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INTRODUCTION

Although ER-positive breast cancers account for 60-70% of breast cancers, 30% of breast cancers are
ER-negative and poorly responsive to traditional therapies (1). Selective estrogen receptor modulators (SERMs)
(such as tamoxifen and raloxifene) and aromatase inhibitors reduce ER-positive breast cancer recurrence by
approximately 50% (2,3). These agents, however, are not effective in treating or preventing ER-negative breast
cancer. Currently, chemotherapy is used to treat ER-negative tumors (4). Such therapy is generally toxic and is
not specifically targeted to ER-negative breast cancer, but instead non-specifically kills rapidly dividing cells.
The only targeted therapy shown to be effective for a subset of ER-negative breast cancer is herceptin, a
monoclonal antibody that only targets those tumors that overexpress the Her2 receptor (4). This information
taken collectively demonstrates that to make additional advances in preventing and treating breast cancer,
effective agents for ER-negative breast cancer must be developed.

It is evident that multiple signal transduction pathways play crucial roles in breast cancer development. The
growth signal sensed by the cell is conveyed to the nucleus through interactions of proteins in series, each one
activating another, through signal transduction pathways. Once the signal is received in the nucleus,
transcription factors activate genes important for cell growth and survival. As was noted earlier, many of these
pathways are understood in ER-positive cancers and have been the targets of small molecule inhibitors that can
interrupt this mitogenic signaling, preventing and treating these cancers. Currently the mechanisms governing
ER-negative breast cancer cell growth are unknown. It is clear that estrogen signaling is not the pathway that
governs the mitogenic pathway, but despite the best efforts of numerous groups, the identification of pathways
critical for ER-negative growth remains elusive. Recent advances in molecular biology have allowed for
breakthroughs in the search for these growth pathways. Genome-wide expression arrays have allowed
researchers to probe expression profiles in all different tissue types, including normal and malignant tissue
(5,6,7). These studies, along with subsequent validation of their results, have led to advances in understanding
breast cancer and have led to better tools for the clinician in evaluating patients with breast cancer. It is now
possible to profile a tumor molecularly and determine what types of therapies will be most effective (8,9,10).
Despite this increasing knowledge, however, it is clear that much work remains to be done.



BODY
1) Research Training Environment

The Breast Center at Baylor College of Medicine (BCM) provides a unique training environment with
multiple opportunities for me to grow as a young research scientist. In the past year, | have taken full advantage
of these opportunities as outlined:

- completed and received an “A” letter grade in the Molecular Carcinogenesis course taught here at
BCM

- completed a course in Translational Breast Cancer Research, which is taught by faculty members of
the Breast Center

- received permission to write my thesis

- presented data in poster format at the 2008 Annual Meeting of the American Association for Carncer
Research, San Diego, CA, the graduate student symposium at BCM, the 6™ Annual Dan L. Duncan
Cancer Center, and gave oral presentations at the Medical Scientist Training Program Annual
Retreat at Hotel Galvez, the 4" Annual Lester and Sue Smith Breast Center Retreat at Artesian
Lakes, and the 2008 DOD Era of Hope Meeting in Baltmiore, MD.

- Received numerous first place awards for both oral and poster presentations at the aforementioned
meetings.

- Co-Investigator in a currently accruing Phase Il clinical trial entitled, “A Biologic Correlative Study
of Dasatinib, a Multi-Targeted Tyrosine Kinase, in “Triple-Negative” Breast Cancer Patients”

- Attended and was awarded a travel grant to attend the Cold Spring Harbor Course entitled,
“Integrated Data Analysis for High Throughput Biology”

- Received higher order bioinformatic training the in the labof Dr. John Quackenbush at Dana Farber
Cancer Institute in Boston, MA

2) Research Project

Specific Aim 1: Identify novel targets for the treatment of ER-negative breast cancer using genomic
analysis:
1.1) Identify the kinases and phosphatases that are differentially expressed in human ER-negative vs.
ER-positive breast tumors using RNA affymetrix microarray chips.
1.2) Validate that the genes are differentially expressed in a second set of human ER-negative breast
cancers using quantitative RT-PCR analysis.
1.3) For selected identified kinases or phosphatases determine whether these proteins are
differentially expressed in ER-negative vs. ER-positive tumors

This aim has been completed and the results are reported in the attached paper, currently in review, entitled
“Identification of Novel Kinase Targets for the Treatment of Estrogen Receptor-Negative Breast Cancer” (see
attached paper in appendix)

Specific Aim 2: Identify novel targets for the treatment of ER-negative breast cancer using proteomic
analysis:



2.1) Make protein lysates from the 110 human tumor samples (both ER-positive and ER-negative)
and use these lysates in a reverse phase tissue lysate array. This is a quantitative automated
proteomics assaying system that determines the expression level and activation status of
signaling proteins. Using this array technology | will identify those signaling molecules that are
differentially expressed between ER-negative and ER-positive tumors. Furthermore, | will assay
for activation status of the molecule utilizing phospho-specific antibodies.

2.2) Validate that selected identified proteins or phosphoproteins are differentially expressed in a
second set of human ER-negative breast tumors using western blotting.

Proteomic analysis identifies proteins and phospho-proteins that are differentially expressed between ER-
positive and ER-negative disease. We are in the final stages of generating figures and will submitting a
manuscript describing the results of these studies. Our studies do indicate that there is a high degree of
correlation between protein and RNA expression (see attached paper in appendix).

Specific Aim 3: Determine whether inhibition of the identified RNA and protein targets suppresses ER-
negative breast cancer growth in vitro and in vivo.

3.1) For in vitro studies | will determine whether inhibition of signaling molecule function using
siRNA knockdown inhibits ER-negative breast cancer cell growth. For these experiments | will
use ER-negative cell lines selected to accurately represent in vivo breast cancers. These cells
will be transfected with siRNA designed against signaling molecules identified in Aim 1 and 2.
I will then use MTT, soft agar growth, and invasion assays to determine whether specific gene
knockdown inhibits growth or invasion.

3.2)  Use existing small molecule inhibitors of the identified signaling molecules to block the activity
of these proteins and assay for growth suppression.

3.3) For in vivo studies, |1 will determine whether stably transfected shRNA or small molecule
inhibitors can suppress the growth of breast tumors when xenografted into nude mice.

To evaluate the role of kinase function in both ER-negative and ER-positive breast cancer growth, cell lines
representing these two types of cancers (MDA-MB-468 and MDA-MB-231; and MCF-7 and T47D cells,
respectively) were used in the siRNA experiments. Several of the kinases evaluated to date have significant
growth inhibitory phenotypes when knocked down in ER-negative breast cancer cell lines, while they show no
growth inhibitory effects in ER-positive cell lines (see attached submitted paper in the appendix). Also,
progress is currently being made in evaluating the effect of all 37 kinases indentified in the intersection in Aim
1 in further siRNA knockdown experiments. Additionally, we are beginning to plan in vivo mouse xenograft
experiments that will be conducted in the next 6 months. IRB-approval for such experiments has already been
obtained and the mice are currently being obtained. Finally, based on the results of these studies, we are
proceeding with a phase Il clinical trial is IRB approved and now accruing patients to evaluate whether the
multi-kinase inhibitor dasatinib can regress advanced triple negative breast tumors in stage Il and 111 women
with triple negative disease.

KEY RESEARCH ACCOMPLISHMENTS

» Gene expression microarray analysis is a robust means of identifying kinases upregulated in ER-
negative breast tumors.
» Unsupervised clustering analysis identifies 4 distinct subsets of ER-negative breast cancer



» Identified kinases can be validated using Q-PCR and western blot analysis (data not shown) in both
breast cancer cell lines and human breast tumors

» Tumors from these different kinase clusters have different metastasis free and overall survival and may
identify patients that require more aggressive adjuvant therapy

* Insilico promoter analysis identifies E2F1 as a regulator of expression in one of the 4 identified subsets
of ER-negative breast cancer

» Inhibition of the several identified kinases using siRNA inhibits ER-negative, but not ER-positive,
breast cancer cell growth in vitro

» Based on the kinase targets identified in this research, the multi-kinase inhibitor dasatinib, which targets
many of the kinases identified in this analysis, is being taken into a phase Il clinical trial that we are
heading.

* RPPA identifies proteins and pathways upregulated in ER-negative breast cancer which can be validated
in independent datasets

* RPPA analysis identifies high expression of cyclin B1 and PAI1 protein as poor prognostic markers.

* Intrinsic subtypes of breast cancer can be identified by protein expression (not just RNA)

* RNA and protein expression correlate very well between genomic and proteomic arraying platforms

REPORTABLE OUTCOMES

- see attached publications currently in review (summarized in final thesis)

CONCLUSION

In this report we show that Affymetrix gene expression profiling of human breast tumors is able to
identify kinases that are differentially-expressed in ER-negative breast cancers as compared to ER-positive
breast cancers. Further analysis revealed that ER-negative tumors can be clustered into 4 distinct groups,
depending on the specific kinases expressed and the level of their expression. Analysis of publicly available
breast tumor data sets confirmed that these kinases are indeed upregulated in ER-negative breast cancer. Studies
in which knock-down of selected kinases using siRNA were conducted and demonstrated that many of the
identified kinases are critical for ER-negative, including “triple-negative”, breast cancer growth. Finally,
analysis of kinase expression in human breast tumors demonstrated that the individual subtypes of ER-negative
breast cancer identified by their kinase profile here have different prognoses. Specifically, these studies
demonstrate that ER-negative tumors that express highly the kinases from the S6 kinase group have a
particularly bad prognosis, while those that express immunomodulatory kinases have a relatively good
prognosis. Such results suggest that characterization of human tumors based on kinase expression can be used
to select patients appropriate for novel therapies. In addition, this study identifies novel targets for the treatment
of ER-negative breast cancer, including the aggressive “triple-negative” form of breast cancer.
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Chapter 1

Introduction and Background



1.1 Breast Cancer Facts and Figures

Breast cancer is the second leading cause of cancer-related deaths among
women in the United States. It is estimated that in 2008 alone, over 211,000 women
will be diagnosed with breast cancer, and 40,000 women will die from its effects [1].
Despite President Nixon’s declaration of war on cancer over 30 years ago, deaths
related to breast cancer remained relatively unchanged until the early 1990s (Figure
1.1). Advances in newer and better methods of detection, as well as breakthroughs in
prevention and targeted therapy have begun to decrease breast cancer mortality.
Despite these modest decreases, however, it is clear that better and more effective

breast cancer therapies need to be developed.

1.2 Development of Targeted Therapies for Breast Cancer

Although the majority of human breast tumors are estrogen receptor alpha
(hereafter referred to as ER)-positive and respond well to selective estrogen receptor
modulators (SERMs) or aromatase inhibitors (Als), approximately 30-40% of breast
tumors are estrogen receptor alpha (hereafter referred to as ER)-negative. These ER-
negative tumors are usually more aggressive and account for a much great proportion of
deaths than their prevalence would suggest. This is primarily because of poor tumor
response to traditional therapies [2]. Breast cancer development and progression
involves that interplay between two major classes of growth-promoting agents, steroid

hormones (estrogens and progestins) and polypeptide growth factors. These growth
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Figure 1.1

Cancer Death Rates Among Women in the USA:
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Prevention, 2008.

