
A Sensor Network Architecture: Information, Control,
and Behavior Definitions for Large-Scale or

Systems-of-Systems Testing

Howard E. Michel, Ph.D. and Hemant Joshi

Electrical & Computer Engineering Department,

University of Massachusetts Dartmouth, North Dartmouth, Massachusetts

This article envisions a plug-and-play architecture for test and evaluation that will allow

engineers to rapidly and robustly define and configure test environments and scenarios. The

architecture described here is based on a layered functional decomposition of the three aspects of

test: information flow, control flow, and behavior. These individual layered decompositions are

presented first, then as an integrated technical reference model. Having an integrated technical

reference model is crucial to developing affordable and robust systems that are self-aware, self-

healing, and adaptable within a resource-constrained environment. Having these capabilities

will become increasingly important as test scenarios become increasingly complex, such as

distributed system-of-systems testing or as information volume becomes increasingly more

demanding, yet unpredictable, as in the case of continuous test during operational missions. This

work is presented as a natural extension of the military’s Network Centric Warfare model.

Key words: Adaptable systems; autonomous sensor networks; control distribution;

information processing; integrated technical reference models; intelligence; plug-and-play

sensors; sensor network architecture; information processing.

C
onsider a test scenario with 500,000
individual sensors, where commanders
on the ground, not test directors,
control test execution and where the
test and evaluation (T&E) tasking is

to report on the effectiveness of each weapon system,
including the soldier in the loop. Further consider that
you have only months to plan this test, and weeks to
report the results. Such might be the situation when
testing the Army’s future combat system in a force-on-
force exercise. And simultaneously, with this tasking,
you have the requirement to identify and report on any
system, subsystem, or component that has produced an
anomalous response, either as a result of previously
unobserved combinations of environmental conditions
or random situations that had not been observed in
previous testing.

Or consider the task of testing swarms of autono-
mous air vehicles. These vehicles will exhibit adaptive,
collaborative behaviors that respond to changes in the
environment and their individual and cooperative
capabilities. How do you define a test scenario for a
continuously adapting and changing system?

Clearly, the state-of-the-art in T&E for military
systems today could not handle this tasking. What is
required is a catalog of nonintrusive instrumentation—
sensors, processors, storage devices, and software—to
continuously monitor key parameters, accompanied by
user-friendly interfaces that can be used to rapidly
configure these components into a system for each test.
Furthermore, if this system is to be cost-effective, it
should be designed around modular components that
are built with open interface standards for hardware,
software, and data and metadata formats. If the system
is to be robust, it needs to be self-aware, self-healing,
and adaptable within a resource-constrained environ-
ment.

This article proposes a methodology for describing
the functionality of such a system in a manner enabling
industry and the military to develop a plug-and-play
catalog of sensors, processors, and software modules,
allowing test engineers to easily and cheaply configure
test systems to meet the requirements of future T&E.

The discussion begins with describing a model
represented as a three-sided layered pyramid. The first
face of this abstraction describes data and information

ITEA Journal 2008; 29: 402–410

Copyright ’ 2008 by the International Test and Evaluation Association

402 ITEA Journal

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
2008 2. REPORT TYPE

3. DATES COVERED
 00-00-2008 to 00-00-2008

4. TITLE AND SUBTITLE
A Sensor Network Architecture: Information, Control, and Behavior
Definitions for Large-Scale or Systems-of-Systems Testing

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of Massachusetts Dartmouth,Electrical & Computer
Engineering Department,North Dartmouth,MA, 02747-230

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

9

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

flow; the second face describes the control flow; the
third face represents behavior abstractions. These
models are then combined into an integrated technical
reference model (I-TRM) and a simple architecture
based on the I-TRM is proposed. These developments
are illustrated with a simple T&E example.

Models and architectures
A model is used for representing a set of components

of a process, system, or subject area, or for developing,
understanding, analyzing, improving, and/or replacing
a process (ICH 2008). It is also used to define the
meaning of common concepts, illustrate the relation-
ships between those concepts, and assist in under-
standing how current and future systems fit into that
model (Visnevski and Bezdecny 2008). A technical
reference model (TRM) is used to formulate defini-
tions and provide a formal structure for describing
implicit and explicit concepts and operations.

