The fiber and resin properties were given as inputs, and all composite properties were 
calculated according to reference [1]. 

Table 4. Nonoxidized and oxidized properties of the G3-500 fiber, PMR15 resin, and 
composite 

G3- 
500 

Fiber 

Non 
Oxidized 
PMR15 
Resin 

Non 
Oxidized 

Composite 

Oxidized 
PMR15 
Resin 

Oxidized 
Composite 

E^(GPa) 237 3.39 123 4.09 123 
EmEa(GPa) 23.7 7.64 8.79 

Yw Y*s 0.300 0.330 0.313 0.330 0.313 

Vv; 0.800 0.523 0.536 
G„,G«(GPa) 119 1.27 3.81 1.54 4.59 
Gv::(GPa) 6.59 2.50 2.86 
Axial (xx) 
Shrinkage (/h) 

0.00 7.6xl0"6xt 1.06xl0"7xt 2.20xlO"J + 
7.6xlQ-6xt 

3.68xl0"5 + 
1.27xl0-7xt 

Transverse (yz) 
Shrinkage(/h) 

0.00 4.24xl0"6xt 1.23xl0"3 + 
4.24xl0"6xt 

The fracture simulation was carried out for both the nonoxidized and oxidized 
composite materials at time values of 200, 600, and 1000 hours. The experimentally 
determined strength and Gic data for the nonoxidized/oxidized resin were 40/20 MPa and 
500/250 J/m2, respectively. Table 5 reports the G3-500/PMR15 strength and Mode I 
fracture toughness predictions for the nonoxidized and oxidized composite. The "Non" 
refers to the nonoxidized composite, and the input fiber/matrix interfacial strength and 
fracture toughness are equal to the respective nonoxidized resin values presented above 
(40 MPa and 500 J/m2). "Oxl" refers to the oxidized composite in which the fiber/matrix 
interfacial strength and fracture toughness values are equal to the respective values of the 
oxidized resin (20 MPa and 250 J/m2). Finally, "0x2" refers to the oxidized composite in 
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which the fiber/matrix interfacial strength and fracture toughness values are equal to % 
the oxidized resin values (5 MPa and 62.5 J/m2). 

Table 5. G3-500/PMR15 transverse strength and G|C predictions 

Non, 
200h 

Non, 
600h 

Non, 
lOOOh 

Oxl, 
200h 

Oxl, 
600h 

Oxl, 
lOOOh 

Ox2, 
200h 

Ox2, 
600h 

Ox2, 
lOOOh 

Strength 
(MPa) 

42.4 42.4 42.3 21.2 21.1 20.9 11.8 11.7 11.6 

GIc 
(J/m2) 

559 556 557 279 278 277 153 153 152 

The 0x2 simulation was used to test sensitivity to the fiber/matrix interfacial 
strength and fracture toughness parameters. In the real composite, the degradation of the 
interfacial properties due to oxidation is at this time unclear at best. These property 
predictions were passed to a laminate-level analysis to predict crack growth and oxidation 
layer growth within the laminate. The laminate-level analysis is beyond the scope of this 
report. This multi-scale materials problem, however, represents a scenario which will 
occur with increasing frequency in the years to come with emerging material systems. 
Namely, some basic information about the constituent materials will be available, but 
little or no composite-level data will be available. Computational materials science will 
deliver predictive guidance on how to tailor the microstructure select materials to enable 
the revolutionary concept of "the right material in the right spot for optimized 
performance." 