Figure 1.1 Age Adjust Cancer Rates: Graph shows age adjusted rates of

cancer deaths by disease over time through 2005. Figure obtained with
permission from the American Cancer Society. Cancer Facts & Figures 2008. Atlanta: American
Cancer Society; 2008.
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factors and their receptors have served as important targets for the treatment of ER-
positive and HER2-positive breast cancer. Estrogen receptor refers to a group of
receptors which are activated by the hormone 17B-estradiol (estrogen). There are two
types of estrogen receptors, one encoded by the gene ESR1 on chromosome six and
commonly referred to as estrogen receptor-alpha (ERa), and the other, encoded by the
gene ESR2 on chromosome fourteen, commonly referred to as estrogen receptor-beta
(ERB). While these nuclear hormone receptors may exist as homodimers or
heterodimers, the tissue expression of these different forms of estrogen receptor differ.
ERa is found in mostly in the endometrium, breast, ovarian, and hypothalamic tissue [3].
The expression of the ERB protein has been documented in kidney, brain, bone, heart,
and lung tissue, as well as in the intestinal mucosa, prostate, and endothelial cells [3].
Because of the differing effects of these receptors and the predominant expression of
ERa in the breast, the remainder of this thesis will concern itself only with this form of
the estrogen receptor. Indeed, the importance of ERa was demonstrated by the
development of anti-estrogens (anti ERa drugs) such as tamoxifen and fulvestrant, and
more recently aromatase inhibitors, that have led to significant improvements in the
overall survival of patients with ER-positive breast cancer [4-8]. Similarly targeting
HER2/neu (ErbB2), which is overexpressed on 20-30% of breast cancers, with
trastuzumab and more recently lapatinib has resulted in a marked improvement in both
response and survival [9-15]. Unfortunately, only 30-60% of women with HER2-positive

tumors benefit from trastuzumab [13-15]. Recent efforts utilizing an integrated
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genomic and proteomic approach shows that aberrations in the phosphatidylinositol-3
kinase pathway identifies patients likely to have a limited response to trastuzumab [16].
Despite the success of anti-HER2 therapy, the lack of clear targets for ER-negative
cancers, including those patients with HER2-positive tumors who fail therapy, is sorely

needed to improve patient outcomes.

1.3 Development of Peptide Growth Factor Receptor Inhibitors for the Treatment of
Breast Cancer

Peptide growth factors or their receptors are currently being investigated as
possible targets for the treatment of breast cancer. These include the epidermal growth
factor receptor (EGFR), human epidermal growth factor receptor type 2 (HER2), insulin-
like growth factor receptor (IGFR), fibroblast growth factor receptors (FGFR) and
vascular endothelial growth factor (VEGF). In preclinical studies these pathways have
been shown to be active in breast cancer cells, and inhibitors of these pathways are

being tested in both preclinical and clinical trials.

1.4 HER2 and EGFR Inhibition for the Treatment of Breast Cancer

The ErbB receptor family consists of four trans-membrane receptor tyrosine
kinases (RTKs), two of which are frequently misregulated in breast cancer and
associated with a poor prognosis: the epidermal growth factor receptor (EGFR or ErbB1)

and the human epidermal growth factor receptor type 2 (HER2 or ErbB2) [17]. Ligand
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binding to the extracellular domain of monomeric EGFR leads to homodimerization or
heterodimerization, followed by autophosphorylation of the intracellular kinase
domains [17]. HER2 does not have a known ligand; it is transactivated following
dimerization and is the preferred heterodimer partner for EGFR [17]. Both EGFR and
HER2 are, therefore, valid therapeutic targets in breast cancer research. In the past
decade, a monoclonal antibody directed against HER2 has been developed and used
clinically to treat patients whose tumors overexpress HER2. The clinical success of the
monoclonal antibody trastuzumab provides strong evidence of the important role that
HER2 has in the pathogenesis of breast cancer. Trastuzumab targets the extracellular
domain of HER2 and has demonstrated efficacy in HER2-overexpressing metastatic and
early stage breast cancers [18-22]. Although clearly a major advance in the treatment of
HER2-positive breast cancer, as with most anticancer drugs, not all patients tolerate or
respond to trastuzumab. Although trastuzumab significantly increased the response
rate when combined with chemotherapy for the first-line treatment of metastatic
breast cancer, some patients’ tumors progressed, suggesting the existence of intrinsic
resistance [18]. Moreover, the majority of patients who initially did respond developed
disease progression within 1 year while still receiving trastuzumab, suggesting the
emergence of secondary resistance. Furthermore, the use of trastuzumab has led to
concerns regarding cardiotoxicities, especially when the treatment is combined the

anthracyclines in the adjuvant chemotherapy setting [23, 24].

14



Because of inherent or acquired resistance to treatment with the monoclonal
antibody trastuzumab, alternative strategies of targeting the EGFR and HER2 signaling
pathways have been developed. EGFR inhibitors such as gefitinib and erlotinib, and the
dual EGFR/HER?2 inhibitor lapatinib have also shown promise in early clinical trials [4-7].
Lapatinib (Tykerb®) is an orally active, small molecule inhibitor of EGFR and HER2
tyrosine kinases that was approved in the US in 2007 for use in combination with
capecitabine for the treatment of patients with advanced or metastatic HER2-positive
breast cancer who have received prior therapy including an anthracycline, a taxane, and
trastuzumab. Lapatinib interrupts signal transduction from the HER2 and EGFR
receptors by competing with ATP for the intracellular ATP-binding domain of these RTKs
[25]. This mechanism is distinct from that of trastuzumab which is a monoclonal
antibody that targets the extracellular domain of the HER2 receptor. The intracellular
mechanism of action of lapatinib provided the rationale for evaluating lapatinib in
trastuzumab-resistant patients. Studies in which women with metastatic breast cancer
were treated by lapatinib showed that the drug prolonged time to progression by 17.2
weeks (19.7 to 36.9 wks) without inducing the cardiotoxicity seen with trastuzumab [9].
These and other results led to FDA-approval of lapatinib for the treatment of HER2-
positive metastatic breast cancer. However, not all HER2-positive patients respond to
this therapy. To elucidate which tumor types respond to lapatinib effectively, neo-
adjuvant trials are currently being conducted in women with stage Ill and IV breast

cancer using treatment with lapatinib. Lapatinib is also being tested as adjuvant therapy
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for the treatment of early stage HER2-positive breast cancer in the ongoing TEACH trial
[26]. In addition, a trial using lapatinib in women with HER2-positive or EGFR-positive
ductal carcinoma in situ (DCIS) is currently underway. These studies will elucidate the
efficacy of lapatinib in treating specific stages of HER2- and EGFR-positive breast cancer.
However, it is clear that some HER2-positive breast cancers are resistant to this therapy
and that additional agents either as single agents or in combination with trastuzumab or

lapatinib will be needed to treat these tumors.

1.5 VEGF Inhibitors for the Treatment of Breast Cancer

Angiogenesis (the formation of new blood vessels) is important in the growth
and progression of solid tumors, including breast cancer. The main pro-angiogenic
factor, vascular endothelial growth factor (VEGF), is a potent angiogenic cytokine that
induces mitosis and also regulates the permeability of endothelial cells. An increase in
VEGF expression in tumor tissue has been found in solid malignancies and is associated
with metastasis formation and poor prognosis [27, 28]. Bevacizumab, a recombinant
humanized monoclonal antibody developed against VEGF, binds to soluble VEGEF,
preventing receptor binding and inhibiting endothelial cell proliferation and vessel
formation. Pre-clinical and clinical studies have shown that bevacizumab alone or in
combination with a cytotoxic agent decreases tumor growth and increases median
survival time and time to tumor progression [29, 30]. Combination therapy comprising

bevacizumab with paclitaxel recently received accelerated approval from the US Food
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and Drug Administration (FDA) for use in the first-line treatment of patients with
metastatic breast cancer [31-33]. After proving to have tolerable toxicities in first-line
treatment of patients with breast cancer in phase | and Il trials, phase Il trials were
initiated. One such trial, E2100, provided the basis for FDA approval [32]. In this trial,
bevacizumab (10 mg/kg on days 1 and 15) plus paclitaxel (90 mg/m2 days 1, 8, and 15
every 28 days) was given until disease progression and the combination therapy was
shown to approximately double median progression-free survival (PFS; 11.8 months vs.
5.9 months; hazard ratio = 0.60; P < .001) compared with paclitaxel alone; by contrast, a
statistically significant improvement in overall survival was not seen with the addition of
bevacizumab, although post study analysis demonstrated a significant increase in 1-year
survival for the combination arm [32]. Bevacuzimab is now also being tested in
combination with erlotinib (an EGFR inhibitor) in a phase Il trial of patients with
metastatic breast cancer to see if anti-VEGF and anti-EGFR therapies are superior to

monotherapy for the treatment of patients with metastatic breast cancer [34].

1.6 IGFR Inhibitors for the Treatment of Breast Cancer

The insulin-like growth factor pathway plays a major role in cancer cell
proliferation, survival, and resistance to anti-cancer therapies in many human
malignancies, including breast cancer. Several characteristics of the IGF signaling
pathway make it an especially attractive target. The expression of IGF-1R, the major

signal transducing receptor of the pathway, appears to be necessary for malignant

17



transformation in preclinical models [35]. Indeed, forced overexpression of IGF-1R
increases the timing and frequency of tumor development in animal models [36]. Also,
IGF-1-deficient mice have greatly reduced capacity to support tumor growth and
metastasis [37]. Another important feature of the IGF system is its near ubiquitous
presence in breast cancer, including expression of the IGF-1R [5]. Here, the expression
of IGF-1R may approach 90% [38, 39]. Compared to ER-positive or HER2-positive breast
cancers (which represent 60-70% and 15-25% of all breast cancers, respectively) this
represents a much broader potential group of patients that may be candidates for
targeted therapy.

There are three main ways in which IGF signaling has been interrupted.
Strategies that inhibit ligand-receptor interactions have been developed. Indeed,
receptor blockade with the use of monoclonal antibody therapies against the IGF-1R
have been the most clinically investigated approach to date. Tyrosine kinase inhibition
is another strategy being employed with several agents in clinical and preclinical
development [40, 41]. Finally, ligand sequestration through the use of monoclonal
antibodies against the ligand, IGF, is a third potential approach. As a key signaling
component of IGF system, the IGF-1 receptor (IGF-1R) is the target of several
investigational agents in clinical and pre-clinical development [36, 41, 42]. There is also
abundant evidence of crosstalk between IGF-1R and ER [43]. Thus, combination therapy
that targets both the IGF receptor the estrogen receptor (using tamoxifen or aromatase

inhibitors) are currently being tested in clinical trials for the treatment of breast cancer.
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Despite the potential utility of anti-IGF therapies, side effects of therapy remain a severe
limitation. The IGF pathway, as alluded to above, is critical for normal metabolic and
homeostatic processes. It is required for cell growth, development, and metabolism in
normal as well as cancerous tissue, and this ubiquitous expression leads to severe
adverse systemic side effects. Another major problem with these anti-IGF pathway
therapies is they interfere with insulin signaling and cause hyper- or hypoglycemia and
hyperinsulinemia. Though efforts are underway to develop drugs that circumvent this
limitation, it is clear that other targeted treatment options need to be developed for the

treatment of ER-negative breast cancer.

1.7 Additional Targets for the Treatment of ER-Negative Breast Cancer

There are currently several other molecular targets that are being investigated as
appropriate targets for the treatment of breast cancer. In breast cancer, the
phosphoinositide 3-kinase (PI13K) pathway represents one such target. Activation of the
PI3K/Akt/mTOR pathway may occur through activation of membrane receptors,
including growth factors and the estrogen receptor. This pathway has been linked to
promotion of survival in breast cancer cells, and resistance to chemotherapy,
trastuzumab and tamoxifen [44-46]. Approximately 50% of patients with breast cancer
have a mutation or loss of at least one copy of the PTEN gene, resulting in activation of
PI3K signaling [47]. Preclinical studies have shown that in breast cancer cells with

reduced PTEN expression, the PI3K/Akt/mTOR pathway becomes a fundamental
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pathway for tumor proliferation and survival [48-50]. These cells consequently display
increased sensitivity to LY294002 and rapamycin (both PI3 kinase inhibitors) compared
with PTEN-positive cells [50]. Inhibition of mTOR has also been shown to restore
tamoxifen sensitivity in breast cancer cells with aberrant Akt activity, but only in ER-
positive breast cancers [49].

