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N Theory and Applications
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m Theory of randomized algorithms for control
m UAYV applications
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Preliminaries
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I Randomized Algorithms (RAS)

. § B N § B ¥ RNmpmE

m  Randomized algorithms are freguently used in many
areas of engineering, computer science, physics,
finance, optimization,...but their appearance in systems
and control is mostly limited to Monte Carlo
simulations...

m Man objective of this NATO LS. Introduction to
rigorous study of RAs for uncertain systems and
control, with specific UAV applications

NATO LS Glasgow, Pamplona, Cleveland @RT 2008
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Randomized Algorithms (RAS)
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Computer science (RQS for sorting, data structuring)
Robotics (motion and path planning problems)
Mathematics of finance (path integrals)
Bioinformatics (string matching problems)
Distributed algorithms (PageRank in Google)

Computer vision (computational geometry)

NATO LS Glasgow, Pamplona, Cleveland @RT 2008
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m  Uncertainty has been always a critical issue in control
theory and applications

m  Hrst methods to deal with uncertainty were based on a
stochastic approach

m Optimal control: LOQG and Kalman filter

m Since early 80's aternative deterministic approach
(worst-case or robust) has been proposed

NATO LS Glasgow, Pamplona, Cleveland @RT 2008
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m  Magor stepping stone in 1981: Formulation of the %,
problem by George Zames

m Various “robust” methods to handle uncertainty now
exist: Structured singular values, Kharitonov,
optimization-based (LMI), |-one optimal contral,
guantitative feedback theory (QFT)

NATO LS Glasgow, Pamplona, Cleveland @RT 2008
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m Late80'sand early 90's. Robust control theory became
awell-assessed area

m  Successful industrial  applications in  aerospace,
chemical, electrical, mechanical engineering, ...

m However, ...

NATO LS Glasgow, Pamplona, Cleveland @RT 2008



A L imitations of Robust Control - 1
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m Researchers realized some drawbacks of robust control

m Consider uncertainty A bounded in a set @ of radius p.
Largest value of p such that the system is stable for all
A € B Iscaled (worst-case) robustness margin

m Conservatism: Worst case robustness margin may be
small

m Discontinuity: Worst case robustness margin may be

discontinuous wrt problem data

NATO LS Glasgow, Pamplona, Cleveland @RT 2008




A Limitations of Robust Control - 2
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m  Computational Complexity: Worst case robustness is

often NP-hard (not solvable in polynomial time unless
P=NP)

m Various robustness problems are NP-hard

— static output feedback
— structured singular value
— stability of interval matrices

NATO LS Glasgow, Pamplona, Cleveland @RT 2008



R Different Paradigm Proposed

. § B N § B ¥ RNmpmE
m New paradigm proposed Is based on uncertainty
randomization and leads to randomized algorithms for
analysis and synthesis

m Within this setting a different notion of problem
tractability is needed

m Objective: Breaking the curse of dimensionality!!]

[1] R. Bellman (1957)

NATO LS Glasgow, Pamplona, Cleveland @RT 2008



N Probability and Robustness
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m The interplay of Probability and Robustness for control
of uncertain systems

m Robustness. Deterministic uncertainty bounded

m Probability: Random uncertainty (pdf is known)

m Computation of the probability of performance

m Controller which stabilizes most uncertain systems

NATO LS Glasgow, Pamplona, Cleveland @RT 2008
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Probabilistic Robustness Analysis

NATO LS Glasgow, Pamplona, Cleveland @RT 2008 18
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M(s) System

m A belongsto astructured set B

— Parametric uncertainty g
— Nonparametric uncertainty A,
— Mixed uncertainty

NATO LS Glasgow, Pamplona, Cleveland @RT 2008



N Worst Case Mode
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m Worst case model: Set membership uncertainty

m Theuncertainty A isbounded in aset B
A e B

m Real parametric uncertainty g=[qy,..., q,] €R!
g <[qq]
m Nonparametric uncertainty
{Anpe R Anp | <1}

NATO LS Glasgow, Pamplona, Cleveland @RT 2008
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A

w_ M L

m Uncertainty A is bounded in a structured set B
m z=F (M,A) w, where F (M,A) isthe upper LFT

NATO LS Glasgow, Pamplona, Cleveland @RT 2008



A Example: Flexible Structure - 1
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m Mass spring damper model

m Real parametric uncertainty affecting stiffness and
damping

m Complex unmodel ed dynamics (nonparametric)

I lg

LI

NATO LS Glasgow, Pamplona, Cleveland @RT 2008



N Flexible Structure - 2
I I e I e e e T EOn

m M-A configuration for controlled system and study robustness

M(9)=C(sl -A)'B

gl O 0
A= 0 oqls O
0 0 A,
O, O €R _ )
Ay € C*4

B ={A: 5(A) < 1}

NATO LS Glasgow, Pamplona, Cleveland @RT 2008




N Probabilistic M odel
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m Probability density function associated to B

m \WWe assume that A isarandom matrix (vector) with given

density function and support B

m Example: A isuniformin @

NATO LS Glasgow, Pamplona, Cleveland @RT 2008



R Performance Function
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m In classical robustness we guarantee that a certain

performance requirement is attained for all A3

m This can be stated in terms of a performance function
for analysis

J=J(A)

m Example: H_ performance

NATO LS Glasgow, Pamplona, Cleveland @RT 2008
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m Compute the #_, norm of the upper LFT F/ (M,A)
J(A) = [[Fy(M, Al
m For given >0, check If
J(A) <y
for all Ae B

NATO LS Glasgow, Pamplona, Cleveland @RT 2008



- Probability of Performance
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m Given aperformance level v, we define the probability of
performance

Prob{J(A) <y}

NATO LS Glasgow, Pamplona, Cleveland @RT 2008



I Measure of Violation and Reliability
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m \We define the measure of violation
V=1-Prob{J(A) <y} =Prob{J(A) >v}
m Probability of performance is also denoted as reliability
R=Prob{JA) <y} =1-V

NATO LS Glasgow, Pamplona, Cleveland @RT 2008



T oNR Probabilistic Estimates
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m Computing V and R requires to solve a difficult
Integration problem

m We use randomized algorithms to determine a
probabilistic estimate of V and R

NATO LS Glasgow, Pamplona, Cleveland @RT 2008



e Randomized Algorithm: Definition

. § B N § B ¥ RNmpmE
m Randomized Algorithm (RA): An algorithm that makes
random choices during its execution to produce aresult

m Example of a“random choice’ isacoin toss

heads or talls

NATO LS Glasgow, Pamplona, Cleveland @RT 2008



e Randomized Algorithm: Definition
. J N N § N § Empemy
m Randomized Algorithm (RA): An algorithm that makes

random choices during its execution to produce aresult

m For hybrid systems, “random choices’ could be
switching between different states or logical operations

m For uncertain systems, “random choices’ require (vector
or matrix) random sample generation

NATO LS Glasgow, Pamplona, Cleveland @RT 2008



. Monte Carlo Randomized Algorithm
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m Monte Carlo Randomized Algorithm: A randomized
algorithm that may produce incorrect results, but with
bounded error probability

NATO LS Glasgow, Pamplona, Cleveland @RT 2008



I L as Vegas Randomized Algorithm

. § B N § B ¥ RNmpmE

m Las Vegas Randomized Algorithm: A randomized

algorithm that always produces correct results, the only
variation from one run to another isthe running time

