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GENERALIZED NEWTON METHOD FOR ENERGY

FORMULATIONS IN IMAGE PROCESSING

LEAH BAR AND GUILLERMO SAPIRO∗

Abstract. Many problems in image processing are addressed via the minimization of a cost

functional. The most prominent optimization technique is the gradient descent, often used due to its

simplicity and applicability where other techniques, e.g., those coming from discrete optimization,

can not be used. Yet, gradient descent suffers from a slow convergence, and often to just local minima

which highly depends on the condition number of the functional Hessian. Newton-type methods, on

the other hand, are known to have a rapid, quadratic, convergence. In its classical form, the Newton

method relies on the L2-type norm to define the descent direction. In this paper, we generalize

and reformulate this very important optimization method by introducing a novel Newton method

based on more general norms. This generalization opens up new possibilities in the extraction of the

Newton step, including benefits such as mathematical stability and the incorporation of smoothness

constraints. We first present the derivation of the modified Newton step in the calculus of variation

framework needed for image processing. Then, we demonstrate the method with two common objec-

tive functionals: variational image deblurring and geodesic active contours for image segmentation.

We show that in addition to the fast convergence, norms adapted to the problem at hand yield

different and superior results.

Key words. Newton method, variational methods, trust-region, generalized inner product,

active contours, deblurring.

AMS subject classifications. 35A15, 65K10, 90C53

1. Introduction. Optimization of a cost functional is a fundamental task in

variational image analysis, where the most widely used optimization techniques are

based on gradient flows. In the popular iterative gradient descent method, the de-

∗Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis,
55455 USA. Work partially supported by NSF, ONR, NGA, ARO, NIH, and DARPA.
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scent step or search direction is given by the negative gradient, and the functional

is progressively (iteratively) minimized advancing in this direction. The definition of

the gradient relies on an inner product structure, and in most studies the L2-type

inner product is implicitly assumed.

Recently, generalized gradient descent approaches were introduced in image anal-

ysis by defining different inner product types. Sundaramoorthi et al., [19, 20] (see

also [21]), formulated the generic geometric active contour model by redefining the

gradients with Sobolev-type inner products. As a result, improvement in region-based

and edge-based segmentation was accomplished, and important ill-posed flows became

well-possed.1 Charpiat et al., [8], derived the general gradient descent process asso-

ciated with a symmetric positive linear operator which defines a new inner product.

They demonstrated that the choice of the inner product can be considered as a prior

on the deformation fields in shape warping and tracking applications. Related to this

work, Eckstein et al., [10], showed the importance of the norm selection in the context

of shape matching.

The major weakness of the gradient descent method is that despite its simplicity,

the convergence rate can be very poor, many iterations are needed to achieve a (local)

minima. On the other hand, it is well known in optimization theory that Newton

methods are much faster, with a quadratic convergence [4, 5].

Let us illustrate how the Newton method computes the descent direction for

the case of functions, we will later work on functionals of the type used in image

processing. Let f(x) : RN → R be a real-valued function. The second order Taylor

1It is important to note that the change of inner product does not change the energy and/or
its local and global minima. It produces a different minimization path, which might then end at a
different stationary point of the energy (or its numerical approximation).
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approximation f(x+ d) of f at x is given by

f(x+ d) ≈ f(x) +∇fT (x)d+
1
2
dT Hessianf(x) d,

where the second and third terms on the righthand side are the first and second direc-

tional derivatives of f at x in the direction d ∈ RN .2 This expression approximates

the change in f for a small step d. Minimizing this quadratic approximation with

respect to d, yields the Newton step d as the solution to the equation

Hessianf(x)d = −∇f(x).

The solution will attain a minimum if the Hessian is positive definite. In the case that

f is (locally) nearly quadratic, f(x+ d) is a very good estimate for the minimizer of

f . The damped Newton method refers to the case where the minimizer is iteratively

updated as f(x + ∆td), where ∆t is selected via a line search process. In the pure

Newton method, the time step is fixed to ∆t = 1 [4,5].

The main disadvantages of the Newton method are the cost of the calculation of

the Hessian (while computing the descent direction d), and the computation of the

Newton step, which require solving a set of linear equations. Still, Newton methods

are overall faster than gradient descent. The method may be attracted to a local

maximum or saddle point in regions where the Hessian is not positive definite. In the

case of indefinite Hessian, a downhill search direction can be obtained by solving

[λI + Hessianf(x)] d = −∇f(x).

2While standard gradient descent is based only on first order derivatives, we already see from
this expression that second variations are part of the Newton method.
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With a sufficiently large value of λ ∈ R+, [λI + Hessianf(x)] is positive definite. It

can be shown that the solution to this equation is as the solution of

f(x+ d) = f(x) +∇fT (x)d+
1
2
dT Hessianf(x) d, s.t. ‖d‖ ≤ ∆,

where the optimization is now subject to an upper bound of the size of d. Minimiza-

tion with the above equation is known as the trust-region method, [9]. With this

modification, the solution is proved to converge, the cost functional is nonincreas-

ing at every iteration. Furthermore, the computational cost of the calculation of the

descent direction d can be reduced by the trust-region constraint [9].

In the calculus of variation framework, where functionals take the place of func-

tions, the derivative is replaced by the first Gâteaux variation and the Hessian is

replaced by the second Gâteaux variation. Few variational image processing studies

had used the Newton method for optimization. Hintermüller and Ring, [11], solved

the segmentation of grey scale images by the minimization of the Mumford-Shah

functional, [13], via Newton-type methods. Zhang and Hancock, [23], developed an

edge-preserving filter for smoothing images whose features reside on a curved mani-

fold, and optimize it via Newton-type methods. Both works use standard L2 norms.