One popular TRM, the International Organization
for Standardization’s (ISO) Open System Intercon-
nection (OSI) TRM focused on internetwork com-
munication by putting forward a seven-layered ab-
straction of the functions required in computer
communications (Day and Zimmermann 1983, ISO
1983, Tannenbaum 1996). This TRM was very
successful in establishing a framework for describing
and developing operating concepts, but it was less
successful in establishing implementable standards and
products. The Internet today is based on the trans-
mission control protocol/internet protocol (TCP/IP)
architecture and associated standards (Tannenbaum
1996).

A TRM is different from an architecture. An
architecture is used to describe the arrangement of
system, function, and design components and inter-
faces that comprise a solution satisfying a set of
requirements (IEEE 1999). A well designed TRM can
be used in developing such an architecture.

An example of this model-to-architecture process
can be found in the Embedded Instruments System
Architecture program, now the Non-Intrusive Instru-
mentation (NII) program run by the Test and
Resources Management Center’s Test and Evalua-
tion/Science and Technology Program NII office
through the Naval Underwater Warfare Center.

Under contract to this program, General Electric
(GE) developed the Open Modular Embedded
Architecture (OMEA). The OMEA architecture is a
working incarnation of the Information Centric TRM
proposed by Michel and Fortier (2005) and Fortier and
Michel (2005). The OMEA test suite was fully
implemented on Agilent, Yokogawa, and Video

instruments. OMEA also implemented synthetic
instrumentation and a user interface, and was demon-
strated in 2007 (Visnevski 2008).

Proposed integrated technical reference
model, the I-TRM

The proposed I-TRM is composed of three faces of
a pyramid that describe data, information, and
knowledge flow; control flow; and behavior, respec-
tively. The faces are composed of six layers that span
their respective domain, but each has a common
physical layer at the bottom and a common application
at the peak of the pyramid. The data–information–
knowledge face and the control face will be described
in terms of transformations or functionality, but it is
envisioned that the formal specification of the
interfaces between these layers would be data and
metadata definitions. The specification of the behavior
layers is and would be in the form of algorithms.
Additionally, the layers are not meant to define distinct
hardware layers or software layers because engineering
efficiency may dictate integrated products that span
multiple layers.

The information-centric face (IC-face)
The IC-face provides a description of the functions

associated with data collection, information aggrega-
tion, and knowledge generation. It does not specify
details related to the control mechanism that manages
how and where the data are collected. It is based on the
Information-Centric Technical Reference Model (IC-
TRM) proposed by Michel and Fortier (2005) and
Fortier and Michel (2005) and refined by Joshi and
Michel (2007, 2008).

This six-layered view of the IC-face is shown in
Figure 1 and described further on. Lower layers deal
with an enormous amount of data that have very low
information value. As we move up the layers, the data
volume decreases but the information value of that data

Figure 1. The information-centric face

A Sensor Network Architecture

29(4) N December 2008 403

increases. All data are transformed through these six
layers, although some of these layers may be minimal
in certain situations. The individual layers, described
from the lowest layer up to the top layer, are as follows.

The physical layer. The physical layer gathers and
manipulates raw data in unformatted, unverified, and
transitory format and deals with the electric and
mechanical characteristics of the system. It is composed
of electromechanical sensors. An example of data at the
physical layer might be the voltage output from a
thermocouple. These data are clearly transitory and
volatile. Metadata associated with the physical layer
would be the sensor type, serial number, location, and
calibration status. These metadata would generally
exist in a stable form as part of the physical sensor.