d. Future Directions 

We showed that the microstructure and crack path play large roles in the strength 
and fracture toughness predictions. Indeed, we found that in the hexagonal RVE, i.e. in a 
uniformly distributed hexagonal fiber array, the crack path was seemingly not short 
enough to reach the experimentally-determined strength, and the crack path was not long 
enough to maintain the fracture toughness near the experimental value. This situation 
appears to be a dichotomy, except that other factors in the microstructure can and do 
affect the strength and fracture toughness of the composite. Consider, for instance a 
randomly distributed array of 20 fibers, one realization of which is shown in Figure 13. 
Note the irregularity of the fiber spacing. The proximity of fibers to each other causes 
increased stress concentrations in the matrix domain that will begin to fracture the 
composite at much lower load states than the regularly-spaced cubic and hexagonal 
models presented above. Initiating cracks at lower load steps will decrease the strength 
prediction for a given simulation. As for the fracture toughness, it is easy to see from 
Figure 13 that the crack path will be more torturous than the tangent crack path in the 
hexagonal cell, and thus the crack length will, in general, be longer. Decreasing the 
strength while maintaining the crack length should produce predictions that more closely 
match the experimental values. In order to use a random fiber packing, one must first 
verify that the realization of the microstructure produces ply-level stiffness properties 
consistent with experimental values. It is expected that, for a small numbers of fibers, the 
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Figure 13. Schematic of 20 randomly distributed fibers. 

mechanical properties will vary greatly with the realization. This dependence should 
decrease as the number of fibers in the model increases. Very limited work has been 
done on investigation of random fiber packing and RVE sizes on effective stiffness 
properties [6, 29], and the effective fracture property prediction is not addressed at all at 
present. 

Another consideration to be taken into account is of a more fundamental nature. It 
concerns the physics of small scale cracking. Neither the classical Griffith fracture 
mechanics nor the cohesive zone model used above are explicitly capturing length scale 
specific effects, e.g. surface tension, which may become important at the sub-micro and 
nano length scale [30]. It is thought that the future development path of SCSAM 
framework should include such nonclassical crack models at a small length scale. 

Prior to returning to the ply level simulations in the next section, we would like to 
return to the material property in Table 1 and discuss additional developments needed to 
address the Group II properties not considered above, namely shear deformation related 
strength and Mode II fracture toughness. The framework for homogenization of these 
characteristics is similar to Eqn. ( 22); what is different is the cracking pattern which 
occurs in the RVE. The fracture surface is expected to be significantly more complex. 
Additional development of MIC framework is required to simulate such fracture 
phenomena. 
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5. Complex Interactive Cracking Network Simulation on the Ply Level 

In this section we demonstrate the capability to model complex failure 
phenomena based on the MIC and interface delamination framework on the ply level. As 
outlined in the previous section, some of the properties required for the ply level analysis 
cannot be obtained by means of homogenization at present. It is, however, one of the 
critical practical advantages of SCSAM that the analysis development at various scale 
levels can progress independently and at all stages evaluated against experimental data. 

Consider a multilayered composite plate consisting of N orthotropic layers with in-plane 
dimensions L and W in the x- and y-directions, respectively. Let the thickness of the plate 
be H (z-direction) as shown in Figure 14. Each ply represents an orthotropic material 
which is characterized by engineering stiffness constants Ey, Gy, Vy and thermal 
expansion coefficients ay (i,j=l,2,3). The direction xi coincides with the direction of the 
fiber and the angle 9 between the direction of the global coordinate x and the fiber 
direction x( in a given ply is called the ply orientation. 

Figure 14. Multilayered composite plate and the coordinate system. 

Tensile   loading   in   the   x-direction   will   be   applied   by   incrementing   the 
displacement ux at the edges x=0, L so that 

i-L ux'(0,y,z)= uf (0,yz)-A and ux'(L,y,z)= ux'''(L,y,z)+A' (28) 

where A is a constant and /'-is the number of the loading step. Such incremental 
formulation is required to properly account for the thermal curing stresses prior to 
mechanical loading. The displacement field ux appearing in equation (2) is computed by 
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solving a thermal mechanical expansion problem under boundary conditions, which 
simulate free expansion and only restrict rigid body motion, i.e. 

u"(0,0,0)=0, uy"(W,0,0)=0 and u°(x,y,z)=0. (29) 