NATO LS Glasgow, Pamplona, Cleveland @RT 2008
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m We draw N i.1.d. random samples of A according to the
given probability measure

AN A@ AN e B
m The multisample within B is
AL N={AD AN}

m Weevaduate
J(AM), J(AD), ..., I(AN)

NATO LS Glasgow, Pamplona, Cleveland @RT 2008



Estimated Probability of Reliability

I D N D N O N Eon
m \We construct the estimated probability of reliability

R =3 1(0a)

IEIIT-CNR

where | (-) denotes the indicator function

. 1 if J(AY)<0
I(J(A(I))):{O Iotrferw)ise

NATO LS Glasgow, Pamplona, Cleveland @RT 2008



- Sample Complexity
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m We need to compute the size of the Monte Carlo
experiment (sample complexity)

m This requires to introduce probabilistic accuracy € e
(0,1) and confidence 6 € (0,1)

m Given g, o €(0,1), we want to determine N such that the
probability event

<eg

R-R,

holds with probability at least 1- 6

NATO LS Glasgow, Pamplona, Cleveland @RT 2008



EIT-CNR Chernoff Bound!1!
I I e I e e e T EOn

m Chernoff Bound
Giveng, 6 €(0,1), If

2
N>N, = "2’8%

then the probability inequality

R-R,
holds with probability at least 1- 6

[1] H. Chernoff (1952)
NATO LS Glasgow, Pamplona, Cleveland @RT 2008
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m Chernoff bound improves upon other bounds such as
the Law of Large Numbers (Bernoulli)

m Dependence islogarithmic on 1/6 and quadratic on 1/¢

m Sample sSize IS Independent on the number of
controller and uncertain parameters

€ 0.1% 0.1% 0.5% 0.5%
1-0 | 99.9% | 99.5% | 99.9% | 99.5%
N 3.9-10 | 3.0-10% | 1.6-10° | 1.2-10°

NATO LS Glasgow, Pamplona, Cleveland

@RT 2008
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Probabilistic Robust Synthesis
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I Synthesis Paradigm
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A
d P e
u y
K(6)

m Design the parameterized controller K(6) to guarantee
stability and performance

NATO LS Glasgow, Pamplona, Cleveland @RT 2008



Synthesis Performance Function
I D N D N O N Eon

m Parameterized controller K(0)

IEIIT-CNR

m Wereplace J(A) with a synthesis performance function
representing system constraints
J=J(0, A)

where 6 € O represents the controller parameters to be
determined and © Istheir bounding set

NATO LS Glasgow, Pamplona, Cleveland @RT 2008



Probabilistic Design Methods:
EIT-CNR The Big Picture
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Quadratic Performance and Convexity

NATO LS Glasgow, Pamplona, Cleveland @RT 2008



EITONR Convexity Assumption
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m Convexity Assumption: The function J(6, A) is convex
In O for any fixed value of A € B

J(6, -)

convex function

NATO LS Glasgow, Pamplona, Cleveland @RT 2008



.. Convex Functions and LQ Regulators
. J N N § N § Empemy
m Examples of convex functions arise when considering

various control problems, such as design of LQ

regulators

m Thisisillustrated by means of an application example for
control of lateral motion of an aircraft

NATO LS Glasgow, Pamplona, Cleveland @RT 2008



Example: Control of Lateral
EIT-CNR Motion of Aircraftl]

- § J N B 1 J§ § jpepepny

m Multivariable example for the design of a controller for
the lateral motion of an aircraft.

m The model consists of four states and two Inputs

%(t) = AX(t) + Bu(t)

where A and B are given by

[1] R. Tempo, G. Calafiore and F. Dabbene (2005)

NATO LS Glasgow, Pamplona, Cleveland @RT 2008



State Space Matrices

IEIIT-CNR
I I e I e e e T EOn
"0 1 0 0 -
N 0 L, L, L
, 0 Y, -
_Nﬁ(%) N, N,+NY, N-N,
g )
0 L
B= b
Y;, 0
N§r+NIBY5r N§a
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. State Variables and Control Inputs

& K K 5§ KN K Fmpmpm
m State variables

— X, bank angle
— X, derivative of bank angle
— X5 Sideslip angle
— X, JaW rate
m Control inputs
— U, rudder deflection
— U, alleron deflection

NATO LS Glasgow, Pamplona, Cleveland @RT 2008



N Uncertain Parameters
I I e I e e e T EOn

m Each parameter value Is perturbed by a reative
uncertainty equal to 10% around its nominal value A

m Theuncertainty vector (parametric uncertainty)
A=Ay Ay ooy Ags]T
varies in an hyperrectangle centered at the nominal
value

B ={A: A €[0.90A;, L1IOA]], i=1,..., 13}
m \We have uncertain matrices A(A) and B(A)

NATO LS Glasgow, Pamplona, Cleveland @RT 2008



T oNR Parameter Nominal Values
& K K 5§ KN K Fmpmpm

L,=-2.93 L,=-4.75 L,=0.78 g/vV=0.086 | V,=-0.11
N;=0.1 N,,=-0.042 N;=2.601 N,=-0.29 L5,=-3.91
Y,=0.035 | N;=-25335 | N;=0.31

NATO LS Glasgow, Pamplona, Cleveland @RT 2008



- Quadratic Performance Function

- § J N B 1 J§ § jpepepny

m \We design a state feedback controller u =Kx that robustly
stabilizes the system guaranteeing a decay rate o > 0

m Define the quadratic performance function
Dop(P, W, A) =A(A)P + PAT(A) + B(A)W' + WB'(A)+2a P

whaere P=PT > 0 and W ae matrices of suitable
dimensions

NATO LS Glasgow, Pamplona, Cleveland @RT 2008



ONR Sufficient Condition
& I B B §I K F pmpmm

m A sufficient condition for the existence of a controller K
isto find P=PT > 0 and W such that

Dos(P, W, A) <0

IS satisfied for al A € B

m Equivaently we find (common) solutions P=P"> 0 and
W of the quadratic cost function

CDQP(P, W, A) <0
foral Ae B

NATO LS Glasgow, Pamplona, Cleveland @RT 2008




EIT-CNR Control Gan
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m A control gain which robustly guarantees the decay rate
o foral A e Bisgiven by

K=WTPp-1
m This problem can be reformulated In terms of linear
matrix inequalities (LMIs)
m The controller is parameterized as K=K(0), where

0={P,W

NATO LS Glasgow, Pamplona, Cleveland @RT 2008



I , Linear Matrix Inequalities (LMIs)
. J N N § N F Empemy
m Thisquadratic constrained problem can be written in the

general setting of LMIs
m Find 6 such that
F(O,A) <0
for al A e B where

F(0, A) = Fo(A) + 0, F4(A) + ... + 0, F.(A)

and F;(A) arereal symmetric matrices depending
(nonlinearly) on A

NATO LS Glasgow, Pamplona, Cleveland @RT 2008



R Performance Function
I I e I e e e T EOn

m To rewrite an LMI In terms of a performance function
J(6, A) we set

JO, A) = A, F(6, A)

where A, () 1s the maximum eigenvalue of (-)

NATO LS Glasgow, Pamplona, Cleveland @RT 2008



I Multiobjective Design Problems
. I N N § F KN Jupmmm

m To consider scalar-valued constraints is without loss of
generality
m Multiobjective design problems can be easlly handled
m Multiple constraints of the form
J;(6,A) <0, ..., J(6,A) <0
can be reduced to a single scalar-valued constraint
Setting
J(6, A) = max; J (6, A)

