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3D Reconstruction from a Single Image 
Diego Rother and Guillermo Sapiro 

Abstract— A probabilistic framework for 3D object reconstruction from a single image is introduced in this work. First, a 

probabilistic generative model to represent the distribution of mass of a class of objects in 3D space, namely a 3D shape prior, 

is presented. Next, following the Beer-Lambert law in optics, a framework to translate these 3D probabilities into the 

corresponding 2D probabilities in the camera plane is developed. Exploiting this framework to encode prior knowledge about the 

class and to project it to 2D, the problem of 3D reconstruction from a single image is casted as a statistical inference problem in 

graphical models, where actual observations in the single image are naturally integrated with 3D prior knowledge of the class. 

The reconstruction is obtained by running modified belief propagation in this graphical model, and in some cases, optimal 

solutions are guaranteed. The proposed modification allows the exact computation of the messages to pass in quasi-linear time, 

a significant improvement over the exponential time complexity of general implementations. The presentation of the proposed 

framework is complemented with evaluation of the experimental results obtained for the important class of “walking people,” 

demonstrating the accuracy of the approach for 3D reconstruction, localization and volume estimation. 

Index Terms— Belief propagation, graphical models, 3D reconstruction, single image scene analysis, volumetric statistical 

image representations.  

——————————      —————————— 

1 INTRODUCTION

t is common for human subjects to perceive three di-
mensional (3D) objects when presented with two di-

mensional (2D) images alone, by relying on prior know-
ledge about the world and the objects involved. Ma-
chines, on the other hand, still perform poorly on this 
task. This paper addresses this problem of 3D reconstruc-
tion of an opaque object, from a single image, by exploit-
ing prior knowledge about the class of the object being 
reconstructed. This prior knowledge is encoded in what 
we call a 3D shape prior (or 3D prior, for short): a structure 
that encodes the probability that a given portion of 3D 
space, relative to a reference position on the ground, is 
occupied by an object of the given class, when an object of 
that class is placed at the reference position. The 3D re-
construction is the result of the interplay between the 
prior knowledge and the background probability com-
puted from a single input image using a background 
model. No other cues from the image, such as colors, self-
shading, or texture gradients, are used. 

Figure 1 illustrates the intuition behind 3D priors (a 
formal description is postponed until Section 3). Four 
members of the class “vases” have been observed. The 3D 
prior for this class is learned by: 1) defining a bounding 
box and discretizing it into voxels; 2) placing this box at 
the position where each object is standing; 1 and 3) com-
puting, for each voxel, the fraction of observed instances 
of the class that contain the voxel. These voxel fractions, 
or occupancy probabilities, constitute the 3D shape prior, 
a generative model for the objects of the given class.  

3D priors can be used to represent classes of diverse sol-
ids.2 Variation within a class can be produced by the evo-
lution of a solid‟s shape (as in the case of a person walk-

 

1 Throughout this article, to “place the box at a position x” means to 
“set the box in the scene, resting on the floor, with the center of its lower 
face on top of position x.” Similarly, when an “object is standing at x,” we 
mean that “its center of mass is vertically above x.” 

2 The definitions for the word “solid” relevant in this context are: 1) a 
three dimensional shape; and 2) having three dimensions. 

ing) and/or simply by the inclusion in the class of differ-
ent rigid objects (as the vases in Figure 1). In this article, 
the exposition and examples are restricted to the impor-
tant class of “walking people,” however other classes can 
be handled analogously; the 3D prior is what changes, the 
proposed probabilistic inference framework remains the 
same. 

Armed with the 3D prior of a class, we can answer 
questions of the kind: “if an object of the class is standing 
at position x, what is the probability that voxel y (defined 
with respect to x) will be occupied by the object?” This is 
the kind of critical question that needs to be addressed in 
common reconstruction problems, when such reconstruc-
tion cannot be carried out using the information provided 
by the actual observations alone. It is also possible, with 
this prior, to answer another related question: “given that 
the set of pixels Z in an image are known to be occupied, 
what is the probability that an object of the studied class 
is standing at x?” This kind of question often arises in the 
context of model-based tracking and localization, and is 
related to the quality of the fit between the class model 
and the observations. Our overall goal in this work is to 
“understand” the observed 3D space with sufficient accu-
racy to address important tasks such as scene learning (as 
in [1]), pose estimation, localization, navigation, counting, 
and model-based tracking, in addition to 3D reconstruc-
tion. The application of 3D priors to address some of 
these problems is described in Section 5. 

Using the 3D priors formulation, the reconstruction 
problem is framed as a statistical inference problem in 
graphical models. A graphical model that relates the (3D) 
voxel states (the output of the system), the pixel observa-
tions (the input), and the 3D prior (the prior knowledge), 
is defined to make inferences about the 3D structure of 
the unknown object. In doing so, a law necessary to 
project 3D probabilities into the 2D image plane, and hav-

xxxx-xxxx/0x/$xx.00 © 200x IEEE 
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ing the desired mathematical properties, is postulated by 
analogy with the Beer-Lambert law in optics. The graphi-
cal model defined constitutes a natural framework to in-
tegrate prior 3D information with actual 2D observations 
(the image). Inference is very efficiently performed by 
running a modified instance of belief propagation, and in 
some cases, optimal solutions are guaranteed. The pro-
posed modifications allow, in this case, the computation 
of the messages to pass in quasi-linear time, a significant 
improvement over the exponential time complexity of 
general implementations. 

The remainder of this paper is organized as follows. 
Section 2 places the current work in the context of prior 
relevant work, discussing important connections. Sections 
3 and 4 introduce the components of the proposed graph-
ical model, and the efficient algorithms to make infe-
rences on it, respectively. Section 5 presents experimental 
results obtained with the proposed framework, and Sec-
tion 6 concludes with a discussion of the key contribu-
tions and directions for future research. 

2 PRIOR WORK 

Three dimensional reconstruction from images, unders-
tood in the broadest sense, is arguably one of the most 
studied problems in the area of computer vision, as at-
tested by the diversity of names in use to refer to different 
instances of this problem, and by the vast number of pub-
lications addressing them. To organize (part of) this cor-
pus, here we look at three dimensions of the problem: 1) 
the amount/type of input received; 2) the generality of 
the output representation; and 3) the complexity of the 
prior information available.  

The amount of input information received depends 
(mainly) on the number of input views. Different in-

stances of the problem range from multi- to single-view 
reconstruction. Multi-view reconstruction (e.g., [2], [3], [4], 
[5]) uses information from two or more views (often sig-
nificantly more than two) of the object or scene, while 
single-view reconstruction (e.g., [6], [7], [8], [9], [10]), at the 
opposite end, uses information from only a single view. 
Stereo reconstruction (reviewed in [11]) is a special case of 
multi-view reconstruction, which is sufficiently important 
to deserve a name of its own. In this case, two cameras, 
often placed close together with respect to the object, are 
used. 

The second dimension of the 3D reconstruction problem 
is the generality of the objects that can be represented. 
This dimension ranges from representations that are gen-
eral enough to characterize any object (general representa-
tions), to specific representations that are better suited to 
represent objects from one particular class (specific repre-
sentations). There are two main general representations: 
volumetric and surface based. Volumetric representations 
typically discretize a volume containing the whole object 
into voxels, and estimate the occupancy of the voxels that 
best fit the input image/s according to some metric (see 
for example [2], [3] for a review). Surface-based represen-
tations (see for example [4], [5], and references therein) 
build a mesh (or point cloud or parametric) representa-
tion of the object‟s visual hull by computing the intersec-
tion of the viewing cones associated with the object‟s ob-
served silhouettes.  

Specific representations are particular to one class of ob-
jects, and many have been defined in the context of mod-
el-based tracking, or pose estimation, in addition to re-
construction. For the class of “walking people” in particu-
lar, many models have been proposed (see [12] for a sur-
vey), such as articulated bodies ( [7], [8], [9], [10], [13]), 
generalized cylinders [14], silhouettes ( [15], [16]), and 
models capable of producing (at a higher computational 
cost) visually appealing reconstructions ( [17], [18]). Some 
of these models are not limited to representing “walking 
people,” but can represent other classes (e.g., “horses” as 
shown in [7]). Articulated bodies, modeling the different 
degrees of freedom of the human body components, are 
among the most popular 3D representation for the class 
of “walking people” [12]. 

By limiting what can actually be represented, specific 
representations condition the reconstruction. If the object 
being reconstructed can be properly encoded in the spe-
cific representation, in general it can be reconstructed 
with less actual input (i.e., fewer images). However, if the 
object cannot be accurately handled by the specific repre-
sentation (e.g., trying to reconstruct a mountain with an 
articulated model), then evidently the output of the re-
construction will not be an accurate representation of the 
object (it simply cannot be), and often results in hallucina-
tions (the model is found where it is not present). In con-
trast, general representations able to represent any object 
at any desired (but predefined) approximation quality, 
are less informative, and in general require more informa-
tion in order to reconstruct a known class object with the 
same quality. A clear relationship exists between these 
two dimensions defined above. Algorithms receiving in-

Figure 1: The idea of the 3D shape prior, here represented in 2D 
for illustration purposes. If a new vase (whose shape is unknown) 
is located on the yellow cross, what is the probability that a given 
voxel will be occupied by it? This probability constitutes the 3D 
(2D in the figure) prior and is represented in grayscale (white is 0, 
black is 1) in the middle bounding box. This prior is computed 
from the sample of known vases shown surrounding the middle 
box. The bounding boxes (in green) enclose both the prior and 
the samples. The position of all voxels in a box is defined relative 
to the reference position of the box (indicated with the cross). 
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put from several views do not necessarily need to rely on 
a priori information during the reconstruction, and there-
fore are able to reconstruct more general objects. In gen-
eral, multi-view reconstruction is solved using general 
representations (volumetric or surface based), and no or 
little prior knowledge (as for example in [2], [3], [4], [5], 
[19], [20], [21]). On the other hand, specific models are 
used to reconstruct objects when only one or two views 
are available, which by themselves do not provide 
enough information for a good reconstruction (e.g., [6], 
[7], [8], [9], [10], [15], [14]).  

