Multipath Mitigation Algorithm Results using TOA Beacons for Integrated Indoor Navigation

ION GNSS 2008
September 16, 2008
Session: FOUO - Military GPS & GPS/INS Integration 2

Alison Brown and Ben Mathews, NAVSYS Corporation

DARPA Distribution Statement A:
Approved for Public Release, Distribution Unlimited
Report Documentation Page

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.

1. **REPORT DATE**
 16 SEP 2008

2. **REPORT TYPE**

3. **DATES COVERED**
 00-00-2008 to 00-00-2008

4. **TITLE AND SUBTITLE**
 Multipath Mitigation Algorithm Results using TOA Beacons for Integrated Indoor Navigation

5a. **CONTRACT NUMBER**

5b. **GRANT NUMBER**

5c. **PROGRAM ELEMENT NUMBER**

5d. **PROJECT NUMBER**

5e. **TASK NUMBER**

5f. **WORK UNIT NUMBER**

6. **AUTHOR(S)**

7. **PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)**
 Navsys Corporation, 14960 Woodcarver Rd, Colorado Springs, CO, 80921

8. **PERFORMING ORGANIZATION REPORT NUMBER**

9. **SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)**

10. **SPONSOR/MONITOR’S ACRONYM(S)**

11. **SPONSOR/MONITOR’S REPORT NUMBER(S)**

12. **DISTRIBUTION/AVAILABILITY STATEMENT**
 Approved for public release; distribution unlimited

13. **SUPPLEMENTARY NOTES**

14. **ABSTRACT**

15. **SUBJECT TERMS**

16. **SECURITY CLASSIFICATION OF:**
 a. **REPORT** unclassified
 b. **ABSTRACT** unclassified
 c. **THIS PAGE** unclassified

17. **LIMITATION OF ABSTRACT**
 Same as Report (SAR)

18. **NUMBER OF PAGES**
 20

19a. **NAME OF RESPONSIBLE PERSON**

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18
Cognitive RadioNavigation Concept

CRN-SDRs use GPS waveform to provide precise “virtual clock” to all Reference units, which enables combination of SoOP and Beacon signals for Nav.
Use of SDR Beacons in RSN

- SDR Beacons broadcast TOA signal for RF ranging
 - Enables navigation in the absence of GPS and other signals-of-opportunity
- SDR Reference Units provide common time-base
 - Uses GPS waveform to create a precise “virtual clock” to reference SoOP observations
 - Allows multiple signal sources to be combined in a common navigation solution
- SDR Mobile Units demonstrate inertial-aided multipath mitigation
 - 900 MHz TOA waveform with 10.23 Mbps modulation
 - Enhanced MLE algorithm with inertial/clock-aiding for direct/multipath signal resolution
 - Enhanced fault detection and exclusion (FDE) for GPS and beacon measurements
Benefits of a Software Defined Radio (SDR)

- Digital Antenna Element (DAE)
- FPGA Card
- Host Processor

- Multiple Frequencies supported by flexible RF/Digital Transceivers
- Flexible waveform processing using FPGAs
- Software control of SDR configuration and operation
SDR Master Unit Hardware Design

- Novatel GPS-701-GG GPS Antenna
- Digital Antenna Elements (GPS + 900 MHz) Correlator Accelerator Card
- Sony Ericsson GC89 Datalink Card (GSM & 802.11)
- HyperLink RE1905U Antenna

- Hyperlink Technologies HGV-906U 900 MHz Antenna
- PCI/ISA
- PCMCIA Carrier Module
- PCI/ISA
- USB
- Cleware USB-Temp Temperature Sensor
- Vaisala PTB210A Digital Barometer
- RS-232
- IDE
- Digital Logic ADL855PC-728 PC-104 CPU Board
- 2.5 HD
- 12.0 VDC Power Module
900 MHz TOA Broadcast

- Waveform selection
 - CDMA (PRN code modulated)
 - FDMA (Frequency selectable in firmware)
 - TDMA (Slot selected in firmware)

