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Bistable systems are prevalently found in many sensor systems. Recently, we have explored
�unidirectionally� coupled overdamped bistable systems that admit self-sustained oscillations when
the coupling parameter is swept through the critical points of bifurcations �V. In et al., Phys. Rev.
E 68, 045102�R� �2003�; A. R. Bulsara et al., Phys. Rev. E 70, 036103 �2004�; V. In et al., Phys.
Rev. E 72, 045104�R� �2005�; Phys Rev. Lett. 91, 244101 �2003�; A. Palacios et al., Phys. Rev. E
72, 026211 �2005�; V. In et al., Phys. Rev. E 73, 066121 �2006��. Complex behaviors emerge, in
addition, from these �relatively simple� coupled systems when an external signal �ac or dc� is
applied uniformly to all the elements in the array. In particular, we have demonstrated this emergent
behavior for a coupled system comprised of mean-field hysteretic elements describing a
“single-domain” ferromagnetic sample. The results are being used to develop extremely sensitive
magnetic sensors capable of resolving field changes as low as 150 pT by observing the changes in
the oscillation characteristics of the coupled sensors. In this paper, we explore the underlying
dynamics of a coupled bistable system realized by coupling microelectronic circuits, which belong
to the same class of dynamics as the aforementioned �ferromagnetic� system, with the nonlinear
features and coupling terms modeled by hyperbolic tangent nonlinearities; these nonlinearities stem
from the operational transconductance amplifiers used in constructing the microcircuits. The
emergent behavior is being applied to develop an extremely sensitive electric-field sensor. © 2010
American Institute of Physics. �doi:10.1063/1.3272052�

I. INTRODUCTION

It is well established that a well-designed coupling
scheme, together with an appropriate choice of initial condi-
tions, can induce oscillations �i.e., periodic switching be-
tween stable fixed points� in overdamped bistable dynamical
systems when a control parameter exceeds a threshold
value.1–3 We have demonstrated this behavior in a specific
prototype system comprised of three unidirectionally
coupled ferromagnetic cores, the basis of a coupled core
fluxgate magnetometer. Another prototypical �quartic poten-
tial based� system of coupled overdamped Duffing elements
has been applied to describe the dynamics of the polarization
inside a ferroelectric material,3 the basis of an electric-field
sensor, currently under development. Our analysis showed
that N �odd� unidirectionally coupled elements with cyclic
boundary conditions would oscillate when a control param-
eter, i.e., coupling strength, exceeded a critical value; note
that the oscillatory behavior can also be seen for large, even
N. Typically, the oscillations emerge with an infinite period
through a heteroclinic-cycle bifurcation, i.e., a global bifur-
cation to a collection of solution trajectories that connects
sequences of equilibria and/or periodic solutions. In the par-
ticular case of overdamped bistable systems, the cycle in-

cludes mainly saddle-node equilibria. As a control parameter
�usually the coupling strength� approaches from above a
critical value, the frequency of the oscillations decreases, ap-
proaching zero at the critical point. Past the critical value, the
oscillations disappear, and the system dynamics settles into
an equilibrium.

The basin of attraction of the oscillations spans almost
the entire phase space with the exception of a small region
near the symmetrical initial conditions; in which case, the
coupled system settles asymptotically to its stable fixed
points. The emergent oscillations, in either the ferromagnetic
or ferroelectric systems mentioned above, have been used to
detect very weak “target” �dc and ac� signals via the �signal-
induced� changes in the oscillation characteristics, e.g., duty
cycle and frequency. It is important to emphasize that this
emergent oscillatory behavior is quite general; in a nonsensor
application, it has led to interesting frequency-selective prop-
erties of interacting neural networks.4,5