Part of the contributions of the present paper is to develop Newton-type method with

more general norms. This is inspired in part by the above mentioned extensions of

gradient descent methods beyond L2 norms.

In the work of Absil et al. [1], the authors proposed and analyzed the trust-region

Newton method on Riemannian manifolds. The Riemannian metric induces a norm

on the tangent space which is used explicitly in the Newton method. The algorithm is

illustrated on problems from numerical linear algebra with well defined Riemannian
4



structure. While this study is close to the work presented in this paper, here we focus

on (image) functionals in the variational framework in abstract Euclidean space. In

addition, we show that the norm or inner product can be adaptively changed during

the iterative minimization process, yielding modified results.

In this paper we derive a generalized Newton method based on a general norm

in the calculus of variations framework. We thereby enjoy the advantages of Newton

methods, such as fast convergence, while providing the flexibility to adapt the metric

to the problem at hand. We begin by reviewing the necessary conditions for functional

minimum by the theory of the second variation, Section 2. We proceed by presenting

the quadratic approximation of the functional, which is a critical step in the Newton

method, and continue with the mathematical derivation of the generalized Newton

step, Section 3. Numerical simulations demonstrate the performance of the algorithm

for image segmentation (Section 4) and deblurring (Section 5). For each one of these

examples, we propose new metrics, including adaptive ones. We show that although

the classical Newton method is computationally very efficient, the results can be

quite poor. By using different norms in the proposed generalized method, state-of-

the-art results are obtained with the additional advantage of high convergence rate.

Furthermore, given a highly noisy image for example, the segmentation procedure

tends to fail with the classical gradient descent method as pointed out in [8, 19].

Choosing an appropriate norm in the proposed framework alleviates the problem

sensitivity and yields improved results at faster convergence rates. Theoretical results

on the proposed segmentation and deblurring formulations obtained by using the

proposed new metrics in the Newton methods are presented as well in sections 4

and 5. Finally, Section 6 concludes the work.
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2. Necessary Conditions for Minimum. Many problems in image processing

are solved via the minimization of a cost functional. In this section we review some

necessary conditions for relative minimum values of functions of real variables. The

first necessary condition is known as the Euler-Lagrange equation(s). However, this

condition is satisfied for maximum and saddle points as well, and therefore additional

conditions are necessary for minimum values.

We focus on both the Legendre and Jacobi conditions that are derived from the

theory of the second variation [15]. The Legendre condition is satisfied whenever a

corresponding sub-Hessian3 of the functional is positive definite.4 Later in the paper,

we will optimize functionals which do not necessarily satisfy this condition. We will

therefore present the generalized Newton method with trust-region, where the sub-

Hessian can be arbitrary, while satisfying this necessary condition.

Consider the minimization problem for the following functional

F(f) :=
∫

Ω

I(x, f(x),∇f(x)) dx,

where we assume that I ∈ C2(<), < being a domain in (x, f(x),∇f) space for f ∈

C1(Ω), and (x, f(x),∇f(x)) ∈ < for all x ∈ Ω (Ω being a region in RN ).5 Let ψ

denote the functional variation in a domain Ω such that it is zero at the boundary

(see below). The first necessary condition for a relative extremum of the functional is

ϕ(ψ) :=
∂

∂ε
F(f + εψ)

∣∣∣∣
ε=0

= 0, ∀ψ ∈ =, (2.1)

3The sub-Hessian is a sub-matrix of the functional Hessian.
4While in real-valued functions, f ′(x0) = 0 and f ′′(x0) > 0 are sufficient conditions for a relative

minimum at x = x0, additional conditions have to be satisfied in the case of functionals [15].
5We now consider f a scalar function, while extensions to vector-valued functions are possible as

well.
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where ε ∈ R+, = = {ψ | ψ ∈ ℘1(Ω), ψ|∂Ω = 0}, and ℘1(Ω) is the space C1(Ω) in

which the norm is defined as

‖g‖℘ := max
Ω
|g(x)|+ max

Ω
|∇g(x)|.

The expression ϕ(ψ) is denoted as the first Gâteaux variation, and Equation (2.1)

leads to the basic Euler-Lagrange equations (which form the core of the gradient

descent minimization approach). As we mentioned in the introduction, this is only

the first necessary condition for a relative minimum. The additional necessary (but

not sufficient) condition of the second variation is given by [15]:

ϕ2(ψ) :=
∂2

∂ε2
F(f + εψ)

∣∣∣∣
ε=0

≥ 0.

Let xi ∈ Ω (i = 1, 2, · · ·N) be the variables set of the the function f , where N is

the dimension of the domain. In addition, let fxi denote the partial derivative of

the function f with respect to the variable xi, and If the partial derivative of the

functional I with respect to f . Hence, the second variation takes the form

ϕ2(ψ) =
∫

Ω

 N∑
i,j=1

Ifxixj
ψxiψxj + 2

N∑
i=1

Iffxi
ψψxi + Iffψ

2

 dx. (2.2)

Assume for simplicity that N = 1, x = x1, and let R(x) := Ifxfx
, Q(x) := Iffx

, and

P (x) := Iff . In addition, assume a regular extrema, where R(x) 6= 0, ∀x ∈ Ω. By

the Legendre’s transformation of the second variation, (2.2) can be rewritten as

ϕ2(ψ) =
∫

ω

R(x)
[
ψx(x) +

Q(x) + u(x)
R(x)

ψ(x)
]2
dx, ∀u ∈ C1(Ω).
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Jacobi proposed to introduce, instead of u(x), a new function η(x) ∈ C1(Ω), by means

of the substitution

u(x) = −R(x)
ηx(x)
η(x)

−Q(x),

which leads to the Jacobi equation

d

dx
(Rηx) + (Qx − P )η = 0. (2.3)

Lemma 1. If the Jacobi equation (2.3) has a solution η(x) 6= 0 for all x ∈ Ω, and

if R(x) > 0 for all x ∈ Ω (strengthened Legendre condition), then ϕ2(ψ) is positive

definite.