The incremental loading boundary conditions ( 28) are supplemented with 
constraint conditions on the other displacement components at the lateral edges x=0 and 
L, so that 

uj(0,y,z)= uy°(0,yz) and uJ(L,y,z)= u2°(L,y,z), (30) 

which means that all displacement components except axial are fixed at the edges. The 
analysis begins from an initially undamaged state (Figure 15.a). As a result of load 
application, matrix cracks will form in each ply of the laminate as shown in Figure 15.b. 
Their location is arbitrary and not predetermined before the analysis. At some value of 
the applied load, the delaminations between plies will appear as a result of matrix 
cracking, as shown in Figure 15.c, and cause disintegration of the composite laminate. 
Note that some of the plies may have fiber orientation 9=0 coinciding with the loading 
direction, in which case these plies will continue to carry load after complete 
delamination of the specimen. The fiber failure mode will not be treated in the present 
manuscript and is deferred to further work. 

Figure 15. Damage progression sequence in a laminated composite plate subjected to 
tensile loading, (a) initial stage without damage, (b) matrix cracking stage, 
(c) delamination stage, linking up matrix cracks in various plies. 
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The initial stress fields (prior to crack initiation) in the flat laminates under axial 
tension conditions are highly uniform in the x-direction, and therefore the initial crack 
insertion locations have a tendency to cluster depending on the last digit of computer 
number representation. To obtain more realistic initial crack insertion patterns and mimic 
inevitable statistical variability, quasi-random strength properties were generated across 
the coupon volume. Distributions of random transverse strength properties yt (tensile), yc 

(compressive) and s (shear strength) were assumed to follow classical two-parameter 
Weibull law defined as 

P(x) = 1 - exp 
y0 vAy 

x=y,>yc>s (3i) 

where Ax and f5x are scale and shape parameters of corresponding strength properties. The 
same value of /? = 12 was assumed for all strength distributions, based on transverse 
tensile strength scaling in carbon epoxy composites. Using average strength values X, 
shown in Table 1 for the IM7/8552 composite, given in Ref. [32], scale parameters were 
calculated as 

Ax=XIY(\ + \lj3x\; X=Y„YC,S 

To ensure mesh independence of generated quasi-random strength characteristics 
[31], they were normalized by the reference volume V0 =6250mm3 (typical of an 8-ply 
unidirectional composite, which is used for transverse strength measurement) and 
corresponding local volumes v,. Since failure criterion was applied in individual 
integration points, a "local volume" v, was associated with each integration point as a 

product of the Gauss weight and Jacobian so that /.._. vt = V„ , where INP is the total 

number of integration points and V„ is the volume of the n-th ply. Note that the random 
distribution of initial strength ( 31) was only utilized for crack origination purposes. 
There was no variability introduced in the decohesive law. This simplified definition 
requires modifications for systematic studies of stochastic strength distribution effects on 
the apparent strength of composites and is used below only for method demonstration 
purposes. 

The methodology presented above was applied to perform the fracture analysis of 
the same quasi-isotropic laminate as considered in [32] and in the section above but 
without any predefined matrix cracking patterns. The analysis methodology correctly 
predicted both the sequence of the delamination, the failure loads and the multistep load 
drop behavior before the final failure that was experimentally observed in [32]. The load 
carried after the delamination process corresponds to the load carried by the 0 plies until 
fiber failure. Figure 16 displays the z-direction displacement map during the stochastic 
crack insertion simulation for three simulation load steps. The first two load steps (305 
MPa and 406 MPa) show accumulation of the matrix cracking and delamination onset at 
the free edge and matrix crack pockets. The third load step (495 MPa) immediately 
precedes the full delamination of the -45/0 interface and the associated load drop. 
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c) 

Figure 16.    Vertical (z-direction) displacement map at the different load steps: (a) 305 
MPa; (b) 406 MPa; (c) 495 MPa. 

32 



Appendix: Composite Scarf Repair Optimization for the JSF 

This appendix contains a final summary of the composite scarf repair 
optimization that was chiefly performed during the previous grant period. Final 
experimental data and optimized strength predictions were not available at the time of the 
previous final report and are included here. For a comprehensive description of the work, 
please refer to reference [33], which also includes numerical results concerning patch- 
cure warpage, overply thickness, and overply fiber orientation angle which are not 
presented here. 

