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Abstract 
 
The effect of diverse sources of uncertainties and the intrinsically multi-scale nature of physical 
systems poses a considerable challenge in their analysis. Such phenomena are particularly critical in 
material systems where the microstructural variability and randomness at different scales have a 
significant impact on the macroscopic behavior of the system. Toward this goal, during the period of 
this grant, we have developed a sophisticated though efficient and accurate multiscale stochastic 
framework for uncertainty quantification. A methodology is first developed to incorporate 
topological uncertainties in microstructures using a non-linear data-driven model reduction technique. 
This framework seamlessly allows for accessing the effects of microstructural variability on the 
reliability of macro-scale systems and provides an accurate stochastic input model into our stochastic 
system. Next, to solve the resulted stochastic partial different equations (SPDEs), an adaptive sparse 
grid collocation technique has been developed. In this framework, we construct the stochastic 
collocation points based on the function being represented, thus avoiding computational overhead. 
We further extended this framework to include the High Dimensional Model Representation (HDMR) 
technique in the stochastic space to represent the model output as a finite hierarchical correlated 
function expansion in terms of the stochastic inputs starting from lower-order to higher-order 
component functions. In this way, we can address the stochastic high dimensional problem for the 
first time in this area.  
 
We applied this framework for the design of general materials processes under uncertainty including 
the robust design of deformation processes of polycrystalline materials.  We developed a unique 
data-driven strategy to encode the limited information on initial texture and grain distribution in 
deformation processes and represent it in a finite-dimensional framework. We have developed the 
methodology to produce the probabilistic distribution of the macro-scale properties of the material 
subjected to a specific process induced by the uncertainty in initial microstructure (texture and grain 
size distribution).  
  
 
1 Summary of accomplishments 
Some of key achievements during the period of this grant are given below. More recent 
developments (work in press or under review – will only briefly introduced).  
 

 Development of a non-linear model reduction strategy to construct stochastic input models of 
meso-scale topology variations based on limited data (emphasis on polycrystalline materials).  
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 Development of an adaptive hierarchical sparse grid collocation algorithm for stochastic partial 
differential equations.  

 
 Development of a stochastic multiscale paradigm to address simultaneously the effects of 

randomness and multiscale nature of physical systems.  
 

 Development of a stochastic optimization technique for robust design of deformation processes of 
polycrystalline metals.  

 Development of a surrogate stochastic model for accelerating multiscale estimation in Bayesian 
inference approaches.  

 Development of a maximum entropy approach for predicting macroscopic property variability 
induced by uncertainty in initial microstructure in deformation processes.  

 Development of an HDMR framework for representing the input/output relation of complex 
systems in high-dimensions.  

 
Some of these contributions are summarized below and for additional details the relevant references 
should be contacted.  
 
2 Data-driven methodology to construct stochastic input models of meso-scale 
topological/property variations [1][2][3] 
 
The importance of performing stochastic analysis on heterogeneous media necessitates the 
development of realistic input models of the microstructural features. The thermal, mechanical and 
chemical behavior of microstructures is highly anisotropic and heterogeneous, depending on the 
randomness of features of importance. For instance, orientation of the crystals as well as the nature of 
the grain boundaries represents sources of randomness in polycrystalline materials. Knowledge of the 
topology/property variation of say, a polycrystalline material is usually known only in a statistical 
sense (in terms of say, grain size distribution and the texture map). To provide reliable failure criteria 
for critical applications involving such materials, it becomes imperative to access this variability in 
properties, quantify it and predict its effect on the performance of the system. Stochastic analysis of 
random heterogeneous media provides information of significance only if realistic input models of 
the topology and material property variations are used. In this work, we have introduced a framework 
to construct such input stochastic models for the topology, thermal diffusivity and permeability 
variations in heterogeneous media using a data-driven strategy. Given a set of microstructure 
realizations (input samples) generated from given statistical information about the medium topology, 
the framework constructs a reduced-order stochastic representation of the topology and material 
properties. This problem of constructing a low-dimensional stochastic representation of property 
variations is analogous to the problem of manifold learning and parametric fitting of hyper-surfaces 
encountered in image processing and psychology.  

2.1 Non-linear model reduction strategies 

The principal component analysis (PCA) based model reduction scheme constructs the closest linear 
subspace of the high-dimensional input space [1]. This is a fairly good approximation when the number 
of data sets is limited. But as the amount of data available increases, PCA based techniques tend to 
consistently over-estimate the actual dimensionality of the space [1]. This is primarily due to the fact 



3 
 

that the space of all plausible microstructure distributions   is a non-linear space. The large number of 

available data-points effectively populates this non-linear space. In this context, non-linear 
transformation strategies offer the possibility of constructing optimal low-dimensional representations 
of this space. Here, assume that M  plausible microstructures are available, each of which is 

represented as a high dimensional vector. Using the unordered data 
1
,  

MD D
i ii

k k , the problem of 

interest is to find a low-dimensional parameterization of , i.e. a set ,  N
hN N  , such that there is 

a one-to-one correspondence between and . 
The solution strategy is based on the so-called principle of “manifold learning” [2]. The basic 

strategy is to show that this set of unordered points lie on a manifold embedded in a high-dimensional 
space. That is,   is a manifold embedded in a high-dimensional space. The mathematical framework is 
then to “unravel and smoothen” this manifold and represent it as a smooth low-dimensional curve  . 
This “unraveling and smoothing” corresponds to a topological transformation that preserves some 
notion of the geometry of the manifold. The framework essentially boils down to two mathematical 
steps: 

 Defining the appropriate manifold on which this high-dimensional data lie on and identifying 
some properties of the manifold, and 

 Defining the appropriate transformation that results in the low-dimensional equivalent space. 
By defining an appropriate distance function D between two points in , we construct a metric space
 , D . The first constraint that we impose during the construction of a transformation :g  is that

 is topologically well-behaved, i.e. it is smooth and has no holes.  This can be ensured by showing 
that is compact [2]. The next step is to choose a geometric feature of the manifold and construct a 
transformation that keeps this feature invariant under the transformation. The key notion is that by 
keeping specific geometrical features of the embedded manifold invariant one can construct a low-
dimensional representation that is equivalent to the manifold. A natural choice of a geometric feature is 
the distance metric. This results in an isometric mapping to transform into . The important idea is 
that the distance that encodes the geometric information about the non-linear manifold in the geodesic 
distance. The geodesic distance reflects the true geometry of the manifold embedded in the high-
dimensional space.  

Construction of   reduces to finding a low-dimensional representation iY of the given data points

1 , ,D D
Mk k such that iY is isometric to 1 , ,D D

Mk k based on the geodesic distances between the points. 