Proof. Lemma 7.4.1 in [15].

In the functionals we consider in sections 4 and 5, the image dimensionN is greater

than 1, and therefore the (strengthened) Legendre condition, (R(x) > 0) R(x) ≥ 0,

is generalized to the condition that the matrix R := Ifxixj
is positive definite. We

will show that despite the fact that the Legendre condition is not satisfied in our

examples, the functionals can still be optimized by the suggested generalized Newton

with trust-region method.

3. Generalized Newton Method Derivation. In this section, we derive the

generalized Newton optimization method in a variational framework, with general

metrics and additional trust-region constraints. The contribution of the method, on

top of the known computational efficiency of Newton-type methods, is mainly achieved

by the flexible formulation of the inner product. Different selections of inner-products,

adapted to the application at hand, yield different and improved solutions to the mini-
8



mization problem, by progressing via a different minimization path. The incorporated

trust-region stabilizes the solutions in the case that the Legendre condition detailed

above is not satisfied.

The second order Taylor expansion of the common cost functional

F(f) :=
∫

Ω

I(x, f(x),∇f(x)) dx,

motivates the Newton’s method. Let f̂ be the estimation of the (local) minimizer

of this functional. The quadratic approximation to the variation F(f̂ + ψ) with the

trust-region constraint is given by

Q(ψ) := F(f̂)+ < ∇fF(f̂) | ψ > +
1
2
< Hf̂ ψ | ψ >, s.t. ‖ψ‖ ≤ ∆, (3.1)

where ψ ∈ =, ∆ denotes the trust-region radius, and

Hf̂ := HessianF(f̂). (3.2)

The notation < ·|· > stands for the L2 inner product such that

‖g‖2L2(Ω) = < g | g >.

In the sequel, we will alternately use the Hessian and second variation notions since

ϕ2(ψ) =< Hf̂ ψ | ψ > .

The minimizer of Q(ψ) in Equation (3.1) gives the Newton step direction which

decreases the functional value F(f̂ + ψ) towards the relative minimum.
9



The first variation is given by

< ∇fF(f̂) | ψ >=
∫

Ω

(
Ifψ +

N∑
i=1

Ifxi
ψxi

)
dx,

while the second variation is given by Equation (2.2). In the important case for image

processing of N = 2 (x1 = x and x2 = y), the integrand of Equation (2.2) can be

expressed in quadratic form,

(
ψ ψx ψy

)


a d e

d b f

e f c




ψ

ψx

ψy

 , (3.3)

where a := Iff , b := Ifxfx
, c := Ifyfy

, d := Iffx
, e := Iffy

, and f := Ifxfy
.

Let us now extend the above formulation to more general metrics. Consider an

abstract infinite dimensional Euclidean space - a vector space endowed with an inner

product such that, e.g., [8, 19],

< u | v >L=< Lu | v >,

where L : L2 → L2 is a symmetric positive definite linear operator with the domain

and range equal to the L2 space [8].

In the proposed generalized Newton method, the critical second order Taylor

expansion is formulated in this abstract Euclidean space with a general inner product,

subject to the corresponding trust-region constraint,

m(ψ) := F(f̂)+ < ∇fF(f̂) | ψ >L +
1
2
< Hf̂ ψ | ψ >L s.t. ‖ψ‖L ≤ ∆, (3.4)

10



where

‖ψ‖2L =< Lψ | ψ > .

The new , metric-dependent, Newton step ψN is now the minimizer of this truncated

Taylor expansion. The minimization of m(ψ) with respect to ψ is carried out using

the first Gâteaux derivative,

∂

∂ε
m(ψ + εη)

∣∣∣∣
ε=0

= 0, η ∈ =.

By the linearity of the operator L,

m(ψ + εη) =F(f̂) +
∫
L
(
∇fF(f̂)

)
(ψ + εη) dx+

1
2

∫ [
L
(
Hf̂ (ψ + εη)

)
(ψ + εη)

]
dx

=F(f̂) +
∫
L
(
∇fF(f̂)

)
(ψ + εη) dx+

1
2

∫ [
L
(
Hf̂ ψ

)
+ εL

(
Hf̂ η

)
(ψ + εη)

]
dx.

Hence,

∂

∂ε
m(ψ + εη)

∣∣∣∣
ε=0

=
∫
L
(
∇fF(f̂)

)
η dx+

1
2

∫ [
L
(
Hf̂ ψ

)
η + L

(
Hf̂ η

)
ψ
]
dx.

(3.5)

The integral equation (3.5), therefore, takes the form

< ∇fF(f̂) | η >L +
1
2
< Hf̂ ψ | η >L +

1
2
< ψ | Hf̂ η >L= 0, s.t. ‖ψ‖L ≤ ∆.

(3.6)
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Using the quadratic form (3.3) yields

< Hf̂ψ | η >L = < L
(
Hf̂ψ

)
| η >

=
∫

Ω

L (aψ + dψx + eψy) η + L (dψ + bψx + fψy) ηx

+ L (eψ + fψx + cψy) ηy dx.