Due to the extensive implication of PI3K/Akt/mTOR pathway aberrations in
breast cancer, clinical trials have been developed and completed evaluating the
effectiveness of pathway inhibitors (like rapamycin analogs) in treating breast cancer.
In one multicenter phase Il study, 106 women with advanced breast cancer refractory to
anthracyclines and taxanes were treated with weekly i.v. rapamycin ester cell cycle
inhibitor (CCl)-779 at doses of 75 or 250 mg. Response rates were seen in nine patients
(8%), including one complete response (CR) and eight partial responses (PR). An
additional 43 patients achieved stable disease (SD) for at least 8 weeks for a total clinical
benefit of 49% [51]. Based on other preclinical findings suggesting an association
between hormone resistance and activation of the PI3K/ Akt/mTOR pathway, a phase Il
trial evaluating the combination of CCI-779 and the aromatase inhibitor letrozole was
initiated. This study showed the treatment was well tolerated, and results were initially
promising enough to move into phase Il trials [52]. Despite early promise, drug
resistance to targeted therapy remains a significant challenge to PI3K/Akt/mTOR
pathway inhibition. Compensatory mechanisms, including increased expression of Akt

in response to pathway inhibition, remain a shortcoming of such therapy [16, 53].
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Additionally, PI3K/ Akt/mTOR pathway inhibition seems to be most efficacious in ER-
positive breast cancers [54, 55]. Thus, the need to develop specific, effective therapies

for ER-negative breast cancers remains.

1.8 The Need for Additional Targeted Therapies in ER-negative Breast Cancer
ER-negative breast cancer, and especially “triple-negative” breast cancer, that is,
cancers lacking the expression of ER, PR and HER2, remain the most challenging type of
breast cancer to manage. Currently, chemotherapy is used to ER-negative tumors [56].
Such therapy is toxic and is often not targeted, instead only non-specifically killing
rapidly dividing cells. Because ER-negative breast cancers do not express many of the
molecules that are the targets of previously discussed therapies, there is a critical need
to identify additional molecular targets that can be specifically and effectively inhibited
for the treatment of ER-negative breast cancer. Expression microarrays, which can
identify molecules that play a role in the development and progression of ER-negative

breast cancers, have the potential to identify such targets.

1.9 Gene Expression Profiling and the Development of Targeted Therapies

Genomic profiling technologies have allowed the stratification of human breast
tumors into clinically useful groups and have further aided in the identification of
targets for the treatment of breast cancer. The genomic era has produced an

exponential increase in our understanding of cancer biology and has greatly accelerated
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cancer drug development (Figure 1.2). With the advent and implementation of
microarray expression profiling, it is now possible to evaluate gene expression in tumors
on a genome-wide basis. These advances have led to the utilization of gene expression
profiling to not only subtype cancers, but to predict prognosis and disease free survival,
and determine optimal treatment [57-62].

Breast cancers that express the estrogen receptor-alpha account for 60-70% of
breast cancers. In these cancers, estrogen plays a critical role in the etiology and
progression of the disease. It is clear that the estrogen receptor and its ligand, estrogen,
are critical for mitogenesis in this type of cancer. There remain, however, 30-40% of
breast cancers that lack appreciable expression of estrogen receptor alpha and these
tumors are poorly responsive to traditional therapies [63]. Regardless of the estrogen
receptor status of the tumors, the growth signal sensed by the cell is conveyed to the
nucleus through interactions of proteins in series, each one activating another, through
signal transduction pathways. Once the signal is received in the nucleus, transcription
factors activate genes important for cell growth and survival. Many of these pathways
are understood in ER-positive cancers and have been the targets of small molecule
inhibitors that can interrupt this mitogenic signaling, preventing and treating these
cancers. Currently the mechanisms governing ER-negative breast cancer cell growth are
largely unknown. It is clear that estrogen signaling is not the pathway that governs the
mitogenic pathway in these ER-negative cells, however, for these ER-negative breast

cancer cells, pathways critical for ER-negative growth have not been fully elucidated.
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Figure 1.2
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Figure 1.2 Cancer Drug Development in the past half century: Graph shows
cancer drugs receiving FDA approval in the past 50 years.
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A major goal of current breast cancer research has been to identify targets that
are unique to cancer cells and to identify drugs that kill only cancerous cells without
affecting normal tissue. While achieving this goal has been difficult, emerging
technologies have begun to shed light on pathways and molecules that may be involved
in this malignant transformation. The use of gene expression profiling and other high-
throughput technologies has allowed researchers to begin to untangle the complex
cellular signaling networks and identify molecular “signatures” common to particular

types of breast cancers.

1.10 Genomic, Transcriptional, and Proteomic Profiling of Breast Cancers:

Results from recent research have shown that breast cancer is a clinically
heterogeneous disease. This clinical heterogeneity is driven to a large extent by
abnormal gene expression within tumors. Investigators now have the ability to identify
the gene-expression fingerprint of an individual's tumor. This information may be used
to rationally design therapeutic targets in the future, and also to predict the clinical
course of an individual's disease, including response to a specific treatment. Genetic
profiles of tumors are now being correlated with clinical outcome, and several
prognostic and predictive indicators have emerged based on this research. Additionally,
transcriptional and proteomic profiling is advancing our understanding of the RNA and
protein alterations in human cancers. Despite these early insights, it is clear that there

is much still unknown, and the furthered utilization of these techniques will drive future
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therapeutic development, lead to better risk stratification of patients, and guide rational

therapy decisions by clinicians.

1.11 DNA-based genomic profiling:

DNA copy number determination using comparative genomic hybridization
(CGH) or comparative single nucleotide polymorphism analysis (comparative SNP
analysis) has shown that breast cancers harbor many gene deletions or gene
amplification and that these regions of DNA copy number alteration identify genes or
groups of genes that are involved in the oncogenic process [57-59, 61, 64]. Indeed, the
well known breast cancer oncogenes HER2/neu and c-MYC, as well as more recently
defined oncogenes Rab25 [65], NRG1 [62], and LSM1 [63], have been identified using
these DNA-based techniques. CGH and comparative SNP analysis also can identify
regions of DNA loss, typically occurring at the site of important tumor suppressor genes.
These techniques have identified the p53 and PTEN tumor suppressor genes specifically
in breast cancer (both previously known tumor suppressor genes) [66, 67], as well as
novel breast cancer tumor suppressor genes such as PTK2b [68] and BRIT1 [69], and
several other DNA regions in which tumor suppressor genes are thought to be located
[70]. Indeed, with the increased effectiveness of DNA sequencing, groups have now
begun to sequence large sets of human breast tumors and these efforts are leading to a
furthered appreciation of the genomic aberrations harbored in human tumors. In a

landmark study by Sjoblum et al., 13,023 genes in 11 breast and 11 colorectal cancers
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were sequenced and subsequent analysis revealed that individual tumors accumulate an
average of 90 mutant genes but that only a subset of these contribute to the neoplastic
process [71]. They identified 189 genes (average of 11 per tumor) that were mutated at
significant frequency, and that vast majority of these genes were not known to be
genetically altered in tumors. These genes are predicted to affect a wide range of
cellular functions, including transcription, adhesion, and invasion. These data define the
genetic landscape of human breast tumors and provide new targets for diagnostic and
therapeutic intervention. These studies have provided important insight into the
chromosomal aberrations in human breast tumors, and may yet lead to the

development of rational therapies targeting these aberrations.

1.12 RNA-based gene expression profiling to classify breast tumors and identify
targets for the treatment of breast cancer.

It is now acknowledged that a continuum of abnormal gene expression predicts
that tumorigenic phenotype and the sensitivity of tumors to treatment. Clinical
investigators now have the capability to obtain a genetic blueprint of individual tumors;
the genetic abnormalities identified within these tumors offer an opportunity to
rationally select therapeutic targets for the treatment of patients with cancer [72].
Initial pioneering work in breast tumor classification came from Sorlie et al. who
identified a gene set that was able to subdivide human breast tumors [73, 74]. They

showed that ER-negative breast cancers could be classified into a basal epithelial-like
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group, an ERBB2-overexpressing group and a normal breast-like group based on
variations in gene expression. Additionally, they showed that the luminal
epithelial/estrogen receptor-positive group could be divided into at least two
subgroups, each with a distinctive expression profile (termed Luminal A and Luminal B).
These subtypes proved to be reasonably robust by clustering using two different gene
sets: first, a set of 456 cDNA clones chosen to reflect intrinsic properties of the tumors
and, second, a gene set that highly correlated with patient outcome. Survival analyses
on a subcohort of patients with locally advanced breast cancer uniformly treated in a
prospective study showed significantly different outcomes for the patients belonging to
the various groups, including a poor prognosis for the basal-like subtype and a
significant difference in outcome for the two estrogen receptor-positive groups [73, 74].
This was the first of many studies to identify subtypes of human breast cancer based on
gene expression profiling, and was the first to show that these subtypes had significantly
different survival outcomes.

Ultimately, researchers aim to use the molecular data gathered from an
individual tumor for prognostication and customization of therapy for each patient.
Gene-expression profiling has shown promise to distinguish between patients at low and
high risk for developing distant metastases and identify those who are likely to benefit

from adjuvant therapy [75].
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1.13 Gene-Expression Profiling and Prognostication.

The current standard for prognostic stratification includes Adjuvant! Online, the
Nottingham Prognostic Index, and the American Joint Committee on Cancer staging
system, which form the basis of treatment guidelines issued by the National Institutes of
Health (NIH) Consensus Statement on Adjuvant Therapy in Breast Cancer and the St.
Gallen Consensus Statement [76-79]. These tools integrate clinicopathologic factors into
multivariate prediction models. Although these tools allow clinicians to estimate the
relative risks for recurrence and mortality and estimate the potential benefits of
chemotherapy for groups of patients with given disease characteristics [78], they do not
address the fundamental question oncologists and patients struggle with: which
individual (rather than which group) will benefit from adjuvant therapy? Up to 40%-—
50% of patients with a poor prognosis as defined by conventional clinicopathological
parameters may remain disease free without adjuvant therapy [75]. Likewise, benefit
from systemic adjuvant chemotherapy for patients with lymph node—negative (LNN)
disease is not uniform; some patients relapse despite therapy and others may already be
cured by local treatment. Therefore, a more individualized approach is needed. The
goal of this thesis research is to define molecular abnormalities in individual tumors that

can be exploited to treat ER-negative breast cancer more effectively.
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1.14 Intrinsic Gene Set Identification

A novel molecular classification of breast cancer was proposed based on large-
scale gene-expression analyses of breast cancer [71, 73, 74, 80-82]. From these studies,
five major molecular classes of breast cancer emerged from several studies: luminal-A,
luminal-B, basal-like, normal-like, and human epidermal growth factor receptor (HER)-
positive cancers [73, 74, 80] (Figure 1.3). The Intrinsic subtype predictor was developed
to assign molecular classes to newly diagnosed breast cancers [83]. These early profiling
studies suggested that ER-negative tumors encompass three subgroups, one
overexpressing ERBB2, one with tumors expressing genes characteristic of basal
epithelial cells, and one with a gene expression profile similar to normal breast tissue.
Clinically relevant novel subgroups within the ER-positive and ER-negative breast
cancers have also been identified, reflecting the vastly different biology inherent in
these tumor subtypes [73, 80]. ER-positive tumors were subdivided into a Luminal A
and Luminal B subtype based on the gene expression differences inherently uniquely in
these groups. This molecular taxonomy was based upon an "intrinsic" gene set, which
was identified using a supervised analysis to select genes that showed little variance
within repeated samplings of the same tumor, but which showed high variance across
tumors [80]. These studies showed that an intrinsic gene set reflects the stable
biological properties of tumors and typically identifies distinct tumor subtypes that have
prognostic significance, even though no knowledge of outcome was used to derive this

gene set. Despite the identification of multiple subtypes of breast cancer based on the
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Figure 1.3. Hierarchical cluster analysis of the 315-sample
combined test set using the Intrinsic/UNC gene set reduced to
306 genes. (A) Overview of complete cluster diagram. (B) Experimental
sample-associated dendrogram. (C) Luminal/ER+ gene cluster with GATA3-
regulated genes highlighted in pink. (D) HER2 and GRB7-containing
expression cluster. (E) Interferon-regulated cluster containing STAT1. (F)

Basal epithelial cluster. (G) Proliferation cluster. Adapted with permission from
Hu Z, Chan F, Perou C et al. BMC Genomics 2006;7:96.
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generation of an intrinsic stable gene list, a major challenge for microarray studies,
especially those with clinical implications, has been validation of these gene lists [84,
85]. This limitation was addressed in a study by Hu et al. in 2006 [86], as well as others
[73], that refined the intrinsic gene list that distinguishes these subtypes of human
breast cancer. These analyses also showed that the breast tumor intrinsic subtypes are
significant predictors of outcome when correcting for standard clinical parameters, and
that common patterns of expression can be identified in data sets generated by
independent labs.