NATO LS Glasgow, Pamplona, Cleveland @RT 2008
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Sequential Methods for Convex
Problems

NATO LS Glasgow, Pamplona, Cleveland @RT 2008 58



Probabilistic Design Methods:

EIT-CNR The Big Picture
. I N N § F KN Jupmmm
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Sequential Methods for Design

1 5 N § §- § jwpspy

m We study randomized sequential methods for finding a
probabilistic feasible solution 6

m That iswe determine 0 satisfying the uncertain inegquality
J6, A) <0

IEIIT-CNR

with some probability

NATO LS Glasgow, Pamplona, Cleveland @RT 2008



I Definition of r-feasibility
¢ ! _§ § | } |} jpmpepy

m r-feasibility: For given r>0, we say that J(6, A) <0 isr-
feasible if the solution set
5={6:J(06,A) <Ofordl A B}

contains a (full-dimensional) ball of radiusr

NATO LS Glasgow, Pamplona, Cleveland @RT 2008



R Performance Function
I I e I e e e T EOn

mLet A be a random vector distributed according to a
probability measure

m Given probabilistic accuracy €  (0,1), we search for
P=PT" > 0 and W such that

Prob{A € B: ®gx(P, W,A) < 0} >1-¢
m Defining the performance function
J(P, W, A) = Aax Pop(P, W, A)
the problem isto find P=PT >0 and W such that
Prob{Ae B. JIP,W,A)<0} >1-¢

NATO LS Glasgow, Pamplona, Cleveland @RT 2008



ITCNR Probability of Violation

. J N N § N § Empemy
m The probability of violation of the controller 6 Is

V(0) = Prob{A € B. J(0, A) > 0}

m \WWe want to find 6 such that the probability of violation
IS small
V(0) <e¢
m |f such O exists in the feasible set §, then we have a

probabilistic feasible solution (probabilistic robust
design)

NATO LS Glasgow, Pamplona, Cleveland @RT 2008



I Controller Reliability

. § B N § B ¥ RNmpmE
m Given accuracy € € (0,1), probabilistic robust design

requires finding controller parameters 6 such that the
controller reliability

R(6) =1- V()
ISatleast 1 - ¢

NATO LS Glasgow, Pamplona, Cleveland @RT 2008



Sequential Methods for Design

I D N D N O N Eon

m Randomized seguential algorithms for finding a
probabilistic feasible solution 6 are based on two
fundamental ingredients

IEIIT-CNR

1) Oracle checking probabilistic feasibility of a candidate
solution

1) Update rule exploiting convexity to construct a new
candidate solution based on the oracle outcome

NATO LS Glasgow, Pamplona, Cleveland @RT 2008



IEIIT-CNR I\/I eta—AI gorl thm

. 1 B QB § | | jwpsgy
1. Initialization: set k = 0 and choose an initial solution 6,

2. Oracle: Oraclereturnstrueif 6, is a probabilistic feasible
controller and Exit returning O4,= 0,

Otherwise, the Oracle returns false and a violation
certificate

3. Update Rule: Construct 6, , ; based on 6, and on A,

4. Quter Iteration: Set k=k+1 and Goto 2

NATO LS Glasgow, Pamplona, Cleveland @RT 2008




N Probabilistic Oracle

- § J N B 1 J§ § jpepepny

m Oracle Is the randomized part of the algorithm and
decides probabilistic feasibility of the current solution

m We gengrate N, 1..d. samples of A within @
(multisample)
AL, AN e B
m The candidate solution 0, is probabilistic feasible if
J(6,, AN) <0
forali =1, .., N,
m Otherwise if J(6,, AD) >0we set A = A0

NATO LS Glasgow, Pamplona, Cleveland @RT 2008



IR Oracle (Inner) Iterations
. I N N § F KN Jupmmm

m Consider the multisample sizell!

1 (k+1)

Iog
Nk — Noracle |Og—
1-¢

where e, 6 € (0,1) are accuracy and confidence

m N, Isthe number of Oracle (Inner) iterations

[1] Y. Qishi (2007)
NATO LS Glasgow, Pamplona, Cleveland @RT 2008




EIT-CNR Algorithm Oracle
- 1 §m B 1 ¥ § jupmm

[] |ﬂpUt ek, Nk
m Output: feasibility (true/false), violation certificate A,

e fori=1,..,N,, drawasample A"

@ Randomized test

. if J(6,, AD) >0, set A .= A0, feasibility = false
. exit and return A,

o end if

e endfor

NATO LS Glasgow, Pamplona, Cleveland @RT 2008



A Update Rule: Gradient Method

. § B N § B ¥ RNmpmE
m We assume that the subgradient 0,(6) of J(0,A) is
computable at A,
m |f J(O, A) Isdifferentiable at 0, then 0,(0) Is the gradient
of J (6, A)

NATO LS Glasgow, Pamplona, Cleveland @RT 2008



IEIIT-CNR Gradient Step and StepSI Ze

. § B N § B ¥ RNmpmE
m Updateruleisaclassical gradient step

0,0,) .
0. —n k%) it 5 0y £0

0, otherwise

e k+1

m Letr >0, then the stepsize n, is given by

J(Ok’Ak)H if 0,(0,)=0
Ny =3 Hﬁk(ek)H
0 otherwise

\

NATO LS Glasgow, Pamplona, Cleveland @RT 2008



I Algorithm Update Rule (Gradient)

I 1 §F § § 0 [ [==nf
m [nput: 6,, A,
m Output: 0,4
. compute the subgradient 6,(6) of J(6, A,)

N ECEY
o compute the stepsize LIPS Hak(ek)H
\ 0 otherwise
o update

ek+1 =9

0,(0,) .
0, — Kk ifo,(0,)=0
kK~ Nk Hak(ek)H k Yk

0, otherwise

NATO LS Glasgow, Pamplona, Cleveland @RT 2008



EIT-CNR Outer lterations

- § J N B 1 J§ § jpepepny

m Define R
Nouter — | T2

I

where R Is the distance between the initial solution 6,
and the center of a ball of radius r contained In the
solution set §

m I ISimposed by the desired radius of feasibility

m |f Risunknown, then we replace it with an upper bound
which can be easlly estimated
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IEIIT-CNR AlgOrIthm %quentlal DeSIgn
- ° T K §F I Doyl

C Input: e, O € (0,1), Nouter

B Output: B,

. choose 6, set k=0 and feasibility=false

m QOuter iteration

e whilefeasbility = falseand k < N

. determine multisample size N,

. Invoke Oracle obtaining feasibility (true/false) and A,

. If feasibility = false then compute 6,,, using Update Rule
. else set Oy = 6,

. setk=k+1

. end while
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Probabilistic Properties of
IEIIT-CNR %quentl al DeSI gn

& K K 5§ KN K Fmpmpm
m Theorem!l

Let Convexity Assumption hold and let €, 6 € (0,1)

 |f Algorithm Seguential Design terminates at some
outer iteration k < N, returning g, then the
probability that V(0,) > € 1sat most 5

e |If Algorithm Sequential Design reaches the outer
iteration N, , then the problem is not r-feasible