The above phenomena open up new possibilities for the
exploitation of a large class of �normally� nonoscillatory sys-
tems for a variety of practical applications that involve the
use of the emergent self-sustained oscillations as a reference.
The latest realization of a system in this class is an over-
damped bistable system as one of the active elements in a
microcircuit, which is intended to be used for measuring
minute voltage or current changes that may be injected into
the system. Details of the design, fabrication, and validation
against theoretical work are all the subjects of this paper.
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Section II presents a block-circuit diagram of the microcir-
cuit and the derivation of the dynamical network equations.
Section III includes the dynamical analysis, including the
bifurcation properties in response to an input dc signal; we
note that detection of ac signals is also possible; however, the
ensuing behavior is quite intricate and rich, and will be de-
scribed in future work. Section IV describes the microcircuit
response to the �dc� input signal; the results obtained via
numerical simulations as well as the experimental system are
presented. Finally, in Sec. V, we present some concluding
remarks and a discussion of �potential� future developments.

II. CIRCUIT AND DYNAMICAL EQUATIONS

The circuit implementation of each element in the sys-
tem is based on differential pair designs composed of current
mirrors to form the operational transconductance amplifiers
�OTAs� that are responsible for the nonlinearity in the sys-
tem. A typical differential pair circuit is shown in Fig. 1. We
now, briefly, describe the derivation of the dynamics of the
circuit.

The current and voltage relationship of a differential pair
can be modeled6 as

I1 − I2 = Ib tanh�c�Vi1 − Vi2�� , �1�

where Ib is the bias �or tail� current of the differential pair
and c is a device parameter that depends on temperature as
well as on the fabrication process of the microelectronic cir-
cuit.

The schematic of a single element is shown in Fig. 2. It
consists of two differential pairs that employ negative-
positive-negative �NPN� transistors with one of them being
cross coupled, two positive channel metal oxide semiconduc-
tor �PMOS� transistors, and a pair of resistors. In each dif-
ferential pair, the current source in Fig. 1 is replaced with a
current mirror. The two PMOS transistors are used as the
load of the two differential pairs, and the two resistors are
used for both the system dynamics and common-mode feed-
back. Since the circuit is fully differential �i.e., the outputs
Vout+ and Vout− are equal in magnitude but are out of phase by
��, the common-mode voltages at Vout+ and Vout− need to be
“tracked” to take account of mismatches in the manufacture

of the device; this is done by the resistor pairs, which “track”
the voltages at these two nodes and can be adjusted to make
sure that they are the same.

In order to input an external signal into the circuit, an
input current mirror, see Fig. 3, is implemented on the over-
all system. The external signal �in this case an electric field
that has been transduced into a current via an appropriate
collection mechanism� Isig is amplified using a NPN transis-
tor and then the amplified signal is duplicated to output
nodes �I01, Io2, and Io3� using the current mirrors. By doing
so, Iout=�Isig, where � is the current gain of the NPN tran-
sistor. Finally, each output node is connected to node Vout−

�in Fig. 2� of each element.
Using nodal analysis, the current equations at the output

nodes Vout+ and Vout− �in Fig. 1� of the ith element are as
follows:

CLV̇out+ = IP +
Vgp

− Vout+

R
−

Ic

2
tanh�cc�Vin− − Vin+��

−
Is

2
tanh�cs�Vout− − Vout+�� ,

↓

Vo1 Vo2

Q1 Q2Vi1 Vi2

Ib

I2I1

FIG. 1. The differential pair is used as the basic building block in the
bistable elements. It consists of two transistors �Q1 and Q2� and a current
source.
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FIG. 2. A single �bistable� element is constructed out of differential pairs.
Each element contains a cross coupled pair, input signal circuitry, and cou-
pling components.
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FIG. 3. The input current mirror provides the same current to each of the
bistable elements of the coupled system shown in Fig. 4.
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CLV̇out− = IP +
Vgp