In addition to (or instead of) constraining the set of ob-
jects that can be actually reconstructed, a probability den-
sity (or energy) can be defined on the space of objects that 
can be represented. This probability density, also known 
as a prior, can be used to discriminate between two feasi-
ble reconstructions that explain the input when one is 
known to be more likely than the other. This prior is the 
third dimension we use to classify reconstruction ap-
proaches. It is related to the generality of the reconstruc-
tion, but it is less “drastic” in the sense that reconstruc-
tions are not completely forbidden but rather discou-
raged. Priors have been designed, for example, to reward 
smoothness in volumetric reconstructions [19], planarity 
of faces and similarity of angles and lengths in surface-
based reconstructions (to reconstruct polyhedra) [6], 
smoothness of evenly spreading curves in space (to re-
construct grasses) [6], and viability of joint angles and 
movements in articulated models [9]. An advantage of 
defining a prior on the reconstructions, compared with 
the strategy of constraining the representation space (as in 
specific representations), is that this prior can be automat-
ically learned from training data for particular classes, 
without having to “redesign” the representation for each 
particular new class. 

The framework proposed in this work can now be 
placed in the coordinate system just defined. A general 
volumetric representation, generally used in multi-view 
settings, is used in this case to reconstruct a 3D volume 
from a single view. This volumetric representation is 
augmented by defining a (3D) prior on the possible re-
constructions, learned from training data for a particular 
class. In this coordinate system, the work by Snow et al. 
[19] is perhaps the closest, since it uses a volumetric re-
presentation and a prior on possible reconstructions. 
However the prior used by Snow et al. simply rewards 
smoothness and has no further information about the 
object class itself, as 3D priors do. An additional differ-
ence is that Snow et al. use data from multiple views. The-
reby, to the best of our knowledge, our work is the first 
one that is located in this important corner of this “three 
dimensional cube” defined by the amount/type of input, 
the generality of the 3D representation, and the richness 
of the reconstruction prior.  

The 3D prior framework here introduced is related to 
contour-based approaches (e.g., [22]), in the sense that it 
only relies on the distribution of mass in space and not on 
the appearance “inside the silhouette.”3 Therefore, as 

 

3 Except to distinguish foreground from background.  

those approaches, it is less sensitive to camouflage or 
changes in color produced by lighting or shadows. For 
this reason, they are complementary to other 3D object 
models that rely on the appearance “inside the silhouette” 
(e.g., [23] and [24]). Unlike contour-based models howev-
er, 3D priors “live” in 3D (i.e., points in the 3D prior have 
a specific corresponding 3D position in the world), and 
therefore can be used for 3D reconstruction, integrating 
camera matrix or other 3D information (e.g., the con-
straint that objects do not occupy the same space at the 
same time). 

Some articulated body models do “live” in 3D (e.g., [8], 
[9], [10]), and therefore can be used to recover simple 3D 
reconstructions from a single view (sometimes referred as 
pose estimation). In contrast with our approach, these re-
constructions are mainly skeletons, thin or thick, and 
cannot (and do not intend to) naturally address the recon-
struction of clothes, backpacks, or other accessories. Arti-
culated bodies perform pose estimation by solving the 
assignment problem, i.e., by establishing which pixels 
correspond to what body parts. However, if only the 3D 
reconstruction is required (not the assignment of body 
parts to pixels), the 3D priors framework provides this 
information without explicitly solving the assignment 
problem. This is a significant conceptual difference be-
tween the two frameworks. 

The present work is possibly most related to the work 
by Franco and Boyer [20], since both define a probabilistic 
graphical model that relates an occupancy grid to the ob-
served images. However their work differs from ours in a 
number of very significant aspects: 1) Franco and Boyer 
use multi-view information, while we use information 
from a single view/camera; 2) they use a uniform prior, 
while we define a (learned) class specific 3D prior, neces-
sary to provide the information not available in the single 
view; 3) the projection model used to compute a probabil-
ity in the 2D image from the 3D occupancy probability is 
radically different (see Section 3.3); and 4) the inference 
algorithms, acting on very different graphical models, are 
significantly different (see Section 4.2). 

 After introducing the proposed framework, in Section 
4.3 we further discuss connections with other prior work. 

3 THE GRAPHICAL MODEL 

This section presents the key components and variables 
of the proposed 3D inference framework, together with 
the proposed statistical graphical model that describes the 
relationships among them. A representative part of this 
graphical model is shown as a factor graph in Figure 2. 
Factor graphs, [25], are graphical constructions to 
represent the product of functions of several variables. 
There are two kinds of entities in a factor graph: variable 
nodes (represented with circles in the figure), and factor 
nodes (represented with squares in the figure). Each vari-
able node corresponds to a variable in the system, and 
each factor node corresponds to a factor in the product of 
functions. A connection is established between a variable 
node and a factor node if and only if the corresponding 
factor function contains the corresponding variable. Con-
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nections are not allowed between variable nodes or be-
tween factor nodes; factor graphs are bipartite.  

There are three kinds of variables in our system (Figure 
2): the input variables that are the colors (or appearance 
in general) of the pixels in the single input image (in level 
6), the output variables that are the states (“empty or “oc-
cupied”) of the voxels (in level 2), and the hidden va-
riables that represent the states of the pixels (in level 4).4 
In addition to these core variables, there are in our system 
three kinds of factors, defining the probabilities of the 
variables immediately “below” them, possibly condi-
tioned on the variables right “above” them. 

Causality is depicted flowing downwards in the graph, 
in other words, the color of a pixel depends on the state of 
the pixel, which in turn depends on the states of the vox-
els “above” it. On the other hand, current information 
flows upwards (red arrows in Figure 2), from the input 
(the pixel colors) to the output (the voxel states), where it 
is integrated with the prior knowledge flowing down-
wards. The following sections describe each of the levels 
in this graph in more detail. 

3.1 The 3D Shape Priors 

As mentioned above, data from a single view is not 
enough to recover full 3D structure, and it has to be sup-
plemented, e.g., with prior knowledge.5 In this work, the 
prior knowledge is encoded in the entity that we call a 3D 

 

4 All subsequent mentions of “levels” refer to the levels in Figure 2. 
5 In some special cases, like flat objects or solids of revolution, it is in-

deed possible to reconstruct an object from just a single view. In these 
cases, the knowledge of the object‟s class membership, i.e., knowing that 
the object belongs to the class of “flat objects” or “solids of revolution,” 
constitutes the prior knowledge and is essential for its reconstruction. 

Shape Prior. In this section we extend the models that 
were introduced in [1] to provide this needed extra in-
formation, leading to the reconstruction of an object of a 
known class from a single view. 

As mentioned in Section 1 and illustrated in Figure 1, 
3D priors keep track of the distribution of mass in space, 
with respect to a reference position in the ground, 𝜒, for 
the members of a given class. It is assumed throughout 
this work that all objects of the class are completely opa-
que, i.e., the background cannot be seen through any part 
of the objects. In addition, we only consider 
bounded/finite objects. Therefore, there exists an (imagi-
nary) 3D bounding box large enough to contain each one of 
the objects in the class. One last assumption about the 
objects in the class is that they are characterized by a sin-
gle “size” parameter, 𝜌. In other words, this means that 
the length/height and width/height ratios of all the ob-
jects in the class are approximately constant; their size, 
however, is variable. The validity of this assumption evi-
dently depends on the specifics of the class and is partial-
ly accurate for the class of objects that we test in this ar-
ticle (i.e., walking people). Nevertheless, this first order 
approximation works reasonably well and is not funda-
mentally indispensable in the proposed framework; addi-
tional “size” parameters can be added without substan-
tively altering the framework. 

Note in Figure 1 that the bounding boxes are all regis-
tered with the objects they contain, standing in the same 
place (indicated with a cross in the figure), and having 
roughly the same height. In 3D, registration requires fix-
ing (or estimating) an additional parameter, namely the 
rotation of the bounding box around the (vertical) z-axis, 
𝜃. As will become clear in Section 3.2, the registration pa-
rameters (𝜒, 𝜌, and 𝜃) that align all the sample objects of 
the class with the bounding box are a necessary input to 
correctly learn the prior. In Section 5.4 we describe how, 
having already learned the prior, these parameters will be 
unknown and will be automatically estimated as part of 
the reconstruction process. 

The bounding box is divided into equally sized cubes, 
named voxels (Figure 1). We model these voxels as inde-
pendent Bernoulli random variables, 𝑉𝑖 , with two possible 
occupancy states: empty (0) or occupied (1). These variables 
are depicted in level 2 (Figure 2). 

The parameters associated with the distributions of 
these Bernoulli random variables (their success rate, or a 
priori occupancy probability in this context), are not uniform 
and have to be learned (this is explained in Section 3.2). 
𝑃 𝑉𝑖 = 1  is the probability that the voxel is occupied, and 
𝑃 𝑉𝑖 = 0 =  1 − 𝑃 𝑉𝑖 = 1   is the probability that it is 
empty. The occupancy probabilities (or just “occupan-
cies”, for short) of voxels in areas of the bounding box 
that are consistently part of the objects of the class (e.g., 
voxels close to the vertical at the center of the bounding 
boxes in Figure 1), have values close to 1; occupancies of 
voxels that are never, or very infrequently, occupied by 
an instance of the class (e.g., voxels close to the left and 
right borders of the bounding boxes in Figure 1), have 
values close to zero (this resembles the concept of “mat-
ting” [26]). The 3D prior (in level 1) is a three dimensional 

Figure 2:  Factor graph for a visual ray, its corresponding pixel, 
and the voxels it intersects.  A factor graph, [25], has a variable 
node (represented as a circle) for each variable, and a factor node 
(represented as a square) for each factor in the joint probability 
expression of the system. Factor nodes are connected to the vari-
able nodes corresponding to the variables that appear in the fac-
tor. Red arrows indicate the direction of the messages passed 
along each link. Observed variables are shaded. 
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array (or tensor), the same size (in voxels) as the bound-
ing box, in which each element contains the a priori occu-
pancy of the corresponding voxel Bernoulli variable. 

This leads to a generative model of order zero that as-
signs the probability, 

 𝑃 𝑉1 , … , 𝑉𝑀 =  𝑃 𝑉𝑖 
𝑀
𝑖=1 , (1) 

to each of the 2𝑀  possible voxel configurations (solids) 
that can be “generated” by the model. There is one factor 
in (1) for each voxel variable, and therefore each variable 
node in level 2 is connected to a single factor node in level 
1 (again, see Figure 2). 