[1] F. Dabbene and R. Tempo (2008)
NATO LS Glasgow, Pamplona, Cleveland @RT 2008




o ow  REemark: Successful/Unsuccessful Exit

- § J N B 1 J§ § jpepepny

m The first situation corresponds to a successful exit: The
algorithms returns a probabilistic controller O,

m The second sSituation corresponds to an unsuccessful
exit: No solution has been found in N, 1terations

m |nthis case we have a certificate of violation A, returned
by the Oracle showing that the problem is not r-feasible

NATO LS Glasgow, Pamplona, Cleveland @RT 2008



Alrcraft Example Revisited:
EITCNR Sequential Methods

. § B N § B ¥ RNmpmE
m Sefting o =0.5, we look for a probabilistic solution to the
uncertain LM|I
P=P'™>0  ®gy(P, W, A)<0
where the quadratic performance function is given by
Dop(P, W, A) =A(A)P + PAT(A) + B(A)WT + WBT(A)+2a. P

m Letting € =0.01 and 8= 10, the sequential agorithm is
guaranteed to return (with 99.9999% probability) a
solution P, W such that quadratic performance holds with
99% probability
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N Numerical Results
I I e I e e e T EOn

m Algorithm terminated after k = 28 (outer) iterations
m Quadratic performance was checked by the Oracle for
N, =2,029
uncertainty samples
m \Weobtained ...
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IENIT-CNR Pseq and Wseq
¢ | _§ § | | | sy

03075 -03164 -00973 -00188 |

03164 05822 -00703 -0.0993
> 00973 -00/03 02277 02661
-00188 -00993 02661 0.7100

00191 02733 |
00920 04325
00803 03821
04496 02032 |
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I Probabilistic Controller K,

. I N R 0§ 0§ N QFmpmmy
m Probabilistic controller K= W TP isgiven by

Seq

[ -29781 -19139 -32831 15169
| 73922 51010 41401 -0.9284

m With an a-posteriori analysis we will check 1T Ky, Is a
robust controller and its probabilistic properties
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IEIIT-CNR

1 5 N § §- § jwpspy

Non-Seqguential Methods for Convex
Problems
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Probabilistic Design Methods:

EIT-CNR The Big Picture
. I N N § F KN Jupmmm
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EITONR Convexity Assumption
5§ 1 B &R I J ¥ QFmEENy

m Convexity Assumption: The function J(6, A) is convex
In O for any fixed value of A € B
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IEIIT-CNR SCenanO ApprOaCh
- § J N B 1 J§ § jpepepny

m Non-sequential method which provides a one-shot
solution for general uncertain convex problems

m Randomization of A € B and solution of a single convex
optimization problem
m Derivation of a formula involving sample size, number

of controller parameters, probabilistic accuracy and
confidence

m Explicit computation of the sample complexity

NATO LS Glasgow, Pamplona, Cleveland @RT 2008



A Convex Semi-Infinite Optimization
. § B N § B ¥ RNmpmE

m Semi-infinite optimization problem

minc'6 subjectto JO,A) <0 foralAe B
DeR"

where J(0, A) <0Oisconvex inf foral A e Bandnis
the number of design parameters

NATO LS Glasgow, Pamplona, Cleveland @RT 2008



ETCNR Scenario Problem
I I e I e e e T EOn

m \We construct a scenario problem using randomization
m Taking i.i.d. random samples A®, i = 1, ..., N, we
construct the sampled constraints
JO,AM <0, i=1,...,N

and form the scenario optimization problem (convex
problem)

Oy =@gmMinc' 0 subjectto JO, AD) <O, i=1,...,N
0eR"
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I Convex Scenario Design
I I e I e e e T EOn

m Theorem!l

Let Convexity Assumption hold. Suppose that N > n
and g, 0 €(0,1) satisfy the inequality

(Nj(l_g P s

n

then, the probability that
V(0 = Prob{A € B: J(0y,, A) >0} > ¢
ISat most 6

[1] G. Calafiore and M. Campi (2005)
NATO LS Glasgow, Pamplona, Cleveland @RT 2008




IEIIT-CNR Remarks
- § J N B 1 J§ § jpepepny

m We have considered the case when the scenario
problem admits a feasible solution and this solution iIs
unigue

m Clearly, If the scenario problem is unfeasible, then also
the original semi-infinite convex problem is unfeasible

m The assumption on uniqueness of the solution can be
relaxed In most practical cases

NATO LS Glasgow, Pamplona, Cleveland @RT 2008



- Sample Complexity

. § B N § B ¥ RNmpmE
m Computing the minimum value of N such that

(Nj(l_g P s

n
holds Is immediate (given g, 6 and n, IS a one-parameter
problem)

m A different issue is to derive the sample complexity
which is an explicit relation of the form

N = N(g, 9, n)
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Sample Complexity of the

ETCNR Scenario Problem
I I e I e e e T EOn

m Sample complexity can be computed for the scenario
problem

m Inll it has been proven that the relation

(Nj(l_g P <

N
holds If

N > Nscen(s,é,n):[glogﬁz—léj+2n+glog(4)1
& e

[1] T. Alamo, R. Tempo and E.F. Camacho (2007)
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I Algorithm Scenario Design
- § J N B 1 J§ § jpepepny

m [nput: g, 0, N
m Output: 6,

compute the sasmple size N_(¢, 0, n)
e  draw N> N, (g, 6, n)i.i.d. samples A®)
. solve the convex optimization problem

Oy en = @gminc’0 subjectto JO, AD)<0,i=1,...,N
0eR"

NATO LS Glasgow, Pamplona, Cleveland @RT 2008



Alircraft Example Revisited.
IEIIT-CNR &:enarl O DeSI gn

- § J N B 1 J§ § jpepepny

m The objective Is to determine a probabilistic solution to
the optimization problem

minp y, TrP subjectto  P=P'™>0, ®y(P, W, A)<0

where Tr(-) denotes the trace of (-)

m Setting ¢ =0.01 and 6=10°, we compute the sample
complexity for n=18 obtaining

N, = 7,652

m Hence we need to solve a convex optimization problem
with 7,652 constraints and 18 design variables
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IEIIT-CNR Pscen and Wscen
- §F BN §F §F 0§ ¥ §Fmpum

© 0.1445 -0.0728 0.0035 0.0085

-0.0728 0.2192 -0.0078 -0.0174
*" | 0.0035 -0.0078 0.1375 0.0604
| 0.0085 -0.0174 0.0604 0.1975

10.0109 0.0908
7.2929 3.4846
0.0439-0.0565

10.6087-3.9182
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I Probabilistic Controller K.,

. I N R 0§ 0§ N QFmpmmy
m Probabilistic controller K= W TP-lisequal to

120.0816 40.3852 -0.4946 5.9234 |
> 110.7941 181058 9.8937 -21.7363
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IEIIT-CNR

1 5 N § §- § jwpspy

Non-Sequential Methods for
Non-Convex Problems
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Probabilistic Design Methods:

EIT-CNR The Big Picture
. I N N § F KN Jupmmm

I E ]
PN TN S o o B B o oo o oo o o S o o PR o mm e e o
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Statistical Learning Theory for Control

TR Design of Uncertain Systems
5§ 1 B &R I J ¥ QFmEENy

m  Statistical learning theory is a branch of the theory of
empirical processes
m  Significant results have been obtained in various areas,

including neural networks, system identification,
pattern recognition, ...

m We study statistical learning theory for control design
of uncertain systems
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- Statistical Learning Theory