(3.7)

In the same fashion,

< ψ | Hf̂η >L = < L(ψ) | Hf̂ψ >

=
∫

(aη + dηx + eηy)L(ψ) + (dη + bηx + fηy)L(ψx)

+ (eη + fηx + cηy)L(ψy) dx.

(3.8)

By substituting (3.7) and (3.8) into (3.6), and using integration by parts and the

fundamental lemma of calculus of variations, we end up with the following partial

differential equation with respect to ψ, where the solution to this equation is the

desired Newton step ψN ,

L(aψ + dψx + eψy)− ∂x [L(dψ + bψx + fψy)]− ∂y [L(eψ + fψx + cψy)]

+ aL(ψ) + dL(ψx) + eL(ψy)− ∂x [dL(ψ) + bL(ψx) + fL(ψy)]

− ∂y [eL(ψ) + fL(ψx) + cL(ψy)] = −L
(
If − ∂x(Ifx

)− ∂y(Ify
))
)
.

(3.9)

3.1. Numerical Details. Having derived the basic formulation of the general-

ized Newton method, and having derived the corresponding equation to compute the

Newton step direction (Equation (3.9)), we proceed now with the numerical details

of the algorithm.

The basic Newton method is an iterative process (steepest descent algorithm),

where at every iteration n, the Newton step is added to the current minimum point
12



estimation. In the case of the damped Newton method, a step size ∆t multiplies the

step direction dn (below, when we return to the variational case, the step direction is

obtained from solving Equation (3.9)). For the simple case of functions, we have [5]:

Damped Newton Algorithm

1. Choose a starting point x0 ∈ domain(f)

2. Repeat n=0,1,2,...

3. Compute Newton step dn = −[Hessianf(xn)]−1∇f(xn)

4. Choose ∆t by standard backtracking line search

5. Update xn+1 = xn + ∆tdn

6. Until ‖∇f(xn+1)‖ is sufficiently small.

The iterative algorithm that we use in this study is an extended version of this

dumped Newton method. It is based on the work of Steinhaug [18], where the New-

ton method is solved subject to the trust-region constraint. The trust-region ∆ is

determined at every iteration (see below), and the calculation of the Newton step

dn is performed by the truncated conjugate gradient algorithm with trust-region.

Whenever we encounter a negative Hessian, then we move to the boundary of the

trust-region. Steinhaug proved that with this approach, the quadratic sequence of

the Taylor expansion of real-valued functions,

Qn := f(xn)+ < ∇f(xn) | dn > +
1
2
< Hessianf(xn)dn | dn >,

is strictly decreasing, and

lim inf
n→∞

‖∇f(xn)‖ = 0.

13



In this paper we extend the algorithm of [18] to the variational framework, with

the proposed generalized inner product (we use standard finite difference schemes

to evaluate numerical derivatives). In the variational setting, the Newton step at

iteration n is denoted by ψn (and is obtained by solving Equation (3.9)). In the

following variational trust-region algorithm, we calculate the Newton step and update

the trust region ∆n at every iteration. The computation of ψn is performed using

the truncated conjugate algorithm with trust region ∆n.

Variational Trust-Region Algorithm

1. Initialize f0, ∆0 = ∆̄ � 1, 0 < ε� 1, 0 ≤ α2 < α1 < 1, γ2 < 1 ≤ γ1.

2. Repeat n=0,1,2,...

3. Solve (3.9) by the truncated conjugate gradient algorithm with

trust-region ∆n, obtaining the direction ψn.

4. Choose ∆t by standard backtracking line search [5].

5. Set

ρn :=
F(fn + ∆tψn)−F(fn)

m(∆tψn)
.

6. If ρn > α2, then fn+1 := fn + ∆tψn, otherwise fn+1 := fn.

7. If ρn > α1, then ∆n+1 := min(γ1‖ψn‖L, ∆̄), otherwise ∆n+1 := γ2‖ψn‖L.

8. Until (||fn+1 − fn||L < ε||fn||L).

Step 3 of the Variational Trust-Region Algorithm is the calculation of

the Newton step ψn as the solution of Equation (3.9) by the conjugate gradient

method. The following Truncated Conjugate Gradient Algorithm with

Trust-Region is a detailed description of this stage. In the cases where the Hessian
14



is not positive definite (line 2 of Truncated Conjugate Gradient Algorithm

with Trust-Region below), or the norm of ψ exceeds the trust region ∆n (line 5 of

the algorithm), we recalculate ψn such that ‖ψn‖L = ∆n (project to the boundary

of the trust region). The Hessian at fn is denoted as Hfn
and it has the structure of

the matrix in Equation (3.3).

Truncated Conjugate Gradient Algorithm with Trust-Region

1. Initialize ψ0 := 0, r0 := −L (∇fF(fn)) , v0 := −r0, i := 0, ξ � 1,

MaxLoops>1.

2. if < vi |Hfn
vi >L ≤ 0 goto 11.

3. αi :=< ri|ri >L / < vi |Hfn vi >L.

4. ψi+1 := ψi + αivi.

5. if ‖ψi+1‖L ≥ ∆n goto 11.

6. ri+1 := ri − αiHfn vi.

7. if ‖ri+1‖L / ‖r0‖L ≤ ξ or i ≥ MaxLoops set ψn = ψi+1 and terminate.

8. βi :=< ri+1|ri+1 >L / < ri|ri >L.