Denote the intrinsic geodesic distance between points in by MD . MD  is defined by  

     , inf lengthD D
M i jD






k k  (1) 

where * varies over the set of smooth arcs connecting D
ik and D

jk . The essential step in preserving 

distances is to first compute the pair-wise distance in the manifold between all the data points
 1 , ,D D

Mk k . This brings an apparent paradox that has to be resolved: The intrinsic geometry of the 

manifold is unknown. To detect the geometry as a means of constructing a low-order representation, 
we utilize the notion of the geodesic distance. But the construction of the geodesic distance requires 
some idea of the underlying geometry of the manifold (see Eq.(1)). An approximation of the geodesic 
distance is required to proceed further. Such an approximation is provided via the concept of graph 
distance. The unknown geodesic distances in between the data points are computed in terms of a 
graph distance with respect to a neighborhood graph G constructed on the data points. This 
neighborhood graph G is very straightforward to construct. Two points share an edge on the graph if 
they are neighbors (with the edge length being proportional to the distance, D  between them) [2]. For 
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points close to each other, the geodesic distance is well approximated by the distance measured by the 
distance metric D . This is because the curve can be locally approximated to be a linear patch, and the 
geodesic distance between two points on this patch is the straight line distance between them. On the 
other hand, for points positioned faraway from each other, the geodesic distance is approximated by 
adding up a sequence of short hops between neighboring points. These hops can be computed easily 
from the neighborhood graph G . This approximation asymptotically matches the actual geodesic 
distance (Eq.(1)) as the number of samples, M  increases [2]. 

The computation of the approximate geodesic distance between all pairs of points is a key step in 
the framework. By appropriately defining the distance metric D , we have encoded all the information 
about the geometry of the manifold (utilizing the given set of data  1 , ,D D

Mk k ) into the geodesic 

distance matrix (denoted asΜ ). The estimation of the low-dimensional representation of 1 , ,D D
Mk k

can now be posed as: 
Find a configuration of points 1, , ,  N

M i Y Y Y  , such that these points yield a Euclidean distance 

matrix whose elements are identical to the elements of the geodesic distance matrixΜ . That is, find

  1

M

i i
Y such that i j ijM Y Y . The principle of Multi-dimensional scaling (MDS) can subsequently be 

used to compute the set of low-dimensional points that best represent the high-dimensional points. The 
MDS procedure essentially computes the eigen-decomposition of the geodesic matrix and sets the low-
dimensional points as linear combinations of the largest N eigenvectors of the geodesic matrix.  

The fact that   is compact ensures that   is a convex, connected region in N [2]. This provides a 
natural, elegant way of constructing from the M low-dimensional points  1

M

i i
Y : 

   1|  convex hull , ,N
M   Y Y Y Y   (2) 

The intrinsic dimensionality N of the low-dimensional representation can be estimated by using a 
variant of the Breadwood-Halton-Hammersley [2] theorem (a powerful result in geometric probability) 
where it is linked to the rate of convergence of the length-functional of the minimal spanning tree of the 
geodesic distance matrix of the unordered data points in the high-dimensional space. 
 
The overall steps of the procedure are summarized in Fig 1. Note that here the surrogate space of 
convex hull is mapped to a unit d dimensional hypercube to allow interfacing this procedure with 
sparse grid collocation techniques discussed below. In such collocation methods, the sampling points 
are defined on a hypercube. These collocation methods have been shown to be efficient in interfacing 
with deterministic solvers of e.g. deformation, diffusion, flow, thermal, etc. in random media, thus 
allowing modeling the effect of microstructural uncertainty on material properties. 
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Figure 1: The various steps in data-driven model reduction of polycrystal microstructures. The high-
dimensional microstructures are mapped to a low-dimensional region. This convex region is mapped 
to a unit hypercube. Each sampling point on this hypercube corresponds to a microstructure that 
needs to be reconstructed using the given data. This model is then served as the input into SPDEs 
and solved using sparse grid collocation discussed below. 
 
 
3 Hierarchical adaptive framework for the solution of stochastic partial differential equations 
(SPDEs) [4] [5]  
 
The above generated N-dimensional representation of the stochastic fine-scale material property is 
utilized as an input stochastic model for the solution of SPDEs. We utilize an adaptive sparse grid 
collocation strategy for constructing the stochastic solution. We briefly describe the development of the 
adaptive sparse grid collocation strategy here. More details are given in our recent work in [4][5]. This 
technique is general as it can be applied for creating a high-dimensional interpolant (in the stochastic 
space) to the solution of any stochastic PDE physical system using only the deterministic solver as a 
black box simulator.  
 
The collocation method requires only repetitive calls to an existing deterministic solver similar to the 
Monte Carlo method and performed better than pre-existing spectral techniques when the number of 
random dimensions is high. However, both the SSFEM (stochastic spectral finite elements) and 
sparse grid collocation methods utilize global polynomials in the stochastic space. In the presence of 
steep gradients or finite discontinuities in the stochastic space, these methods converge very slowly 
or even fail to converge. Later [5], we extended this method to an adaptive sparse grid collocation 
strategy (ASGC) using piecewise multi-linear hierarchical basis functions wherein the concept of 
hierarchical surplus is used as an error indicator to detect regions of discontinuities in the stochastic 
space. The basic idea here is to use a piecewise linear hat function as a hierarchical basis function by 
dilation and translation on equidistant interpolation nodes. Then the stochastic function can be 
represented by a linear combination of these basis functions. The corresponding coefficients are just 
the hierarchical increments between two successive interpolation levels (hierarchical surpluses). The 
magnitude of the hierarchical surplus reflects the local regularity of the function. For a smooth 
function, this value decreases to zero quickly with increasing interpolation level. On the other hand, 
for a non-smooth function, a singularity is indicated by the magnitude of the hierarchical surplus. The 
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larger this magnitude is, the stronger the singularity. Thus, the hierarchical surplus serves as a natural 
error indicator for the sparse grid interpolation. When this value is larger than a predefined threshold, 
we simply add the 2N neighboring points to the current point. A key motivation towards using this 
framework is its linear scaling with dimensionality, in contrast to the N-dimensional tree (2N) scaling 
of the h-type adaptive framework. In addition, such a framework guarantees that a user-defined error 
threshold is met. In particular we also showed that it was rather easy with this approach to extract 
realizations, higher-order statistics, and the probability density function (PDF) of the solution. 
 

3.1 Adaptive sparse grid collocation method 

The basic idea of this method is to utilize a finite element approximation for the spatial domain 
and approximate the multi-dimensional stochastic space using interpolating functions defined on a 
set of collocation points . The interpolation can be constructed by using either full-tensor 

product of 1D interpolation rule or the so called sparse grid interpolation method based on the 
Smolyak algorithm [4]. Since the number of support points grows very quickly as the number of 
stochastic dimensions increases in the full-tensor product case, we mainly focus on the sparse grid 
method and discuss the proposed adaptive algorithm. 

3.1.1  Smolyak algorithm 

The Smolyak algorithm provides a way to construct interpolation functions based on a minimal 
number of points in multi-dimensional space. Using Smolyak method, univariate interpolation 
formulae are extended to the multivariate case by using tensor products in a special way. This provides 
an interpolation strategy with potentially orders of magnitude reduction in the number of support nodes 
required. The algorithm provides a linear combination of tensor products chosen in such a way that the 
interpolation property is conserved for higher dimensions. 