− Vout−

R
−

Ic

2
tanh�cc�Vin+ − Vin−��

−
Is

2
tanh�cs�Vout+ − Vout−�� + � , �2�

where CL is the load capacitance, R is the resistance of the
pair of resistors in Fig. 2, cc and cs are the device parameters,
which are proportional to e /2kT and their values are approxi-
mately �7–10�V−1, Vgp

is the gate voltage of the PMOS tran-
sistors in Fig. 2, Vtp

is a threshold voltage, Ip, which is equal
to −�bC0xWp /2Lp�VDD−Vgp

+Vtp
�2, is the current through

one of the PMOS transistors in Fig. 2, Vin+ and Vin− are equal
to the outputs Vout− and Vout+ from the �i−1�th element, re-
spectively, and we set �=�Isig. Note that � corresponds to the
external “target” signal, which has been transformed into a
current Isig that is then amplified by the NPN transistor. In
fact, the circuit responds to very small �on the order of pico-
amperes� “source currents.” Subtracting the bottom equation
from the top equation in Eq. �2�, we get the following ex-
pression:

CLV̇i = − gVi + Is tanh�csVi� − Ic tanh�ccVi−1� − � , �3�

where i=1, . . . ,3 , V0�V3, Vi=Vout+−Vout− is the differen-
tial output of the ith element, and g=1 /R. The top-level sys-
tem schematic �for N=3� is shown in Fig. 4. The load circuit
in the figure consists of a load capacitor with the value CL

connecting each node to ground. The value of CL is chosen
such that it is greater than the total parasitic capacitance CP

at that node �i.e., CL�10CP�. Equation �3� governs the un-
derlying dynamics of a coupled bistable system realized by
the microelectronic circuit of Fig. 4. The circuit and its dy-
namical description belong to the same class of bistable de-
vices, as those of the ferromagnetic and ferroelectric systems
studied theoretically in Refs. 1–3. Our aim is then to study
the response of the �experimental� system to dc signals and
validate that response against theoretical results. However,
we would like to mention that subtle differences in the gov-
erning equations �mainly the characteristic function as well
as the coupling term being described by a hyperbolic tangent
function� lead to richer and more complex behavior in the
response of the microcircuit to external ac signals, than what

has been observed in our earlier theoretical models describ-
ing the coupled core magnetometer2 and the ferroelectric ca-
pacitor based electric-field sensor.3 This behavior will be de-
scribed in a future publication.

III. DYNAMICAL ANALYSIS

Equation �3� provides the starting point for a dynamical
analysis aimed at chartering the different behavior that exists
in various parameter regimes. In a coupled system such as
this, one typically chooses an accessible system parameter
that can be manipulated to force the system into a desired
behavior. In this case the coupling coefficient Ic is used.
Analogous to the procedure established in Ref. 1, the critical
coupling coefficient can be calculated in closed form as

Ic,critical = � −
g

c
sech−1�� g

Isc
�

+ Is tanh	sech−1�� g

Isc
�
 , �4�

where cs=cc=c because the design of the OTAs for the non-
linearity and the coupling circuitries are assumed to be the
same, for convenience. Here � is assumed to be dc for this
calculation; taking a time-periodic signal � leads to an ex-
tremely rich behavior that is beyond the scope of the current
work. Equation �4� is an analytical expression of the mini-
mum coupling strength that is necessary for the coupled sys-
tem to yield self-sustained oscillations. Mathematically
speaking, it denotes the onset of the heteroclinic bifurcation,
which is accompanied by the creation of the infinite-period
�at the critical point� oscillations. This onset is the limit
point, labeled LP, of the upper branch of limit-cycle oscilla-
tions shown in the one-parameter bifurcation diagram of Fig.
5.
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FIG. 4. Top-level schematic of a circuit realization of a coupled electric-
field system with three units coupled unidirectionally.