The data layer. The data layer performs extraction and
transformation of data into digital form and checks the
authenticity of the measurements. In our given
example, the voltage from the physical layer is
transformed into a byte or a word using a prescribed
(although possibly variable) process involving amplifi-
ers, filters, and analog-to-digital converters. Variable
parameters could include sampling rate, digitization
accuracy, filter cutoff frequency, amplifier gain, etc.
Metadata generated at this level could include these
parameters, plus a time tag, a verification bit to indicate
that the sensor is calibrated and operating properly, etc.
Metadata from the physical layer and data layer would
be bundled with the data to form an informative data
packet.

The information layer. The information layer corre-
lates data with scaling, location, type of measurement,
etc., to produce information about the system or
environment. Continuing with our simple scenario, the
data and metadata from the data layer would be
combined to produce information that reports, for
example, that the temperature at the 12-o’clock
position in the combustion chamber of the number
one engine was 1,000uF at T + 1.0 seconds from test
start, and that this measurement should be believed
with a high degree of confidence. Notice, that the
sensor serial number, location, calibration status, etc.,
are still available in the data, but hidden. At this level
information is made available to the system and users
of the system. Metadata created at this level would
involve defining the state of these data-converting
processes, including for example, the criteria used to
define ‘‘a high degree of confidence.’’

The aggregation layer. The aggregation layer per-
forms knowledge aggregation by goal-directed infor-

mation merging from various sources, as per the
requirements of the system or subsystem under test.
Continuing now with our jet-engine example, there
may be temperature sensors located at the 3-, 6-, and
9-o’clock positions in the engine combustion chamber.
There probably are also temperature sensors located at
the inlet and exhaust of the engine, as well as pressure
sensors, fuel flow sensors, etc. Virtual instruments can
be created at this level. For example, readings from
multiple temperature sensors, with synchronized time
tags, could be combined to give an instantaneous view
of the temperature gradients within the combustion
chamber. Additionally, a moving window of a time-
sequenced series of readings could be combined to
provide the dynamic response to changes in the system.
Temperatures, pressures, and fuel flows could be
combined to create a measure of engine efficiency.
The aggregation layer produces information at a higher
level of value and lower rate than the information layer
below it. Metadata created at this layer would include
information about the processes used to aggregate the
information from the lower layers.

The knowledge layer. The knowledge layer transforms
aggregated information into knowledge by processing
it against intrinsic and extrinsic information, and
knowledge available. For example, external informa-
tion such as engine-temperature redline limits could be
brought into the model at this level. If the engine
temperature approached or exceeded this value,
warnings could be issued, or commands could be
issued to lower layers in the T&E system to increase
sampling rate or accuracy of the engine temperature
sensors so a more accurate post-test analysis could be
conducted.

The application layer. The application layer concen-
trates on user–system interaction. It provides a means
of accessing and using information for the user in a
consistent format, from the system.

The control face (C-face)
The C-face of the I-TRM defines a layered

abstraction for describing tasks in a hierarchy from
high-level goal definition, through task validation,
translation, distribution, and execution. The C-face is
derived from the Control Technical Reference Model
proposed by Dipple and Michel (2006) and refined by
Joshi and Michel (2007, 2008). The C-face concen-
trates on hierarchical control and task distribution, and
primarily builds on the initial work done in the field of
control architecture by Albus at the National Institute
of Standards and Technology (Albus et al. 1981, 1989;
Albus and Ripley 1994; Barbera et al. 1982). Other

Michel & Joshi

404 ITEA Journal

examples of control-centric definitions are the Mission
Oriented Operating Suite (MOOS) (MOOS 2008)
and the Joint Architecture for Unmanned Systems
(JAUS) (JAUS 2008).

The C-face thus describes the transformation of
high-level user-friendly goals into executable tasks. In
following our engine performance example, it would
relieve the test engineer from having to keep track of
individual sensor serial numbers, exact locations,
calibration history, etc., and the proper configurations
and operating parameters to create synthetic instru-
ments, etc. This information would be created
automatically using the flow up of metadata and
applying rules specified in defining the T&E case. It
would also allow the system to retask individual sensors
or groups of sensors in response to predetermined
conditions, and thus possibly provide vital information
in anomalous situations at the cost of not having
multiple copies of slow-changing redundant data. The
six layers of the C-face are shown in Figure 2 and
described in the following paragraphs, from the
application layer down to the physical layer.