Let us consider a smooth function . In the 1D case, we consider the following 

interpolation formula to approximate :  with the set of support nodes 

where  are the interpolation nodal basis 

functions, and is the number of elements of the set . We assume that a sequence of the 1D formula 
is given with different . In the multivariate case , the tensor product formulae are 

       
1

1 1 1

1 1

1 1 1

,
N

N N N

N N

N

mm
i i ii i i

j j j j
j j

U U f f Y Y a a
 

           (3) 

this serves as building blocks for the Smolyak algorithm. 
With for , and , the Smolyak algorithm constructs the 

sparse interpolant  as [5]  

         

 

1 1

,

, 1,
| | | |

N N

q N

i ii i
q N q N

q q

A f

A f A f f
 



         
i i

 


 (4) 

To compute the interpolant from scratch, one needs to compute the function at the nodes covered 

by the sparse grid : 

  1

M

i i
Y

: [0,1]Nf  

f    1

imi i i
j jj

U f f Y a


 
 [0,1] for 1,2, ,i i i

j j iX Y Y j m       , [0,1]i i
j j ji N a a Y C  

im iX

i 1N 

0 1
10, ,| |i i i

NU U U i i     i  Ni  q N

,q NA

,q NA

,q NH
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  (5) 

The construction of the algorithm allows one to utilize all the previous results generated to improve the 
interpolation. By choosing appropriate points for interpolating the 1D function, one can ensure that the 
sets of points are nested . To extend the interpolation from level to , one only has to evaluate 

the function at the grid points that are unique to , that is, at . Thus, to go from an order

interpolation to an order interpolation in dimensions, one only needs to evaluate the function at the differential 

nodes given by 

  (6) 

3.1.2 Choice of collocation points and the nodal basis functions 

The advantage of choosing equidistant nodes is its capability for allowing adaptivity.  We consider 
the 1D interpolation with the number of nodes defined as 11,  if 1;2 1,  if 1i

im i i    . Then the supports 
nodes are 

 1
 ,  for 1, , ,  if 1;  0.5,  for 1,  if 1

1
i
j i i i

i

j
Y j m m j m

m


    


  (7) 

It is noted that the resulting grid points are nested and it is called “Newton-Cotes” grid. The simplest 
choice of 1D basis function is the standard linear hat function [5]. ( ) 1 ,  if [ 1,1];  0,  otherwise.a Y Y Y     

This mother of all piecewise linear basis functions can be used to generate arbitrary with local 

support 1 1[ 2 , 2 ]i i i i
j jY Y   by dilation and translation, i.e. 

 
   1

1

1 1 ,  if 1/ 1
1 for 1,  and 

0,          otherwise

i i
i j j ii

j

m Y Y Y Y m
a i a

          


 (8) 

for 1i  and 1, , .ij m  The N-dimensional multi-linear nodal basis functions can be constructed using 
tensor products as follows: 

   1

1
1

: ,N k

N k

N
i ii

j j j
k

a a a a


   i
j Y   (9) 

where the multi-index  
1
, N

Nj j j   and , 1, ,kj k N  , denotes the location of a given support node 

in the k -th dimension. 

3.1.3   From nodal basis to multivariate hierarchical basis 

Let us consider the incremental interpolant formula Eq. (4). This formula takes advantage of the 
subset property of the nested grid points 1i iX X  . Here, we follow closely [5] to provide a clear 
development of the derivation of the hierarchical basis and the hierarchical surpluses. We start from the 
1D interpolating formula using nodal basis as discussed in the previous section. We have 

     1i i if U f U f    with     ,i i
j

i i i
j jY X

U f a f Y


   and     1 1i i iU f U U f  , we obtain 

             1 1

i i i i i i
j j j

i i i i i i i i i i
j j j j j j j

Y X Y X Y X

f a f Y a U f Y a f Y U f Y 

  

           (10) 

 1
,

1 | |

Nii
q N

q N q

H X X
   

  
i



iX  1i iX X  1i  i
iX 1\i i iX X X 

  1q 
q N

,q NH

 1
,

| |

Nii
q N

q

H X X 


   
i



i
ja
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and, since     1 10,i i i i i
j j jf Y U f Y Y X     , we obtain 

        1

i i
j

i i i i i
j j j

Y X

f a f Y U f Y






     (11) 

recalling that 1\i i iX X X 
  . Clearly, iX  has 1

i
i im m m   points, since 1i iX X  . For simplifying the 

notation, we consecutively number the elements in iX  , and denote the j -th point of iX  as i
jY . Then we 

can rewrite the above equation as  

        1

1

im
i i i i i

j j j
j

i
jw

f a f Y U f Y






    
 (12) 

Here, we define i
jw as the 1D hierarchical surpluses, which is just the difference between the function 

value at the current and previous interpolation levels. We also define the set of functions i
ja as the 

hierarchical basis functions. 
For the multi-dimensional case, through a new multi-index set 

  : :  for 1, , , 1, , ,k k k

k

i i iN
j kB Y X j m k N     i j     (13) 

we can define the hierarchical basis as  : , .ka B k
j j k i  

     Now we apply the 1D Eq. (12) to obtain the sparse grid interpolation formula for the multivariate 
case in a hierarchical form. From Eq. (4), we obtain 

           1 1 1 1

1 1 11, , 1,
1

,  , , , ,N N N N

N N N

i i i ii i i i
q N q N j j j j q N j j

q q B
i
jw

A f A a a f Y Y A f Y Y 
   

          
ii i j

   


(14) 

For smooth functions, the hierarchical surpluses tend to zero as the interpolation level increases. On the 
other hand, for non-smooth functions, steep gradients/finite discontinuities are indicated by the 
magnitude of the hierarchical surplus. The bigger the magnitude is, the stronger the underlying 
discontinuity is. Therefore, the hierarchical surplus is a natural candidate for error control and 
implementation of adaptivity.  
     As a matter of notation, the interpolation function used will be denoted as ,N k NA  , where k is called 

the level of the Smolyak interpolation. We consider the interpolation error in the space 

  : : [0,1] ,  continues, 2, ,N
N iF f D f m i   m  (15) 

where 0
Nm  and D m is the usual N -variate partial derivative of order :m  1

1/ Nmm
ND Y Y   m m  . 

Then the order of the interpolation error in the maximum norm is given by [4][5] 

     3 12
, 2log ,

N

q Nf A f M M



    (16) 

where   dim ,M H q N is the number of interpolation points. 

3.1.4   From hierarchical interpolation to hierarchical integration 

Any function u can now be approximated by the following reduced form from Eq (14) : 
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 ( , ) ( ) ( )
q B

u w a
 

 
i

i i
j j

i j

x Y x Y  (17) 

It is just a simple weighted sum of the value of the basis functions for all collocation points in the 
current sparse grids. Therefore, we can easily extract the useful statistics of the solution from it. The 
mean of the random solution can be evaluated as follows: 

  ( ) ( ) ( )
q B

u w a d
  

   
i

i i
j j

i j

x x Y Y  (18) 

where the probability density function ( ) Y is 1 since we have assumed uniform variable variables on a 
unit hypercube [0,1]N . The 1D version of the integral in the equation above can be evaluated 
analytically: 

 
1 1

0
( ) 1,  if 1;  1/ 4,  if 2;  2 ,  otherwise.i i

ja Y dY i i     (19) 

This is independent of the location of the interpolation point and only depends on the interpolation 
level in each stochastic dimension due to the translation and dilation of the basis function. Since the 
random variables are assumed independent of each other, the value of the multi-dimensional integral is 
simply the product of the 1D integrals. Denoting ( )a d I


 i i

j jY Y , we can write Eq. (18) as

 ( ) ( )
q B

u w I
 

  
i

i i
j j

i j

x x . Thus, the mean is just an arithmetic sum of the hierarchical surpluses and the 

integral weights at each interpolation points. 
       To obtain the variance of the solution, we need to first obtain an approximate expression for 2u , i.e.