FIG. 5. Bifurcation diagram for a coupled �N=3� electric-field sensor mi-
crocircuit showing the system’s voltage output in response to changes in
coupling parameter Ic. The filled-in circles represent globally, asymptoti-
cally, stable limit-cycle oscillations created at the onset, LP, of a heteroclinic
bifurcation. The solid lines depict the local branches of stable steady-state
solutions. The empty circles correspond to unstable branches of periodic
oscillations that emerge via Hopf bifurcations. The parameters are CL=1,
g=1, c=1, Is=2 and Ic=1.
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We can readily observe the global nature of the hetero-
clinic bifurcation: At the birth point LP, the limit-cycle oscil-
lations are fully grown with a well-defined amplitude as op-
posed to the local Hopf bifurcations, labeled HB, where the
amplitude of the limit cycle increases as a square-root law of
the distance from the bifurcation point. Observe also that all
branches of Hopf bifurcations are unstable; hence they are
marked with empty circles, while the global branch of limit
cycles is marked with filled circles to indicate that it is
stable. New branches of steady-state points or equilibria also
emerge via local pitchfork bifurcations, labeled LP and BP.
They are stable but their basin boundary of attraction is on
the opposite side �with respect to the parameter Ic� of the
global limit-cycle oscillations. The top-to-bottom symmetry
of the bifurcation diagram is a direct consequence of the
reflectional symmetry, i.e., Vi→ �Vi, inherent in governing
equation �3�. The diagram in Fig. 5 was generated computa-
tionally with the aid of the continuation software package
AUTO.7 Parameters were set to �=0 and CL=1 for ease of
computations without worrying about time scales. In the cir-
cuit, CL controls the overall response time of the collective
coupled system, i.e., setting the upper boundary of the band-
width of the coupled system. We would like to emphasize
that the one-parameter bifurcation diagram for the circuit re-
alization shown in Fig. 5 is in very good agreement with that
of the theoretical analysis presented elsewhere.3

Consider, now, that the parameter Is in Eq. �3� controls
the bistability of the unit �uncoupled� cell. By varying this
parameter, the unit cell’s potential function can be
monostable when Is�g /cs and bistable for Is�g /cs. The
potential function topology is similar to what has been seen
in the soft-potential system describing the ferromagnetic ma-
terials employed in the fluxgate magnetometers.1 To give a
clearer picture of the separations between the oscillatory be-
havior and the nonoscillatory behavior, we perform a two-
parameter bifurcation analysis to determine the boundaries,
in parameter space �Is , Ic�, of the self-sustained limit-cycle
oscillations. Figure 6 shows the resulting diagram as Is and Ic

are swept through their full ranges in the circuits. Note that
we have chosen these parameters because they are, precisely,
the accessible parameters in the systems that may be set by
the designer/user for an appropriate desired behavior. More
importantly, the diagram confirms the existence of an open
region where the limit-cycle oscillations are globally asymp-
totically stable.

IV. NUMERICAL AND EXPERIMENTAL RESULTS

In order to operate the coupled bistable circuit to sense
an input signal, e.g., signal gathered from an external collec-
tor such as an antenna or other similar implementation, an
examination of the oscillation characteristics is typically em-
ployed once the system is tuned into the oscillation regime.
The oscillation frequency depends on the external signal �; it
decreases with increasing signal strength. The other effect is
that, assuming � to be dc, the duty cycle of the oscillation is
changed to being less than 50% with ��0. Figure 7 illus-
trates the effect of changing the external signal � on the
oscillations.

The rate at which the frequency decreases is governed
by a power-1

2 law that is universal for this type of bifurca-
tion, see Fig. 8. The frequency response shown in that figure
was obtained through numerical simulations of model equa-
tion �3�.

It has been shown in previous work that without the
presence of an input signal, the differential output Vi should
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FIG. 6. Two-parameter bifurcation diagram for a coupled �N=3� electric-
field system in parameter space �Is , Ic�. The diagram confirms the existence
of an open region where limit-cycle oscillations are globally, asymptotically,
stable. The diagram, as well as the stability properties of the solutions found
in each region, was determined numerically using continuation software
�Ref. 7�. The dashed lines represent when the Hopf bifurcation becomes
unstable. The parameters as in Fig. 5.
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be symmetric in its duty cycle. That is, during a period of the
output, the time above V=0, tp, is the same as the time below
V=0, tn. The “residence times” tp and tn were introduced in
Ref. 8, and the “residence time difference” RTD= �tp− tn�
should be zero in the absence of the external signal. As the
input signal increases, the differential output becomes more
asymmetric in its duty cycle, which results in an increase in
RTD. Figure 9 shows this effect with increasing external
field strength, obtained from numerical simulations of model
equation �3�. The slope of the RTD response curve is the
sensitivity of the sensor. Note that as � is increased, the
response curve takes a very sharp upward turn past the value
�obtained for the set of parameters used in this figure� of 0.4.
This point is very near the critical point of bifurcation to the
heteroclinic cycle. For sensor operation where detecting very
weak signal change is desired, this is the optimal regime
where one would tune the system to get the most sensitivity.9