. § B N § B ¥ RNmpmE
m Main objective Is to derive uniform convergence laws
(for all controller parameters) and the sample complexity

m This leads to a poweful methodology for control
synthesis (feasibility and optimization) which Is not
based upon a convexity assumption on the controller
parameters

m The sample complexity Is significantly larger than that
derived in the convex case
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I Controller Reliability

. § B N § B ¥ RNmpmE
m Recall that thereliability for the controller K(0) is

R(0) = Prob{A € B: J(6,A) <0} =1-V(0)
m Computing R(0) requires to solve a difficult integration
problem

m For fixed 6 we compute a probabilistic estimate of
reliability setting a ssmple Monte Carlo experiment
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IEIIT-CNR M Onte Carl O EXpeI’I ment
- § J N B 1 J§ § jpepepny

m We take N I1.1.d. random samples of A according to the
given probability measure

A A@ AN € B
m Weevaduate
J(0, A1), J(0, A@), ..., J(0, AN)
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Estimated Probability of Reliability

1 5 N § §- § jwpspy

m Given controller parameters 6, we construct a
probabilistic estimated of reliability

R, (6) =%il(a(6,&”>)

IEIIT-CNR

where | (-) denotes the indicator function

i 1 if J(0,AV)<0
(306.47)-= {O otherwise
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IEIIT-CNR LaVV Of I—arge NumberS
- § J N B 1 J§ § jpepepny

m Monte Carlo analysis (Law of Large Numbers) studies
the sample complexity such that for fixed 6 the
probability inequality

R(O)- R, (9) <e

holds with probability at least 1- &
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IEIIT-CNR Un|f0rm COnvergence LaVV
- § J N B 1 J§ § jpepepny

m Statistical learning theory studies the sample complexity
such that the probability inequality

R(O)-R,(0) <

holds uniformly for all 6 with probability at least 1- 6
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IEIIT-CNR
- § J N B 1 J§ § jpepepny

Optimization of Non-Convex Problems

NATO LS Glasgow, Pamplona, Cleveland @RT 2008



Constrained Feedback Design

EIT-CNR with Uncertainty
5§ 1 B &R I J ¥ QFmEENy

m The objective Is to minimize an objective function c(0)
subject to the performance constraint

JO,A) <0

m The problem Is formulated In terms of a binary
performance function

NATO LS Glasgow, Pamplona, Cleveland @RT 2008



TR Binary Performance Function g
. 1 B QB § | | jwpsgy

m We introduce the performance function g
g. ®x B—{0,1}
which is abinary measurable function defined as

g(O,A)={

O iIfJ(O,A)<O0
1 otherwise

NATO LS Glasgow, Pamplona, Cleveland @RT 2008



A Binary Probability of Violation

. J N N § N § Empemy
m Given 6 € R", the binary probability of violation for the
function g(0, A) isdefined as

V4(0) = Prob{A e B g(0, A) = 1}

NATO LS Glasgow, Pamplona, Cleveland @RT 2008



- Binary Optimization Problem
- 1 §m B 1 ¥ § jupmm

m Semi-Infinite Optimization Problem: Find the optimal
solution of the problem

min c(0) subjecttog(b, A) =0foral A B
0eR"

wherec: ® — R Isameasurable function

NATO LS Glasgow, Pamplona, Cleveland @RT 2008



Randomized Non-Convex

N Optimization Problem
& K K 5§ KN K Fmpmpm

m Generate N 1.1.d. samples (multisample) within B
AL N={AD - AN}
according to a given probability measure
m Compute a (local) solution of the non-convex
optimization problem

0,con = @g minc(6) subjectto g(6,A") =0, i=1,..., N
0eR"
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TR Boolean Binary Function g

. § B N § B ¥ RNmpmE
m Thefunction g: R"x 8 — {0,1} 1s(y, m)-Boolean binary
If for fixed A can be written as a Boolean expression
consisting of m polynomiasinthevariables6;, 1=1,... , n

B1(8, A), ..., Bm(6, A)

and the degree with respect to 6, of all these polynomials
ISno larger than y

m Example: For fixed A take m=1 and
g=p,0)=3+206,2-50,*0,+... +406,°0,0,” y=7
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IEIIT-CNR

Non-Convex Learning Based Design

- § J N B 1 J§ § jpepepny

m Theorem!l

Let g(0, A) be (y, m)-Boolean. Given ¢ €(0,0.14) and 6

(0,1), if

N>N__(g0,n)= 1

ncon
€

o

21.64

j +36nlog, max{g ,4eym}j
€

where e is the Euler number, then the probability that
Vg(encon) = PI’Ob{A €. g(encon’ A) = 1} > €

IS at most o

[1] T. Alamo, R. Tempo and E.F. Camacho (2007)

NATO LS Glasgow, Pamplona, Cleveland
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EIIT-CNR Comments - 1
I I e I e e e T EOn

m The function g Is a Boolean expression consisting of
polynomials, constraints and objective function are
non-convex

m Sample complexity result holds for any suboptimal
(local) solution

m We can use linearization algorithms to obtain a local
solution (no need to compute a global solution)

m The approach consists of uncertainty randomization and
deterministic optimization in controller space

m \We avoid randomization of controller parameters
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Empirical Mean of Violation

1 5 N § §- § jwpspy

IEIIT-CNR

m Given N 1.I.d. samples within B
AL N={AD - AN}
the empirical mean of violation is equal to
- 1 N i
Vy(0)=—->9(0.47)
=1
m Since gisabinary function

V,(0) €[0,1]

NATO LS Glasgow, Pamplona, Cleveland @RT 2008



e Randomized Optimization Problem
- 1 §m B 1 ¥ § jupmm

m Recall that the randomized optimization problem is
given by

0,c0n = @g minc(6) subjectto g(6,A") =0, i=1,..., N
0eR"

m Thisproblemisequivaent to

0., = &g mMin c(0) subjectto \79(9) =0
0eR"
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IEIIT-CNR Comments

. J N N § N § Empemy

m Solving the original semi-infinite optimization problem
IS extremely difficult given the infinite number of
constraints

m Using the concept of empirical mean, the optimization
problem has only one constraint with a finite sum (for
fixed 0)

m Develop a strategy to solve semi-infinite optimization
problems such that the empirical mean of violation is
Zero

NATO LS Glasgow, Pamplona, Cleveland @RT 2008



I Algorithm Non-Convex Design
| J B § } }§ §° ympupnj

m [nput: g, 0, N
m Output: 0,

compute the sasmple size N ...(g, 9, n)
« drawN>N_ (¢, 3, n)i.i.d. samples A"
. compute (local) solution of the non-convex problem

0., =argminc(0) subjectto \79 0) =0
DeR"
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Alircraft Example Revisited.