2 ( , ) ( ) ( )
q B

u v a
 

 
i

i i
j j

i j

x Y x Y . Then the variance of the solution can be computed as: 

       
2

22Var ( ) ( )
q B q B

u u u v I w I
   

 
                   

 
 

i i

i i i i
j j j j

i j i j

x x x x x  (20) 

3.1.5   Adaptive sparse grid interpolation 

In this section, we will develop an adaptive sparse grid stochastic collocation algorithm based on the 
error control of the hierarchical surpluses. Before discussing the algorithm, let us first introduce some 
notation. The 1D equidistant points of the sparse grid in Eq. (7) can be considered as a tree-like data 
structure as shown in Figure 2. It is noted that special treatment is needed here from level 2 to level 3. 
For the boundary nodes in level 2, we only add one point along the dimension (there is only one son 
here instead of two sons for all other levels of interpolation). Then we can consider the interpolation 
level of a grid pointY as the depth of the tree ( )D Y . For example, the level of a point 0.25 is 3. Denote 
the father of a grid point as ( )F Y , where the father of the root 0.5 is itself, i.e. (0.5) 0.5.F   We denote 

the sons of a grid point  1, NY YY  by 

           1 2 1 2 1 2Sons , , , , , , , ,  or , , ,N N NS S S F S S S S S F S   Y S Y Y     (21) 

From this definition, it is noted that, in general, for each grid point there are two sons in each 
dimension, therefore, for a grid point in a N -dimensional stochastic space, there are 2N sons. It is also 
noted that, the sons are also the neighbor points of the father. Recall from the definition of grid points 
from Eq. (7) and the definition of hierarchical basis that the neighbor points are just the support nodes 
of the hierarchical basis functions in the next interpolation level. By adding the neighbor points, we 
actually add the support nodes from the next interpolation level, i.e., we perform interpolation from 
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level | |i to level | | 1i . Therefore, in this way, we refine the grid locally while not violating the 
developments of the Smolyak algorithm Eq. (14) . The basic idea here is to use hierarchical surpluses 
as an error indicator to detect the smoothness of the solution and refine the hierarchical basis functions
a i

j whose magnitude of the hierarchical surplus satisfies w i
j . If this criterion is satisfied, we simply 

add the 2N neighbor points of the current point from Eq. (21) to the sparse grid. 

 

Figure 2: 1D-tree like structure of sparse grid 

Therefore, let 0  be the parameters for the adaptive refinement threshold. We propose to use the 
following iterative refinement algorithm beginning with a coarsest possible sparse grid ,N N , i.e., with 

the N -dimensional multi-index  1, 1i  , which is just the point  0.5, ,0.5 .  

(1) Set level of Smolyak construction 0k  . 
(2) Construct the first level adaptive sparse grid ,N N .   

 Calculate the function value at the point  0.5, 0.5 . 

 Generate the 2N neighbor points and add them to the active index set. 
 Set 1k k  . 

(3) While maxk k and the active index set is not empty: 

 Copy the points in the active index set to an old index set and clear the active index set. 
 Calculate in parallel the hierarchical surplus of each point in the old index set according to 

    1 1

1 11,, , , ,N N

N N

i ii ii
j j j N k N j jw f Y Y f Y Y      

Here, we use all of the existing collocation points in the current adaptive sparse grid 1,N k N  . This 

allows us to evaluate the surplus for each point from the old index set in parallel. 
 For each point in the old index set, if w i

j : 

Generate 2N neighbor points of the current active point according to Eq (21) ; 
Add them to the active index set. 

 Add the points in the old index set to the existing adaptive sparse grid 1,N k N  . Now the 

adaptive sparse grid becomes ,N k N . 

 1k k   
(4) Calculate the mean and the variance, the PDF and if needed realizations of the solution. 

 
 
Figure 3 shows some representative results in this area. 
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Figure 3: The figure depicts the standard deviation of temperature profile across a random Ag-W 
composite microstructure due to its topological uncertainty. 
 
4 An adaptive high dimensional stochastic model representation technique for the solution of 
stochastic partial differential equations [6]  
 
Although the current adaptive collocation problem can solve a wide range of problems, there are still 
some difficulties when addressing the problem with random heterogeneous media. As is well know, 
in realistic random heterogeneous media often we deal with a very small correlation length and this 
result in a rather high-dimensional stochastic space with nearly the same weights along each 
dimension. In this case, all the current methods are not applicable. Toward this end, in [6], a 
computational methodology was developed to address the solution of high-dimensional stochastic 
problems. It utilizes high-dimensional model representation (HDMR) technique in the stochastic 
space to represent the model output as a finite hierarchical correlated function expansion in terms of 
the stochastic inputs starting from lower-order to higher-order component functions. HDMR is 
efficient at capturing the high-dimensional input–output relationship such that the behavior for many 
physical systems can be modeled to good accuracy only by the first few lower-order terms. An 
adaptive version of HDMR was also developed to automatically detect the important dimensions and 
construct higher-order terms using only the important dimensions.  
 
HDMR represents a function in high-dimensions in the following form: 

     

   

1 2 1 2

1 2

1 1

1

0
1 1

12 1
1

,

, , , ,
s s

s

N

i i i i i i
i i i N

i i i i N N
i i N

f f f Y f Y Y

f Y Y f Y Y

   

   

   

  

 



Y

 




  
                                                         (22) 
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Here 0f  is the zeroth-order component function which is a constant denoting the mean effect. The 

first-order component function  i if Y is a univariate function which represents individual 

contribution to the output  f Y . It is noted that  i if Y  is general a nonlinear function. The second-

order component function  
1 2 1 2

,i i i if Y Y  is a bivariate function which describes the interactive effects 

of variables 
1i

Y  and
2i

Y acting together upon the output  f Y . The higher-order terms reflect the 

cooperative effects of increasing number of input variables acting together to impact f. The last term 
gives any residual dependence of all input variables cooperatively locked together to affect the output 

 f Y . Once all the component functions are suitably determined, then the HDMR can be used as a 

computationally efficient reduced-order model for evaluating the output. This is the same idea as the 
stochastic collocation method where we also obtain an approximate representation of  f Y . 

 
In this work, the CUT-HDMR is adopted to construct the response surface of the stochastic solution. 

With this method, a reference point  1 2, , , NY Y YY  is introduced. The component functions of 

CUT-HDMR are explicitly given as follows 

                         

     

         
0 0\

0\ ,

,

, ,

i

i j

i i Y

ij i j i i j jY Y

f f Y f Y f f

f Y Y f f Y f Y f





  

   

Y Y

Y Y

Y

Y                                   (23) 

 
The basic conjecture underlying HDMR is that the component functions arising in typical physical 
problems will not likely exhibit high-order cooperativity among the input variables such that the 
significant terms in the HDMR expansion are only those of low order. Therefore, it is expected that 
the HDMR expansion will converge very fast. For most well-defined physical systems, the first- and 
second-order expansion terms are expected to have most of the impact upon the output and the 
contribution of higher-order terms would be insignificant.  
 