The assumption of voxel independence, that allows to 
factorize (1), also considerably reduces the size of the 
model and, by avoiding loops in the resulting graphical 
model, it simplifies the inference (more on this in Section 
4.1). It is possible to relax this assumption without intro-
ducing loops in the graph, by splitting a class into sub-
classes (e.g., the class of “walking people” can be split 
into the subclasses “right leg in front,” “left leg up,” “left 
leg in front,” and “right leg up”). By doing so, voxels be-
come only conditionally independent on each other (con-
ditioned on the subclass label), while important depen-
dencies between them are introduced (this is exploited in 
the experiments reported in Section 5.4). In the case of the 
class “walking people,” the introduced dependencies 
provide information of the kind “if the right foot is in 
front, then the whole right leg must be in front.” The price 
to pay for the additional complexity is an increase in the 
computational time and the number of model parameters, 
proportional to the number of subclasses. 

We now describe how to learn this zero order 3D prior. 

3.2 Learning the 3D priors 

In [1], we introduced a simple and inexpensive method 
to accurately learn 3D priors using a single camera and 
the Radon transform. While we could certainly use this 
method in the work here presented (the proposed 3D in-
ference framework is of course independent of how the 
3D prior was actually learned), we use an alternative ap-
proach described next.  

To learn the 3D priors we can use a multi-view recon-
struction algorithm, in a multi-camera setup, to obtain 
solids that are then registered and averaged to obtain the 
3D prior (this multi-view/camera is only done off-line for 
learning the 3D priors, our inference framework uses a 
single view/image at the time of reconstruction). A basic 
multi-camera method has the following key steps. First, a 
collection of solids are acquired in the multi-camera setup 
(e.g., as in [19]). Then, the solids are registered with re-
spect to the bounding box. Hence, as mentioned in Sec-
tion 3.1, the position 𝜒, size 𝜌, and orientation 𝜃 of each 
solid must be determined. The position and size of a solid 
are easily recovered as the vertical projection in the floor 
of the solid‟s center of mass and its height, respectively. 
The orientation can be obtained in a number of ways, de-
pending on the specifics of the class. One alternative is to 
compute for each solid the orientation that maximizes the 
intersection with a reference solid in the sample (e.g., the 

first one). A different alternative is presented in Section 
5.1 for the particular class of “walking people.” Next, 
each voxel in the bounding box (now registered with the 
solid) is given the label 0 or 1, depending on the fraction 
of it inside the solid. Finally, the 3D prior is obtained as 
the average, for each voxel, of the labels observed in the 
voxel. 

In this method, since 3D reconstruction precedes time 
averaging, synchronization between views is essential, 
making this approach more complex and expensive than 
the one introduced in [1]. On the other hand, having a 3D 
reconstruction for each time can be used to learn higher 
order priors (i.e., priors whose voxels are not indepen-
dent) or temporal priors (i.e., priors whose voxels depend 
on the state of voxels at different times). By contrast, in 
the single-camera method, the information necessary to 
recover these higher order priors is lost. 

 Since datasets containing 3D reconstructions for the 
class “walking people” are available [27], we adopted the 
multi-camera method, skipping the first step (Section 5.1). 

3.3 Projecting 3D priors 

We now describe the “image formation” process when 
3D priors are involved, in other words, how the 3D occu-
pancies associated with voxels in space, are projected to 
yield the 2D occupancies associated with pixels in the 
image plane (Figure 3). The occupancy state of pixel 𝑗 (in 
level 4), denoted as 𝑄𝑗 , is a random variable that can be in 
one of two possible states: “empty” or “background” 
(𝑄𝑗 = 0), or “occupied” or “foreground” (𝑄𝑗 = 1). In this 
section we derive an expression for the occupancy of a 
pixel, 𝑃 𝑄𝑗  𝑉1 , … , 𝑉𝑛 , given the occupancy states, 𝑉1 , … , 𝑉𝑛 , 
of the voxels in its line of sight.6 

 There are a number of issues that the “image forma-
tion” process has to be able to handle: 
1 When a voxel is partially occupied by an object, two 

rays traversing this voxel may end up with different 
outcomes, i.e., one ray may “see” it empty while the 
other sees it occupied. This phenomenon is most 
common in the voxels along the boundary of the ob-
ject (e.g., in voxels along the borders of the vases in 
Figure 1).  

 

6 Voxels in the line of sight of a pixel are all those voxels that are inter-
sected by the ray passing through the camera center and the center of the 
pixel. The terms “line of sight” and “ray” are used interchangeably. Since 
there is exactly one line of sight (or ray) per pixel, we often refer to the 
pixel and the voxels in its line of sight, or simply, its voxels. 

Figure 3:  2D analog of the projection process. A ray 𝑅1, originat-
ing at the camera center 𝐶, passes through its corresponding pixel 
𝑄1 in the image plane (in blue) and intersects the voxels in its line 
of sight (𝑉4 , 𝑉5, 𝑉8 and 𝑉9) inside the 2D bounding box (in green). 
The relationship among these particular variables is depicted in 
the factor graph of Figure 2.  

𝑉4 𝑉6  

𝑉1 𝑉2  𝑉3  

𝑉7  𝑉8  𝑉9 

𝑉5  

𝐶 

𝑅1 

𝑄1  
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2 Noise in the camera sensors or mistakes in the back-
ground probability computation (to be explained in 
Section 3.4) may disguise the state of a background 
pixel as foreground (or vice versa), wrongly suggest-
ing that the voxels in the pixel‟s line of sight must be 
occupied. 

These facts suggest that a stochastic (rather than a de-
terministic) relation exists between a voxel and the pixels 
where it is seen. To take these facts into account we define 
two constants, 𝜀0 and 𝜀1 (0 < 𝜀0, 𝜀1 ≪ 1), such that a pixel 
with a single voxel in its line of sight has a low occupan-
cy, 𝜀0, if the voxel is empty, and a high occupancy, 
 1 − 𝜀1 , otherwise. It is important to note that both con-
stants are strictly greater than zero, so that the state of the 
pixel cannot be certain in either state of the voxel. Section 
5.2 presents a criterion to select values for 𝜀0 and 𝜀1 based 
on empirical considerations. 

An intuitive interpretation of these constants that will 
turn out to be useful later is to consider that each voxel 
can be made of two different “materials” having different 
“optical” properties. 7 An opaque material fills the occu-
pied voxels and “blocks light” with probability  1 − 𝜀1 , 
and a translucent material fills the empty voxels and 
“blocks light” with probability 𝜀0. According to this in-
terpretation, the 3D prior determines the probability of 
getting “opaque” when drawing samples from each vox-
el. 

In this model then, the complement of the occupancy of 
a pixel 𝑄𝑗 , given the states of the voxels 𝑉1 , ⋯ , 𝑉𝑛  in its line 
of sight, 𝑃 𝑄𝑗 = 0 𝑉1 , ⋯ , 𝑉𝑛 , is equivalent to the probabili-
ty that “light,” emitted from the camera center 𝐶 and tra-
versing through the pixel and its voxels, reaches the 
background (see Figure 3),  

 𝑃 𝑄𝑗 = 0 𝑉1, ⋯ , 𝑉𝑛 =  Ε 𝑉𝑖 

𝑛

𝑖=1

, (2) 

where Ε 0 = 1 − 𝜀0 and Ε 1 = 𝜀1. 
The simple expression in (2) for the pixel occupancy is 

inadequate in (at least) two respects. First, the probability 
that a ray is blocked by a voxel must depend on the 
length traveled by the ray inside the voxel, so that the 
voxel has a small effect on rays that it slightly intersects 
and a larger effect on rays that it considerably intersects. 
This is critical to resolve ambiguities (break ties) when the 
outcomes of two rays that intersect the same voxel are 
different. 

Second, in this expression the pixel‟s occupancy de-
pends on the resolution of the bounding box chosen by 
the user, when in fact it should be independent of this 
arbitrary choice. Consider two different resolutions of the 
bounding box (but the same actual bounding box size): 
2x2x2 and 1x1x1 voxels. If the box is completely full (i.e., 
all voxels are “occupied”), in the first resolution the (pix-
el) occupancy computed (using (2)) along a ray that inter-
sect two voxels is  1 − 𝜀1

2 , whereas, in the second resolu-
tion the occupancy computed along the same ray is 

 

7 Bear in mind that we are not dealing with the optical properties of the 
objects being reconstructed, these objects are completely opaque. Rather, 
the properties of the 3D priors for the class of the objects, are being con-
sidered. 

 1 − 𝜀1 . This discrepancy proves that the “image” of the 
box under this image formation process is not invariant to 
the box‟s resolution, and furthermore, it is arbitrary. 

To address these problems we propose a new image 
formation formulation that, by exploiting the interpreta-
tion of priors as “material”, borrows from the Beer-
Lambert law used in optics. The Beer-Lambert law, [28], 
relates the absorption of light by a slab of material to the 
thickness of the slab and the optical properties of the ma-
terial. Consider a slab of thickness 𝑑𝑟 of a material charac-
terized by the absorption constant 𝛼. Assuming that the 
number 𝑑𝐼 of photons absorbed by the slab, per thickness 
𝑑𝑟, is proportional to both the number 𝐼 of incident pho-
tons on the slab and the constant 𝛼 of the material, it 
holds that 

 
𝑑𝐼

𝑑𝑟
= −𝐼. 𝛼.  

Rearrangement and integration subject to the boundary 
condition 𝐼 = 𝐼0  at 𝑟 = 0, yields the Beer-Lambert law, 

 ln
𝐼

𝐼0

= −𝛼. 𝑟 ⇒ 𝑃 =
𝐼

𝐼0

= 𝑒−𝛼.𝑟  , (3) 

where 𝑃 is the probability that a photon passes through 
the material and 𝑟 is the distance traveled by the photon 
inside the material. We make the opaque and translucent 
materials defined above behave according to the Beer-
Lambert law, with different absorption constants. Let the 
translucent material‟s constant be 𝛼0 ≜ − ln 1 − 𝜀0 , so 
that the probability that a light ray passes through a 
translucent material slab of unit thickness is 𝑒−𝛼0 = 1 −
𝜀0 ≈ 1, and let the opaque material‟s constant be 𝛼1 ≜
− ln 𝜀1 , so that the probability that a light ray passes 
through an opaque material slab of unit thickness is 
𝑒−𝛼1 = 𝜀1 ≈ 0. 