The overall survival and chemotherapy sensitivity of the different molecular
subgroups vary. Luminal-type cancers are mostly ER-positive, and patients with luminal-
A cancers have the most favorable long-term survival (with endocrine therapy)
compared with the other types, whereas basal-like and HER2—positive tumors, which are
almost exclusively ER-negative, are more sensitive to chemotherapy [74, 80, 87]. These
early studies not only identified an intrinsic gene list that has the ability to subtype
breast tumors based on their gene expression profiles, but show that these differences
in gene expression pattern may influence other characteristics including overall and

metastasis free survival.

1.15 The Rotterdam Prognostic Gene Expression Signature

Multiple gene sets have been developed in an attempt to stratify patients based

on the gene expression signature of their tumors. One of the first of these was the
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Rotterdam gene set. It was developed to predict the prognosis of patients with lymph
node negative (LNN) breast cancer [83]. Two hundred eighty-six patients who had
locoregional therapy only were included in the initial development and validation study.
Markers were selected separately from ER-negative and ER-positive tumors and were
combined into a single 76-gene prognostic signature (VDX2; Veridex, LLC, Warren, NJ)
that was able to predict distant metastatic recurrence with a sensitivity of 93% and a
specificity of 48% [83]. This prognostic indicator performed better than standard, clinical
variables in a multivariate analysis (hazard ratio [HR], 5.55; 95% confidence interval [Cl],
2.46-12.5) [83]. Subsequently, this test was also validated using two other sets of
patients with early stage breast cancer that were not included in the original study. The
first set included 180 patients with stage I-Il breast cancer and showed 5- and 10-year
distant metastasis-free survival rates of 96% (95% Cl, 89-99%) and 94% (95% Cl, 83-
98%), respectively, for the good prognosis group; the corresponding rates were 74%
(95% Cl, 64-81%) and 65% (95% Cl, 53-74%) for the poor prognosis group [88]. The
sensitivity for 5-year metastasis-free survival was 90%, and the specificity was 50%, with
positive and negative predictive values of 38% and 94% respectively. The second
validation cohort included 198 LNN cases and demonstrated similarly good 5- and 10-
year distant metastasis-free survival rates: 98% (95% Cl, 88-100%) and 94% (83-89%),
respectively, for the genomic low-risk group [32]. The recurrence rates were
significantly worse for the poor prognostic group: 76% (95% Cl, 68-82%) and 73% (95 %

Cl, 65-79%) at 5 and 10 years, respectively [32]. Importantly, the 76-gene signature
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could restratify patients within the clinical risk categories defined by the Adjuvant!
Online program and the recurrence hazard ratios remained similar after adjustments for
tumor grade, size, and ER status. This test in now FDA-approved and is clinically used to
identify patients who should receive chemotherapy. The success of this gene expression
profiling approach to address clinically relevant uncertainties underscores the utility of

such profiling in the management of breast cancer

1.16 Other Gene Signatures

Other gene expression profiles have been used to characterize the different
biological properties of breast cancers. One such signature, called the “Invasive gene
signature” was identified based on the observation that low expression of CD24 and
high expression of CD44 is highly tumorigenic in experimental models [89, 90]. Gene
expression comparisons of this population of cells to normal breast epithelial cells
identified 186 genes associated with the “tumorogenic breast stem cell” [90]. Similarly,
tumors have been compared to nonhealing wounds [91]. Thus, a wound response
indicator (WRI) was developed from genes whose expression changed following the
activation of cultured fibroblasts with serum [91, 92]. This signature was applied to a
cohort of tumors derived from patients with early-stage breast cancer that had gene
expression profiling done (n = 295) [91]. Patients whose tumors expressed the WRI had
significantly shorter overall survival and distant metastasis-free survival times relative to

patients whose tumors did not express this gene signature. Moreover, the WRI
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signature was an independent predictor of death in a multivariate analysis of metastasis
and death. Again, both of these studies show that gene expression profiling is a
powerful method for detecting potentially clinically relevant differences between types

of breast cancer.

1.17 The oncotype DX™ Recurrence Score™

RNA profiling is now used clinically to help identify individual tumors that will
respond to chemotherapy. One such example is oncotype DX™ (Genomic Health, Inc;
Redwood City, CA). The oncotype DX™ is a 21-gene indicator. Two hundred fifty
candidate genes were chosen from gene-expression profiling experiments, published
literature, and genomic databases; these genes were correlated with breast cancer
recurrence in 447 patients [93]. Sixteen cancer-related genes and five reference genes
were selected from the candidate genes. The 16 cancer-related genes were then used
to develop an algorithm based on the expression levels of these genes, thus allowing a
Recurrence Score™ (RS) to be computed for each specimen. This RS correlated with the
rate of distant recurrence at 10 years (Figure 1.4). This assay uses fixed tumor
specimens, rather than frozen tissue. The oncotype DX assay was externally validated
in the National Surgical Adjuvant Breast and Bowel Project (NSABP) clinical trial B-14,
which examined the effect of adjuvant tamoxifen in patients with hormone receptor—
positive LNN breast cancer [93]. The results of this analysis showed that 7% of low-risk

patients (RS <18) relapsed, whereas 31% of high-risk patients (RS >31) relapsed.
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Figure 1.4
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Subsequent studies have shown that the RS is independently associated with sensitivity
to chemotherapy and mortality [94, 95]. The oncotype DX™ assay is now FDA-
approved for use in profiling the risk and need for chemotherapy responsiveness in
breast cancers. It is now in wide clinical use by oncologists to determine which patients
would benefit from chemotherapy.

Oncotype DX™ is not the only prognostic gene profiling test being used clinically.
Other tests currently approved include Mammaprint [96], Mammostrat [97], and
CellSearch [98]. These tests, which also mainly rely on the use of gene expression
technologies and molecular signatures, underscore the power and utility of such
approaches at identifying expression derangements and potential targets in breast

cancer.

1.18 Utility of Genomic Profiling to Predict Response to Therapy:

In addition to defining molecular subtypes of cancers and predicting prognosis
and disease free survival, gene expression microarray analysis has been used to
determine optimal treatment [99-103]. Several groups have already used expression
profiling to identify gene signatures of chemotherapeutic resistance [99, 100, 104].
These studies have identified tumor gene expression profiles associated with response
to chemotherapy including docetaxel [99, 100] adriamycin/cyclophosphamide [82],
paclitaxel, fluorouracil, doxorubicin, cyclophosphamide [105], and epirubicin,

cyclophosphamide, paclitaxel [106] in the neoadjuvant setting. It has also been
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demonstrated that PI3K pathway aberrations predict the likelihood of response to
trastuzumab. In a complementary approach, identification of transcriptomes reflecting
particular functional processes including expression profiles associated with ER-protein
expression, histological grade, lymph node status, HER2/neu amplification, p53
mutation status, inflammatory breast cancer, and stromal signature patterns
demonstrate the utility of the approach [73, 107-114]. Together, these studies indicate
the potential to not only determine the likelihood of response to a particular therapy,
but may be a means of identifying novel targets for therapy in ER-negative breast

tumors.

1.19 Proteomic Profiling to Identify Tractable Targets in ER-negative Breast Cancer

Although gene expression technologies have proven very effective at subtyping
breast tumors, they rely on the measurement of RNA molecules. These measurements,
though useful, do not capture the expression and activation status of proteins, which
are often the effector molecules in cells. Indeed, genomic and transcriptional
information is ultimately translated into proteins that function to mediate cellular
processes. Until recently, however, functional proteomics approaches have not been
utilized to characterize the proteome of breast cancers.

Major efforts to discover new therapies for cancer have been brought about by
advances in genomic and proteomic technologies and have resulted in many new

potential drug targets. Most of these new targets are proteins involved in cellular
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signaling, and the use of proteomic technologies provides new opportunities to measure
the status of molecular networks as they exist within the context of the cellular milieu in
both normal and diseased tissues. Protein microarrays can be used to profile the
working state of cellular signal pathways ina manner not possible with gene microarrays
since post-translational modifications cannot be accurately portrayed by global gene
expression patterns alone [115-117]. Thus, unique opportunities exist for protein
microarray technology, especially as it relates to therapeutic target discovery and
validation. Using proteomic approaches it is possible to elucidate ongoing post-
translational phosphorylation events and may even allow for the prediction of response
in patients based upon the activity of the drug targets themselves. The technology may
also be used to monitor total and phosphorylated proteins over time, before and after
treatment, or between disease and non-disease states, allowing us to infer the activity
levels of the proteins in a particular pathway in real time [118].

Recent advances now allow for proteomic arrays to subgroup breast cancers
[119-125]. Using a novel quantitative protein detection system termed “reverse phase
protein arrays” (RPPAs) which relies on validated high quality antibodies, expression
levels and functional activation states of many signaling pathways can now be defined.
This technique has provided a novel way to subclassify leukemias [123] and ovarian
cancers [122]. RPPA is also able to quantitate very small amounts of protein expression
(femtograms of target in nanograms of starting material), and in particular the

activation state of cellular signaling pathways and networks using phospho-specific
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antibodies. Thus, reverse phase protein arrays may be useful not only for target
discovery, but also for validation, prediction of response, and identification of novel
targets in ER-negative breast cancer that will usher in the age of truly personalized

medicine.

1.20 Conclusions and Statement of Hypothesis.

Despite major advances in the treatment and prevention of breast cancer, this
disease remains the second most common cause of cancer related death in women in
the United States. Targeted treatment of estrogen receptor alpha-positive breast
cancer using anti-estrogen drugs and aromatase inhibitors has resulted in a significant
reduction in recurrence and mortality from this disease. Additionally, targeted
treatment of women with HER2/neu receptor-positive breast cancer using treatments
directed against the HER2/neu protein has reduced the recurrence of HER-positive
breast cancers by 50%. Finally, other targeted therapies including growth factor
receptor inhibitors, angiogenesis inhibitors, and signaling pathway inhibitors are
currently being developed for the treatment of breast cancer. Unfortunately, many
breast cancers do not express ER, HER2/neu, or these other growth factor receptors and
no targeted therapy is available for these particularly aggressive cancers. These ER-
negative tumors often arise in young women and are more aggressive and less
responsive to therapy than ER-positive tumors. Thus, there is an urgent need for

improved treatments for ER-negative breast cancer, particularly for tumors that lack the

39



estrogen receptor, the progesterone receptor, and the HER2/neu receptor (“triple-
negative” breast cancer).

The overall goal of the research described herein was to use emerging genomic
and proteomic technologies to identify novel drug targets for the treatment of ER-
negative breast. We hypothesized that: (1) transcriptional profiling of human ER-
negative breast cancers focused specifically on the kinome at the RNA level will identify
kinases aberrantly expressed in ER-negative breast cancers, (2) that proteomic analysis
will identify additional signaling molecules that are more highly expressed or activated
in ER-negative breast cancers, and (3) that specific targeting of these aberrantly
expressed molecules will inhibit breast cancer cell growth and will lead to the
identification of novel targets for the effective treatment of human ER-negative breast
cancer.

To address this hypothesis, three aims were developed:

Aim 1. To identify novel targets for the treatment of ER-negative breast cancer using
gene expression profiling of kinases.