9. vi+1 := ri+1 + βivi.

10. Set i := i+ 1 and goto 2.

11. Compute τ > 0 such that ψn = ψi + τvi satisfies ‖ψn‖L = ∆n and

terminate.

While estimating the minimizers of functionals in the variational setting, as was

explained in Section 2, there are several necessary conditions to attain a relative mini-

mum. Whenever the Legendre or Jacobi conditions are not satisfied (Lemma 1), there

is no guarantee for the second variation to be positive definite, and we therefore do

not necessarily converge towards a minimum point. The suggested method alleviates
15



this difficulty by using the trust-region constraint, such that the solution is projected

to the boundary of the trust-region in the cases where the second variation is not pos-

itive definite. This method has additional computational efficiency advantages, while

calculating the Newton step ψn in the conjugate gradient method, the algorithm ter-

minates whenever the norm of ψn exceeds the trust region. In the next two sections

we demonstrate the proposed method with two different cost functionals relevant in

image processing. We show that in addition to the above advantages of the proposed

algorithm, the selection of the operator L plays a significant role in the optimization

process.

4. Geodesic Active Contours. As a first example, we address the classical

geodesic active contours framework for image segmentation. In this framework, a

contour is evolved, via the minimization of a geometric energy, toward the boundaries

of the objects of interest [6,16,22]. This is the main problem that was addressed in [19]

via a modified gradient descent flow with Sobolev norm. Here we show that following

the Newton framework developed in Section 3, further significant improvements are

obtained, both at the computational efficiency and quality of results levels.

Let u(x) : R2 → R+ denotes the observed image where we are interested in

detecting objects. The deforming contour is implicitly represented by the zero level

set of a function φ(x) : Ω ⊂ R2 → R [14]. As an example, we define the following

energy (see [7]):6

F1(φ, c1, c2) :=
∫

Ω

λ1(u− c1)2H(φ) + λ2(u− c2)2 (1−H(φ))

+ g (|∇u|) δ(φ) |∇(φ)| dx,

(4.1)

6Here we use the standard level-set notation φ instead of f in the generic functional structure
F =

∫
Ω I(x, f(x),∇f(x))dx.
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where

g(|∇u|) =
µ

1 + |∇u|2/λ
+ ν,

µ, ν, λ, λ1, λ2 ∈ R+, c1, c2 ∈ R, H(·) is the heaviside function, and δ(z) = d
dzH(z)

is the Dirac delta function in the sense of distributions. The goal is to minimize F1

with respect to φ, c1 (the average gray value inside the object of interest), and c2

(the average grey value of the background), obtaining the desired contour (object

boundary) by the zero level set of φ.

Following Chan and Vese, [7], the heaviside function is approximated as (0 < ε�

1)

Hε(x) =
1
2

(
1 +

2
π

arctan
(x
ε

))
,

and

δε(x) =
1
π

ε

ε2 + x2
.

The functional (4.1) is alternately optimized between c1, c2 and φ. The scalars c1 and

c2 are easily computed by

c1 =

∫
Ω
uH(φn)dx∫

Ω
H(φn)dx

, c2 =

∫
Ω
u(1−H(φn))dx∫

Ω
(1−H(φn))dx

,

where φn denotes the level set function at iteration n. The first variation with respect
17



to φ is

< ∇φF1 | ψ >=
∫

Ω

δε(φ)
[
λ1(u− c1)2 − λ2(u− c2)2 −∇ ·

(
g
∇φ
|∇φ|

)]
ψ dx.

Thus, the gradient at iteration n is

∇φF1(φn) = δε(φ)
[
λ1(u− c1)2 − λ2(u− c2)2 −∇ ·

(
g
∇φn

|∇φn|

)]
. (4.2)

The Hessian Hφ, which is the second variation matrix of the quadratic form (3.3),

is given by

Hφ =


δ′′ε (φ)

[
λ1(f − c1)2 − λ2(f − c2)2 + g|∇φ|

] gδ′
ε(φ)φx

|∇φ|
gδ′

ε(φ)φy

|∇φ|

gδ′
ε(φ)φx

|∇φ| 0 0

gδ′
ε(φ)φy

|∇φ| 0 0



+


0 0 0

0 R11 R12

0 R21 R22

 ,

(4.3)

where the matrix R := Rij (i, j = 1, 2) takes the form

R =
1

|∇φ|3/2

 gδε(φ)φ2
y −gδε(φ)φxφy

−gδε(φ)φxφy gδε(φ)φ2
x

 . (4.4)

The matrix R is the vectorial version of the function R(x) as was previously addressed

in the Legendre condition (Section 2, Lemma 1). This matrix is clearly indefinite,

and therefore the Legendre condition is not satisfied. Thus, by Lemma 1, we can not

guarantee that the second variation is positive definite. Using the proposed algorithm,
18



whenever a negative Hessian (second variation) is encountered, the solution is moved

to the boundary of the trust-region and the minimization becomes well-possed.

The above first and second variations of the geodesic active contour functional are

used in the calculation of the Newton step in the suggested variational trust-region

algorithm as introduced in Section 3. The Newton step ψn, is determined by means

of the Truncated Conjugate Gradient algorithm with Trust-Region, where

the gradient ∇φF1(φn) is given by Equation (4.2) and the Hessian Hφn
is calculated

according to equations (4.3) and (4.4) at φ = φn.