From (3), it follows that the new relationship between 
pixel 𝑄𝑗 ‟s occupancy and the occupancy of the voxels in 
its line of sight is, 

 𝑃 𝑄𝑗 = 0 𝑉1, ⋯ , 𝑉𝑛 =  𝑒−α 𝑉𝑖 .𝑟𝑗𝑖

𝑛

𝑖=1

=  Ε 𝑉𝑖 
𝑟𝑗𝑖

𝑛

𝑖=1

, (4) 

where α 𝑉𝑖  is the absorption constant corresponding to 
voxel 𝑉𝑖  (α 0 = 𝛼0, and α 1 = 𝛼1), and 𝑟𝑗𝑖  is the length 
traveled by the ray 𝑅𝑗  inside of voxel 𝑉𝑖 . These distances 
depend on the camera matrix considered, the position of 
the box, and its resolution (i.e., the number of voxels in 
the box along each dimension).8 Equation (4) defines the 
relationship between the variables connected to the factor 
node in level 3 (the voxel occupancies above and the pixel 
occupancies below). This is the “image formation” law 
that we adopt, while Franco and Boyer, [20], adopted a 
law closer to (2). 

Let us consider again the case of the same ray intersect-
ing the same box at two different resolutions. Let us as-
sume that the ray intersects two voxels in the first resolu-
tion (with intersection lengths ℓ1 and ℓ2 inside the vox-
els), and a single voxels in the second resolution (with 

 

8 It is still necessary to use the resolution of the box in the calculations, 
but the answer (the “image” of the box) is independent of it. 
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length ℓ = ℓ1 + ℓ2, since the ray and the boxes are the 
same). The occupancy computed according to (4) in the 
first resolution is now  1 − 𝑒−𝛼1 . ℓ1+ℓ2  , which is equal to 
that obtained in the second resolution. This example de-
monstrates that with this image formation process, (4), it 
is now possible to change the resolution of the prior (e.g., 
to obtain a reconstruction at a higher resolution), without 
affecting the “image” of the box. Furthermore, it is even 
possible to mix voxels of different sizes (e.g., using oc-
trees a la [29]) to improve or accelerate the reconstruction. 
The “optical properties” are now intrinsic to each point in 
space and not to each voxel (as they are if using the more 
standard model (2)), permitting not only changes in reso-
lution, but also in the box‟s size, and even in its geometry. 
The importance of this is further exposed in Section 4.1. 
The increase in the computational complexity of (4) vs. 
(2), on the other hand, is negligible. 

3.4 Color Models 

A pixel occupancy, 𝑄𝑗 , is not directly observed, rather 
what is observed is the color (or attributes in general) in 
its corresponding pixel, 𝐶𝑗  (in level 6). These pixel colors 
in the single input image are the only observable va-
riables in the system, and the actual pixel occupancies 
have to be inferred from them. 

 Pixel colors are considered continuous random va-
riables in the RGB color space. The probability density of 
the colors expected at the pixel 𝐶𝑗  depend on the pixel‟s 
occupancy state 𝑄𝑗 . If 𝑄𝑗 = 0 (i.e., the pixel is part of the 
background), then 𝐶𝑗  is considered normally distributed, 
with mean and variance estimated individually for each 
background pixel (see below). If 𝑄𝑗 = 1 (i.e., the pixel is 
part of the foreground), then 𝐶𝑗  is considered uniformly 
distributed in the color space (the least possible informa-
tive prior for the foreground is assumed). Then, the func-
tion for the factor node in level 5 is, 

 𝑃 𝐶𝑗  𝑄𝑗  ∼  
𝑁 𝜇𝑗 , 𝜎𝑗

2 𝑖𝑓 𝑄𝑗 = 0

𝑈  0,1 3 𝑖𝑓 𝑄𝑗 = 1
 .  

The parameters  𝜇𝑗   and  𝜎𝑗
2  of the background distri-

butions are computed using the pixel-wise standard esti-
mators of the mean and variance of a normal distribution, 
respectively, from a video of the empty scene. More so-
phisticated background models could be used for this 
part (e.g., [30]), and further improvements are expected. 

In this formulation, unlike most “shape from silhouette” 
formulations, it is not necessary to make a hard decision 
about the state of the pixel (background/foreground) 
beforehand; the uncertainty on the pixel occupancy is 
transmitted to the level 3 where it is integrated with the a 
priori knowledge of the object (through the 3D prior), to 
make a voxel assignment decision. 

3.5 Putting the Pieces Together 

We have now described the relationships between the 
variables in a single ray: the color of the pixel in the ray, 
its occupancy, and the voxels in its line of sight. These 
constitute a small subset of all the variables in the system, 
and are represented in the (sub) graph of Figure 2. For 
each image pixel whose corresponding ray intersects the 

object‟s bounding box, there is a subgraph with the same 
structure as this one. The union of all these subgraphs 
constitutes the general factor graph where the inference is 
carried out (more on this in Section 4.1).  

Implicit in the construction of this graph are the box 
registration parameters (position 𝜒, size 𝜌, and orientation 
𝜃) introduced in Section 3.1. For each joint assignment of 
these registration parameters, a different correspondence 
between pixels and voxels is established, leading to a dif-
ferent general graph. Depending on the application, these 
parameters could be known (e.g., could be a user input) 
or unknown; in Section 5.4 we present both cases. 

By simple inspection of the relationships expressed in 
the graph in Figure 2, it follows that the joint distribution 
of the variables is, 

 
𝑃𝜒 ,𝜌,𝜃 𝑉1, … , 𝑉𝑀 , 𝑄1 , … , 𝑄𝑁 , 𝐶1, … , 𝐶𝑁 =

 𝑃 𝐶𝑗  𝑄𝑗  
𝑁
𝑗 =1 .  𝑃  𝑄𝑗  𝑃𝑎 𝑄𝑗   

𝑁
𝑗 =1 .  𝑃 𝑉𝑖 

𝑀
𝑖=1 , 

(5) 

where 𝑃𝑎 𝑄𝑗   is the set of parents of 𝑄𝑗  (i.e., the set of 
voxels in its line of sight), and the registration parameters 
were included as subscripts as a reminder that this prob-
ability (and the general factor graph) is computed for a 
particular set of values of these parameters. Our goal now 
can be restated as to find the 3D reconstruction (i.e., 
𝑉1 , … , 𝑉𝑀 ) and (incidentally) the reprojection (i.e., 
𝑄1 , … , 𝑄𝑁) that maximizes the conditional probability, 

 𝑃𝜒 ,𝜌,𝜃 𝑉1, … , 𝑉𝑀 , 𝑄1 , … , 𝑄𝑁 𝐶1, … , 𝐶𝑁 , (6) 

given a possible value for the registration parameters. The 
registration parameters can be estimated as the set of val-
ues  𝜒, 𝜌, 𝜃  inside the registration parameter space, that 
maximizes (6). Below we describe a procedure to effi-
ciently maximize (6). 

4 INFERENCE 

The algorithms that can be used to make inferences in 
the general factor graph defined in Section 3.5, together 
with their computational complexity and the optimality 
guarantees of the computed solutions, strongly depend 
on the graph topology, in particular, on the existence of 
loops in this graph. This is what we investigate next. In 
subsequent sections, one of these inference algorithms is 
described in detail and then, having presented the pro-
posed framework, it is compared with other work. 

4.1 Graph Topology 

As mentioned in Section 3.5, the general graph of the 
proposed system is the union of the subgraphs corres-
ponding to the individual rays (through the image pixels) 
intersecting the bounding box. In an ideal situation, 
where no more than one ray intersects a voxel (Figure 4a), 
the general graph consist of a disjoint union of trees (a 
forest). In this case, exact and efficient inference can be 
carried out by the Sum-Product or Max-Sum algorithms 
[25], two instances of belief propagation. 

As conditions start to deviate from this ideal situation, 
links between subgraphs appear (Figure 4b). Neverthe-
less, belief propagation can still be applied to find exact 
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solutions as long as there are no loops (note that the 
graph on the left of Figure 4b is a tree rooted at node 4). 
When many voxels are intersected by more than one ray 
(Figure 4c), loops in the graph generally start to appear, 
and weaker optimality guarantees apply [31]. 

The graph topology is then closely related to the num-
ber of rays intersecting the voxels, which in turn is direct-
ly related to the resolution of the input image (recall that, 
by definition, there is one ray per pixel). Halving the reso-
lution of the input image (i.e., downsampling it by two in 
each direction) reduces the number of rays per voxel, on 
average, by four. Lower resolutions provide less rays per 
voxel, implying both less loops in the graph (desirable), 
and (apparently) less “information” about the state of the 
voxel (undesirable). Thus, which input image resolution 
should be used? 

When downsampling the input image (see below how), 
information in the higher resolution rays is not discarded, 
rather it is integrated to yield the lower resolution rays. In 
other words, information from the multiple high resolu-
tion rays that intersect a voxel is summarized in one or a 
few low resolution rays. Information about the voxels is 
not lost, while extra loops that would appear at the higher 
resolution graph are avoided. Therefore, we downsample 
the input image until the average number of rays per 
voxel is in the interval [1,4). Further downsampling 
should be avoided, since it would result in voxels that are 
not intersected by any ray, and so no information is col-
lected from them. In Section 5.3, empirical evidence sup-
porting the prediction that this resolution is optimal is 
presented. 

To downsample an image by two, each pixel at the new 
resolution is computed as the average of the correspond-

ing 2x2 block of pixels at the original resolution. To com-
pute the background probability from the downsampled 
image, the mean colors ( 𝜇𝑗  ) and the variances ( 𝜎𝑗

2 ) at 
the new resolution are required. The mean colors are 
computed by downsampling the mean colors at the origi-
nal resolution using the procedure just described, while 
the new variances are computed, assuming pixel inde-
pendence, as the sum of the variances of the four original 
pixels that compose the new pixel. 

It is always possible to obtain the situation of Figure 4a 
(a loopless graph), and therefore perform exact calcula-
tions on the graph, by defining the bounding box in such 
a way that two of its faces are parallel to the rays and the 
remaining one is perpendicular (it ceases to be a right 
prism, though), and then recomputing the 3D prior inside 
this box. Here again, the image formation process pro-
posed in (4) is essential to translate the prior from the 
original to the modified box, taking into account their 
different geometries. We opted not to pursue this ap-
proach and study the more general case, which is impor-
tant since in the case of higher order priors, the tree struc-
ture is surely lost, and the generality of the study here 
presented is needed. 