The application layer. The application layer focuses on
user–system interaction. It provides an interface for the
user to interact with the system to define mission goals.
Our simple test scenario illustrating data transforma-
tion from an engine temperature sensor (described in
the IC-face narrative) may be part of a larger T&E
goal, producing a family of engine performance curves.

The validation layer. The validation layer provides a
mechanism for authenticating the semantic correctness
of the goal and for determining whether the goal is
accepted or not. These processes are based on intrinsic
and extrinsic information and knowledge. This layer
also verifies the probability of accomplishing the goal

with the resources available. In our continuing
example, metadata from the lower layers would be
evaluated here to assess the readiness of the T&E
system to produce the family of engine performance
curves requested. Are all of the required sensors in
place, calibrated, and operating correctly? Is the
software in place to create the required synthetic
instruments? Are there other, higher priority tasks
causing conflicting demands on T&E resources?

The translation layer. The translation layer decom-
poses valid goals into functional tasks based on
knowledge about the lower layers. This layer provides
a mechanism to register low-level system components
and their physical capabilities. This layer would, in our
example, create the need for synthetic instruments to
produce synchronized temperature and pressure read-
ings in the combustion chamber of engine one, and
synchronize them with corresponding readings for fuel
flow and aircraft altitude. It would pass these test
requirements down to the distribution layer.

The distribution layer. The distribution layer, based on
available spatial and temporal information (passed up
from lower layers as metadata), organizes system tasks
by decomposing the task groups into subtasks and
assigning priorities to them in accordance with pre-
established or dynamic goals. Continuing our example,
one of the tasks received by the distribution layer might
be to create an instrument to record a series of
temperature readings correlated with pressure readings
from engine one. Software at this level might
understand, for example, that there are four individual
temperature sensors in the combustion chamber, and
that if they all are reading within 50uF of each other,
then any one of them can be used to report the subject
temperature. Furthermore, software at this level would
understand that these temperature readings need to be
closely synchronized with pressure and fuel flow
readings, but that because of physical characteristics,
synchronization at the fraction of a second level is
sufficient, rather than at a microsecond level of
synchronization. These commands are then passed
down to the execution layer.

The execution layer. The execution layer receives
directives from the distribution layer and transforms
them into control signals for the physical layer. For
example, the execution layer, based on its detailed
understanding of the sensors involved, would issue a
command to temperature sensor number XYZ to
stream temperature data (assuming it has a stream
mode) at 100 samples/s, using gain N starting at
time T.

Figure 2. The control face

A Sensor Network Architecture

29(4) N December 2008 405

The physical layer. The physical layer constitutes
sensors and mechanical units. It executes actions as
directed by higher layers.

The behavioral face (B-face)
The B-face describes the intelligence (deliberative

and reactive behaviors) of the system and acts as a
bridge connecting the IC-face and C-face. This bridge
is implemented using control loops based on a classical
closed loop control system methodology (Nagrath and
Gopal 1981) as adapted in Joshi and Michel (2007,
2008). As shown in Figure 3, commands and goals
flow down, data and metadata (or information and
meta-information) flow up, and the behavior at each
layer interprets the execution of the commands or
processes the data based on the system status as
reported in the metadata or meta-information.

The B-face is a hierarchal arrangement of behaviors
into layers based on the scope of control and
responsibility of each function. This hierarchical
distribution is based on Arkin’s work, according to
which behaviors can be divided into three major
categories: innate behaviors, reactive behaviors, and
conscious behaviors (Arkin 1998). The six layers of the
B-face are illustrated in Figure 4 and described in the
following paragraphs, from the physical layer up to the
application layer.

The physical layer. The physical layer constitutes
sensors and mechanical units. It is the same hardware
as described in the IC-face and C-face.