Due to intrinsic noise in real data, using the standard L2 inner product in these

first and second variations results in a noisy evolving level set function, both in the

case of the classical gradient descent method and the case of the classical Newton

method. This is due to the high (noisy) gradients caused by the noise, and the fact

that the geodesic (geometric) active contour functional is minimized along prominent

gradients. A much more promising result was obtained using the Sobolev gradient

descent flow [19], and this is further improved with the here proposed generalized

Newton method.

For the here introduced generalized Newton method, the new inner product is

designed with the smoothing operator Ls, which is a convolution with a Gaussian

kernel hσ of variance σ,

< u | v >Ls
:=< hσ ∗ u | v > .

Theorem 1. The operator Ls defined as the convolution with a Gaussian of

width σ, Lsu := hσ ∗ u, is self-adjoint and positive definite.

Proof. See appendix A.
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This operation smoothes the level set function φ in the generalized Newton

method and reduces high perturbations. The obtained results are improved even

when compared to the Sobolev gradient descent method, see below, with the addi-

tional advantage of computational efficiency.

In the following examples, the convergence criteria was set to
∫
|H(φn) −

H(φn+1|) dx < 10. To make a fair comparison, the standard Newton method (L2) was

performed subject to the trust-region constraint as well. We show that despite this

regularization, the generalized Newton method (Ls with trust-region) yields better

experimental results.

The first example, Fig. 4.1, presents a synthetic shapes image with additive Gaus-

sian noise of 5.36 dB SNR. Here µ = 2, ν = 2, λ = 0.007, λ1 = λ2 = 0.007, and the

standard deviation of the smoothing kernel hσ was set to σ = 1.5. The level set

function was initialized as an arbitrary cone.

In the dancer example, Figure 4.2, we added a Gaussian noise with 18.21 dB

SNR. Parameters were set to µ = 6.5, ν = 5.5, λ = 0.5, λ1 = λ2 = 0.5, and σ = 1.

Using Sobolev gradient descent yields good but non-accurate segmentation (Figure 4.3

(a)-(d)). The Newton method with trust-region results are similar to those of the

generalized Newton method, although the latter one is cleaner (Figure 4.3 (e),(f)).

As we explained earlier, the trust-region constraint stabilizes the solution even though

the Hessian is not positive definite. In this specific example, the generalized Newton

method with the smoothing norm did not significantly outperformed the standard

Newton method with trust-region. Nevertheless, In the next two examples we will see

that the smoothing norm does make a difference in the segmentation results.

In the third example we segmented the letters of an old newspaper (Figure 4.4).

The image is naturally degraded by film-grain noise and the segmentation in this case
20



(a) - Standard gradient descent (b) - Standard Newton

(c) - Sobolev gradient descent (d) Proposed Newton with Ls

Fig. 4.1. Segmentation by geodesic active contours. (a) Classical gradient descent method. (b)
Newton method with trust-region. (c) Gradient descent with the Sobolev norm [19]. (d) Generalized
Newton method with a smoothing operator Ls. The red curves indicate the obtained segmentation.

is very challenging. The parameters were set to µ = 5, ν = 5, λ = 0.1, λ1 = λ2 = 0.5,

and σ = 0.8. The segmentation results are shown in Figure 4.5. Gradient descent and

Newton methods both yield very noisy segmentation results. The segmentation using

the generalized Newton method is cleaner (see the letters UL), and more accurate

than the Sobolev gradient descent result. This can be noticed in the little subtitle

(Figure 4.5 (e),(f)).

In the last example we segment an ultrasound image which is known to be a

very difficult test (leading techniques for segmenting ultrasound data via geometric

active contours add shape priors). Since the image is very noisy, we increased the
21



(a) - Standard gradient descent (b) - Standard Newton

(c) - Sobolev gradient descent (d) Proposed Newton with Ls

Fig. 4.2. Segmentation by geodesic active contours. (a) Classical gradient descent method. (b)
Newton method with trust-region. (c) Gradient descent with the Sobolev norm [19]. (d) Generalized
Newton method with a smoothing operator Ls. The red curves indicate the obtained segmentation.

smoothing kernel standard deviation to σ = 6. The rest of the parameters were set

to µ = 3, ν = 0, λ = 1, and λ1, λ2 = 1. As can be seen in Figure 4.6, the effect of

the smoothing norm is very significant, even when compared to the Sobolev gradient

descent method.

In addition to the improved segmentation results by using the generalized Newton

method, the computational efficiency of the algorithm has to be considered as well.

We present in Table 4.1 the running time for the tested methods. The program was

implemented with the MATLAB environment on a 2Ghz PC. Except for the small

image of artificial shapes example, which is relatively an easy one, significant difference

in running time can be observed between Newton-like methods and gradient descent-

like methods. The generalized Newton method is a little bit slower than the classical
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(a) - Sobolev GD (c)- Sobolev GD (e) - Newton

(b) - Newton with Ls (d) - Newton with Ls (f) - Newton with Ls

Fig. 4.3. Zoomed regions of the geodesic active contours segmentation. The top row shows
the outcome of the Sobolev gradient descent method (a),(c) and the standard Newton method with
trust-region (e). The bottom row shows the outcome of the proposed generalized Newton method
using the Ls operator.

Fig. 4.4. Old newspaper naturally degraded by film-grain noise. The red circle is the initial
active contour.

Newton one because of the convolution operator in the norm calculations.