IEIIT-CNR Learnl ng DeS|gn
- § J N B 1 J§ § jpepepny

m |n this example we consider Hurwitz stability instead of
guadratic stability (the problem is non-convex)

m The objective Is to determine a controller K that
computes a probabilistic solution to the optimization
problem

min (-a) subjectto (A (A) + B(A)K + al) Hurwitz for al A e B
oK Ky e[-Ki,Ki]
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- Bounds on the Gain Matrix
& K K 5§ KN K Fmpmpm

= The matrix K is given by

R—5O'555
152 20 1
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- Sample Complexity
. § B N § B ¥ RNmpmE
m By means of tedious computations involving

reformulation of Hurwitz stability In terms of
polynomial Boolean functions we obtain
nN=9,vy=10,m=20
m Setting € = 0.01 and & = 10-° the sample complexity can
be easlly derived
N con(€, 0, N) = 366,130
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Probabilistic Controller K

IEIT-CNR NCoN
& I B B §I K F pmpmm

m Probabilistic controller for Hurwitz stability isgiven by

- |5.0000 1.4299 3.9328 -1.0000

o =3.7/285

m We notice that three gains are saturated, i.e. they are
equal to the prespecified bound on the gain matrix

_{0.8622 0.2714 -5.0000 2.7269}
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IEIIT-CNR
- § J N B 1 J§ § jpepepny

A Posteriori Analysis
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TR A Posteriori Analysis

. J N N § N § Empemy

m When a probabilistic controller K, has been design
with one of the previous methods, we need to verify its
performance and address the following questions:

1. IsKq, @robust controller (in the classical sense)?

2. What is the probabilistic performance of K, ,?

NATO LS Glasgow, Pamplona, Cleveland @RT 2008



IEIIT-CNR
- § J N B 1 J§ § jpepepny

A Posteriori Deterministic Analysis

NATO LS Glasgow, Pamplona, Cleveland @RT 2008



T oNR Worst-Case Performance
I I e I e e e T EOn

m Deterministic (or worst-case) analysis provides the
radius of deterministic performance p,,.

m Theradius p,,. IS the largest value of p >0 for which the
constraint

J6,A) <0
isrobustly satisfied for all A € B, ={A € pB}
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Alircraft Example Revisited.
. Worst-Case Analysis

. § B N § B ¥ RNmpmE
m Consider the previous aircraft example and study the
dependence of A(A) and B(A) on uncertain parameters

A=[Ay Ay ooy AT
restricted in the hyperrectangle B,
m \Wenoticethat A(A) and B(A) depend multiaffinely on A

A function f: R — R is multiaffine if the condition holds: If all
components A4, ..., A, except one are fixed, then f is affine
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TR Multiaffine Dependence

- § J N B 1 J§ § jpepepny

0 1 0 0

0 A A A

A(A) = ! Z 3

A, O A, 1

AN A, Ag+AAg Ag—Ag

S -
0 A
B(A) = 10
A11 O
_Alz +AgAy A13_
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o Quadratic Performance and Vertices - 1
. 1 B QB § | | jwpsgy

m For fixed p quadratic performance of state space
uncertain systems affected by multiaffine uncertainty is

equivalent to quadratic performance of the vertex set B,
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o Quadratic Performance and Vertices - 2
. 1 B QB § | | jwpsgy

m Recdl that
Dop(P, W, A) = A(A)P + PAT(A) + B(A)W' + WBT(A)+2a. P
m Then, given Py, and W,
D op(Peegy Weeqs A) < Oforal A e B,
If and only if
D op(Pegy Wy A)<Oforali=1,...,2

where A, represents the i-th vertex of B,
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R Line Search for Radius Computation

. § B N § B ¥ RNmpmE
m Computing the worst-case radius requires to solve a one-
dimensional problem in the variable p and check If

D op(Peqy Weegy A) < O for all vertices of B,
m This problem can be solved using bisection, but an

exponentid number of vertices of @B, should be
considered (8,192 vertices in this case)
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I Worst-Case Radius of Performance
& I B B §I K F pmpmm

m Performing this analysis for Py, and W, we compute
the worst-case radius of performance

Pwe = 0.12

m Hence robust quadratic performance is guaranteed for all
A e B, p=[00.12]
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IEIIT-CNR
- § J N B 1 J§ § jpepepny

A Posteriori Probabilistic Analysis
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I Controller Reliability

. § B N § B ¥ RNmpmE
m Recall that thereliability for the controller K(0) is

R(6) = Prob{A € B. J(O, A) <0}
B Take Ogy = { Peqy Weeg)
m Computing R(O,) for fixed 0y, requires to solve a
difficult integration problem

m \WWe determine an estimate of this probability setting a
simple Monte Carlo experiment
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IEIIT-CNR M Onte Carl O EXpeI’I ment
- § J N B 1 J§ § jpepepny

m We take N I1.1.d. random samples of A according to the
given probability measure

A A@ AN € B
m Weevaduate
J(Gseq, AM), J(Oseq, A@), ..., J(eseq, AMN)

NATO LS Glasgow, Pamplona, Cleveland @RT 2008



Estimated Probability of Reliability

1 5 N § §- § jwpspy

m Given controller 6, we construct the estimated
probability of reliability

IEIIT-CNR

Ve

Ry (0,) = %ZN: (30, A7)

where | (-) denotes the indicator function

. 1 ifJ@.,,A”)<0
IO, A"))= =’
SO {O otherwise
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- Sample Complexity

- § J N B 1 J§ § jpepepny

m We need to compute the size of the Monte Carlo
experiment (sample complexity)

m Tothisend, given g, 0 €(0,1), we need to determine the
sample complexity N such that the probability event

‘R(Oseq)— FAzN(eseq)\ <g

holds with probability at least 1- 6
m Sample complexity is provided by the Chernoff Bound

NATO LS Glasgow, Pamplona, Cleveland @RT 2008



IEIIT-CNR

Probability Degradation Function

- § J N B 1 J§ § jpepepny

The next step isto study how the estimated probability

Ru(0) degrades as a function of the radius p

"hisis called the probability degradation function

m We can compare this function with the worst-case
radius p,,. to provide additional information for the
control designer
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N~ Algorithm Probabilistic Analysis
. 1 B QB § | | jwpsgy
B [Nput: &, 0, By

= Output: Ry (0

. compute the sample size N (e, d)
e draw N> N (e, 0) i.i.d. samples AD, A@) .. AW)
e  return

N

Ry () = %Z (I (04, AV))

=1
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R Numerica Results- 1
I I e I e e e T EOn

m Taking £=0.005, 6=10°, by means of the Chernoff
bound we obtain N, =290,174

m Then, we estimate the probability  degradation

function for 100 equispaced values of p In the range
[0.12,0.5]

m For each grid point the estimated probability of
reliability (or performance) Is computed by means of
Algorithm Probabilistic Analysis
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R Numerica Results - 2
I I e I e e e T EOn

m For each grid point p, the ineguality
R(0q) — Ry (0,)| < 0.005

holds with probability at |east 0.999999

m The probability degradation function is now shown
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A Probability Degradation Function

- § J N B 1 J§ § jpepepny

o
©
I
|

Probability degradation function
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p
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IEIIT-CNR Comments
- § J N B 1 J§ § jpepepny

m We obsarve that If a 2% loss of probabilistic
performance is tolerated, then the performance margin
may be increased by 270% with respect to its
deterministic counterpart p,,.

m For p=0.34, the estimated probability of performance
150.98

= Notice that the estimated probability R,(0,) is equal
tooneuptop =0.26
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. Closed-Loop Eigenvaluesfor p =0.34
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IEIIT-CNR
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RACT
Randomized Algorithms Control Toolbox
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IEIIT-CNR RA CT

- § J N B 1 J§ § jpepepny

m RACT: Randomized Algorithms Control Toolbox for
Matlab

m RACT has been developed at IEIIT-CNR and at the
|nstitute for Control Sciences-RAS, based on a bilateral
International project

m Members of the project

Andrey Tremba (Main Developer and Maintainer)
Giuseppe Calafiore

Fabrizio Dabbene

Elena Gryazina

Boris Polyak (Co-Principal Investigator)