In Sec. IV A, we present a rapid overview of the theo-
retical approach used to obtain analytic expressions for the
oscillation period and the RTD. The calculation flows analo-
gously to that described �albeit for a different dynamical sys-
tem� in Ref. 1; hence we provide only its salient features in
the current work.

A. Theoretical approach to calculate period and RTD
response

We start with a scaled version of system �3� for N=3 as
follows:

x1� = − x1 + Is tanh�dx1� − Ic tanh�dx3� − � ,

x2� = − x2 + Is tanh�dx2� − Ic tanh�dx1� − � ,

x3� = − x3 + Is tanh�dx3� − Ic tanh�dx2� − � , �5�

with the change in variables xi=gVi and scaling time by 	
=g /CL, so that differentiation � �� in Eq. �5� is with respect to
	. Note that d=c /g. In the absence of coupling, each element
describes a particle in a bistable potential that has been
asymmetrized through the addition of the target signal �.
Note that the signal � is taken to be far smaller than the
energy barrier height for the potential function corresponding
to any �uncoupled� element. Then, one can compute the con-
dition for bistability as Isc /g
1. As already described in
Ref. 1, we exploit the fact that the elements x1,2,3 cross the
energy barrier separating the stable steady states of their �un-
coupled� potential sequentially with two elements remaining
approximately confined to their steady states while the third
�active� element switches; this is, readily, apparent in Fig. 7.
This allows us to decouple the system with the active ele-
ment described by a simple particle in a bistable potential
framework, and the coupling term replaced with a constant
term in the dynamics. Then, the problem boils down to com-
puting the times t1 and t2 at which a particular element
crosses the energy barrier �these times are unequal because
the potential is asymmetric as a result of the signal term�.

As an example, we consider the x2 element, which is
backcoupled to element x1. Assuming x1 to remain “frozen”
at its stable minimum value x1m, the x2 equation reduces to

x2� = f�x2� � −
�U�x2�

�x2
, �6�

with the definitions

f�x2� = − x2 + Is tanh�dx2� − �2,

�2 = Ic tanh�dx1m� + � . �7�

U�x2� is the potential energy function corresponding to the
dynamics x2� as set out in Eq. �6�. Then, assuming the vari-
able x2 to be in its steady state x2m �the left, or negative
potential well� at time t=0, the time t2 taken to cross the
energy barrier and arrive in the opposite minimum x2p is
given by

t2 = �
x2m

0 dx2

f�x2�
, �8�

it being assumed that once the state point has crossed the
energy barrier, it requires a negligible amount of time to
“roll” down the energy slope into the �opposite� minimum.
The integral is evaluated by realizing that f�x2� is peaked at
x2= x̃2; this value is found by setting the derivative of f�x2� to
zero and is given by tanh�dx̃2�=��dIs−1� /dIs��. Simulta-
neously we note that, at x2= x̃2 and Ic= I2cc, an inflexion point

0 0.1 0.2 0.3 0.4 0.5

0.01

0.02

0.03

0.04

0.05

ε

Fr
eq

ue
nc

y
(N

or
m

a l
iz

ed
)

FIG. 8. Frequency response to the input signal � for a coupled �N=3�
electric-field sensor system, obtained from numerical simulations of model
equation �3�. The frequency scales by the universal power-1