TOA Acknowledge Message broadcast by Pseudolites

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Units</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time</td>
<td>Week, secs</td>
<td>GPS time of week in msecs of first TOA being transmitted</td>
</tr>
<tr>
<td>PRN</td>
<td></td>
<td>ID of PRN code broadcast by pseudolite.</td>
</tr>
<tr>
<td>Signal Period</td>
<td>ms</td>
<td>Interval between TOA ranging signals on RF link (0 means transmission will stop)</td>
</tr>
<tr>
<td>Signal Duration</td>
<td>ms</td>
<td>Duration of TOA ranging signal on 900MHz link</td>
</tr>
<tr>
<td>Signal Freq</td>
<td>MHz</td>
<td>Nominal RF Frequency of TOA ranging signal</td>
</tr>
</tbody>
</table>
SDR Slave Unit Hardware Design

HyperLink RE 1905U
GSM Antenna (if necessary)

Wi-Systems
GPS + 900 MHz Antenna

Antenna Mounting Board

SDR Slave Unit

12V Battery

Honeywell HG1930 IMU
(inside of protective enclosure)

Vaisala PTB210A
Barometer

DC-DC Converter

Mounting board
Under RSN effort, additional functionality was added to the SDR processing to handle beacon and GPS multipath effects.

- MLE-UTC filtering uses inertially aided tracking loops to enable tracking under low power and high multipath conditions.
- GTI-RAIM uses redundant GPS/beacon measurements to perform FDE.
MLE-UTC Filtering Algorithm

Multipath Rake Tracking

Close-In Multipath

UTC Direct Path Aiding

Far-Away Multipath
GTI-RAIM Algorithm

- GI-RAIM was previously used to detect and remove out-of-tolerance GPS faults before they are applied to the blended KF solution
- For RSN, FDE solution was extended to detect and reject TOA errors (GTI-RAIM)
- Approach can also be extended to other SoOP using blended RSN solution
Testing Overview

• 7 beacons operating in TDMA mode
 • 2 second frame length
 • 200ms slot length
 • Broadcasting at ~23 dBm
• 1 backpack-mounted receiver with GPS, TOA, IMU and baro
• 12 indoor survey points
SDR Units in the Field
UTC MLE-Aided Filtering Results

Ranging Error

Test Point 1

Spline-Based Peak Detection

UTC MLE Peak Detection

Pseudorange Error for Test Point 1 (Spline Mode)

Pseudorange Error for Test Point 1 (MLE Mode)
UTC MLE-Aided Filtering Results

Positioning Error

Test Point 1

Spline-Based Peak Detection

UTC MLE Peak Detection

Navigation Results using Spline Mode for Test Point 1

Building Layout

Navigation Results using MLE Mode for Test Point 1

Building Layout
GTI-RAIM Results

Rejected Range Measurements

Test Point 8

Pseudorange Error for Test Point 8 (MLE Mode w/ RAIM)

X denotes rejected measurement
GTI-RAIM Results
Positioning Error
Test Point 8

Without GTI-RAIM

Navigation Results using MLE Mode for Test Point 8
Building Layout

With GTI-RAIM

Navigation Results using MLE Mode w/ RAIM for Test Point 8
Building Layout
UTC MLE + GTI-RAIM

Ranging Error

Test Point 10

Standard Spline without RAIM

UTC MLE with RAIM
UTC MLE + GTI-RAIM

Positioning Error

Test Point 10

Standard Spline without RAIM

Navigation Results using Spline Mode for Test Point 10

Building Layout

UTC MLE with RAIM

Navigation Results using MLE Mode w/ RAIM for Test Point 10

Building Layout
Conclusion

• 900 MHz TOA Assistance
 • Can provide augmented navigation to units operating inside buildings and in urban environments
 • Algorithms developed for use on 900 MHz beacons can be easily adapted to handle other signals of opportunity in indoor and urban environments

• UTC-MLE Tracking
 • Enables direct path tracking under very strong fading conditions and in high multipath environments

• GTI-RAIM
 • Redundant measurements allow for FDE algorithms to prevent multipath interference from corrupting the integrated solution

• Potential Applications
 • Military Operations in Urban Terrain
 • First Responder geolocation