5. Image Deblurring. In the next example of our generalized Newton method,

we look at the variant of the Mumford-shah regularizer for color images deblurring [2,

3, 12,13,17]:

F2(fc, v) :=
1
2

∫
Ω

(h ∗ fc − gc)2dx+ β

∫
Ω

v2‖∇f‖dx+ α

∫
Ω

(
ε|∇v|2 +

(v − 1)2

4ε

)
dx,

(5.1)
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(a) - Standard gradient descent (b) - Standard Newton

(c) - Sobolev gradient descent (d) Proposed Newton with Ls

(e) - Sobolev gradient descent (zoom) (f) Proposed Newton with Ls (zoom)

Fig. 4.5. Segmentation by geodesic active contours. (a) Classical gradient descent method. (b)
Newton method with trust-region. (c) Gradient descent with the Sobolev norm [19]. (d) Generalized
Newton method with a smoothing operator Ls. (e) Gradient descent with the Sobolev norm [19] -
zoomed region. (f) Generalized Newton method with a smoothing operator Ls - zoomed region.

where α, β, ε ∈ R+, and c ∈ {R,G,B}. The observed (blurred) vectorial image is

denoted by g, h is the (known) blur kernel, and f is the (unknown) clean vectorial

image. The auxiliary scalar function v(x) represents the edges - it is close to 1 in the

smooth parts of the image and close to 0 near the edges. (g, f, v are all defined on

Ω ⊂ R2.) The magnitude of the vectorial gradient is given by the Frobenius norm,

‖∇f‖ =
√ ∑

c∈{R,G,B}

(fc
x1

)2 + (fc
x2

)2.
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(a) - Standard gradient descent (b) - Standard Newton

(c) - Sobolev gradient descent (d) Proposed Newton with Ls

Fig. 4.6. Segmentation by geodesic active contours. (a) Classical gradient descent method. (b)
Newton method with trust-region. (c) Gradient descent with the Sobolev norm [19]. (d) Generalized
Newton method with a smoothing operator Ls. The red curves indicate the obtained segmentation.

image size Newton with Ls Newton gradient descent Sobolev gradient descent

shapes 187× 216 2.05 1.61 1.96 1.66
dancer 535× 341 10.6 8.28 18.79 25.56

newspaper 801× 480 24.67 15.6 42.8 92.39
ultrasound 315× 335 5.47 4.56 41.9 63.04

Table 4.1
Running time [secs] of the geodesic active contours algorithm with different optimization meth-

ods.

The cost functional depends on the variables fc, c ∈ {R,G,B} and v (with the

corresponding variations ψc and η), where the optimization process is performed al-

ternately. To make the functional differentiable with respect to f , the L1 norm ‖∇f‖
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is replaced by the modified L1 norm
√
‖∇f‖2 + µ, µ � 1. Thus, the first variation

with respect to v is given by

< ∇vF2 | η >=
∫

Ω

[
2βv

√
‖∇f‖2 + µ+ α

v − 1
2ε

− 2εα∇2v

]
η dx, (5.2)

and the first variation with respect to fc is

< ∇fcF2 | ψc >=
∫

Ω

[
(h ∗ fc − gc) ∗ h(−x)− α∇ ·

(
v2∇fc√
‖∇f‖2 + µ

)]
ψc dx. (5.3)

The gradient at iteration n is therefore

∇fcF2(fc
n) = (h ∗ fc

n − gc) ∗ h(−x)− α∇ ·

(
v2

n∇fc
n√

‖∇fn‖2 + µ

)
.

After discretization by a standard finite difference scheme, the integrand of (5.2)

can be represented in matrix form, Av = B, where A is sparse. As a result, the

optimization with respect to v is effectively performed via the Generalized Minimal

Residual algorithm (MATLAB: gmres). We used the proposed generalized Newton

method only for the optimization of fc. The Hessian is given by

Hfc =


h(x) ∗ h(−x)∗ 0 0

0 0 0

0 0 0

+


0 0 0

0 R11 R12

0 R21 R22

 , (5.4)

where R := Rij (i, j = 1, 2) takes the form

R =

 βv2 ‖∇f‖2+µ−(fc
x)2

(‖∇f‖2+µ)3/2 −βv2 fc
xfc

y

(‖∇f‖2+µ)3/2

−βv2 fc
xfc

y

(‖∇f‖+µ)3/2 βv2 ‖∇f‖2+µ−(fc
y)2

(‖∇f‖2+µ)3/2

 . (5.5)
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Like in the previous functional, the matrix R is indefinite, and therefore the

Legendre condition, and in turn the necessary condition of positive definite Hessian

are not satisfied here as well. The proposed algorithm is therefore valuable by the

stabilizing property of the trust-region constraint. In addition, the deblurring process

is known to be an ill-posed inverse problem, and as the numerical simulations show,

standard Newton methods result in poor restoration results. Significant improvement

is accomplished using a variant of the Sobolev norm

< u | v >H := λ1

∫
Ω

P (x) [u(x) · v(x)] dx+ λ2

∫
Ω

∇u(x) · ∇v(x)dx, P (x) ≥ 0,

where P (x) : Ω → R and λ1, λ2 ∈ R+. This norm leads to the Hamiltonian operator

LH = λ1P (x)− λ2∇2.

Theorem 2. The Hamiltonian operator LH = λ1P (x)− λ2∇2 with P (x) ≥ 0 is

self-adjoint and positive definite.

Proof. See appendix B.

This is the operator we now use, instead of the classical L2, for the proposed

generalized Newton method for addressing the variational debluring problem. In the

first experiment, Figure 5.1, the blurred 220× 250 dog image is degraded by an out-

of-focus kernel. Further amount of synthetic blur with a pill-box kernel of radius

2.4 was added in order to increase the blur effect for ease of visualization and to

make the problem even more challenging. Debluring was performed with 3 different

methods. The parameters of (5.1) were set to β = 0.01, α = 10−8, and ε = 10−3.