We first identified the kinases that were differentially expressed between ER-
positive and ER-negative tumors. These results, described in Chapter 3, identify a
distinct kinase gene expression profile that identifies ER-negative breast tumors and
subsets ER-negative breast tumors into 4 distinct subgroups (cell cycle checkpoint, S6

kinase signaling, immunomodulatory, and MAPK signaling subgroups). Furthermore, we
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have shown that the specific kinases overexpressed in ER-negative breast cancers are
also overexpressed in ER-negative breast cancer cell lines and in an independent set of
ER-negative human breast tumors. siRNA knockdown studies showed that several of
these kinases are essential for the growth of ER-negative, but not ER-positive, breast
cancer cell lines. Finally, survival analysis of patients with breast cancer demonstrated
that the patients whose tumors had high expression of those kinases included in the S6
kinase signaling group of ER-negative cancer have an extremely poor prognosis, while
patients whose tumors express high levels of immunomodulatory kinases have
significantly better prognosis. These studies identify a list of kinases that are prognostic

and may serve as druggable targets for the treatment of ER-negative breast cancer.

Aim 2. To identify novel targets for the treatment of ER-negative breast cancer using
proteomic analyses.

In this aim, we identified differentially expressed proteins and phospho-proteins
in ER-positive and ER-negative tumors to identify critical molecules and pathways that
may be targeted for the effective treatment of ER-negative breast cancer. These results,
described in Chapter 4, demonstrate that many proteins and pathways are elevated or
activated in ER-negative breast cancer. Furthermore, it shows that ER-negative tumors
can be subdivided into four distinct subgroups based on their expression of these
proteins, and that these different subgroups have distinct prognostic profiles. It also

identified protein signatures that are associated with particularly poor prognosis.

41



Finally, this chapter correlates specific proteomic signatures with previously described
breast cancer subtypes identified by transcriptional profiling in human breast cancers.
These studies identify proteins and pathways that are activated in specific subsets of ER-
negative breast cancers that can now serve as targets of future drug development for

effective treatment of ER-negative breast cancer.

Aim 3. Determine whether inhibition of one of the identified targets, maternal
embryonic leucine zipper kinases (MELK), suppresses ER-negative breast cancer
growth in vitro.

In this aim, we investigated whether specific inhibition of one of the targets
indentified in the first aim was sufficient to inhibit ER-negative breast cancer growth and
invasion. The results described in Chapter 5 demonstrate that MELK is more highly
expressed in ER-negative breast cancers. We confirm that MELK RNA and protein are
more highly expressed in high grade and undifferentiated tumors and breast cancer cell
lines. Further we show that specific knockdown of MELK using siRNA technologies
inhibits the growth of ER-negative breast cancer cells, but not ER-positive breast cancer
cells. Finally, we show that MELK expression is correlated with poor metastasis-free and
overall survival in multiple datasets, and is independently prognostic (independent of
grade, tumor size, age, ER-status, and lymph node status) in breast cancer; tumors with

high MELK expression have a very poor outcome. These results provide the pre-clinical
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rationale for the development of MELK inhibitors for the treatment of ER-negative

breast cancer.
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2.1 Introduction

A number of materials and methods were used in the studies that comprise this
thesis. To fully describe the details of these methods, this chapter is divided into two
sections. The first section, “General Material and Methods” broadly describes materials
and methods that were used in experiments in multiple chapters. The second section,
“Specific Materials and Methods”, details the methods used only in the experiments
contained in that particular chapter. All methods, analysis, and experimentation was
done by Corey Speers unless otherwise noted. Statistical supervision and guidance was
provided by Dr. Susan Hilsenbeck at Baylor College of Medicine and Dr. John

Quackenbush at the Dana Farber Cancer Institute.

2.2 General Materials and Methods

The techniques described herein are those techniques common to
experimentation throughout this thesis. The technical details of these methods are
listed, however the experiment and project-specific conditions are listed in the

accompanying section, “Specific Materials and Methods”.

2.2.1 Cell Lines and Cell culture:
MCEF-7, T47D, BT474, MDA-MB-361, Hs578T, MDA-MB-231, BT549, MDA-MB-
468, HCC1937, HCC1569, HCC1187, SKBr3, MDA-MB-453, BT20, and ZR75-1 cells were

maintained as outlined in Table 2.1. Also listed in Table 2.1 are the characteristics of
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the cell lines used in the experiments throughout this thesis. Generally, cells were
maintained in Improved MEM (IMEM) Zn++ Option (Richter's Modification, Invitrogen,
Carlsbad, CA) with either 5% or 10% heat inactivated fetal bovine serum (FBS, Hyclone,
Logan, UT) and 1% Penicillin-Streptomycin-Glutamine (Invitrogen) supplemented with

5% CO..

2.2.2 Western blot analysis:

Cells were washed once with ice-cold phosphate buffered saline (PBS) and lysed
in protein lysis buffer consisting of 50mM HEPES pH7.5, 150mM NaCl, 1ImM EDTA, 1%
Triton X-100, 10% glycerol, 100mM NaF, Complete Mini protease inhibitors cocktail
tablet (Roche), and phosphatase inhibitor cocktail | and Il (Sigma-Aldrich). Protein
concentration was determined using BCA Protein Assay Reagents (Pierce Biotechnology,
Rockford, IL). An aliquot of total protein (20ug) was resolved by electrophoresis in 10%
SDS-PAGE gel and transferred to a PVDF membrane (Millipore, Billerica, MA). The
membrane was blocked with 5% nonfat milk in 10mM Tris-HCI pH7.4, 150mM NaCl, and
0.1% Tween 20 (TBST) overnight at 4°C. Thereafter, the membrane was incubated with
primary antibody diluted in 1% nonfat milk/TBST overnight at 4°C or 3 hours at room
temperature, after which the membrane was washed in TBST 3 times for 10 min each.
The membrane was then incubated with horseradish peroxidase-conjugated secondary
antibody diluted in 1% milk/TBST at room temperature for 1 hour. The membrane was

washed 3 times in TBST for 10 minutes each. Antigen-antibody complexes were
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detected using the ECL or ECL Plus chemiluminescent system (Amersham Bioscience,
Piscataway, NJ). Antibodies specific for beta-actin (diluted 1:10,000, #A-5441) were
purchased from Sigma-Aldrich. Anti-mouse (diluted 1:5000, #NA931V) and anti-rabbit
(diluted 1:5000, #NA934V) secondary antibodies were obtained from Amersham

Bioscience (Piscataway, NJ).

2.2.3 RNA preparation and quantitative RT-PCR:

Total RNA was isolated using the RNeasy RNA isolation kit (QIAGEN, Valencia,
CA). Briefly, cells were lysed in cell lysis buffer using a cell lifter or a rotor stator
homogenizer (Pro Scientific, Oxford, CT). Ethanol was added to the lysate creating
conditions that promote selective binding of the RNA to the silica-based RNA binding
column. After adding lysate that includes RNA to the silica column, washing buffers
were used to eliminate unwanted associated proteins and DNA while retaining the RNA
on the column. Ethanol was again used to remove contaminants and the RNA was
eluted off the column with elution buffer. RNA concentration and quality was assessed
on a NanoDrop spectrophotometer (Thermo Scientific, Wilmington, DE). Quantitative
RT-PCR (Q-RT-PCR) assays of transcripts were carried out using gene-specific double
fluorescence-labeled probes in an ABI PRISM 7700 Fast Sequence Detector (Applied
Biosystem, Foster City, CA). All primers, probes, and standards used in these studies
were designed using the universal mouse and human probe set library from Roche and

cDNA was generated using oligo dT or gene specific primers. All assays were designed
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using annotated mRNA sequences from the Entrez NCBI site. The PCR reaction mixture
consisted of 300nM each of the forward and reverse primers, 100nM probe, 0.025
units/ul of Tag Polymerase (Invitrogen), 125uM each of dNTP, 5mM MgCl2, and 1X Taq
Polymerase buffer. Cycling conditions were 94°C for 30 seconds, followed by 40 cycles
at 94°C for 10 seconds and 60°C for 5 seconds. 6-Carboxy fluorescein (FAM) was used as
the 5’ fluorescent reporter and black hole quencher (BHQ1) was used at the 3’ end
quencher. All reactions were performed using at least triplicate RNA samples
independently isolated. Q-RT-PCR assays were performed in triplicate for each sample.
Standard curves for the quantification of each transcript were generated using the
serially diluted solution of synthetic templates. The number of transcript molecules was
calculated by extrapolation using this standard curve. Data were reported as average

number of molecules + standard error of the mean.

2.2.4 siRNA transfection:

siRNAs for all genes of interest were purchased either from Dharmacon Research
(Lafayette, CO) or Sigma Aldrich (St. Louis, MQO). siRNA transfection was performed
using DharmaFECT™ 1 (Dharmacon), according to the manufacture’s instruction into
breast cancer cell lines. Briefly, cells were grown to 60-70% confluence in 100 mm?
dishes. siRNA was prepared by incubating serum free media with DharmaFECT 1 (784 pl
media to 16 ul of DharmaFECT1) for 5 minutes. Gene specific siRNA was also incubated

with serum free media (20 nmol siRNA in 784 pl serum free media) for 5 minutes. After
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5 minutes the media/DharmaFECT mixture was added to the siRNA and allowed to
incubate for 15 minutes with occasional gentle mixing. Cells to be transfected were
washed with PBS and 6.4 mls of serum free media was added to the 100 mm? dish. The
1.6 mls of siRNA/Dharmafectl mixture was then added to the cells and allowed to sit for
36 hours.

All cell lines used in the siRNA knockdown experiments were grown as
previously described in section 2.2.1 and according to ATCC specifications
(http://www.atcc.org). Cells were transfected with Dharmacon siRNA dilution buffer
(mock-transfection), 20 nmol of kinase specific siRNA constructs, or with scrambled
siRNA as a control. 36 hours after transfection, cells were replated in 96 well plates at a
density of 2000 cells per well. RNA and protein were also harvested (as described
previously) on days two and four to confirm sufficient knockdown of gene expression by
Q-RT-PCR and western blotting, respectively. Remaining cells were spun down, split in
two equal tubes, and RNA and protein were isolated for 0 hour knockdown readings.
After replating in 96 well plates, growth was measured by MTS assay every 2 days for a

total of 5 days.

2.2.5 Cell proliferation assays:
Cell growth was measured using the CellTiter 96™ Aqueous Non-Radioactive Cell
Proliferation assay (MTS assay, Promega) according to the manufacturer’s instructions.

Briefly, cells were plated in 96-well plates at 2000 cells per well. Every 24 hours, a
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solution containing 20:1 ratio of MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-
carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) and PMS (phenazine
methosulfate) was added to the cells. Plates were incubated at 37°C for 2 hours and
absorption at 550nm was determined. Each data point was performed in heptuplicate,
and the results were reported as average absorption * standard deviation. The data is
reported as percentage of growth compared to mock transfected controls for each cell
line. Experiments were repeated at least twice and the percentage growth inhibition is

the average of the experiments.

2.2.6. Human Breast Tumors from Baylor College of Medicine:

Human breast tumor samples were isolated from the Asterand tumor bank
purchased by the Breast Center at Baylor College of Medicine. There is no clinical
follow-up data for patients from whom these tumors were isolated. Tumor tissue was
flash frozen and stored in liquid nitrogen until DNA, RNA, and protein isolation was
performed. Tumor tissue was disrupted from the frozen human tumor samples by
homogenization using a PRO Scientific rotor-stator homogenizer (Pro Scientific, Oxford,
CT) with Multi-Gen7 generators. DNA was isolated from tumor cores using Qiagen’s
DNeasy Blood and Tissue Kit (Valencia, CA) according to the manufacturer’s instructions.
RNA was isolated using Qiagen’s RNeasy Blood and Tissue Kit (Valencia, CA) according to
the manufacturer’s instructions as previously described. Protein was isolated after

homogenization in protein lysis buffer consisting of 50mM HEPES pH7.5, 150mM NaCl,
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1mM EDTA, 1% Triton X-100, 10% glycerol, 100mM NaF, Complete Mini protease
inhibitors cocktail tablet (Roche), and phosphatase inhibitor cocktail | and Il (Sigma-
Aldrich). Protein concentration was determined using BCA Protein Assay Reagents

(Pierce Biotechnology, Rockford, IL).