The basic innate behavior layer. The basic innate
behavior layer implements primitive reflexive behavior
and stimulus–response behaviors of the system. It
combines the execution layer procedure–execution to
produce the relevant data. In terms of smart sensors
implied in the on-going example, one basic innate

behavior would be to produce a data-word associated
with a physical temperature. Another basic innate
behavior would be to report metadata when queried.

The complex innate behavior layer. The complex
innate behavior layer is the highest reflexive layer. It
implements procedures that connect the information
extracted from the data and metadata passed up with
task execution distribution passed down. Complex
innate behaviors are composed of one or more basic
innate behaviors structured in a predefined manner to
produce a higher-level user-friendly interface. An
example of a complex innate behavior might be to
‘‘continuously sample and stream data at a particular
rate, gain setting, and filter characteristics.’’ Another
complex innate behavior might be a self-calibration
mode.

The reactive behavior layer. The reactive behavior
layer provides a mechanism for dealing with informa-
tion collaboration from various modules into one
structured data unit (local model) (Norvales et al.
2006). It also provides procedures for translating goals
into submodules in compliance with the state of the
environment. This behavior requires a sophisticated
understanding of the state of the various system sensors
and rules to interpret the goal-oriented system tasking.
This understanding and the rules would be test-
specific, but easily configured from more general rule
prototypes. In continuing with our aircraft engine
example, creating virtual instruments that span either
temporal or multisensor data streams would occur at
this level. Software at this level would understand that
it has various independent sources of temperature and
pressure readings from the correct locations that can be
correlated to create the appropriate synthetic instru-
ment. The software would also know how to react and
retask these sensors if priorities or system status
changes, as might be the case if a sensor failed.

Figure 3. Control loops in the I-TRM
Figure 4. The behavior face

Michel & Joshi

406 ITEA Journal

The conscious behavior layer. The conscious behavior
layer provides schemas for checking goal validity and
feasibility in the given situation by checking goals
against intrinsic and extrinsic knowledge (global model)
(Novales et al. 2006). It determines which goals should
be accepted. It manages deliberative actions of the
systems. In continuing our example, this layer would
essentially perform a complete self-test when the system
is powered up, and for example, report that all required
hardware is operational and configured correctly, or
possibly that the suggested synthetic instrument asked
for could not be created because of limited bandwidth.

The application layer. The application layer is
responsible for user interactions. It decides what
information should be furnished to whom and when.
It either consumes knowledge passed up to it (in the
case of an intelligent program) or passes the knowledge
to the user. It receives commands

The integrated technical reference model
The I-TRM illustrated in Figure 5 is a refinement of

architectural principals that have been suggested by
Joshi and Michel (2007, 2008). It is an integrated view
of the IC-face, C-face, and B-face.

The I-TRM has six layers: (a) physical; (b) data,
execution, and basic innate behavior; (c) information,

distribution, and complex innate behavior; (d) aggrega-
tion, translation, and reactive behavior; (e) knowledge,
validation, and conscious behavior; and (f) application.

It is envisioned that each layer is a combination of
hardware and/or software that can be specified through
its interfaces, specifically its input and output data
structures (data/metadata, information/meta-informa-
tion, knowledge, status, control, and goal structures) and
its ability to transform those data structures (behaviors).

Commercial devices that span one or more layers
could be built with companies differentiating their
products by the implementations behind the open
specification of the interfaces. This is already happen-
ing with the adoption of the IEEE-1451 family of
standards for smart sensors. These smart sensors can
implement the lower two or three layers of the I-TRM.
An equivalent effort to standardize the upper layers of
the pyramid would allow companies to develop and
market software products to simplify or automate test
setup, operation, and data interfaces.

Sensor network architecture
Consider a sensor network architecture built using

the principals of the I-TRM. Sensor networks are used
for taking environmental measurements and are
distributed systems. The proposed architecture is
implemented as a three-tiered hierarchy. The bottom

Figure 5. Integrated technical reference model

A Sensor Network Architecture

29(4) N December 2008 407

tier consists of sensor nodes. The second tier is
composed of cluster heads, and the third tier is
composed of a single root node.