2 law, which is
typical for this type of bifurcation scenario. The parameters as in Fig. 5.
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FIG. 9. RTD measures as a function of input signal strength �, for a coupled
�N=3� electric-field sensor system, obtained from numerical simulations of
model equation �3�. The sensitivity of the coupled sensor device is propor-
tional to the slope of the RTD curve. Notice that the slope is particularly
large near �=0.45, which is near the bifurcation point that leads to oscilla-
tory behavior in the device. The parameters as in Fig. 5.
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will develop in the potential, as the state point switches from
left to right. The condition for the point of inflexion �in the
potential U�x2�� leads to

�2c = I2cc tanh�dx1m� + � = − x̃2 + Is tanh�dx̃2� , �9�

so that we are led to the critical value of Ic to effect a switch
from left to right in the potential function

I2cc = �d−1 arctanh��� − Is� − ��coth�dx1m� . �10�

Finally, we take the expansion of f�x2� up to second order
and write the integral in Eq. �8� as

t2 
 �
x2m

0 dx2

�2c − �2 + ��x2 − x̃2�2 . �11�

The integration limits may now be extended to �
 and the
integral readily evaluated to yield

t2 =
�

����2c − �2�
. �12�

An analogous procedure yields the time t1 required to make a
switch in the opposite direction. The result is

t1 =
�

����1 − �1c�
, �13�

with the critical coupling strength necessary in this case
given by

I1cc = �− d−1 arctanh��� + Is� − ��coth�dx1p� , �14�

with x1p denoting the location of the positive fixed point of
the potential. Both x1p and its negative counterpart x1m may
be computed via a perturbation expansion �assuming small
��; for brevity, we do not give the expressions here. It is most
important to note that, in practice, to achieve reliable switch-
ing back and forth across the barrier, the coupling strength Ic

in system �5� should be set to a value larger than the greater
of �I1cc , I2cc�.

We may now write down, analogous to the procedure
followed in Ref. 1, the expressions for the oscillation period
T=3�t1+ t2� and the RTD= �t1− t2� as follows:

T =
3�

��
	 1

��I2cc − Ic�tanh�dx1m�
+

1
��Ic − I1cc�tanh�dx1p�



�15�

and

RTD = � �

��
	 1

��I2cc − Ic�tanh�dx1m�

−
1

��Ic − I1cc�tanh�dx1p�

� �16�

with the characteristic scaling with respect to the square root
of the “bifurcation distances” �I2cc− Ic� and �I1cc− Ic� readily
apparent. We note that the signal ��� induced asymmetry
enters the above expressions through the critical values of
the coupling coefficients; for �=0 we obtain t1= t2 and the
RTD vanishes, as expected. We must note, in passing, that
theoretical expressions �15� and �16� provide the correct

qualitative behavior for the period and RTD; they do not
provide, however, an exact quantitative match. This is be-
cause our approximations to the integrals for t1,2 do not work
as well with the system at hand, as in the previously studied
case of the coupled core magnetometer1 because the cou-
pling term �which modifies the potential topology� is outside
the tanh function that describes the self-coupling behavior. A
systematic error is introduced into the expression for the pe-
riod; however, expression �16� does provide a good approxi-
mation, as is shown in Fig. 10, to the simulated value of the
RTD because the errors in t1,2 tend to nullify each other in
the subtraction.

B. SPICE simulations and experiments

The design of the coupled bistable circuit has been simu-
lated in SPICE where the parameters are set to Ic=200 �A,
Is=300 �A, CL=66 nF, R=500 �, and �=150. The oscil-
lation characteristics, Fig. 11, are similar to those results
found using the mathematical model illustrated in Fig. 7.
This serves to confirm the accuracy of the model and its
design/implementation.