2.2.7 Human Breast Tumor Data Sets from Other Institutions:

Many of the analyses in this thesis utilized publically available datasets for
analysis of gene expression, metastasis-free and overall survival, and response to
therapy. A brief description of all of the data sets used in this thesis is detailed below.
Wang dataset- This dataset comes from a study entitled, “Gene-expression profiles to
predict distant metastasis of lymph-node-negative primary breast cancer.” [1]. The
tumor bank came from the Erasmus Medical Center (Rotterdam, Netherlands) and was
comprised of frozen tumor samples from patients with lymph-node-negative breast
cancer who were treated during 1980-95, but who did not receive systemic
neoadjuvant or adjuvant therapy. Tumors were selected so as to avoid selection bias by
assuming a relapse rate of 25-30% in 5 years, and a substantial loss of tumors for
guality-control reasons. Thus, 436 samples of invasive tumors were processed. Patients
with poor, intermediate, and good clinical outcome were included. Samples were
rejected on the basis of insufficient tumor content (53 tumors), poor RNA quality (77
tumors), or poor chip quality (20 tumors); thus, 286 samples were eligible for further

analysis. The median age of the patients at surgery was 52 years (range 26-83). 219
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had undergone breast-conserving surgery and 67 modified radical mastectomy.
Radiotherapy was given to 248 patients (87%) according to institutional protocol. The
proportions of patients who underwent breast-conserving therapy and radiotherapy are
normal for lymph-node-negative disease. Patients were included irrespective of
radiotherapy status because in their study, they did not aim to investigate the effects of
a specific type of surgery or adjuvant radiotherapy. Lymph-node negativity was based
on pathological examination by regional pathologists. All 286 tumor samples were
confirmed to have sufficient (>70%) tumor and uniform involvement of tumor in 5 um
frozen sections stained with hematoxylin and eosin (H&E). Amounts of estrogen
receptor alpha (hereafter referred to simply as ER) and progesterone receptors (PR)
were measured by ligand-binding assay, EIA, or immunohistochemistry (nine tumors).
The cut-off value for classification of patients as positive or negative for ER and PR was
10 fmol per mg protein or 10% positive tumor cells. Postoperative follow-up involved
examinations every 3 months for 2 years, every 6 months for years 3-5, and every 12
months from year 5. The date of diagnosis of metastasis was defined as that at
confirmation of metastasis after symptoms reported by the patient, detection of clinical
signs, or at regular follow-up.

van de Vijver dataset- This dataset came from a study entitled, “A gene-expression
signature as a predictor of survival in breast cancer” by van de Vijver et al. [2]. Tumors
from a series of 295 consecutive women with breast cancer were selected from the

fresh frozen tissue bank of the Netherlands Cancer Institute according to the following

63



criteria: the tumor was primary invasive breast carcinoma that was less than 5 cm in
diameter at pathological examination (pT1 or pT2); the apical axillary lymph nodes were
tumor-negative, as determined by a biopsy of the infraclavicular lymph nodes; the age
at diagnosis was 52 years or younger; the calendar year of diagnosis was between 1984
and 1995; and there was no previous history of cancer, except non-melanoma skin
cancer. All patients had been treated by modified radical mastectomy or breast-
conserving surgery, including dissection of the axillary lymph nodes, followed by
radiotherapy if indicated. Among the 295 patients, 151 had lymph node—negative
disease (results on pathological examination, pNO) and 144 had lymph-node positive
disease (pN+). Ten of the 151 patients who had lymph-node—negative disease and 120
of the 144 who had lymph-node—positive disease had received adjuvant systemic
therapy consisting of chemotherapy (90 patients), hormonal therapy (20 patients), or
both (20 patients). All patients were assessed at least annually for a period of at least
five years. The median duration of follow-up was 7.8 years (range, 0.05 to 18.3) for the
207 patients without metastasis as the first event and 2.7 years (range, 0.3 to 14.0) for
the 88 patients with metastasis as the first event. The median follow-up among all 295
patients was 6.7 years (range, 0.05 to 18.3). There were no missing data. The level of
expression of estrogen receptor alpha was estimated on the basis of the hybridization
results on the microarray experiments, which is a reliable assay for estrogen-receptor
status. On the basis of this assay, there were 69 ER—negative tumors (defined by an

intensity ratio of less than —0.65 U on a logarithmic scale, corresponding to staining of
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less than 10 percent of nuclei on immunohistochemical analysis) and 226 ER—positive
tumors in the cohort.

Desmedt dataset- This dataset came from a study entitled, “Strong Time Dependence of
the 76-Gene Prognostic Signature for Node-Negative Breast Cancer Patients in the
TRANSBIG Multicenter Independent Validation Series.” by Desmedt et al. [3]. Patients
were eligible for inclusion if they were younger than 61 years old at diagnosis,
diagnosed before 1999 with node-negative, T1-T2 (5 cm) breast cancer, and had not
received adjuvant systemic therapy. Patients with previous malignancies (except basal
cell carcinoma) or with bilateral synchronous breast tumors were excluded. A total of
326 patients were included. Patients in this series had been diagnosed between 1980
and 1998 and had a median follow-up of 13.6 years. Data were also available for the
151 node-negative patients included in the analyses carried out at the Netherlands
Cancer Institute (NKI). Initially, frozen samples from eligible patients (n = 403) were sent
from all clinical centers to NKI for RNA extraction and microarray analysis. Useful RNA
could be extracted for hybridization and analysis from 81% of these frozen samples,
leaving 326 samples available for analysis. Paraffin-embedded tumor samples from all
patients in both the original and the validation series were sent to the Department of
Pathology at the European Institute of Oncology, Milan, where the same pathologist
(GV) determined ER status [using immunohistochemistry] and histologic grade [using

the Elston and Ellis method]. Whenever possible, these central pathology data were
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used to determine ER status (n = 218) and histologic grade (n = 237); otherwise the local
pathology data obtained at the original clinical center were used.

Ivshina dataset- This dataset came from a paper entitled, “Genetic Reclassification of
Histologic Grade Delineates New Clinical Subtypes of Breast Cancer” published by
Ivshina et al. [4]. This tumor set included three cohorts of patients.

Cohort 1-Uppsala cohort: The Uppsala cohort originally composed of 315 women
representing 65% of all breast cancers resected in Uppsala County, Sweden, from
January 1, 1987, to December 31, 1989. For histologic grading, new tumor sections
were prepared from the original paraffin blocks and stained with eosin (with the
exception of a few original van Gieson-stained sections). All sections were graded in a
blinded fashion (H.N.) according to the Nottingham Grading System as follows: Tubule
Formation: 3 = poor, if <10% of the tumor showed definite tubule formation, 2 =
moderate, if 10% but 75%, and 1 = well, if >75%. Mitotic Index: 1 = low, if <10 mitoses,
2 = medium, if 10 to 18 mitoses, and 3 = high, if >18 mitoses (per 10 high-power fields).
Field diameter was 0.57 mm. Nuclear Grade: 1 = low, for little variation in size and
shape of nuclei, 2 = medium for moderate variation, and 3 = high for marked variation
and large size. Tumors with summed scores ranging from 3 to 5 were classified as G1; 6
to 7 as G2; and 8 to 9 as G3. Estrogen and progesterone receptors were assessed by
Abbott's quantitative enzyme immunoassay (Abbott Laboratories, Chicago, IL) and
deemed positive if >0.05 fmol/ug DNA. Vascular endothelial growth factor (VEGF) was

measured in tumor cytosol by a quantitative immunoassay kit (Quantikine-human VEGF;
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R&D Systems, Minneapolis, MN). Protein levels of Ki67 were analyzed using anti-Ki67
antibody (MIB-1) by the grid-graticula method with cutoffs: low = 2, medium >2 and <6,
high = 6. Cyclin E was measured using the antibody HE12 (Santa Cruz Biotechnology,
Inc., Santa Cruz, CA) with cutoffs: low = 0% to 4%, medium = 5% to 49%, and high = 50%
to 100% stained tumor cells (22). Vascular growth was determined by routing staining
of tumor sections. P53 mutational status was determined by cDNA sequencing.

Cohort 2-Stockholm cohort: The Stockholm samples were derived from breast cancer
patients operated on at the Karolinska Hospital from January 1, 1994, through
December 31, 1996, and identified in the Stockholm-Gotland breast cancer registry.
Information on patient age, tumor size, number of metastatic axillary lymph nodes,
hormonal receptor status, distant metastases, site and date of relapse, initial therapy,
and date and cause of death were obtained from patient records and the Stockholm-
Gotland Breast Cancer Registry. Tumor sections were graded in the same fashion as the
Uppsala tumors. Only histologic G2 samples were evaluated in this study.

Cohort 3-Singapore cohort: The Singapore samples were derived from patients
operated on at the National University Hospital (Singapore) from February 1, 2000,
through January 31, 2002. Routine clinical data were obtained from pathology reports,
but no information on recurrence or cause of death was available. Tumor sections were
graded according to the Nottingham grading system as applied to the Uppsala and
Stockholm cohorts, with the following exception: Mitotic Index: 1 = low, if <8 mitoses; 2

= medium, if 9 to 16 mitoses; and 3 = high, if >16 mitoses (per 10 high-power fields);
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field diameter was 0.55 mm. Only histologic G2 samples were evaluated in this study.
For complete information of these datasets refer to Figure 2.1.

Denmark (training) dataset- The training dataset used for much of the proteomic
studies are detailed in the Specific Material and Methods of Chapter 4.

Superslide (validation) dataset- The Superslide dataset used for much of the validation

of the proteomic studies are detailed in the Specific Material and Methods of Chapter 4.
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Figure 2.1

Uppsala Stockholm Singapore
n=249 n=58 n=40

G1 G2 G3 G2 G2
Variables, by grade n=68 | n=126 | n=55 n=58 n=40
Age, median yrs 62 63 62 58 52
<55 years, % 26 25 44 41 60
Tumor size, cm 1.8 2.2 2.9 2.5 2.8
Nodes, positive, % 15 35 55 50 40
ER negative tumors, % 3 9 38 7 28
Follow up, median yrs 11 9 6 7 -
All recurrences, % 26 39 50 24 -
Endocrine therapy, % 18 37 36 62 -
Chemotherapy, % 4 6 22 5 -
Combine therapy, % 2 3 0 16 -
No systemic therapy, % 77 54 45,5 17

Figure 2.1 Clinical Characteristics of Tumors included in the Ivshina

et al. Dataset- The clinical characteristics of the tumors included in the
Ivshina dataset used for analysis of MELK expression on overall survival.
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2.3 Specific Materials and Methods

2.3.1 The Methods of Chapter 3:

2.3.2 Study population and design:

A total of 102 patients with invasive breast cancer were recruited through IRB-
approved, neoadjuvant studies to investigate gene expression in human tumors before
and after drug treatment. These tumors were collected by Dr. Jenny Chang at Baylor
College of Medicine and were graciously provided for further analysis. Breast biopsies
using a core needle were taken before initiation of any treatment and were used in this
study. Because the patients did not receive systemic adjuvant or neoadjuvant therapy
prior to the biopsy, the results from the gene expression analysis represent basal gene
expression in these breast cancers. For these gene expression profiling experiments,
102 breast tumors were studied, 58 of which were ER-positive and 44 ER-negative by
IHC-staining (24 of which were confirmed as “triple-negative”). The tumors were all
stage lll or IV from pre- and post-menopausal women, with all tumors showing >30%
cellularity. The women were from several racial groups and the majority had no
palpable nodes at baseline. Most of the women were premenopausal and presented
with relatively large tumors (ranging from 2.5 to 25 cm). The clinical and demographic

features of these tumors are summarized in Table 2.2.
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Table 2.2. Clinical characteristics of the patients and tumor
samples used in the study.