Sensor nodes are equipped with various sensors and
are capable of performing basic networking, comput-
ing, and sensing tasks. A group of sensor nodes are
connected through a local one-hop network to a cluster
head, the next tier level.

Cluster heads are functionally more powerful units
with more computational power, advanced data traffic
and networking capabilities, and rich power resources for
maintaining its one-hop communication with all subor-
dinating sensor nodes and the root node. Cluster heads
process data traffic and handle complex data processing to
enrich the informational value associated with the data.

The root node is at the top of this hierarchy. The
manner in which sensor nodes, cluster heads, and root
node are connected is a tree arrangement. This
arrangement provides an easy mechanism for efficient
distribution of computational and power resources.
This architectural arrangement is inspired by the
architecture of a sensor network described in Stojme-
novic (2005) and the IEEE 1451 standards. It was
proposed in Joshi and Michel (2008) and by Joshi
(2008) in his thesis. The reader is referred to these
references for a description of the various class
diagrams associated with this software architecture.

Sensor node description
A sensor node is the most repetitive physically

instantiated unit. As discussed earlier, a sensor is the
simplest of the functional units. Its functional blocks
span the I-TRM layers 1 to 3.

Layer 1 is a physical layer that consists of sensors and
mechanical units. This layer executes actions as
directed by higher layers and possesses no intelligence
of its own. It gathers raw data in unformatted,
unverified, and transitory format. It deals with the
electric, mechanical, and procedural characteristics of
the system including the working of transducers. Layer
1 implements transducer working commands, trans-
ducer data, and basic sensor behaviors (sensor sensing,
transmitting, sleeping, and hibernating). The trans-
ducer working commands are the set of commands for
controlling the Layer 0 transducers, whereas transducer
data are the output of the transducer. The basic sensor
behaviors are the functionality or behaviors of the
sensor that do not require any external information.

Layer 2 contains objects of more informational value
and executes more complex commands and behaviors.
Sensor data are created by calibrating transducer data.
This processing is performed when the sensor is in the
sensor-sensing state. Because this design is inspired by
IEEE 1451 standards, the implementation of the

transducer electronic data sheet (TEDS) is required. It
allows for self-calibration of the transducer in the
sensor. TEDS would be implemented in the system by
introducing calibration data, a data structure. Self-
calibration would be initiated with a transducer
calibration command.

Cluster head description
A cluster head is a link between sensor nodes and

the root node, and spans Layers 3 and 4. It is
responsible for data aggregation and data consolida-
tion. There are five different types of parallel running
processes in this functional unit. Two types of
processes are used to maintain correspondence between
a sensor node and the cluster head, that is, one for
issuing commands to a sensor node and a second for
gathering information from a sensor node. The third
process is responsible for performing data aggregation
by combining data from various sensor nodes into a
single data unit, cluster information. A fourth process
controls the communication between the cluster head
and root node. It is envisioned that these processes
would be configurable through a user interface, the
fifth process. A specific example of this would be a
graphical or menu-driven user interface that allowed
the test conductor to associate specific sensors to
control aggregation to create synthetic instruments.
Another example would be the ability of this
aggregation process to respond to changes in the state
of meta-information and adapt the lower-level system
tasking to optimize system performance.

Within this architecture, there is a data object, the
Sensor Instance Information object, related to each
sensor. This object contains data from its associated
sensor and the metadata related to that sensor. This
metadata makes hot swapping possible. Processes,
which maintain the correspondence between a sensor
unit and a cluster head, are dedicated processes for each
node, so each process has its own copy of every required
component and runs independently of the other.

Root node description
The root node is at the top of the sensor network

architecture hierarchy and spans I-TRM layers 5 and 6.
It is a functional unit that performs knowledge
extraction from aggregated information from various
cluster heads, accepts and validates the test scenario,
and runs the primary user interface software. It is
situated at the base station.