An alternative to belief propagation, the junction tree 
algorithm, [32], can always be used for exact inference, 
even in graphs containing loops, which is the case of the 
graphs we encounter in general. In essence, it performs 
belief propagation on a modified graph whose cycles 
have been eliminated. The first step in the construction of 
this modified graph is moralization, or marring the par-
ents of all the nodes. In the graphs we encounter, this 
process would create large cliques, because all the voxels 
in a pixel‟s line of sight are parents of the pixel. Since the 
complexity of the junction tree algorithm grows exponen-
tially with the size of the largest clique in the modified 
graph, the large click size prevents the (efficient) applica-
tion of this algorithm in our case. An alternative that is 
not guaranteed to produce exact solutions, but has pro-
vided excellent results in many cases [33], is loopy belief 
propagation. Loopy max-sum, an instance of loopy belief 
propagation, is the algorithm that we use (and optimize) 
for inference. 

In a tree graph, like the one portrayed in Figure 4b, the 
following finite sequence of messages between levels 
guarantees that the exact global solution will be found: 
1→2; 2→3; 6→5; 5→4; 4→3; and 3→2. Loops in the gener-
al proposed graph appear between levels 2 and 3, and 
hence, if there are loops in the graph, messages between 
these levels (2→3 and 3→2) have to be passed until con-
vergence. Red arrows in Figure 2 show the direction of 
the flow of information in the graph: information from 
the actual image observations flows upwards while prior 
information flows downwards; they meet in the loops 
between levels 2 and 3 where the most time consuming 
part of the inference is carried out. How to optimize this 
inference is the subject of the next section. 

4.2 Inference for 3D Reconstruction 

We now show how to efficiently compute the messages 
that are passed as part of the max-sum algorithm. The 

Figure 4:  Topology of the graph. Only levels 2-4 are shown in the 
graphs on the left. (a) In an ideal situation, different rays from a 
single camera do not intersect the same voxels (right), and the 
general graph is the union of disconnected subgraphs (left), each 
subgraph containing a pixel and its corresponding voxels. (b) The 
subgraphs are now connected but the general graph still does not 
contain cycles. (c) The general graph contains cycles now. 

 

1 2 3 

A 

4 5 6 

B 

7 8 9 

C 

4 6 

1 2 3 

7 8 9 

5 

A 
B 

C 

3 2 6 

A 

9 5 1 

B 

4 8 7 

C 

a) 

b) 

c) 

4 6 

1 2 3 

7 8 9 

5 

A 
B 

C 

4 6 

1 2 3 

7 8 9 

5 

A 
B 

C 

1 2 3 

A 

4 5 6 

B 

7 8 9 

C 



ROTHER AND SAPIRO: 3D RECONSTRUCTION FROM A SINGLE IMAGE 9 

 

max-sum algorithm, [25], is a message passing process 
used to find the joint values of the variables, in this case 
𝑉1 , … , 𝑉𝑀 , that maximize the conditional probability in (6). 
This is a hard reconstruction approach, in the sense that a 
binary decision of the state of each voxel is made. In addi-
tion, the maximum value attained by the probability is 
computed as part of the reconstruction, indicating how 
well the prior adjusts to the current observations (which 
is important, e.g., for object detection). 

The most time consuming step of the loopy max-sum 
algorithm, when applied to our general graph, is to com-
pute the messages that the projection factor nodes send to 
the voxel variable nodes (3→2). The message to send 
along one of these links (say link 1 in Figure 5, the others 
are computed analogously), is computed according to the 
formula [Equation (8.93) in [25]] (variables are defined in 
Figure 5): 

 

𝜇𝑓→𝑣1
 𝑣1 = max

𝑞,𝑣2 ,…,𝑣𝑛

 ln 𝑃 𝑞 𝑣1 , … , 𝑣𝑛 +

𝜇𝑞→𝑓 𝑞 +  𝜇𝑣𝑖→𝑓 𝑣𝑖 

𝑛

𝑖=2

 . 

(7) 

A general implementation of (7) finds the maximum by 
exhaustively computing the value of the expression in 
brackets for every possible state of the remaining 𝑛 va-
riables. Since there are 𝑛 binary variables, this process has 
complexity 𝑂 2𝑛 . In contrast, we show next that, by ex-
ploiting the particular form of (4), this expression can be 
computed in polynomial time. Taking the maximum in 𝑞 
and renaming terms, (7) yields 𝜇𝑓→𝑣1

 𝑣1 = 
max 𝐴0 𝑣1 , 𝐴1 𝑣1  , where 

 
𝐴0 𝑣1 ≜ 𝜇𝑞→𝑓 0 +

max
𝑣2 ,…,𝑣𝑛

 ln 𝑃 𝑞 = 0 𝑣1 , … , 𝑣𝑛 +

 𝜇𝑣𝑖→𝑓 𝑣𝑖 

𝑛

𝑖=2

 , 

(8) 

𝐴1 𝑣1 ≜ 𝜇𝑞→𝑓 1 +

max
𝑣2 ,…,𝑣𝑛

 ln 𝑃 𝑞 = 1 𝑣1 , … , 𝑣𝑛 +

 𝜇𝑣𝑖→𝑓 𝑣𝑖 

𝑛

𝑖=2

 . 

(9) 

 
Substituting (4) into (8), and using the distributive 

property of the max operation with respect to the sum op-
eration, yields a simple 𝑂 𝑛  expression to compute 
𝐴0 𝑣1 : 

 

𝐴0 𝑣1 = 𝜇𝑞→𝑓 0 − 𝛼1 𝑣1 . 𝑟1 +

 max
𝑣𝑖

 𝜇𝑣𝑖→𝑓 𝑣𝑖 − 𝛼𝑖 𝑣𝑖 . 𝑟𝑖 

𝑛

𝑖=2

. 
 

Before deriving an expression for 𝐴1 𝑣1 , note that if 
𝐴0 𝑣1 ≥ 𝜇𝑞→𝑓 1 , then 𝐴1 𝑣1  does not even need to be 
computed; the term in brackets in (9) is always negative 
and therefore 𝐴0 𝑣1 > 𝐴1 𝑣1 . This is the case for every 
pixel that has a high probability of being background 

(remember that if 𝑃 𝑞 = 1 → 0 then 𝜇𝑞→𝑓 1 → −∞), 
which shows that this algorithm gracefully reduces to a 
voxel carving type-algorithm (with the same complexity) 
when processing pixels that, with high confidence, belong 
to the background.  

Messages corresponding to pixels that belong to the fo-
reground, or that belong to the background with low con-
fidence, require the computation of 𝐴1 𝑣1  and demand 
additional work. To compute 𝐴1 𝑣1 , we first derive a 
more convenient expression using the following defini-
tions: 

∆𝛼≜ 𝛼1 − 𝛼0 ∆𝑖≜ 𝜇𝑣𝑖→𝑓 1 − 𝜇𝑣𝑖→𝑓 0  𝑅 ≜  𝑟𝑗𝑖

𝑛

𝑖=1

 

 Substituting (4) into (9) and using these definitions, (9) 
can be rewritten as 

𝐴1 𝑣1 = 𝜇𝑞→𝑓 1 +  𝜇𝑣𝑖→𝑓 0 

𝑛

𝑖=2

+

max
𝑣2 ,…,𝑣𝑛

 ln  1 − 𝑒−𝛼0 .𝑅 . exp  −∆𝛼  𝑣𝑖 . 𝑟𝑖

𝑛

𝑖=1

  +

 ∆𝑖 . 𝑣𝑖

𝑛

𝑖=2

 . 

(10) 

 
Let us now define the function 
 

𝐺𝑍 𝑊, 𝑉 ≜ 𝑊 +

max
 𝑣𝑖 :𝑖∈𝑍 

 ln  1 − 𝑉. exp  −∆𝛼  𝑣𝑖 . 𝑟𝑖

𝑖∈𝑍

  +

 ∆𝑖 . 𝑣𝑖

𝑖∈𝑍

 , 

(11) 

 
where 𝑍 is a set containing the indices of the voxels 
whose state was not yet estimated (initially all of them).  

Using this definition, Equation (10) can be rewritten as, 
 

𝐴1 𝑣1 = 𝜇𝑞→𝑓 1 +  𝜇𝑣𝑖→𝑓 0 

𝑛

𝑖=2

+

𝐺 2,…,𝑛  0, 𝑒−𝛼0 .𝑅−∆𝛼 .𝑣1 .𝑟1  

(12) 

 

Figure 5:  The most time consuming part of the belief propagation 
algorithm in our case: to send a message, 𝜇𝑓→𝑣𝑖

 𝑣𝑖  in red, from a 

projection factor node f (in level 3 of Figure 2) to a voxel variable 
node vi (in level 2). This factor node has already received messag-
es from the pixel occupancy q (in level 4), 𝜇𝑞→𝑓 𝑞  in blue, and 

from the voxels, 𝜇𝑣𝑗 →𝑓 𝑣𝑗   in green. A general implementation 

computes this message in 𝑂 2𝑛  complexity (𝑛 is the number of 
voxels in the line of sight of the pixel), whereas our implementa-

tion has complexity 𝑂 𝑛𝑑 . 
  

 

v1 

v2 

vn 

q f 
L0 

L1 

L2 

Ls 
𝜇𝑞→𝑓 𝑞  

𝜇𝑓→𝑣1
 𝑣1  

𝜇𝑣𝑛 →𝑓 𝑣𝑛  
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An efficient recursive algorithm to compute 𝐺𝑍 𝑊, 𝑉  
exactly is described in Section SM1 of the supplemental 
material. The complexity of this algorithm is 𝑂 𝑛𝑑  where 
𝑛 is the number of voxels in a ray, and 𝑑 is the maximum 
depth explored in the recursion. This depth is not uni-
form for all the messages, and depends on the particular 
class of the prior, the value of the parameters 𝜀0 and 𝜀1, 
and the lengths 𝑟𝑗𝑖  of the rays inside the voxels. In the ex-
periments presented in Section 5.4 on the class of “walk-
ing people,” depths of 1 and 2 were usually observed, in 
the fraction of cases where 𝐴1 had to be computed at all. 
This quasi-linear complexity contrasts with the 𝑂 2𝑛  
complexity of the general standard implementation. 