The recovered image using the classical Newton method, with added trust-region, is

shown in (c). Poor restoration was obtained in this case. The proposed generalized

Newton method with the smoothing norm Ls is shown in (d). As the smoothing
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(a) - Blurred (b) - Newton with LH

(c) - Standard Newton (d) - Newton with Ls

Fig. 5.1. Deblurring of the dog image with different Newton-like methods. (a) Blurred image.
(b) Recovered image using trust-region Newton with Hamiltonian norm. (c) Recovered image us-
ing standard trust-region Newton method. (d) Recovered image using trust-region Newton with a
smoothing norm.

kernel is increased, the more blurred is the recovered image. This can be explained

by the fact that smoothing the incremental image ψn prevents the desired sharpening

operation. Better results, (b), are achieved using the proposed Hamiltonian operator

LHn = λ1(1− vn(x))2 − λ2∇2, (5.6)

where λ1 = 1, λ2 = 24, and vn(x) is the edge indicator function calculated at iteration

n. The idea behind the selection of this operator is that, unlike the uniform L2 norm

used in the classical Newton method, here we restrict the inner product to the image

edges. The contribution of the first term of (5.6) is due to the presence of edges,
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(a) - Blurred (b) - Newton with LH

(c) - Standard Newton (d) - Newton with Ls

Fig. 5.2. Deblurring of the clown image with different Newton-like methods. (a) Blurred image.
(b) Recovered image using trust-region Newton with Hamiltonian adaptive norm. (c) Recovered
image using standard trust-region Newton method. (d) Recovered image using trust-region Newton
with a smoothing norm.

while the Laplacian operator amplifies high gradients. In addition, the operator is

adaptively updated at each iteration as the edge function v(x) gets more accurate.

This shows the additional flexibility of our proposed method, the inner product can

be adapted to the problem at hand.

In the second example, Figure 5.2, the 330 × 291 clown image was additionally

blurred by an out-of-focus kernel of radius 1.5. Like in the previous example, the

generalized Newton method with the Hamiltonian operator yields the best results

(note for example the nose, eyes, and hair). The parameters set were selected as in

the dog example.
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6. Discussion. In this work we have extended the classical Newton method by

using different inner products in the variational framework, extending the gradient-

descent work in [8, 19] to the more efficient optimization framework provided by

Newton-type methods. The experimental results show the advantage of the method

in computational efficiency and noisy data performance. The selection of the most ap-

propriate inner product associated to a particular functional is still an interesting open

problem for future research. One might pre-analyze the cost functional and/or the

given data, and design an inner product which would yield optimal results. Another

research direction may incorporate non-flat manifolds instead of Euclidean spaces

while benefiting from the efficiency and flexibility of the generalized Newton method.

Appendix A.

Theorem 1. The operator Ls defined as the convolution with a Gaussian of

width σ, Lsu = hσ ∗ u, is self-adjoint and positive definite.

Proof. Let H be a convolution operator, i.e., Hu(x) = h(x) ∗ u(x), where x ∈ R2.

Its adjoint operator H∗ is defined by < v,Hu >=< H∗v, u >. Here,

< H∗v, u >=< v,Hu > =
∫

R2
v · (h ∗ u)dx =

∫
R2

[h(−x) ∗ v(x)] · u(x)dx.

Hence, H∗v(x) = h(−x) ∗ v(x). In the case of a Gaussian kernel h(x) = hσ(x) =

hσ(−x) = h(−x), and therefore the operator is self adjoint.

Let û(ξ) and ĥ(ξ) be the Fourier transforms of u(x) and hσ(x) respectively, and

let û∗(ξ), ĥ∗(ξ) be their complex conjugates. For a real function u : Ω → R, û(−ξ) =

û∗(ξ),

< u,Lsu >=
∫

Ω

u(x)[hσ(x) ∗ u(x)]dx =
[
û(ξ) ∗

(
ĥ(ξ)û(ξ)

)]
ξ=0

. (A.1)
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Substituting the convolution operator yields

< u,Lsu > =
[∫

R2
û(ξ − ξ′)ĥ(ξ′)û(ξ′)dξ′

]
ξ=0

=
∫

R2
û(−ξ′)û(ξ′)ĥ(ξ′)dξ′

=
∫

R2
û∗(ξ′)û(ξ′)ĥ(ξ′)dξ′ =

∫
R2
|û(ξ′)|2ĥ(ξ′)dξ′ > 0

for all Gaussian kernels hσ and functions u that are not identically zero, which proves

that Ls is positive definite.

Appendix B.

Theorem 2. The Hamiltonian operator LH = λ1P (x)− λ2∇2 with P (x) ≥ 0 is

self-adjoint and positive definite.

Proof. We first show that the operator is self-adjoint. Using integration by parts

and Neumann boundary conditions,

< v,LHu >=λ1

∫
Ω

vP (x)udx− λ2

∫
Ω

v∇2udx

=λ1

∫
Ω

uP (x)vdx+ λ2

∫
Ω

∇v · ∇udx

=λ1

∫
Ω

uP (x)vdx− λ2

∫
Ω

u∇2vdx =< LHv, u >,

and the operator is self-adjoint.

We proceed to show that LH is positive definite:

< u,LHu >= λ1

∫
Ω

u2P (x)dx− λ2

∫
Ω

u∇2udx = λ1

∫
Ω

u2P (x)dx+ λ2

∫
Ω

|∇u|2dx > 0.
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