The five main processes are:
1. maintaining correspondence between the root

node and cluster heads
2. extracting knowledge from the aggregated infor-

mation from the various cluster heads

Michel & Joshi

408 ITEA Journal

3. updating the global knowledge base
4. validating tasking
5. providing a user interface
The processes for maintaining communication

between the root nodes and various cluster head can
be subcategorized into two groups, one for issuing
commands to cluster heads and the second for
gathering information from cluster heads. To have
the validation feature, proxies for the root controller
are generated for each application level process.

Conclusions
This article presents a framework for discussing,

designing, and developing sensor network architectures
based on modeling system components from three
orthogonal abstractions: control distribution, informa-
tion processing, and intelligence (behavior). This
methodology can produce robust systems that are
self-aware, self-healing and adaptable within a re-
source-constrained environment. It provides a poten-
tial mechanism for realizing interoperability between
various subsystems—both hardware and software—
across various manufacturers. %

HOWARD E. MICHEL retired from the U. S. Air Force in

1994, having served as a pilot, satellite launch director,

engineer, and engineering manager. Dr. Michel earned his
doctorate from Wright State University in 1999 and is

currently Associate Professor of Electrical and Computer

Engineering at the University of Massachusetts Dart-

mouth. He holds two patents and has published over 40
articles on intelligent systems, artificial neural networks,

and optical computing. His research interests include

autonomous vehicles, artificial neural networks, and

distributed sensor networks. Dr. Michel is a senior member
of the IEEE and IEEE Region 1 Director (2008–2009).

E-mail: hmichel@umassd.edu

HEMANT JOSHI received his master of science in computer

engineering from the University of Massachusetts Dart-

mouth. His master’s thesis was entitled ‘‘Autonomous
Mobile Sensor Networks Architecture for Hazard Detec-

tion and Surveillance.’’ He received a bachelor’s degree in

engineering (Electronics & Communication Engineering)

from Visvesvaraya Technological University, Belgaum,
India. Mr. Joshi worked as a lecturer in the ECE

Department, Maharishi Arvind Institute of Engineering,

Jaipur, India and is currently employed by VMware as

a development engineer. E-mail: g-hjoshi@umassd.edu

References
Albus, J. S., Barbera, A. J. and Nagel, R. N. 1981.

‘‘Theory and Practice of Hierarchical Control.’’ Pro-

ceedings of the 23rd IEEE Computer Society International
Conference. Washington, D. C. September 15–17.

Albus, J. S., Lumia, R., Fiala, J. and Wavering, A.
1989. ‘‘NASREM—The NASA/NBS Standard Ref-
erence Model for Telerobot Control System Architec-
ture.’’ Proceedings of the 20th International Symposium on
Industrial Robots. Tokyo, Japan. October 4–6, 1989.

Albus, J. S. and Rippey, W. G. ‘‘RCS: A Reference
Model Architecture for Intelligent Control.’’ Perception
to Action Conference, 1994, Proceedings. September 7–9,
1994, pp. 218–229.

Arkin, R. 1998. Behavior-Based Robotics. Cam-
bridge, Massachusetts: MIT Press.

Barbera, A. J., Fitzgerald, M. L., and Albus, J. S.
1982. ‘‘Concepts for a Real-Time Sensory-Interactive
Control System Architecture.’’ Proceedings of the
Fourteenth Southeastern Symposium on System Theory.
Blacksburg, Virginia, April 15–16, 1982.

Day, J. D. and Zimmermann, H. 1983. ‘‘The OSI
Reference Model,’’ Proceedings of the IEEE. 71(12),
pp. 1334–1340.

Dippel, H. A. and Michel, H. E. 2006. ‘‘The
Control Technical Reference Model.’’ International
Conference on Artificial Intelligence, Las Vegas, Nevada,
June 2006.

Fortier, P. and Michel, H. E. 2005. ‘‘Comparison of
the EI TRM versus TENA,’’ ITEA Technology
Review Workshop, Atlanta, Georgia, July 12–14,
2005.