Pavel Shcherbakov

Roberto Tempo (Co-Principal Investigator)
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IEIIT-CNR RA CT

I I e I e e e T EOn
m Man features

m Define a variety of uncertain objects. scalar, vector and
matrix uncertainties, with different pdfs

m Easy and fast sampling of uncertain objects of almost
any type
m Sequential randomized algorithms for feasibility of

uncertain LMIs using stochastic gradient and localization
methods (ellipsoid or cutting plane)

m Non-sequential randomized algorithms for optimization
of convex problems

NATO LS Glasgow, Pamplona, Cleveland @RT 2008



IEIIT-CNR RA CT
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m Under construction

m Non-segquential randomized algorithms for feasibility and
optimization of non-convex problems
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IEIIT-CNR RA CT

. J N N § N § Empemy
m RACT: Randomized Algorithms Control Toolbox for

Matlab

http://ract.sourceforge.net

NATO LS Glasgow, Pamplona, Cleveland @RT 2008



IEIIT-CNR
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Systems and Control Applications
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Systems and Control Applications- 1

1 5 N § §- § jwpspy

m  Aerospace control: Applications of randomized strategies for the
design of control algorithms for lateral and longitudina control
of aircrafts (e.g. F-16)12

m Flexible and truss structures. Probabilistic robustness of systems
with bounded random uncertainty affecting sensors and
actuatorg34

m Mode (in)validation: Computationally efficient algorithm for
robust performance in the presence of structured uncertainty!®!

IEIIT-CNR

[1] C.I. Marrison and R.F. Stengel.(1998)

[2] B. Luand F. Wu (2006)

[3] G. Caéafiore, F. Dabbene and R. Tempo (2000)

[4] G.C. Calafiore and F. Dabbene (2008)

[5] M.Sznaier, C.M. Lagoa, and M.C. Mazzaro (2007)
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Systems and Control Applications - 2

I I B B ]

m  Adaptive control: Methodology for the design of cautious
adaptive controllers based on two-step procedure with controller
tuningt!

m  Switched systems. Randomized algorithms for synthesis of
multimodal systems with state-dependent switching!?!

m  Network control: Congestion control of high-speed
communication networks using different topologies?

m  Automotive: Randomization-based approaches for mode
validation of advanced driver assistance systems

IEIIT-CNR

[1] M.C. Campi and M. Prandini (2003)

[2] H. Ishii, T. Basar and R. Tempo (2005)

[3] T. Alpcan, T. Basar and R. Tempo (2005)

[4] O.J. Gietelink, B. De Schutter, and M. Verhaegen (2005)
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Systems and Control Applications - 3
I D N D N O N Eon

m  Mode predictive control (MPC): Sequential methods (ellipsoid-
based) to design robustly stable finite horizon MPC schemes !

m Fault detection and isolation: Risk-adjusted randomization
approach for robust ssmultaneous fault detection and isolation of
MIMO systems?

m Circuits and embedded systems. Performance subject to

uncertain components introduced during the manufacturing
process 34

IEIIT-CNR

[1] S. Kanev and M. Verhaegen (2006)

[2] W. Ma, M.Sznaier and C.M. Lagoa (2007)
[3] C. Lagoa, F. Dabbene and R. Tempo (2008)
[4] C. Alippi (2002)
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Systems and Control Applications- 4
I D N D N O N Eon

m  Unmanned aeria vehicles (UAV). Robust and randomized
control design of amini-UAV!Y

IEIIT-CNR

[1] L. Lorefice, B. Pralio and R. Tempo (2007)
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IEIIT-CNR
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Control Design of a Mini-UAV
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Italian National Project

R for Fire Prevention
. J N N § N § Empemy
m This activity Is supported by the Italian Ministry for

Research within the National Project

Sudy and devel opment of a real-time land control and
monitoring system for fire prevention

m Hve research groups are involved together with a
government agency for fire surveillance and patrol
located in Sicily

m The aera platform Is based on the MicroHawk

configuration, developed at the Aerospace Engineering
Department, Politecnico di Torino, Italy
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N MH1000 Platform - 1

I I e I e e e T EOn
m Platform features

- wingspan 3.28 ft (1 m)
- total weight 3.3 1b (1.5 kQ)

Q|
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N MH1000 Platform - 2

. § B N § B ¥ RNmpmE
= Main on-board equipment

- various sensors and two cameras (color and infrared)
DC motor
Remote piloting and autonomous flight
Fight endurance of about 40 min
Fight envelope
- min/max velocity: 33 ft/s (10 m/s) — 66 ft/s (17 m/s)
- average velocity: 43 ft/s (14 m/s)
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I Flight Envelope (Limits)

- § _J N § J § § jpwpepny

ot loading effect  total weidh Aerodynamic constraint (red) = minimum flight
Wing loading effect - total weight speed(stalleffect)

o Propulsive constraint (blu) —-> maximum flight
Propeller sizing effect speed

velocity: 33 ft/s (10 m/s) — 66 ft/s (17 m/s)_

locita operativa [m/s]
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Basic on-board Systems

- § J N B 1 J§ § jpepepny

DC motor: Hacker B20-15L (4:1) receiver: Schulze Alpha840W

= weight: 58 g = weight: 13.5¢g

= dimensions: @ 20 x 40 mm » dimensions; 52 X 21 X 13 mm
= Kv: 3700 rpm/volt = 8 channels

controller: Hacker Master Series 18-B-Flight servo: Graupner C1081 (2x)

= weight: 21 g = weight: 13 g

» dimensions: 33 X 23 X 7mm » dimensions; 23 X 9 X 21 mm
= current drain: 18 A = torque: 12 Ncm

battery: Kokam 2000HD (3x)

= weight: 160 g

» dimensions. 79 X 42 X 25 mm
= capacity: 2000 mAh

Cell Voltage(V)
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Prototype Manufacturing - 1
IEIIT-CNR_-------IIIZI[I

raw material

polistyrene
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Prototype Manufacturing - 2
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working instruments

fuselage reference

dsideoutline
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Prototype Manufacturing - 3
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easy construction
rapid manufacturing

bad model reproducibility
Inaccurate geometry
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IENIT-CNR State SpaCe M OdEI

. J N N § N § Empemy
m State space formulation obtained by linearization of the

full (12 coupled nonlinear ODE) model
X(t) = A(A) x(t) + B(A) u(t)

u(t) = - K x(t)
where x = [V, a, g, 47 (V flight speed, o angle of
attack, g and @ pitch rate and angle), A uncertainty
m Consider longitudinal plane dynamics stabilization
m Control uisthe symmetrical e evon deflection
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TR Uncertainty Description - 1

. J N N § N § Empemy
m \We consider structured parameter uncertainties affecting

plant and flight conditions, and aerodynamic database
m Uncertainty vector A = [A4,..., Ag]l Where A, € [A, A¥]

m Key point: There is no explicit relation between state
gpace matrices A and B and uncertainty A

m Thisisdueto the fact that state space system is obtained
through linearization and off-line flight simulator

m The only techniques which could be used in this case are
simul ation-based which lead to randomized algorithms
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TR Uncertainty Description - 2