Within the framework of CUT-HDMR, we can write it in a more general form as 

          | | | |

\
1

D D

f f f



  

   
v

u v

u u v Y Y Y
u u v u

Y Y Y                                                                       (24) 

for a given set ,Du where  : 1, ,D N  denotes the set of coordinate indices and   0f f  Y . 

Here uY denotes the | |u -dimensional vector containing those components of Y whose indices 

belong to the set u , where| |u is the cardinality of the corresponding set u . 
 
Therefore, the N-dimensional stochastic problem is transformed to several lower-order | |v -

dimensional problems   \
f

 v
v Y Y Y

Y which can be easily solved by the ASGC as introduced in the last 

section: 

     | | | |

|| ||

1
D N q

f w a


   

    u v ij i
v j v

u v u i j

Y Y                                                                                  (25) 

where 1|| || i i   vi  , wij
v are the hierarchical surpluses for different sub-problems indexed by vand

 ai
j vY  is only a function of the coordinates which belong to the set v . It is noted that the 
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interpolation level q may be different for each sub-problem according to their regularity along the 
particular dimensions which is controlled by the error threshold . 
 
Interpolation is done quickly here through simple weighted sum of the basis functions and the 
corresponding hierarchical surpluses. In addition, it is also easy to extract statistics as introduced in 
ASGC by integrating directly the interpolating basis functions. Let us denote 

 | | | |

|| ||

1
N q

J w I


  

    u v ij i
u v j

v u i j

                                                                                                       (26) 

as the mean of the component function fu . Then the mean of the HDMR expansion is simply

 
D

f J


     uu
Y . To obtain the variance of the solution, we can similarly construct an 

approximation for 2u and use the formula       2
2Var u u u           x x x . 

 
We have considered two issues related to adaptivity. At first the component functions are computed 
using the adaptive sparse grid collocation method (ASGC) [5]. The error in ASGC is controlled by 
the user based on the values of the hierarchical surpluses and hierarchical basis functions. By 
integrating HDMR and ASGC, it is computationally possible to construct a low-dimensional 
stochastic reduced-order model of the high-dimensional stochastic problem and easily perform 
various statistic analysis on the output. The second level of adaptivity is to decide on the fly which 
component functions to compute. Note that for high-dimensional problems even the computation of 
all two-body terms is computationally very expensive.  
 
At first, we try to find the important dimensions. To this end, we always construct the zeroth- and 
first-order HDMR expansion where the computational cost is affordable even for very high-
dimensions. In this case, a weight is defined as: 

                                                   
 

 
2

2

( )

0 ( )

i L D
i

L D

J

f
 

Y
                                                                            (27) 

where    i i iiJ f Y dY  and the 2L norm is defined in the spatial domain when the output is a 

function of spatial coordinates. Then we define the important dimensions as those whose weights are 
larger than a predefined error threshold 1 . Now the set D only contains these important dimensions 

instead of all the dimensions. However, not all the possible terms are computed. Instead, we 
adaptively construct higher-order component functions increasingly from lower-order to high-order 
in order to reduce the computational cost in the following way. For each computed higher-order term

,| | 2f u u , a weight is also defined as 

                                                2

2

( )

,| | | | 1 ( )

L D

S L D

J

J



  





u

u

v
v v u

                                                                      (28) 

It measures the relative important with respect to the sum of current integral value which has already 
been computed in set S from previous order. Similarly, the important component functions are 
defined as those whose weights are larger than the predefined error threshold 1 . We put all the 

important dimensions and higher-order terms in to a set T , which is called the important set. When 
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adaptively constructing HDMR for each new order, we only calculate the term fu whose indices 

satisfy the admissible relation: 
                                               Du and T  v u v                                                                    (29) 
In other words, among all the possible indices, we only want to find the terms which can be 
computed using the previous known important component functions. In this way, we find those terms 
which may have significant contribution to the overall expansion while ignoring other trivial terms 
thus reducing the computational cost for high-dimensional problems. 
 
In this work, we examined physical processes (hydrodynamic transport, deformation, etc.) in random 
heterogeneous media and have reported examples of up to 500 random dimensions (note this is the 
highest stochastic dimension problem that is currently reported in the literature based on non Monte 
Carlo based approaches). Figures 4,5 provide some typical results for flow in random heterogeneous 
media.  

 
Figure 4: The left figure shows the standard deviation of the v-velocity component across y=0.5.The 
right figure shows the convergence of PDF at one point. The problem here refers to flow (squared 
domain) in random media using and exponential kernel for the log-permeability (with high 
variability defined by 2 2.0  and 500 stochastic dimensions. The parameter 1 is used to control 

the adaptive selection of the critical dimensions. 
 
 
4 Decoupled stochastic multiscale framework [7] 
 
Based on all the previous developed methodologies for stochastic problem, we are able to apply them 
to various applications related to random materials. First, we developed a stochastic variational 
multiscale formulation to incorporate uncertainties in multiscale material systems. In this scheme, a 
stochastic analogue to the mixed multiscale finite element framework is used to formulate the 
physical stochastic multiscale process. For the effective resolution of the multiscale problem, the 
solution was split using an additive decomposition into its coarse scale and fine scale parts. We 
employ the local conservation assumption through which we convert the global sub-grid problem 
into a set of local sub-grid problems. This is the first time that a multiscale variational technique has 
been applied for stochastic PDEs.  
 
In [7], we applied this framework to analyze flow through random heterogeneous media when only 
limited statistics about the permeability variation are given. Linear and non-linear model reduction 
techniques are used to convert the limited information available about the permeability variation into 
a viable stochastic input model. An adaptive sparse grid collocation strategy is used to efficiently 
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solve the resulting stochastic partial differential equations. However, our mathematical developments 
in this context are very generic in nature and can be easily extended to other applications.  
 
4.1 Problem definition 

Denote the domain as sdnD   , where stn is the number of space dimensions. The characteristic 

length scale of D is L . Denote the length scale of permeability fluctuation as l . In the problems that we 
are interested in solving, the characteristic length of the domain is a couple of orders of magnitude 
larger than the characteristic length scale of the permeability fluctuations l L . We are interested in 
evaluating the pressure, p and velocity, u  in the domain, D . The variables     , pu x x depend on the 

(multiscale) permeability distribution,  k x in the domain. However, the complete permeability 

distribution is unknown. Only some limited statistics and/or snapshots of the permeability are given. 
This limited information available to characterize the permeability necessitates assuming that the 
permeability is a realization of a random field. This is mathematically stated as follows:  

Let be the space of all allowable permeability variations. This is our event space. Every point
  , , ,k k D    x x in this space is equiprobable. Consequently, we can define a  -algebra F and 

a corresponding probability measure  : 0,1P F  to construct a complete probability space  , ,F  of 

allowable permeability. To make this abstract description amenable to numerical simulation, a finite 
dimensional approximation/representation of this abstract set is necessary. Various data-driven 
strategies to represent the set are discussed in Section 4. The stochastic permeability is represented as
     1, , , ,Nk k Y Y k  x x x Y , where 1, NY Y are uncorrelated random variables. 

The pressure and velocity are characterized by the following set of equations 

 
   
     

,

, ,

f

k p

 

  

u x Y x

u x Y Y x Y
 (30) 

Here, the source/sink term  f x is taken to be deterministic.  