ICH Architecture Resource Centre. 2008. ‘‘Inter-
operability Clearing House Glossary of Terms’’
Available at http://www.ichnet.org/glossary.htm. Ac-
cessed August 28, 2008.

IEEE. 1999. IEEE Std 1220-1998. New York:
Institute of Electrical and Electronics Engineers.

ISO. 1983. ‘‘Open system interconnection, basic
research model, ISO International Standards IS 7498,
ISO/TC 97/SCI6. Geneva, Switzerland: International
Organization for Standards.

JAUS. 2008. Domain Model Volume I, Joint
architecture for unmanned system. Available at
http://www.jauswg.org/. Accessed August 28, 2008.

JAUS. 2008. Reference architecture specification
volume II, part 1, architecture framework. Joint
Architecture for Unmanned System. Available at http://
www.jauswg.org/. Accessed August 28, 2008.

JAUS. 2008. Reference architecture specification
volume II, part 2, message definition. Joint Architecture
for Unmanned Systems. Available at http://www.jauswg.
org. Accessed August 28, 2008.

JAUS. 2008. Reference architecture specification
volume III, part 3, message set. Joint Architecture for
Unmanned Systems. Available at http://www.jauswg.
org. Accessed August 28, 2008.

A Sensor Network Architecture

29(4) N December 2008 409

Joshi, H. and Michel, H. E. 2007. ‘‘Integrating
Information-Centric, Control-Centric and Behavior-
Centric Technical Reference Models for Autonomous
Sensor Networks.’’ International Conference on Wireless
Networks. Las Vegas, Nevada. June 2007.

Joshi, H. and Michel, H. E. 2008. ‘‘Integrated
Technical Reference Model and Sensor Network
Architecture.’’ International Conference on Wireless
Networks, Las Vegas, Nevada. June 2008.

Joshi, H. 2008. ‘‘Autonomous Mobile Sensor
Networks Architecture for Hazard Detection and
Surveillance,’’ University of Massachusetts Dartmouth
Master’s thesis. January 2008.

Michel, H. E. and Fortier, P. 2005. ‘‘Development of an
Embedded Instrumentation System Architecture and Its
Comparison to the Test and Training Enabling Archi-
tecture.’’ Defense Transformation and Network-Centric
Systems, Proceedings of SPIE Vol. 6249. April 2005.

MOOS. 2008. Mission-Oriented Operating Suite.
Available at http://www.robots.ox.ac.uk/,pnewman/
TheMOOS/. Accessed August 28, 2008.

Nagrath, I. J. and Gopal, M. 1981. Control System
Engineering, Second Edition. New Delhi: Wiley.

Novales, C., Mourioux, G. and Poisson, G. 2006.
‘‘A Multi-Level Architecture Controlling Robots from
Autonomy to Teleoperation.’’ First National Workshop
on Control Architectures of Robots. Montpellier, Ver-
mont. April 6, 2006.

Stojmenovic, I. 2005. Sensor Networks Algorithms

and Architecture. New York: Wiley Publications.
Tanenbaum, A. S. 1996. Computer Networks, Third

Edition. Upper Saddle River, New Jersey: Prentice
Hall.

Visnevski, N. 2008. ‘‘Embedded Instrumentation
Systems Architecture.’’ Instrumentation and Measure-

ment Technology Conference Proceedings, IMTC 2008.
May 12–15, 2008, pp. 1134–1139.

Visnevski, N. and Bezdecny, M. 2008. ‘‘Test &
Evaluation of Cognitive and Social Capabilities of
Collaborative Unmanned Autonmous Systems.’’ ITEA

Tech Review Conference, Colorado Springs, Colorado.
July 2008.

Acknowledgment
This work was partially supported by the Test and

Resources Management Center’s (TRMC) Test and
Evaluation/Science and Technology (T&E/S&T)
Program Non-Intrusive Instrumentation office
through Naval Underwater Warfare Center (NUWC).
The views and opinions expressed or implied in this
article are those of the authors and not necessarily
those of the Department of Defense or any of its
subordinate agencies.

Michel & Joshi

410 ITEA Journal

