1. REPORT DATE
25 AUG 1999

2. REPORT TYPE
N/A

3. DATES COVERED
-

4. TITLE AND SUBTITLE
Distributed Acoustic Arrays: Infrastructure Architecture and Performance

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Rockwell Science Center Thousand Oaks, CA

8. PERFORMING ORGANIZATION REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release, distribution unlimited

13. SUPPLEMENTARY NOTES
DARPA, Air-Coupled Acoustic Microsensors Workshop held on August 24 and 25, 1999 in Crystal City, VA., The original document contains color images.

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:
 a. REPORT
 unclassified
 b. ABSTRACT
 unclassified
 c. THIS PAGE
 unclassified

17. LIMITATION OF ABSTRACT
 UU

18. NUMBER OF PAGES
 6

19a. NAME OF RESPONSIBLE PERSON

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18
Distributed Acoustic Arrays: Infrastructure Architecture and Performance

• Concept:
 A large number of sensor “nodes” cooperate. Each node has an acoustic and possibly other sensors. Each node has signal processing capability. Each node is small, lightweight and inexpensive. The nodes interact by wireless communications. The nodes are easily deployed and self-organizing. The nodes cooperate to provide low-power operation (hence longevity) to detect, localize and identify targets.

• Under the DARPA/ATO AWAIRS program, UCLA and the Rockwell Science Center have progressed toward achieving this system concept.
AWAIRS: Adaptive Wireless Arrays for Interactive RSTA for SUO
AWAIRS 1 PROTOTYPE NODE
Distributed Wireless Microsensor Network: Signal Processing Architecture for Low-Power Operation

- Continuous sample, HW filter, threshold compare
- Process single sensor
- Fuse multiple on-board sensors
- Query/corroborate with neighbors
- Fuse features with neighbors
- Beamformation

Alarms may be reported and awaken next layer

Increasing quality (decreasing false alarm rate, increasing detection rate)

cooperative autonomous
Distributed Microsensor Arrays: Wireless Communications Networking

We have developed a prototype system capable of:

- Synchronous streaming data collection from dispersed sensor nodes
 - Star radio topology to base station(s)
 - Each node samples at 1kHz
 - Internode sync within 100 μsec

- Realtime “detection network” where target decisions are derived on-board each node and exchanged with neighbors
 - Extending infrastructure to accommodate dynamic establishment of streaming circuits to support on-line beamformation