        The basic idea is to solve the problem on a coarse spatial discretization cD  while taking into 
account the fine-scale variation in the stochastic permeability. In the next section, we detail a stochastic 
extension to the variation multiscale method to solve this problem. The stochastic multiscale 
formulation is based on the multiscale formulation detailed in the paper [7]. 
 
4.2 Variational multiscale formulation 

For the problem to be physically relevant, we assume that the stochastic permeability k is positive 
and uniformly coercive. As stated in Section 2, the abstract representation of  ,k  in is replaced by a 

more tractable finite dimensional representation  ,k  Y , with NY    . Corresponding to the 

probability measure  : 0,1P F  , we denote the equivalent probability measure  : 0,1  . The 

governing equations for the velocity and pressure given in the mixed form are as follows: 

                                                          
1 0k p

f

  
  

u

u
                                                                        (31) 

with the following boundary conditions op p on pD  and ou u n on uD . Without loss of generality, we 

assume that the boundary conditions are deterministic and that the Neumann condition is homogeneous 
0ou   on uD . 

      The next step is to introduce the appropriate function spaces in which the velocity and pressure lie. 
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We introduce the following tensor function spaces    2 2W S W L L D     with the inner product 

defined as    2 2, :
W D

p p p d p dx


   Y and    2 ,S H L H div D      . We will also use the function 

space defined as   V : , , 0 on  uD       u u u Y n Y . Thus, the problem can be written in mixed 

variational form: Find  , V Wp  u such that 

                                          
   

   

1, , , ,  V

, , ,          W

ok p n p

w w f w

        

    

v u v v v

u
                                                          (32) 

where ,f g is defined as  
pD

d fgd
  Y x . 

In the variational multiscale approach, the exact solution u is assumed to be made up of contributions 
from two different (spatial) scales namely, the coarse-scale solution  ,c u x that can be resolved using a 

coarse (spatial) mesh and a sub-grid solution  ,f u x  such that: c f u u u and c fp p p  . This additive 

sum decomposition induces a similar decomposition for the spatial part of the fine-scale tensor-product 
function spaces into a direct sum of a coarse-scale and a sub-grid tensor-product function spaces, e.g. 
W W Wc f  . The main idea is to develop models for characterizing the effect of the sub-grid solution

 ,f u x on the coarse scale solution and to subsequently derive a modified coarse scale formulation that 

only involves  ,c u x . The additive decomposition provides a way of splitting the fine-scale problem 

given by Eq. (32) into a coarse-scale problem and a sub-scale problem. Testing against the coarse-scale 
test functions results in the coarse-scale variational problem:  Find  , V Wc c c cp  u such that 

                       
     

    

1, , , ,   V

, , ,           W

c c f c c f c o c c

c c f c c c

k p p p

w w f w

          

    

v u u v v n v

u u
                                  (33) 

Similarly testing against the sub-scale test functions results in the sub-scale variational problem:  Find
 , V Wf f f fp  u such that 

                 
     

    

1, , , ,   V

, , ,           W

f c f f c f f o f f

f c f f f f

k p p p

w w f w

          

    

v u u v v n v

u u
                                 (34) 

The key is to solve Eq. (34) for fu and construct a functional representation of the sub-scale variation, 

fu and fp in terms of the coarse-scale variation, cu :    ,  f c f cp   u u u . This representation can be 

subsequently used to remove explicit dependence of fu and fp in Eq. (33) as: 

 
       

     

1, , , ,   V

, , ,           W

c c c c c c c o c c

c c c c c c

k p p

w w f w

         

    

v u u v u v n v

u u
                           (35) 

The key problem is now to solve Eq. (34) over each coarse scale element and utilize this sub-grid 
stochastic solution to solve the stochastic coarse scale equation. For a detailed discussion on the 
solution of the two scale stochastic problems please refer to the paper [7]. 

4.3 The stochastic multiscale framework  

 The abstract framework to solve the stochastic multiscale problem defined by Eq. (30) is as 
follows: 
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Figure 5: Schematic of the developed stochastic multiscale framework 

Fig. 6 shows the effect of uncertainty in multiscale permeability on the flow through a random 
porous medium.  

  
Figure 6: Left: The multiscale log-permeability distribution in the domain.  Right: Mean contour of 
the stochastic coarse scale x-direction flux. 
 
5 Predicting property variability of polycrystals induced by microstructural uncertainty: A 
maximum entropy approach [8]  
 
The quantification and propagation of uncertainty in process conditions and initial microstructure on 
the final product properties in a deformation process were investigated. The stochastic deformation 
problem was modeled using the sparse grid collocation approach. The ability of the method in 
estimating the statistics of the macro-scale microstructure-sensitive properties and constructing the 
convex hull of these properties is shown through examples featuring randomness in initial texture 
and process parameters. A data-driven model reduction methodology together with a maximum 
entropy approach is used for representing randomness in initial texture in Rodrigues space. 
Comparisons are made with the results obtained from the Monte-Carlo method. In modeling the 
texture evolution, the random initial texture was represented as a random field. The available 
information on initial microstructure provided as a set of x-ray diffraction images is rarely enough to 
completely define the aforementioned random field. In this situation, one needs to resort to the 
maximum entropy approach in which the random field is constructed such that the entropy of the 
information it conveys is maximized. The method used in this work is fairly general and as the 
known information on the microstructure increases it can be easily incorporated in approximating the 
random field.  
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5.1 Constitutive problem and texture evolution  

Consider a point in the reference fundamental region that corresponds to a particular crystal 
orientation. In an appropriate kinematic framework, the total deformation gradient is decomposed 
into plastic and elastic parts, e pF F F , where eF is the elastic deformation gradient and pF , the 
plastic deformation gradient, with det 1pF  . The constitutive relation is given by 

                                                   e eT L E                                                                                         (36) 

where T is the second Piola-Kirchhoff stress tensor, eL is the fourth-order anisotropic elasticity 
tensor expressed in terms of the crystal stiffness parameters and the orientation r and

 1

2

Te e eE F F I  . The re-orientation velocity is found as follows: 

                                      1

2

r
v r r r

t
  

     


                                                                   (37) 

where r is the orientation (Rodrigues’ parameterization) and  represents the spin vector defined as

 vect e eTR R   , where eR is evaluated through the polar decomposition of the elastic deformation 

gradient eF as e e eF R U . 
 
Consider a macroscopic material point and an associated underlying microstructure M discretized by 
a finite element grid. Each point on this underlying grid corresponds to a different crystal orientation
R . At each point on the grid, the crystal lattice frame îe is related to the sample reference frame ie by

ˆi ie Re . Due to crystal symmetry, the orientation R is not unique. Restricting the Rodriguez domain 

to a fundamental zone that reflects the crystal symmetry leads to a one to one correspondence 
between the points on the Rodriguez space and the crystal orientation. 
 
The Rodrigues-Frank axis-angle parameterization is used as a convenient scheme to represent R . The 
parameterization is derived from the natural invariants of R : the axis of rotation n and the angle of 
rotation . The angel-axis parameterization, r , is obtained by scaling the axis n by a function of the 

angle  as  r n f  . In the particular case of Rodrigues’ paramterization, the function is defined as

  tan
2

f
    
 

. 