I I e I e e e T EOn
m We consider random uncertainty A = [A,,..., Ayl

m The pdf Is ether uniform (for plant and flight

conditions) or truncated Gaussian (for aerodynamic
database uncertainties)

m Flight conditions uncertainties need to take into account
large variations on physical parameters

m Uncertainties for aerodynamic data are related to
experimental measurement or round-off errors
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.. Plant and Flight Condition Uncertainties
& K K 5§ KN K Fmpmpm

parameter pdf | A % A A #
flight speed [ft/g] U |4265 |15 [36.25 49.05 |1
atitude [ft] U 116404 |£100 |O 328.08 |2
mass [1b] U 331 +10 |298 3.64 3
wingspan [ft] U |3.28 +5 3.12 3.44 4
mean aero chord [ft] U | 175 +5 1.67 1.85 5
wing surface [ft?] U |5.61 +10 |5.06 6.18 6
moment of inertia[lbft] | U |1.34 +10 |1.21 1.48 7
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A Aerodynamic Database Uncertainties
& K K 5§ KN K Fmpmpm

parameter | pdf A o #

Cy [-] G -0.01215 0.00040 38

C, [- G -0.30651 0.00500 9

C[-] G -0.02401 0.00040 10
Cxq [rad] G -0.20435 0.00650 11
Czq [rad-1] G -1.49462 0.05000 12
Crg rad] G -0.76882 0.01000 13
Cy [rad?] G -0.17072 0.00540 14
C, [rad] G -1.41136 0.02200 15
C,, [rad?] G -0.94853 0.01500 16
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- Standard Deviation and Vel ocity

- § J N B 1 J§ § jpepepny

Standard deviation is experimentally computed from the velocity
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Nk Critical Parameters and Matrices
-} _J __§ § | J | Jupuqy
m We select flight speed (A,) and take off mass (A;) as

critical parameters

m Flight speed Is taken as critical parameter to optimize
galn scheduling issues

m Take off mass Is a key parameter in mission profile
definition

m \We define critical matrices

At AZ A° A Bl B2 BS B

m They are constructed setting A,, A; to their extreme

values; the remaining A, are set to their nominal values
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.. Phasel: Random Gain Synthesis (RGS)

. § B N § B ¥ RNmpmE
m Critical parameters are flight speed and take off mass

m Specification property
S, = {K: A, — B.K satisfies the specs bel ow}

op €[4.0,6.0l rad/s {4 €[0.5,0.9] wpy €[1.0,1.5] rad/s
¢pn €[0.1,0.3] Aogp <+ 45% Awpy < £ 20%

where o and ¢ are undamped natural freguency and
damping ratio of the characteristic modes, o and o,
denote short period and phugoid mode
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Specs in the Complex Plane
I D D D B O Ao

IEIIT-CNR
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I Randomized Algorithm 1 (RGS)

I 1 § § ¥§ 0 [ [=sf:hf
m Uniform pdf for controller

gansKingiven intervals

m Accuracy and confidence
e=4-10>and 6 =3 - 10

m Number of random
samples is computed with
“Log-over-Log” Bound
obtaining N = 200,000

m Weobtained s=5 gainsK!
satisfying specification
property 53
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IEIIT-CNR Random Gal n %t

- § J N B 1 J§ § jpepepny

gainset | K, K, Kq K,

K1 0.00044023 |0.09465000 |0.01577400 |-0.00473510
K2 0.00021450 |0.09581200 |0.01555500 |-0.00323510
K3 0.00054999 |0.09430800 |0.01548200 |-0.00486340
K4 0.00010855 |0.09183200 |0.01530000 |-0.00404380
K> 0.00039238 |0.09482700 |0.01609300 |-0.00417340
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Phase 2: Random Stability Robustness
IEIIT-CNR Anal ySI S (RSRA)

I D D D oot
m TakeK, 4= K'obtained in Phase 1

m Randomize A according to the given pdf and take N
random samples Al

m Specification property

S={A: A(A) —B(A) K, g Satisfiesthe specs of s}

m Computation of the empirical probability of stability
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I Randomized Algorithm 2 (RSRA)

P B BN B N N B B 00
m TakeK,, from Phasel

m Accuracy and confidence
e =0=0.0145

m Number of random
samples is computed with
Chernoff Bound obtaining
N =5,000

m Empirical probability is
computed
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Empirical Probability of Stability
IEIIT-CNR for Phase 2

- § J N B 1 J§ § jpepepny

gain set empirical probability
K1 88.56%
K? 90.60%
K3 89.31%
K4 93.86%
K> 85.14%
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I Probability Degradation Function

| 1| _§ J | | | J«lsli
m Flight condition uncertainties are multiplied by the

radius p > 0 keeping the nominal value constant
AieplA, Al fori=1,2,...,7
m No uncertainty affects the aerodynamic database, i.e.
A= A fori—8,9, ..., 16

m For fixed pe[0,1.5] we compute the empirical
probability for different gain sets K'

m The plot empirical probability vs p Is the probability
degradation function

NATO LS Glasgow, Pamplona, Cleveland @RT 2008



Probability Degradation Function

IEIIT-CNR for Phase 2
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- Root Locus Plot for Phase 2
& I B B §I K F pmpmm

Root locus for K2 (left) and K# (right)
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Phase 3: Random Performance
- Robustness Analysis (RPRA)

- | | § 1 | | [ JI=fslil
m Thisphaseissimilar to Phase 2, but military specs are

considered (bandwidth criterion)
m Specification property
S;={A: A(A) —B(A) K, 4 satisfies the specs below}

gy €[2.5,5.0] rad/s 7, €[0.0,0.5] s

where wg,, and 7, are bandwidth and phase delay of the
frequency response

m Computation of the empirical probability that S; Is
satisfied
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N Bandwidth Criterion
& K K 5§ KN K Fmpmpm
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I Randomized Algorithm 3 (RPRA)

- § J N B 1 J§ § jpepepny

m TakeK,, from Phase 1

m Numer of random samples
Is computed with the
Chernoff Bound obtaining
N =5,000

m Empirical probability is
computed
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Empirical Probability of Performance

I for Phase 3
I I e I e e e T EOn

gain set empirical probability
K1 93.58%
K? 95.16%
K3 90.80%
K4 84.78%
K> 96.06%
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Probability Degradation Function

IEIIT-CNR for Phaseg
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I Bandwidth Criterion for Phase 3
& I B B §I K F pmpmm

Bandwidth criterion for K1 (left) and K3 (right)
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EITONR Gan Sealection
I I e I e e e T EOn

m Multi-objective criterion as a compromise between
different specifications

Finally we selected gain K* as the best compromise
between all the specs and criteria
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o Conclusions: Flight Testsin Sicily - 1
. § B N § B ¥ RNmpmE
m Evaluation of the payload carrying capabilities and

autonomous flight performance

m Mission test involving altitude, velocity and heading
changing was performed in Sicily

m Checking effectiveness of the control laws for
longitudinal and lateral-directional dynamics

m Flight control design based on RASs for stabilization and
guidance
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o Conclusions: Flight Testsin Sicily - 2

. J N N § N § Empemy
m Satisfactory response of MH1000

m Possible improvements by iterative design procedure

m Stability of the platform is crucial for the video quality
and In the effectiveness of the surveillance and
monitoring tasks
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R Color Camera: Right Turn
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Color Camera: Landing Phase
I D D D B O Ao
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ONR Infrared Camera- 1
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Car
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ONR Infrared Camera- 1
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Car

road
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ONR Infrared Camera- 1
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ONR Infrared Camera- 1
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ONR Infrared Camera - 2
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ONR |nfrared Camera- 3
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