For completeness, in Section SM2 of the supplemental 
material we show how to efficiently run the sum-product 
algorithm, [25], on the general graph that was derived in 
previous sections, computing each message in 𝑂 1 . This 
algorithm computes a soft reconstruction, in the sense 
that the a posteriori occupancies,  𝑃 𝑉𝑖   𝐶𝑗    𝑖=1

𝑀
, of the 

voxels are obtained, rather than a binary decision on their 
state. Soft reconstruction approaches have been previous-
ly pursued in other works (e.g., [20], [21]). 

This concludes the description of the computationally 
efficient inference for the proposed graphical model. Hav-
ing presented the framework, we now compare it with 
prior works. 

4.3 Relation to Prior Work 

Snow et al. [19] proposed an energy function that is mi-
nimized by solutions to the silhouette intersection prob-
lem. Expressed in our notation, this energy function is, 

 𝐸 𝑉1, … , 𝑉𝑀 =  𝐷 𝑉𝑖 
𝑀
𝑖=1 + 𝜆𝑅 𝑉1, … , 𝑉𝑀 ,  

where 𝑅 ∙  is a smoothness (regularization) term, and 
𝐷 𝑉𝑖  is a function that penalizes occupied voxels outside 
any silhouette and empty voxels inside all the silhouettes 
(this is a standard MRF type of energy). This formulation 
does not consider dependencies between voxels in the 
same ray, ignoring the fact that voxels in a ray “compete” 
to explain the outcome of its common ray (clearing a vox-
el in a foreground ray should increase the likelihood that 
other voxels in the ray are set; “someone has to take re-
sponsibility”). While it can be afforded to ignore this de-
pendency in a multi-view setup, doing so in a single-view 
setup leads to very poor results. 

In our formulation ((4) and levels 2 and 3), the rules of 
conditional independence in Bayesian Nets ( [25], Section 
8.2) dictate (as expected) that voxels in a common ray 
become conditionally dependent once the pixel in the ray 
(i.e., a common descendant of the voxels) is observed. 
This is due to the so called “explaining away” phenome-
non. This dependency leads to a 𝑂 2𝑛  complexity in the 
computation of the messages from the projection nodes to 
the voxels (3→2). Others have noted similar difficulties in 
related formulations (e.g., [20], [21]), but to the best of our 
knowledge, we are the first to provide an exact, yet com-
putationally efficient, solution to this problem (in Section 
4.2 of this article and sections SM1 and SM2 of the sup-
plemental material). 

This concludes the presentation of our framework. We 
now proceed to present some experimental results vali-
dating this framework. 

5 RESULTS 

A dataset containing solids corresponding to 12 people 
walking for hundreds of frames was downloaded from 
[27]. This dataset also contains the original images, from 
five different points of view, used in the 3D reconstruc-
tion of the solids. For our experiments, the dataset is split 
in two: a training dataset containing the solids and images 
of 11 of the 12 people, and a testing dataset containing the 
solids and images of the remaining person. The training 
dataset is used to learn the 3D priors and the parameters 
𝜀0 and 𝜀1, in sections 5.1 and 5.2, while the testing dataset 
is used to select the optimal resolution to use and eva-
luate the approach, in sections 5.3 and 5.4 respectively. 

5.1 Learning 3D Priors for the Class of “Walking 
People” 

Thirty-three sequences in the training dataset, each one 
containing one person (out of eleven) walking for hun-
dreds of frames each, were processed to obtain a 3D prior 
for the class “walking people,” as described in Section 3.2 
(Figure 6a). The size of all the 3D priors learned and used 
in this work is 10x10x20 voxels (20 in the vertical direc-
tion). 

To contemplate dependencies between voxels, as ex-
plained in Section 3.1, the class of “walking people” was 
divided into four subclasses and different 3D priors were 
obtained for each subclass. Each subclass corresponds to a 
different pose, or phase of the walking cycle, namely: 
“right leg in front,” “left leg up,” “left leg in front,” and 
“right leg up”. Figure 6b shows the 3D prior obtained for 
the class “right leg in front.” Additional details on the 
construction of these 3D priors can be found in Section 
SM3 (in the supplemental material). Videos of the classes 
“walking people” and “walking people with right leg in 
front” were included as supplemental material as well. A 
new “registration” parameter 𝜑, in addition to the usual 
𝜒, 𝜌, and 𝜃, is introduced to account for the pose. In the 
following experiments the 3D priors computed for the 
four subclasses were used. 

5.2 Parameter Estimation 

In order to analyze the quality of the results, two meas-
ures are defined for the error between two solids, general-
ly the ground truth solid, 𝑅𝐺𝑇 , and the reconstruction ob-
tained with our proposed framework, 𝑅𝑖 . Since solids 𝑅𝐺𝑇  
and 𝑅𝑖  are dense sets of 3D points, the usual set opera-
tions (e.g., union „∪,‟ intersection „∩,‟ and set difference 
„−‟) are defined on them, as well as the volume measure 
(denoted by  ∙ ). It is desirable that the reconstruction er-
ror, 𝐸𝑅 , penalizes both the omitted and added volume in 
the reconstruction, and also that this error is expressed 
relative to the original volume. Then, the reconstruction 
error is defined as 
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𝐸𝑅 𝑅𝑖 ≜ 100.

 𝑅𝐺𝑇 − 𝑅𝑖 +  𝑅𝑖 − 𝑅𝐺𝑇  

2.  𝑅𝐺𝑇  
=

100.
 𝑅𝐺𝑇  +  𝑅𝑖 − 2.  𝑅𝐺𝑇 ∩ 𝑅𝑖 

2.  𝑅𝐺𝑇  
. 

(13) 

   
There are several points to notice about this definition. 

Firstly, the lowest possible error is zero and it is attained 
only when the reconstructed and ground truth volumes 
are identical. Secondly, this error is not bounded above 
and increases linearly with the added volume, assigning 
unboundedly large values to unboundedly large recon-
structions. Thirdly, when the reconstructed and ground 
truth volumes are approximately equal (which is com-
monly the case), the error reduces to, 

 𝐸𝑅 𝑅𝑖 ≈ 100.  1 −
 𝑅𝐺𝑇 ∩𝑅𝑖 

 𝑅𝐺𝑇  
  ,  

which is the percentage of the original volume that is 
missing in the reconstruction (equal to the excess volume 
in the reconstruction); under this assumption the error 
takes values in the interval  0,100 %.  
  The second quality measure, introduced for complete-
ness, is the percentage increment in reconstructed volume 
(compared with the original volume), 

 𝑉𝑅 𝑅𝑖 ≜ 100.  
 𝑅𝑖  

 𝑅𝐺𝑇  
− 1  . (14) 

Definitions (13) and (14) are used in this section to quanti-
fy the quality of the results. 

In order to fix the two parameters of the framework, 
namely 𝜀0 and 𝜀1, the set of values that minimized differ-
ent error criteria (see below) on the training dataset were 
considered. Each error criterion was computed in a grid 
spanning eight orders of magnitude for each parameter. 

The first criterion tested was minimizing the mean re-
construction error, assuming that all the registration pa-
rameters for each case were known (i.e., using the true 
registration parameters obtained from the true solids, as 
in Section 5.1). Since this error was found to be fairly in-
sensible to the choice of these parameters (a modest 2% 
overall difference, between 36% and 38%), this criterion 
was not adopted. 

The second criterion tested, that was finally adopted, 
consisted on minimizing the mean position error (accord-
ing to the 𝐿2 norm), assuming that all the registration pa-

rameters for each case, except the position, were known.9 
The position was estimated as the one that produced a 
reconstruction with the highest likelihood (6), among all 
positions in a 1m x 1.5m grid around the true position, 
with 25cm of separation between rows and columns. The 
position error in this case, spanned more than one order 
of magnitude (Figure SM3 in the supplemental material). 
The minimum error of 3.6cm was obtained for the pair of 
parameters 𝜀0 = 0.056 and 𝜀1 = 0.178. These values were 
used in all subsequent experiments. 

5.3 Selecting the Optimal Resolution 

It was predicted in Section 4.1 that using an input image 
resolution of more than four rays per voxel (on average), 
would degrade the performance of the inference algo-
rithm by adding unnecessary loops in the system‟s gener-
al graph. This prediction was confirmed experimentally 
(see Table 1 below), by computing the mean reconstruc-
tion error and the mean volume increment on the testing 
dataset for three different resolutions (first column of the 
table). All the registration parameters in each frame were 
assumed to be known. The remaining columns report the 
reconstruction error and volume increment as defined in 
(13) and (14) respectively, and the computation time per 
frame.10 

 

Table 1 

Resolution interval 
(pixels/voxel) 

𝐸𝑅  
(%) 

𝑉𝑅  
(%) 

Time 
(seconds) 

[1, 4) 37.1 -1.8 0.52 

[4, 16) 36.9 -8.1 2.00 

[16, 64) 38.5 -10.2 8.67 

 
Note that the lowest resolution, having 16 times less 

pixels than the highest resolution, still produced a modest 
1.4% improvement in the reconstruction error and an ap-
preciably more precise estimation of the volume (by 
8.4%), in a significantly shorter time. In the comparison 
between the lowest and medium resolutions, the former 
produced a better volume estimation (by 6.3%), and a 
slightly worse reconstruction error (by 0.2%), in one 

 

9 Trying exhaustively all orientations, sizes and poses for each set of 
parameters would have been much more time consuming and is not 
expected to produce better results. 

10 The computation time measured the time that it took to construct the 
graph and run 5 iterations of the max-sum algorithm for one frame (im-
age), on a single core of a 1.8 GHz AMD Turion-64 processor. These pro-
cedures were implemented in C++. 

Figure 6:  Snapshots generated every 60 degrees from the 3D priors of the classes (one per row): (a) “Walking person” and (b) “Walk-
ing person with right leg in front.” 

a) 

b) 
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fourth of the time. Considering these results, the lowest 
resolution was chosen and used in the experiments de-
scribed in the next section. 