 
The Lagrangian scheme for the ODF evolution is used. The evolution of the ODF is governed by the 
ODF conservation equation and is given in the Lagrangian form as follows 

                                                 
     

ˆ , ˆ , , 0
A s t

A s t v s t
t


  


                                                        (38) 

where  ,v s t is the Lagrangian re-orientation velocity of the crystals and the Lagrangian form of the 

ODF,  Â s , is subjected to    0
垐 ,0A s A s as the initial condition. 

 
See Figures 6 for the schematic of the problem. 
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Figure 7: Schematic view of the effects of uncertainty in initial texture on the final material 
properties. The error bars on the effective stress/strain response at a material point shown are due to 
the uncertainty in initial texture and variability in processing. (bottom).While these calculations are 
at a material point of a polycrystal, they pave the way for computing the property variability in a 
workpiece during processing induced from lack of information on the microstructure of the initial 
workpiece. 

5.2 Problem definitions: Process and texture uncertainty  

Consider a complete probability space  , ,F P where  is the event space, F  the  -algebra, and 

P : F → [0, 1] is the probability measure. The uncertainty in the problem we consider comes from: (a) 
variation in the velocity gradient representing the variation in process parameters:   ,L    and 

(b) variation in the initial texture:  ˆ ,A s  , ,s   . 

 
The velocity gradient is written in terms of various deformation modes such as tension/compression, 
plain strain compression, shear and rotation. The coefficients of these terms 1 8, ,  can be 

assumed as random variables to represent variation in process conditions. 

1 2 3 4

5 6 7 8

0 1 0 0 0 0 1 0 0 0 0 1

1 0 0 0 1 0 0 0.5 0 0 0 0

0 0 0 0 0 1 0 0 0.5 1 0 0

0 0 0 0 1 0 0 0 1 0 0 0

0 0 1 1 0 0 0 0 0 0 0 1

0 1 0 0 0 0 1 0 0 0 1 0

L    

   

       
                 
              

        
                  
       
       

 

The incompressibility condition is assumed here and only eight component of L are independent and 
hence β consists as well of eight components. 
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One can use a random field,  0
ˆ , : ,A s s    to represent the variability of the initial texture. 

The stochastic partial differential equation for the evolution of texture,  ˆ , ,A s t   

   : 0, 0T    , can be written such that for P-almost everywhere 

                                             
     

ˆ , , ˆ , , , , 0
A s t

A s t v s t
t


 


  


                                               (39) 

In this work, we used a maximum entropy (MaxEnt) principle to seek a joint probability distribution 
of the random texture. 

5.4 Probability distribution of the random variables using the maximum entropy (MaxEnt) 
principle  

Let  1, , NY Y Y  be the set of random variables for which the probability density function Yp is 

unknown. This probability density function is assumed as a map from ND   to [0, [   where 

D is the support of Yp and is defined previously as the convex hull 

(  1: convexhull , ND Y Y Y Y    ) of all admissible values of 1, , NY Y . Any probability 

function should satisfy the following constraints in order to be acceptable for this problem. 
                                                                   E f Y M                                                                  (40) 

where  1, , hM M M  is a given vector in h with h being the number of constraints defined in  

                                             
  

     ,

0

, 1, ,

i

i j ij

E Y

E Y Y i j N



  



  
                                                 (41) 

E is the expectation and  Y f Y is a given measurable mapping from N to h . These 

conditions are the result of specific properties of the Karhunen-Loeve expansion. Hence they can be 
written as 

                                                            
    

 
,

0 ,N

f Y Y e Y

M e




                                                                 (42) 

where ( 1) / 2h N N N   ,  0 0, ,0 N
N    ,  e Y is a vector in ( 1)/2N N  formed from the 

diagonal and upper triangular part of the matrix TYY and e is a vector in ( 1)/2N N  that has 0 and 1’s 
as its elements. 
 
Let us define the information entropy  S p of the probability density function p as 

                                                  logS p p Y p Y dY                                                              (43) 

if  is the convex collection of all probability density functions defined on D which satisfy the 
above constraints and   :p S p   is nonempty, then the Maximum Entropy principle 

consists of finding the probability distribution p that maximizes the information entropy: 

                                                         arg maxY
p

p S p


                                                                     (44) 

The MaxEnt problem can be posed as an unconstrained optimization problem using Lagrange 
multipliers. In this method, the constraints are incorporated into the cost function as 
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                                                   ,
h

C S p E f Y M                                                           (45) 

where  1, , h λ  represents the Lagrange multipliers. Maximizing this cost function is 

equivalent to maximizing the entropy and satisfying the constraints. Since  S p is a concave 

functional the set   :P S p   is convex and uniqueness of Yp as the solution of Eq.(44) is 

guaranteed. It can be shown that the solution of the above problem can be represented as 

                                         exp , Dh
p Y Z f Y Y Y D                                                  (46) 

where Z is a normalization constant and  D Y the indicator function;   1D Y  if Y D  and 

  0D Y  , otherwise. The Lagrange multipliers are chosen such that they satisfy the constraints. 

when the number of constraints is small, the Lagrange parameters can be obtained by a simple 
gradient method but as the number of constraints becomes significant a dual approach can be used in 
which the problem is posed as an optimization problem in terms of the Lagrangian parameters. The 
dual optimization problem can be written as 

                                                          
 

   

* arg min

log n n
n

Z M



 



 
λ λ

λ
                                                     (47) 

where   exp ,
hD

Z f Y dY  . The function   λ satisfies the following properties 

                                                       , 1, ,i i
i

E f M i h




   


                                                  (48) 

where iM  is defined in Eq.(42). From these equations, it is clear that the solution of Eq.(47) satisfies 

the constraints posed in Eq. (40). The solution of the constrained optimization problem posed by the 
Maximum Entropy approach has the parametric form shown by Eq. (46) where λ can be inferred by 

minimizing the dual function   λ . This means that the solution of the dual problem  *λ

corresponds to the  p α that maximizes the entropy. 

 
After obtaining the joint probability distribution for the input model using the MaxEnt approach, then 
we can solve the problem using ASGC or HDMR method presented before. Through this method, the 
convex hull of properties was obtained from a material subjected to uncertain process parameters and 
initial texture. This can be important for providing us with the means to quantify how well process 
conditions and microstructure need to be known to attain desired properties but also to identify risks 
(e.g. failure probabilities) affiliated with critical values of the material properties. To the best of our 
knowledge this is the first time these concepts have been explored in the analysis and design of 
polycrystalline materials. Figure 7 shows a convex hull of Bulk modulus, shear modulus and Young 
modulus for an FCC polycrystal material. In essence we have computed all feasible properties that 
one should expect in a given deformation process (tension, compression, etc.) when the initial 
microstructure is random.  



22 
 

 
Figure 8: The convex hull of Bulk modulus, shear modulus and Young modulus for an FCC 
polycrystal obtained in tension for random initial texture (uncertainty driven by data). Extremal 
properties can be identified together with the affiliated probabilities. These unique ideas are very 
important not only for design under uncertainty but also for failure prediction from extremal 
scenarios. 
 