The experimental system is based on a fabricated device
that follows the design provided by this manuscript. The load
capacitance CL is set to 66 nF, Ic=200 �A, Is=300 �A, and
R=500 �. The supplied voltage is 3.3 V to power the mi-
crocircuit. A source measure unit is used to inject the current
Isig into the bistable microcircuit to mimic the sensing current
that would have appeared from the �in this case, electric
charge� collecting apparatus. Figure 12 shows the response
characteristics of the oscillation frequency and the measured
RTD to the input signal Isig; through an inspection of the
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FIG. 10. Comparison of analytical approximations with numerical simula-
tions for �top� period T and �bottom� RTD responses for a coupled electric-
field sensor. The solid line indicates analytical approximations obtained
through Eqs. �15� and �16�, respectively. The dashed lines correspond to
numerical results from simulations of hardware dynamics �3�.
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results, � is determined to be, approximately, 150. The ex-
perimental data confirm the results of the simulation of the
theoretical model and the SPICE simulation of the design in
Figs. 8, 9, and 13, respectively. In the current version of the
experiment, the injected current cannot exceed 530 nA to
avoid overloading the microcircuit. Steps are taken to in-
crease the injected current range to push the system closer
toward the bifurcation or to set the Ic parameter closer to-
ward the bifurcation so that the RTD response curve is much
closer to what is seen in the SPICE simulation of the design
and the model, but for an ultrasensitive sensor, this is not the
goal. The goal is to discern a very small current, which
would translate into detecting a very small electric-field
change. Figure 14 shows the time series from the experiment
with various applied currents. As seen in the plots, there are
some mismatches in the waveforms among the three outputs
of the oscillators. These mismatches can be attributed to the
circuit components, mainly the transistors that make up the
OTAs. Future designs will attempt to minimize these com-
ponent mismatch issues but they are not trivial.

V. CONCLUSION

We have presented a microelectronic circuit realization
of a coupled bistable system suitable for detection of weak

dc and ac signals �the case of ac signal detection is relegated
to a forthcoming paper�. The governing equations of the mi-
crocircuit are somewhat more complicated than those de-
scribed in our earlier work on coupled dynamic ferromag-
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FIG. 11. Waveforms of the differential output from all three coupled ele-
ments, from a coupled electric-field sensor device, are plotted for different
values of input dc Isig. The outputs are characteristically out of phase by
2� /N�N=3� degrees, so that collectively they form a traveling wave pattern.
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netic and ferroelectric elements. However, the behavior of
the coupled system is, qualitatively, quite similar in all these
cases; namely, the sensors all operate on the basis of self-
sustained oscillations induced by the network topology, in
particular, the coupling function. In all three systems, a bi-
furcation analysis shows that the oscillations emerge as a
branch of limit-cycle oscillations that stems from a hetero-
clinic bifurcation connecting sequences of saddle-node
steady states. The bifurcation is global, so at the bifurcation
point the oscillations are fully grown but, more importantly,
they emerge with an infinite period, at the critical point. The
period is particularly important because a large period of
oscillation can render the waveform highly sensitive to the
detection of external dc/ac signals. We have exploited this
feature in the implementation of the microcircuit device with
a new readout mechanism, based on the RTD. The RTD

mechanism relies on measuring the asymmetry of the wave-
form. In the absence of an external signal, the oscillations are
top-to-bottom symmetric so there is no difference and hence
no signal is detected. In the presence of a weak signal, how-
ever, an oscillation with a large period can yield a very large
asymmetry and so the signal can be detected by measuring
the difference.

Overall, the analysis and results of the microcircuit dy-
namics are in very good agreement with previous theoretical
results. There are, however, important differences in the
characteristic function and coupling function of the microcir-
cuit device that can lead to far richer and more complex
behavior in the detection of ac signals than in the theoretical
models. For instance, additional branches of steady states
and the possibility of chaotic behavior in the microcircuit are
possible. A study of those differences is beyond the scope of
the present paper but they will be addressed in future work.

The aim of this work was twofold. First to demonstrate
that a circuit realization of theoretical models is feasible and,
second, that there is a region of parameter space where the
circuit dynamics, and its response to weak external dc sig-
nals, are in very good agreement with theory. In particular,
we reiterate that the current work describes a microelectronic
circuit that is highly sensitive to very small changes �e.g.,
stemming from small changes in the ambient electric field� in
the input current. We defer the analysis of additional regimes
in the microcircuit and its response to noise, to future work.
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