5.4 Reconstruction Experiments 

Using the resolution and parameters selected in pre-
vious sections, solids were reconstructed for 21 frames in 
the testing dataset. The solids that produced the 3 lowest 
(frames 590, 610 and 635) and highest (frames 600, 620 
and 640) reconstruction errors are shown in Figure 7. The 
first column in this figure contains the images, the only 
input to the reconstruction algorithm. The second column 
contains images from a different point of view taken syn-
chronously with the images in the first column. These are 
included only for the purpose of evaluating the recon-
struction and were not used by the algorithm. The third 
column are the pixel occupancies that the color model 
assigns to the pixels in the input image, that is, the proba-
bilities “flowing up” in the general graph. The fourth col-
umn contains the pixel occupancies computed by project-
ing the reconstructed solid, these probabilities “flow 
down” in the graph. The fifth and sixth columns contain 
two views of the reconstructed solids from points of view 
close to the points of view in columns 1 and 2, respective-
ly. 

Observe the correctness of the reconstructions, even for 
the frame with the highest reconstruction error (frame 620 
with 𝐸𝑅=48%). It is interesting to understand the source of 
the reconstruction error in this case. Observe in the frame 
that the person is considerably tilted to the left (second 
column), in a direction that hides this fact from the cam-
era used for the reconstruction (first column). The magni-
tude of the tilt, essential for an accurate reconstruction, is 
very hard to judge (even for humans) from the single 
camera used in the reconstruction. Videos of three of 
these reconstructions are included as supplemental ma-
terial. 

Next we study the registration errors (Table 2). Experi-
ments were performed assuming different degrees of un-
certainty (first column of the table), from no unknown 
registration parameters (first row with results), to three 
unknown registration parameters (last row). A set of 
possible values, to use when a parameter is unknown, 
was defined for each parameter, as follows: 

 
𝜒 ∈  −50cm, −25cm, … , 50cm ×

 −75cm, −50cm, … , 75cm  
𝜃 ∈  0°, 22.5°, … , 337.5°  

𝜌 ∈  1.65m, 1.70m, … , 1.85m  
𝜑 ∈  1,2,3,4  

 
The reconstruction (as described in Section 4.2) was per-

formed for each point in a grid defined by the Cartesian 
product of the possible values of the unknown parame-
ters. For each frame, the estimate of the unknown regis-
tration parameters corresponded to the point in the grid 
that returned the highest likelihood, in (6). The errors in 
the estimation were measured using the 𝐿2 norm for 𝜒, 𝜃 
and 𝜌 and the 𝐿0 norm for 𝜑. 

The results of the experiments consisted of the average, 

across 21 frames in the testing dataset, of the following 
errors: reconstruction error (2nd column), volume incre-
ment (3rd column), position error (4th column), pose error 
(5th column), orientation error (6th column), and size error 
(7th column). 

 

Table 2 

Unknown 
registration 
parameters 

𝐸𝑅  
(%) 

𝑉𝑅  
(%) 

𝐸𝜒  
(cm) 

𝐸𝜑  
(%) 

𝐸𝜃  
(º) 

𝐸𝜌  
(cm) 

- 37.1 -1.8 - - - - 

𝜒 37.2 -2.2 6.2 - - - 

𝜑 37.8 -2.2 - 57 - - 

𝜃 37.5 -2.3 - - 45 - 

𝜌 36.4 -7.4 - - - 5.0 

𝜒, 𝜑 37.7 -2.9 8.5 48 - - 

𝜒, 𝜑, 𝜃 38.1 -3.6 12.4 81 65 - 

 
In general and as expected, the volume increase (𝑉𝑅) 

and reconstruction error (𝐸𝑅) slightly increase (in absolute 
value) with the uncertainty. The only exception being the 
case where only the size (𝜌) is unknown, that produced 
the best reconstruction error (even better than the no-
uncertainty case) at the expense of a higher error in the 
volume estimate.  

The position and orientation errors (𝐸𝜒  and 𝐸𝜃 ) also in-
creased with the uncertainty. When the position was the 
only unknown parameter, the position error was half of 
that when two other parameters (𝜑 and 𝜃) were un-
known. In the case of the orientation error, adding two 
other unknown parameters (𝜒 and 𝜑) only increased the 
error by 44%.  

The pose error is comparatively the highest, in one case 
being even worse than pure chance. Part of this error is 
attributable to the fact that some poses are indistinguish-
able from the silhouette alone (there is not enough infor-
mation to determine such poses). Integrating information 
from a few consecutive frames may mitigate this problem. 

6  CONCLUSIONS AND FUTURE WORK 

In this work we introduced a novel entity, the 3D prior, 
to encode the distribution of mass in 3D space of the ob-
jects of a given class. An interpretation equating the 3D 
priors with semitransparent objects was subsequently 
established, and a law to project these entities to the 2D 
image plane was postulated by analogy to the Beer-
Lambert law in optics. This framework readily translates 
into a graphical model that naturally integrates prior in-
formation with actual observations from a single input 
image. It was demonstrated that efficient inference in this 
graphical model is possible, by presenting a novel algo-
rithm to achieve it. It was also demonstrated that optimal 
solutions can be guaranteed under certain conditions, 
which were enunciated. Experimental results demon-
strated the accuracy of the approach for 3D reconstruc-
tion, localization and volume estimation.  

The proposed framework can be extended in a number 
of ways, some of which were already stated above. High-
er order 3D priors (sections 3.1 and 3.2) can be used to 
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improve the reconstruction from a single image. Tempor-
al 3D priors (Section 3.2), by modeling the dynamics of 
the distribution of mass in space, could integrate informa-
tion from multiple (consecutive) frames, further improv-
ing upon single frame reconstruction. Multiscale 3D 
priors (Section 3.3), on the other hand, may further accele-
rate the inference by matching the required level of detail 
with some measure of the reconstruction error.  

Other alternatives to extend this work, which have not 
already been mentioned, include: 1) Handling multiple 
views, or multiple projections of the object that appear in 

the same view (e.g., shadows or reflections). In this case, 
however, loops in the general graph surely appear, and 
the optimality of the solutions found cannot be guaran-
teed. Whether the inference framework proposed will 
actually find good solutions is an open question. 2) Ex-
ploiting the information “inside the silhouette” that is 
currently discarded, for example, by incorporating in the 
3D prior information about the colors that are expected in 
certain voxels (e.g., voxels corresponding to the face or 
hands), or information indicating that some voxels are 
more likely to have similar colors (e.g., the colors in the 

Figure 7: Reconstructions for six 
frames in the testing dataset when 
the registration parameters are 
known. The best and worst three re-
constructions (according to recon-
struction error) are shown in the first 
and last three rows, respectively. The 
bounding boxes were included in all 
images (in red). 
 
1

st
 column: single input image used in 

the reconstruction.  
 
2

nd
 column: an orthogonal view, not 

used in the reconstruction, included 
only for comparison.  
 
3

rd
 column: pixel occupancies com-

puted from the single input image 
using the color model (blue is 0, dark 
red is 1).  
 
4

th
 column: pixel occupancy probabili-

ties predicted by the 3D prior and 
estimated reconstruction.  
 
5

th
 and 6

th
 columns: two views of the 

reconstructed solid, corresponding 
approximately to the views in columns 
1 and 2. 
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voxels of one leg are probably similar to the colors in the 
voxels of the other leg). 

An interesting connection exists between the present 
work and some recent findings in neuroscience. Bryant 
[34] pointed out that many hippocampal and cortical neu-
rons have been observed to possess place fields; these cells 
respond to fixed positions in egocentric (i.e., relative to 
the self‟s coordinate system) or allocentric (i.e., relative to 
the environment‟s coordinate system) space rather than 
specific objects in those positions, indicating the existence 
of specialized place coding neurons. These neurons could 
be playing the role of the voxels in our framework, pro-
viding the basis for a neural-inspired implementation of 
the algorithms we described. This connection deserves 
further investigation. 
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This document contains supplemental information in order to provide additional details, theoretical results, and 

experimental videos. The following videos were included as supplemental material: 

 

PriorWalkingPeople.avi - Video showing the 3D prior for the class “walking people.”  

PriorRightLegFront.avi - Video showing the 3D prior for the class “walking people with their right leg in front.” 

Reconstruction590.avi - Video of the 3D Reconstruction of frame 590. 

Reconstruction600.avi - Video of the 3D Reconstruction of frame 600. 

Reconstruction640.avi - Video of the 3D Reconstruction of frame 640. 

SM1. Computation of 𝑮𝒁 𝑾, 𝑽  

This section proposes an efficient algorithm to compute 𝐺𝑍 𝑊, 𝑉 . This is obtained exploiting the particular form 

of (11) in two ways: 1) using bounds to directly (i.e., without exhaustively computing all the possible values of the 

variables) determine some of the variable states, and 2) defining a recursive expression for (11) that can be 

efficiently computed to determine the state of the remaining variables.  

The state of some variables in (11) can be directly computed, reducing the dimensionality of the state space that 

has to be searched. To see this, let us first define the increment to the term inside the max in (11) produced by 

switching 𝑣𝑘  from 0 to 1, for a particular state 𝒗𝑍−𝑘  of the remaining variables, 

   

 

𝑈𝑍
𝑘 𝒗𝑍−𝑘 ≜ ln  1 − 𝑉. exp  −∆𝛼  𝑣𝑖 . 𝑟𝑖

𝑖∈𝑍,
𝑖≠𝑘

 . e−∆𝛼 .𝑟𝑘 − ln  1 − 𝑉. exp  −∆𝛼  𝑣𝑖 . 𝑟𝑖
𝑖∈𝑍,
𝑖≠𝑘

  + ∆𝑘 . (SM1) 

   

Let us also define the variables 𝑌𝑘
𝑚𝑖𝑛  and 𝑌𝑘

𝑚𝑎𝑥  (𝑘 ∈ 𝑍) as the minimum and maximum possible values of (SM1), 

respectively, for any possible state of the remaining variables, 

 

𝑌𝑘
𝑚𝑖𝑛 ≜ min

𝒗𝑍−𝑘

𝑈𝑍
𝑘 𝒗𝑍−𝑘 

𝑌𝑘
𝑚𝑎𝑥 ≜ max

𝒗𝑍−𝑘

𝑈𝑍
𝑘 𝒗𝑍−𝑘 

 

 

Then, 𝑌𝑘
𝑚𝑖𝑛 ≥ 0 guarantees that 𝑣𝑘  must be set to 1, since any solution that has 𝑣𝑘 = 0 can only be improved by 