 
6 Microstructure model reduction and uncertainty quantification in multiscale deformation 
processes [9]  
 
We developed what we think is the first  framework for stochastic multiscale deformation processes. 
Including the underlying microstructure and its evolution for every integration point on macroscale is 
essential in quantifying the effect of deformation process on macroscale properties. A reduced-order 
model for representing the data-driven stochastic microstructure input is developed. The multiscale 
random field representing the random microstructure is decomposed into few modes in different 
scales (the Rodrigues space for representing texture on mesoscale and the continuum macroscale 
space). Realizations from a stochastic simulation are used to obtain a small number of modes 
approximating the stochastic filed.  Then a bi-orthogonal expansion is used to describe the variability 
of the initial microstructure. The coefficients of the polynomial chaos terms in this expansion are 
obtained using projections of the random modes on the chaos polynomials.  
 
Each integration point on the macro scale is associated it with a random microstructure. We consider 
simultaneously model reduction on both scales. To reduce the stochastic dimensionality, we use all 
microstructure data at all points in the continuum in a bio-orthogonal KLE expansion that allows us 
to reduce the number of random variables that drive the multiscale simulation. In essence the model 
accounts for the microstructure correlation from point to point in the continuum and at the same time 
produces spatial eigenfunctions (similar to the POD model reduction of PDEs).  
 

6.1 A multiscale reduced-order model of the uncertain initial microstructure  

This section provides a framework to obtain a reduced-order model for the underlying random 
microstructure field (here Orientation density function (ODF) defining texture). Assume an 2L
random field  , ,a x s 

defined on a probability space  , ,F P . 

                                                             , , :a x s D                                                       (49) 
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where D is the spatial domain,  is the fundamental part of Rodriguez space,  is the set of 
elementary events and  is the vector of random inputs. One can use the Karhunen-Loeve 
expansion to express this field by a bi-orthogonal representation in the form 

                                     
1

ˆ, , , , , , ,i i i
i

a x s a x s a x s a x s s x   




    
                      (50) 

where a is defined as    , , ,a x s a x s  
 and  is the averaging operation defined below, i are 

eigenvalues of the eigenvalue problem defined later on, the i are modes strongly orthogonal in 

Rodrigues space, i are spatial modes weakly orthogonal in space with respect to an inner product 

defined as 

                                                         , : ,
D

f g f g dx                                                                     (51) 

                                                        ,f g f g p d                                                          (52) 

where  p  is the probability distribution. The strong orthogonality of i modes in Rodrigues space 

can be written as 

                                                     ,i j i j ijs s ds    
 
   

and the weak orthogonality of spatial modes can be written as 

                                                           ,i j ij                                                                               (53) 

 
By minimizing the distance (based on the norm defined in Eq. (51) ) between the Karhunen-Loeve 
expansion and the random field, one ends up with 

                                                                1
ˆ,i i

i

s a


                                                               (54) 

and from the orthogonality condition 

                                                        1
ˆ, , ,i i

i

x a x s s ds  
 

                                               (55) 

Eqs. (53) and (55) lead to the following eigenvalue problem 

                                                        ,i i is C s s s ds 


                                                             (56) 

where the covariance C is defined as 

                                               
int

1 1 1
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ˆ垐, | |

elr
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n m

n nn
T

j i j i i i
j i ir

C s s a x a x J
n


  

                                         (57) 

where | |
ni

J is the Jacobian determinant of the element ni  , ˆ
mi

 is the integration weight associated 

with the integration point mi , intn is the number of integration points in each element, rn is the number 

of realizations, eln is the number of elements in macroscale and â is a column vector with elements 

corresponding to integration points in Rodrigues space and imx represents global coordinate of the 

integration point mi in macroscale. 
  

The ODF representing the texture takes positive values. Hence, the Karhunen-Loeve expansion 
should provide us with positive values. To obtain a positive random field, one can use the Karhunen-
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Loeve expansion for the     min
ˆ, , log , ,a x s A x s A  

assuming   min
ˆ , , 0A x s A   almost 

surely. The process Â can be reconstructed as 

                            min minexp , , exp , ,i i i
i

A a x s A a x s s x        
 


                      (58) 

In practice,       1, , : , , ,...,
dna x s a x s     

where 1, ,
dn  are a set of finite number of 

random variables and dn refers to the number of random variables considered in the problem. 

 
Next, the polynomial chaos decomposition of  ,i x  can be written as 

                                          1, : , , ,
di i n ij j

j

x x x                                           (59) 

where the     i i     are in a one-to-one correspondence with the Hermite polynomials in 

Gaussian variables,    is the vector consisting of dn independent Gaussian random variables

 1, ,
dn   and the coefficients  ij x can be obtained from 

                                                     
 

2

,i j

ij

j

x
x

 





                                                                   (60) 

 
After obtaining the reduced model on the two scales simultaneously, ASGC or HDMR can be used to 
solve the resulted SPDEs, This is the first time to introduce a new framework that makes the 
otherwise intractable task of quantifying the effect of random initial texture in a multiscale problem 
feasible. Figure 8 shows a representative result of this method. 
 
 
 

 
Figure 9: Left: Schematic view of the multiscale problem. Each point on this underlying coarse grid 
corresponds to a different crystal orientation R  The Rodrigues-Frank axis-angle parameterization is 
used as a convenient scheme to represent R  Model reduction is conducted simultaneously on the 
Rodrigues space and the coarse grid. Right: Mean and variance of the shear modulus obtained from 
the reduced-order representation of texture.This reduced order representation is then used in a 
stochastic multiscale simulation to compute the variability of properties in the final product (e.g. 
forged product) induced from the uncertainty in the initial microstructure [9]. 
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In closing, we note that in [13,14] and in an a number of additional forthcoming publications, we 
have extended all of the stochastic multiscale polycrystal material models discussed above to include 
in addition to texture uncertainty also grain size uncertainty. These models are based on enhanced 
physical modeling to account for the effect of grain size distribution on macroscale properties. The 
model reduction techniques (manifold learning) have been extended to work on high-dimensional 
microstructures defined in both the texture and grain size random space. This not only resulted in 
appropriate definition of distance metrics and properties of the microstructure manifold but also in a 
number of necessary extensions of the MaxEnt techniques needed to compute the probabilistic 
distribution of the underlying random variables. At the end of this work, we have managed to 
produce the convex hull of all material properties that should be expected (with the corresponding 
probabilities) in the presence of microstructure uncertainty. This has implications in the design of 
new materials, on prediction of rare events (e.g. failure due to extremal properties), etc. 
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New Discoveries and Software 
(a) Develop an HDMR framework to address the high-dimensionality of stochastic PDE systems, (b) 
Non-linear reduced order model that could capture correlations in non-linear spaces and efficiently 
represent/process information of complex structures, (c) developed a hierarchical adaptive sparse-
grid collocation scheme that captures the crucial stochastic dimensions and thus solve problems 
which were earlier infeasible, (d) developed a variational stochastic multiscale framework for 
material systems, (e) developed a non-intrusive (collocation) framework for design of complex 
systems under uncertainty and applied it to the design of deformation processes of polycrystalline 
materials, (f) used the adaptive sparse grid collocation solver as a surrogate model for accelerating 
multiscale Bayesian inference approaches and finally (g) developed a maximum entropy based 
framework for predicting the effects of uncertainty in initial texture on macroscopic property 
variability in deformation processes of polycrystalline materials. 

Several of the computational tools developed have become available to collaborators at other 
universities as well as to government laboratories.  