The scarf repair is used to restore strength to a composite material after it has 
been damaged. The repair process removes the damaged material and fills the void with 
an inverted, truncated, conical patch which is adhesively bonded to the remaining original 
material (see Figure Al). The current standard repair involves at least one double 
overlay ply (overply) to restore the maximum amount of strength. In Figure Al, the 
green area represents the original material, the yellow is the adhesive, the red is the scarf 
repair patch, and the blue is the overply. 

Figure Al. Composite scarf repair models (with and without the overply). 

One problem with the current scarf repair system is the necessary inclusion of the 
overply to restore strength. It is clearly seen in Figure Al that the overply adds thickness 
to the original material and changes the outer mold line. This situation adversely affects 
the stealth properties of the structure, as well as increases the weight and size of the 
repair. One goal of this work is to improve the strength of the repair without the overply 
to alleviate the negative impacts the overply has on the other critical properties of the 
structure. 

It was previously found [33] that the nonlinear adhesive modeling/failure is a 
critical factor in composite scarf repair strength prediction. The nonlinear elastic 
constitutive equations for the adhesive material consider only variation of the Young's 
modulii and assume constant Poisson's ratio in accordance with the experimental 
observations. The shear modulus G is expressed as 

G = •l707yGi«4 (Al) 

where the elastic modulus, E/, is a monotonic function of strain calibrated using cubic 
spline interpolation from experimental tensile testing and is expressed through the 
dilatational strain invariant, J/.   Similarly, G7 is the shear modulus calibrated based on 
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KGR-1 experimental test results and is expressed through the distortional strain invariant 
J2, where 

7i = £i + £2 + £3,  (A2) 

h= ^\{{ex- e2Y- (£3- e2)
2- («* - £3)

2), 

and e, are the principle values of strain. Equation (Al) is also used to predict the failure 
of the adhesive. Critical values of the strain invariants (Ji and J?) are backed out via 
simulation using the experimental testing on the neat adhesive. After strain values result 
in invariants exceeding one of these critical values, the shear modulus is set to a small 
positive value. Reference repair strength test values were reproduced by using such 
adhesive constitutive modeling with accuracy. 

The time of such nonlinear solution was still unfeasible for optimization studies. 
Instead, the chosen goal function minimizes the elastic If norm of the deviatoric stress 
invariant in the adhesive regime. This approach determines optimal repair fiber 
orientations in a cost-efficient manner. For strength prediction purposes, a fully 
nonlinear analysis is performed for the optimized layup. 

Scarfing, repair, and testing of the specimens were performed in the Materials & 
Manufacturing Systems Support Division (RXSA). Normalized experimental strength 
data are presented in Figure A2. The virgin material strength reference is for the ASTM 
standard 25.4 cm x 2.54 cm coupons. All other tests used the large 57 cm * 13 cm 
coupon size. The virgin material is used only as a reference data set to determine 
material properties and calibrate the critical failure volume parameters [34]. Strength 
prediction values closely match the experimental values in Figure A2. The results in 
Figure A2 confirm that the optimization increases the strength of the repair. Note that the 
orange bar is the standard repair with an overply, and the red bar is the optimized repair 
without an overply. The optimized repair without an overply is 10% stronger than the 
standard repair with an overply. Additionally, the repair is 20% lighter, 10% smaller, and 
is flush with the original material surface and thus does not affect the mold line (stealth 
properties) of the structure. 

As a result of the success of this work, the JSF Repair Group (headed at 
NAVAIR) is testing our optimized repair layups for use on the JSF structure. One 
challenge the JSF repair faces is how the adhesive behaves in hot and wet environments. 
As the temperature increases and the environment moistens, the adhesive becomes much 
more compliant and thus fails at smaller loads. Since this optimization methodology 
results in a repair that minimizes the adhesive stress, it is a natural fit for such an 
environment. The results of the JSF testing are currently not available. 
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Figure A2. Normalized experimental repair strength. 
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