“turning on” 𝑣𝑘 . Analogously, 𝑌𝑘
𝑚𝑎𝑥 ≤ 0 guarantees that 𝑣𝑘  must be set to 0, since any solution that has 𝑣𝑘 = 1 can 

only be improved by “turning off” 𝑣𝑘 . The usefulness of 𝑌𝑘
𝑚𝑖𝑛  and 𝑌𝑘

𝑚𝑎𝑥  stem from the fact that they can be directly 

computed, without computing the value of 𝑈𝑍
𝑘 𝒗𝑍−𝑘  for every possible state 𝒗𝑍−𝑘  (using the fact that the function 

ln  
1−𝛽𝑥

1−𝛽
  is strictly increasing in 𝛽 ∈  0,1 , for 𝑥 ∈  0,1 ): 

𝑌𝑘
𝑚𝑎𝑥 = ln  

1 − 𝑉. e−∆𝛼 .𝑟𝑘

1 − 𝑉
 + ∆𝑘

𝑌𝑘
𝑚𝑖𝑛 = ln

 

 
 

1 − 𝑉. exp  −∆𝛼  𝑟𝑖𝑖∈𝑍,
𝑖≠𝑘

 . e−∆𝛼 .𝑟𝑘

1 − 𝑉. exp  −∆𝛼  𝑟𝑖𝑖∈𝑍,
𝑖≠𝑘

 
 

 
 

+ ∆𝑘

 

 

Then, the states of some variables in 𝑍 can be defined by the following rule: 

 

Table SM1 

If 𝑌𝑘
𝑚𝑖𝑛 ≥ 0 Set: 𝑣𝑘 ∶= 1, 𝑊 ∶= 𝑊 + ∆𝑘 , 𝑉 ∶= 𝑉. 𝑒−∆𝛼 .𝑟𝑗𝑘  

and remove 𝑘 from 𝑍. 

Else if 𝑌𝑘
𝑚𝑎𝑥 ≤ 0 Set 𝑣𝑘 ∶= 0 and remove 𝑘 from 𝑍. 

Else 𝑣𝑘  is still unknown, therefore keep 𝑘 in 𝑍. 
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If after applying these rules to all the missing variables, there still exist some variable states that could not be 

estimated (i.e., some voxels fall in the third case of Table SM1), these are estimated efficiently (yet still exactly) by 

using the second strategy, through the recursion described next. 

Note that if one of the voxels (e.g., 𝑣1) is known to be opaque (i.e. 𝑣1 = 1), then the value of the logarithm in 𝐺𝑍  

depends only slightly on the state of the other voxels. Based on this observation, the state space to search can be split 

into subspaces having each one of the unknown coordinates set to one (see Figure SM1), compute the maximum in 

each subspace (recursively), and then combine the partial results to obtain the global result. To guarantee that the 

whole space is searched, the subspace that has all the (remaining) coordinates set to zero also has to be examined. 

The following recursion formalizes this idea (𝑚 ≜  𝑍 ), 
    

 𝐺𝑍 𝑊, 𝑉 = max 𝐺𝑍−𝑧1
 𝑊 + ∆𝑧1

, 𝑉. 𝑒−∆𝛼 .𝑟𝑧1 , … , 𝐺𝑍−𝑧𝑚
 𝑊 + ∆𝑧𝑚

, 𝑉. 𝑒−∆𝛼 .𝑟𝑧𝑚  , 𝐺∅ 𝑊, 𝑉  . (SM2) 

   

At each level of this recursion there is one more state set to 1, compared to the previous level, making the 

logarithm at the current level even more insensitive to the states of the rest of the variables. 

In summary the computation of 𝐺𝑍 𝑊, 𝑉  has two stages: 1) the variables in 𝑍 are checked against the rules in 

Table SM1, and some are estimated directly and removed from 𝑍; 2) the value of 𝐺𝑍  is computed recursively using 

(SM2) and the remaining variables in 𝑍. These two strategies lead to the efficient computation of 𝐺𝑍 𝑊, 𝑉  in 

𝑂 𝑛𝑑  complexity, where 𝑑 is the maximum depth inspected in the recursion, instead of the 𝑂 2𝑛  complexity of 

the general implementation. 

SM2. Soft reconstruction 

We now show how to efficiently run the sum-product algorithm on the general graph derived in sections 3.5 and 

4.1. The sum-product algorithm, [SM1], is a message passing process used to marginalize the voxel variables (one at 

a time) from (6), summing away all other variables. The most time consuming step of the sum-product algorithm, 

when applied to the class of graphs we obtain, is to compute the messages that the projection factor nodes send to 

the voxel variable nodes (3→2). The message to send along one of these links (say link 1 in Figure 5, the others are 

computed analogously), is computed according to the formula [Equation (8.66) in [SM1]]: 

 𝜇𝑓→𝑣1
 𝑣1 =  𝑃 𝑞 𝑣1 , … , 𝑣𝑛 . 𝜇𝑞→𝑓 𝑞 .  𝜇𝑣𝑖→𝑓 𝑣𝑖 

𝑛

𝑖=2𝑞,𝑣2 ,…,𝑣𝑛

, (SM3) 

where 𝑞 is a pixel occupancy variable and 𝑣1 , … , 𝑣𝑛  are the voxels in its ray, 𝑓 is the factor node connecting them, 

and 𝜇𝑥→𝑦  is a message to pass (or that was already passed) from 𝑥 to 𝑦. 

A general implementation that computes the sum in (SM3) by calculating summands for every possible state of 

the 𝑛 variables in the summation has complexity 𝑂 2𝑛 , since there are 𝑛 binary variables. In contrast we show next 

that, by exploiting the particular form of (4), this expression can be computed in constant time. 

Opening the summation in 𝑞, and substituting (4) in (SM3), yields 

 

 1,∗ ,0,∗,∗  

 1, 𝟏, 0,∗,∗   1,∗ ,0, 𝟏,∗   1,∗ ,0,∗, 𝟏   1, 𝟎, 0, 𝟎, 𝟎  

 1,∗ ,0, 𝟏, 1   1, 𝟏, 0,∗ ,1   1, 𝟎, 0, 𝟎, 1  

Figure SM1: An example of how the space of voxel states in a ray is searched efficiently. Each box represents all the states that 
match its label (the asterisks can be either 0 or 1, hence the root box contains 8 configurations). The maximum in the grayed 
boxes can be directly computed using the rules in Table SM1. The rest of the boxes are searched recursively. Numbers fixed last 
appear in bold. 
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𝜇𝑞→𝑓 0   𝑒−α 𝑣𝑖 .𝑟𝑖

𝑛

𝑖=1

.

𝑣2 ,…,𝑣𝑛

 𝜇𝑣𝑖→𝑓 𝑣𝑖 

𝑛

𝑖=2

+ 𝜇𝑞→𝑓 1   1 −  𝑒−α 𝑣𝑖 .𝑟𝑖

𝑛

𝑖=1

 .

𝑣2 ,…,𝑣𝑛

 𝜇𝑣𝑖→𝑓 𝑣𝑖 

𝑛

𝑖=2

. 

 

By rearranging terms and exchanging summation and product wherever possible, we obtain 

 

𝜇𝑞→𝑓 0 . 𝑒−α 𝑣1 .𝑟1 .   𝑒−α 𝑣𝑖 .𝑟𝑖 . 𝜇𝑣𝑖→𝑓 𝑣𝑖 

𝑣𝑖

𝑛

𝑖=2

+ 𝜇𝑞→𝑓 1    𝜇𝑣𝑖→𝑓 𝑣𝑖 

𝑣𝑖

𝑛

𝑖=2

− 𝑒−α 𝑣1 .𝑟1   𝑒−α 𝑣𝑖 .𝑟𝑖 . 𝜇𝑣𝑖→𝑓 𝑣𝑖 

𝑣𝑖

𝑛

𝑖=2

  

 

Using normalized messages (such that  𝜇𝑣𝑖→𝑓 𝑣𝑖 𝑣𝑖
= 1), and defining the auxiliary variables 

 

𝐴𝑗 =   𝑒−α 𝑣𝑖 .𝑟𝑖 . 𝜇𝑣𝑖→𝑓 𝑣𝑖 

𝑣𝑖

𝑛

𝑖=1,
𝑖≠𝑗

, 

the final  expression for the message is 

 𝜇𝑓→𝑣𝑗
 𝑣𝑗  = 𝑒−α 𝑣𝑗  .𝑟𝑗 . 𝐴𝑗  𝜇𝑞→𝑓 0 − 𝜇𝑞→𝑓 1  + 𝜇𝑞→𝑓 1  (SM4) 

The 𝑛 messages from the factor node to the voxel variables can be computed in 𝑂 𝑛  by using (SM4), in other 

words, each message is computed in 𝑂 1 .  

SM3. Details on learning the 3D priors for the class “walking people” 

Each training sequence contains more than a hundred solids, acquired at consecutive time steps. In this situation, 

the person’s walking direction can serve as the orientation parameter (𝜃) needed for the registration. To determine 

the walking direction, the trajectory (i.e., the sequence of positions) was low pass filtered and then differentiated. 

Figure SM2a shows the positions and orientations obtained for each frame. The remaining registration parameters 

Figure SM2:  Registering and classifying the 3D volumes before computing the 3D prior. a) The trajectory of the person (i.e., the 
sequence of its locations) is marked with red circles and the orientations are marked as blue vectors. An example of a registered 
and resampled solid is shown in the center. b & c) The first (b) and second (c) features used to classify the phase of the walking 
cycle. The colors describe the subclass assignment for each volume. See text for details. 

a) b) 

c) 
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were estimated, and the solids normalized with respect to the bounding box, as described in Section 3.2. The center 

of Figure SM2a shows one of these normalized solids. The resulting 3D prior was obtained by averaging these 

normalized solids. 

Instead of averaging all the normalized solids to obtain a single 3D prior, these solids were classified into four 

different categories, and each category was averaged separately to obtain one 3D prior per category. The categories 

correspond to four different phases of the walking cycle, or poses. The normalized solids were classified 

automatically into one of these poses by using two features: 1) the standard deviation of the voxels in the lowest 

quarter of the volume, in the walking direction (see Figure SM2b); and 2) the difference in the number of occupied 

voxels in the lowest quarter of the solid, between the front-right and back-left and those in the front-left and back-

right (see Figure SM2c).  

SM4. Additional figures 
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Figure SM3:  Position error for 
different pairs  𝜀0,  𝜀1  of 
parameters. The pair that produced 
the minimum position error (marked 
with a white ‘o’) was selected. 
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