Characteristic

——————————————————— —————————————— — — |
Age

Tumor Set
N=102 (%)

Mean 48.1

Range (32-72)
Race

Caucasian 50 (57%)

Hispanic 7 (8%)

African-American 23 (27%)

Asian 7 (8%)
Menopausal Status

Pre 49 (62%)

Post 30 (38%)
BMI

Mean 29.7

Range (16.1-48.3)
Baseline Tumor Size, cm

Mean 6.3

Range (2.5-25.0)
Palpable Nodes at Baseline

Yes 20 (21%)

No 77 (79%)
ER

Positive 57 (56%)

Negative 45 (44%)

Unknown 0 (0%)
PR

Positive 37 (36%)

Negative 47 (46%)

Unknown 18 (18%)
HER2/Neu

Positive 27 (26%)

Negative 58 (57%)

Unknown 17 (17%)

Table 2.2. Characteristics of 102 patients with breast cancer. Tumors from
these patients were collected by Dr. Jenny Chang at Baylor College of Medicine
and used for gene expression profiling to identify overexpressed kinases in ER-
negative breast tumors




2.3.3 Acquisition of breast tumor tissue:

All ER-negative and ER-positive tumors were collected by Dr. Jenny Chang at
Baylor College of Medicine through IRB-approved, neoadjuvant studies to investigate
gene expression changes in human tumors following drug treatment. Diagnostic core
needle biopsies were taken first, then several (up to 6) additional cores were taken for
biomarker studies. These additional cores were taken before treatment, placed
immediately in liquid nitrogen, and used to prepare RNA, DNA, and protein.
Immunohistochemical (IHC) staining for ER alpha and HER2/neu expression was done on
these sets of tumor samples as previously described [5]. The tumor set comprised of
pre-treatment specimens from studies of docetaxel [6], cyclophosphamide [7],
docetaxel, and cyclophosphamide (unpublished data), and trastuzumab [8]. All studies
were conducted with approval from the Institutional Review Boards at Baylor College of
Medicine and participating sites. An outline of the study design is depicted in Figure

2.2.

2.3.4 Affymetrix microarray experiments:

All Affymetrix gene expression studies were conducted in the laboratory of Dr.
Jenny Chang at Baylor College of Medicine and data was graciously provided by Dr.
Jenny Chang. Total RNA from tumor samples was isolated using Qiagen’s RNeasy Kkit,
double-stranded cDNA synthesized, and reverse transcription carried out followed by

biotin labeling. Additionally, about 250-fold linear amplification and phenol-chloroform
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Figure 2.2 Outline of the study design used in the kinome

expression profiling in breast cancer. 102 human breast tumors
were collected and gene expression profiling was performed to identify
kinases overexpressed in ER-negative breast cancer by Dr. Jenny Chang at
Baylor College of Medicine. These overexpressed kinases were confirmed
two separate ways using: 1)Q-RT-PCR and 2) gene expression profiling on
human breast tumors and breast cancel cell lines. siRNA knockdown of
validated, overexpressed kinases identified those kinases that were critical
for mitogenesis in ER-negative breast cancer. These kinases are tractable
targets for the treatment of ER-negative breast cancer.
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Figure 2.2 Human Breast Tumor Acquisition

!

Human Breast Tumor Samples
Analysis of 102 human breast tumor samples
58 ER-positive, 44 ER-negative, 24 “triple negative”

!

Affymetrix Microarray data analyzed for kinase expression

86 kinases differentially expressed between ER-negative and ER-positive
samples. 52 kinases identified as being at least 2-fold higher in ER-
negative tumors (permutation p-value <.05)

l

Validation of kinases identified in kinase expression array analysis

1 1 1

Validation using

_ _ Validation done in an Validation done in ER-
publicly available independent set of negative and ER-
data sets of human breast tumors positive breast cancer
human brez?st using Q-RT-PCR analysis cell lines using
cancers profiled Affymetrix expression
using gene profiling data and Q-
expression RT-PCR analysis
profiling 1

Kinase knockdown of differentially expressed, validated kinases to assess
effect on growth of ER-negative and ER-positive breast cancer cells

1

Identified kinases critical for the growth of ER-negative breast cancer
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cleanup was done as previously published [9]. From each biopsy, 15 micrograms of
biotin-labeled cRNA was hybridized onto an Affymetrix HGU133A GeneChip™, which
comprise around 22,000 genes (www.affymetrix.com). The experiments were all done
using the microarray core facility at the Lester and Sue Smith Breast Center at Baylor

College of Medicine.

2.3.5 Statistical analysis of microarray data:

Statistical analysis was done with dChip (www.dchip.org) and BRB ArrayTools
software packages developed by Dr. Richard Simon and Amy Peng Lam.
(http://linus.nci.nih.gov/BRB-ArrayTools.html). Subsequent data analysis and clustering
was limited to the known kinome with interrogation of the 779 known and putative
human protein, nucleotide, and lipid kinases as well as kinase-interacting proteins and
regulatory subunits as previously described [10-12]. Gene expression was estimated
with dChip software using Invariant Set normalization and Perfect Match (PM) only
model [13]. Comparison of ER-negative and ER-positive groups was done with BRB Array
Tools, using t-test and computing permutation p-values [14]. Hierarchical clustering was
also done using dChip and MeV software packages (http://www.tm4.org/mev.html)
with rows standardized by subtracting the mean and dividing by the standard deviation.
Pearson’s correlation and centroid linkage was used to generate the trees on Log2
transformed expression data with perfect match/mismatch (PM/MM) difference

background subtraction. Original data analysis in dChip and with BRB array tools was
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done by Dr. Anna Tsimelzon and Dr. Susan Hilsenbeck. Reanalysis with MeV and dChip

and further bioinformatic analysis was done by Corey Speers.

2.3.6 Gene ontology analysis:

All gene ontology enrichment analyses were initially done using a Pathway
Architect™ software package developed by Stratagene by Corey Speers. Genes found
to be overexpressed at least 2-fold with a permutation p-value score of <.05 were used
as the input list and compared against the human kinome. Follow-up and confirmatory

analysis was done using Gene Ontology Tree Maker (GOTM) and EASE software [15].

2.3.7 Selection of genes for further study:

After completing all microarray experiments and performing statistical analysis
including the generation of gene cluster groups, candidate genes were validated in
studies as described below. Selected candidate genes had a > 2.0 fold increase in ER-
negative vs. ER-positive tumors with a p value <.05 and a false discovery rate (FDR) of
1%. Additional statistical analysis were done to minimize false discoveries and limit
misclassification as described by Dalmasso [16, 17]. The aberrant expression of these
selected genes was then confirmed using Q-RT-PCR on the original set of RNA from the
human breast tumor samples, and was then analyzed in our validation studies. We then
used comprehensive bioinformatics analysis to choose promising targets. For all of our

high throughput analysis, we employed all appropriate quality control and normalization
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techniques (QC-RMA, MAS5) before proceeding to data exploration. This exploration
involved unsupervised data analysis using hierarchical and k-means clustering, principal
component analysis and ordination with Pearson correlation coefficient, Spearman rank,
as well as Eigen plot analysis. Dimension reduction ordination with Eigen plots allowed
us to investigate the data in more meaningful ways by discovering hidden associations.
Integration of datasets using coinertia analysis allowed us to integrate data across
platforms and this process, coupled with GO ontology analysis and categorization, lead
to additional target discovery. In effect this allowed us to go beyond a statistical means
of target selection and allowed us to integrate multiple data in picking targets that are
common between all datasets. These analyses were done by Corey Speers with
assistance of Dr. Susan Hilsenbeck at Baylor College of Medicine and Dr. John

Quackenbush at the Dana Farber Cancer Institute.

2.3.9 Z-transform test in multiple datasets:

To validate that the differentially expressed kinases identified in this analysis
were also differentially expressed in other publically available datasets of human breast
cancer we employed the Z-transform test described by Whitlock [18]. Briefly, this
method allows for the combining of individual P-values and has proven superior to
Fisher’s combined probability test. The Z-transform test takes advantage of the one-to-
one mapping of the standard normal curve to the P-value of a one-tailed test. As Z goes

from negative infinity to infinity, P will go from 0 to 1, and any value of P will uniquely
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be matched with a value of Z and vice versa. The Z-transform test converts the one-
tailed P-values, P;, from each of k independent tests into standard normal deviates Z.
The sum of these Z's, divided by the square root of the number of tests, k, has a

standard normal distribution if the common null hypothesis is true. The equation:

was used in the calculation of summed z-scores, which were then
related to the reported P-values. This analysis was done by Corey Speers with input

from Dr. Susan Hilsenbeck at Baylor College of Medicine.

2.3.10 Kaplan-Meier Survival Analysis:

Gene expression profiling and survival data generated by Wang et al. and van de
Vijver et al. was used to evaluate prognostic import of the kinase clusters in this data set
[1, 2]. Data was obtained from GEO and hierarchical clustering performed only on the
ER-negative samples from the Wang and van de Vijver data sets. MeV and R software
package were used for data and statistical analysis. For hierarchical clustering, the
expression values of the kinases identified as being over expressed in ER-negative
tumors were extracted from the data sets using Affymetrix probe IDs. The expression
values were mean centered and hierarchical clustering based on Pearson’s correlation
with complete linkage again identified our 4 subsets of ER-negative kinase clusters.
Figure of merit scoring showed that these four clusters were stable against reclustering

in both datasets. Using this information each tumor sample was classified as falling into
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one of the 4 kinase clusters (cell cycle checkpoint, S6 kinase, MAPK signaling, or
immunomodulatory). After classification of tumors, Kaplan-Meier analysis using the
survival data from the ER-negative tumors in the data sets was performed using R
(http://www.r-project.org) and survival curves were generated. Chi squared scores
were calculated to determine significance. These analyses were done by Corey Speers

with assistance of Dr. Susan Hilsenbeck at Baylor College of Medicine.
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2.4 The Materials and Methods of Chapter 4.

2.4.1 Training and Validation Datasets used in the Proteomic Analysis:

Two datasets (a training and a validation set) were used in this analysis. These
tumors were collected by investigators in Denmark and at M.D. Anderson Cancer Center
under the direction of Dr. Gordon Mills, and the data was generously provided to us for
further analysis. The training set was derived from tumors acquired in collaboration
with investigators in Denmark, and is at times referred to as the Denmark dataset. This
dataset is comprised of 166 tumors. The mean age of the women from whom the
tumors were derived was 54.8 (range 30-69). 126 of the tumors were ER-positive (76%)
and 40 tumors were ER-negative (24%). 34 (21%) tumors were HER2-positive as
measured by fluorescence in situ hybridization (FISH) analysis and 102 (61%) were HER2-
negative, with 30 (18%) having unknown HER2 status. The majority of the women (93%)
from whom these tumors were derived had node-positive disease, with one to three
positive nodes in 46% of women and greater than 3 nodes positive in 47% of women.
The mean survival of these women was 107.5 months. Please refer to Table 4.1 in
Chapter 4 for more details of this tumor set.

The validation dataset was comprised of 712 tumors (612 tumors from M.D.
Anderson Cancer Center and 91 tumors from Baylor College of Medicine). The tumor
samples obtained and processed at M.D. Anderson by Dr. Gordon Mills, and had clinical

follow-up data including date of diagnosis, disease and recurrence free survival,
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metastasis-free survival, and overall survival. The tumor samples obtained at Baylor
College of Medicine were processed by Corey Speers and had initial diagnosis data but
did not have clinical follow-up data and thus were censored from any analysis involving
clinical follow-up data. The mean age of the women from whom the tumors were
derived was 60.3 (range 23-89). 449 of the tumors were ER-positive (63%) and 263
tumors were ER-negative (37%). 21 (3%) tumors were HER2-positive as measured by
fluorescence in situ hybridization (FISH) analysis and 148 (21%) were HER2-negative,
with 543 (76%) having unknown HER2 status. 38% of the women had node-negative
disease, while 28% had 1-3 nodes positive and 11% had greater than 3 nodes positive.
The mean survival of these women was 69.86 months. Please refer to Table 4.1 in

Chapter 4 for additional details of this tumor set.

2.4.2 Reverse phase protein lysate arrays (RPPAs):

This assay is a high throughput proteomic technique to measure protein
expression of hundreds of proteins in thousands of samples simultaneously. These
experiments were done in the laboratory of Dr. Gordon Mills using his proteomic
facilities. Dr. Bryan Hennessy did the proteomic analysis at M.D. Anderson and kindly
provided the data for our analysis. Briefly, lysis buffer was used to lyse cell lines and
frozen human tumor samples by homogenization. Cell and tumor lysates were
normalized to 1 ug/ul concentration using bicinchronic acid assay and boiled with 1%

SDS, and the supernatants were manually diluted in six or eight 2-fold dilutions with lysis
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buffer in Dr. Mills’ facility. A GeneTAC arrayer (Genomic Solutions, Inc.) created 1,152
spot arrays on nitrocellulose-coated FAST slides (Sleicher & Schuell Biosciences, Inc.)
from the serial dilutions. Up to 7000 single dots were printed on one slide allowing for
the analysis of up to 1054 samples with 1000 controls on a single slide (a lower density
approach is presented in Figure 2.3 for visualization). The serial dilution provides a slope
and intercept, allowing relative quantification of individual proteins (Figure 2.3). This is
compared with control peptides for total and phosphopeptides allowing absolute
guantification. With robotics, 100 identical slides can be printed at one time. Each slide
was probed with a validated antibody (listed in Table 2.3). The DAKO signal
amplification system was used to detect and amplify AB-binding intensity. This is a
commercially available catalyzed system kit that uses 3,3'-diaminobenzidine
tetrachloride and a catalyzed reporter deposition of the substrate to amplify the signal
detected by the primary antibody. A biotinylated secondary antibody (anti-mouse or
anti-rabbit) is used as a starting point for signal amplification. A streptavidin-biotin
complex attached to the secondary antibody and biotinyl-tyramide deposition on this
complex was used to amplify the reaction. Tyramide-bound horseradish peroxidase
cleaves 3,3'-diaminobenzidine tetrachloride, resulting in a stable brown precipitate with
excellent signal-to-noise ratio. This technique is sensitive and reproducible in the
femtomolar sensitivity range.

The slides were scanned, analyzed, and quantitated using Microvigene software

(VigeneTech Inc.) to generate serial dilution—signal intensity curves for each sample with
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Figure 2.3
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Figure 2.3 Reverse phase protein lysate array. Samples are duplicate
spotted in 6-8 serial dilutions on nitrocellulose slides (A). Slides are scanned
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samples using ‘dot’ intensity (B). Slide used with permission by Dr. Bryan
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the logistic fit model: In(y) =a + (b—a) / (1 + exp {c*[d — In(x)]}) as described previously
[19]. A representative natural logarithmic value of each sample curve on the slide (curve
average) was then used as a relative quantification of the amount of each protein in
each sample. Protein loading was corrected across samples by correction of the linear
expression values using the average expression levels of at least four proteins (e.g.,
ERK2, GSK3, JNK, mTor) to calculate a loading correction factor for each sample. To
accurately determine the absolute concentrations of proteins in a sample, standard
signal intensity-concentration curves for purified proteins or recombinant peptides of
known concentration was generated for comparison with the samples in which protein
concentrations are unknown. Determination of the protein concentration in control cell
lysates (e.g., MDA-MB-468) was very important, as it served as a reference curve on
each slide for inter-slide comparison of the samples. As mentioned earlier, this work
was done by Dr. Bryan Hennessy in Dr. Gordon Mills’ laboratory at M.D. Anderson

Cancer Center.

2.4.3 Western blot analysis:

For protein isolation from tissue culture cell lines, cells were washed once with
ice-cold phosphate buffered saline (PBS) and lysed in protein lysis buffer consisting of
50mM HEPES pH7.5, 150mM NaCl, 1ImM EDTA, 1% Triton X-100, 10% glycerol, 100mM
NaF, Complete Mini protease inhibitors cocktail tablet (Roche), and phosphatase

inhibitor cocktail |1 and Il (Sigma-Aldrich). Protein concentration was determined using
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BCA Protein Assay Reagents (Pierce Biotechnology). Western blot analysis was
performed as previously described [20]. Briefly, aliquots of total protein (30ug) were
resolved by electrophoresis in 10% SDS-PAGE gel and transferred to a nitrocellulose
membrane (Amersham Biosciences). The membrane was blocked and incubated with
primary antibody. After washing in TBST, the membrane was then incubated with
horseradish peroxidase-conjugated secondary, washed again, and antigen-antibody
complexes were detected using the ECL or ECL Plus chemiluminescent system
(Amersham Bioscience). Primary antibodies specific for kinases of interest were
purchased from Cell Signaling or Novacastra. Anti-mouse and anti-rabbit secondary
antibodies were obtained from Amersham Bioscience. Protein isolation from human
tumor samples was identical to that of cells, except that samples were first
homogenized using a 7 mm generator and a rotator-stator homogenizer (ProScientific).

Samples were homogenized in protein lysis buffer and all isolation was done on ice.

2.4.4 Statistical analysis:

Significance analysis of microarray (SAM) method was used to identify those
proteins and phosphoproteins that were differentially expressed in ER-positive and ER-
negative breast tumors. Analysis revealed a significant difference (permutation P-
value< 0.01, hereafter referred to as P-value) in the expression of 40 proteins between
ER-negative and ER-positive tumors with a false discovery rate (FDR) of 1%. Group

characteristics were tabulated and compared between groups with the )(2 test or
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Kruskal-Wallis test as appropriate. All patients in the datasets with reliable clinical
follow-up data were used for the outcome analyses. Overall survival (OS) was measured
from the date of diagnosis to the date of death from any cause. Recurrence-free
survival (RFS) was measured from the date of diagnosis to the date of breast cancer
recurrence. Patients who died before experiencing a disease recurrence were
considered censored at their date of death. Survival outcomes were estimated with the
Kaplan-Meier method and compared between groups with the log-rank statistic.
Multivariable Cox proportional hazards models were fit to determine the association of
breast cancer subtypes with survival outcomes after adjustment for other patient
characteristics. This analysis was done by Corey Speers with input from Dr. Susan

Hilsenbeck at Baylor College of Medicine.

2.4.5 Kaplan-Meier Survival Analysis:

After hierarchical clustering to identify subgroups of ER-negative breast cancer,
figure of merit scoring showed that these four clusters were stable against reclustering.
Using this information each tumor sample was classified as falling into one of the 4
clusters or subgroups (ER-low, stathmin, S6 kinase, or HER2/neu subgroup of tumors).
After classification of tumors, Kaplan-Meier analysis using the survival data from the
training and validation set was done using GraphPad Prism 5.0 and survival curves were

generated. Chi squared scores were calculated to determine significance and hazard
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ratios (HR) and 95% confidence intervals (Cl) we also calculated. This analysis was done

by Corey Speers.

2.4.6 Censured Survival Analysis:

To identify proteins associated with good and poor outcomes we performed
significance analysis for microarrays (SAM) using censured survival data [21]. Row
average was used in the input engine and 250 permutations were run. SO was
calculated using the Tuscher et al. method as described previously [21]. Q-values were
not calculated and the false discovery rate was <5%. Hierarchical clustering was done
using all significant proteins and clustering was done using Pearson’s correlation with

complete linkage [22]. This analysis was done by Corey Speers.

2.4.7 Kruskal-Wallis Test:

The non-parametric Kruskal-Wallis test (an extension of the Mann-Whitney U
test for more than 3 groups) was used to identify proteins associated with the groups
defined by gene expression profiling limited to the intrinsic gene list. Using the intrinsic
gene list previously defined, we were able to classify all of the training set tumors into a
luminal A, luminal B, normal, erbB2, or basal like cluster [23-25]. Using these cluster
definitions based on gene expression analysis allowed us to use Kruskal-Wallis test to
identify proteins associated with these previously defined subtypes. Significance was

based on estimated (Benjamini-Hochberg) and the selected false discover rate limit was
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0.03. In this analysis, 47 samples were identified as being luminal A, 28 samples as
luminal B, 42 samples as erbB2, 24 samples as normal, and 25 samples as basal. This
analysis was done by Corey Speers with input from Dr. Susan Hilsenbeck at Baylor

College of Medicine.

2.4.8 RNA and Protein Correlation:

RNA expression values were determined using the Applied Biosystem Human
Genome Survey Microarray version 2.0 (Applied Biosystems, Foster City, CA). Data was
normalized using QC-RMA and log2 transformed. RNA expression values were then
compared to the corresponding protein expression values determined in the RPPA
analysis.  Comparisons were only done using total protein measurements as
phosphoproteins and cleavage products were unsuitable for comparison with RNA
expression products. Correlation was determined using Spearman’s rank correlation.
This is a distribution free, two sided test of independence between two variables. R
values were calculated and P-values were determined using Gaussian approximation.
This analysis was done by Corey Speers with input from Dr. Susan Hilsenbeck at Baylor

College of Medicine.
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2.5 The Materials and Methods of Chapter 5.

2.5.1 RNA isolation and Quantitative RT-PCR (Q-RT-PCR):

Total RNA was isolated using the RNeasy RNA isolation kit (QIAGEN, Valencia,
CA) as described in the general methods section of this chapter. Briefly, quantitative RT-
PCR (Q-RT-PCR) assays of transcripts were carried out using gene-specific double
fluorescence-labeled probes in an ABI PRISM 7700 Sequence Detector (Applied
Biosystem, Foster City, CA). The PCR reaction mixture and cycling conditions were as
previously described. Primers were designed based on the Entrez ID NM_014791 for
human maternal embryonic leucine zipper kinase (MELK) and were as follows:
Forward: ccaacaaaatattcatggttcttg
Reverse: aggcgatcctgggaaattat
Amplicon: caacaaaatattcatggttcttgagtactgccctggaggagagctgtttgactatataatttcccaggategect
with probe ID #25 from the human universal probe set library used (Roche Applied

Science, Indianapolis, IN).

2.5.2 Western blot analysis:

Protein was isolated from breast cancer cell lines and human breast tumors as
described in the general methods section of this chapter. Western blots were done as
previously described using the primary total MELK antibody (Cell Signaling Technologies,

Danvers, MA, catalog #2274) diluted 1:500. After washing in TBST, the membrane was
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then incubated with horseradish peroxidase-conjugated secondary anti-rabbit antibody,
washed again, and antigen-antibody complexes were detected using the ECL or ECL Plus
chemiluminescent system (Amersham Bioscience). Quantitation was done by
measuring pixel density of the MELK bands compared to loading control (beta actin)

pixel intensity.

2.5.3 siRNA transfection:

siRNAs for MELK was purchased from Sigma Aldrich (St. Louis, MO). siRNA
transfection was performed as described in the general methods section of this chapter.
All cell lines used in the siRNA knockdown experiments were grown as previously

described according to ATCC specifications (http://www.atcc.org).

2.5.4 Cell proliferation assays:

Cell growth was measured using the CellTiter 96™ Aqueous Non-Radioactive Cell
Proliferation assay (MTS assay, Promega) according to the manufacturer’s instructions
and as previously described in the general methods section of this chapter. Briefly, cells
were plated in 96-well plates at 2000 cells per well. Every 24 hours, a solution
containing 20:1 ratio of MTS and PMS was added to the cells and absorption was
measured. Each data point was performed in heptuplicate, and the results were
reported as average absorption + standard deviation. The data is reported as

percentage of growth compared to mock transfected controls for each cell line.
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Experiments were repeated at least twice and the percentage growth inhibition is the

average of the experiments.

2.5.5 Kaplan-Meier Survival Analysis:

Multiple available datasets were interrogated to evaluate the prognostic import
of MELK in the Wang, Desmedt, van de Vijver, lvshina, and Denmark datasets [1-4].
Data was obtained from the repository on gene expression omnibus (GEO) website at
http://www.ncbi.nlm.nih.gov/geo/.  Probe set IDs corresponding to MELK were
extracted from the datasets, as were the corresponding annotation and clinical data.
Datasets were sorted according to expression of MELK, from highest to lowest, Kaplan-
Meier analysis using the survival data from the datasets was performed. Visualization
and statistical testing was done using GraphPad Prism 5.0 and survival curves were
generated. Chi squared scores were calculated to determine significance and hazard
ratios (HR) and 95% confidence intervals (ClI) were also calculated. Dataset
categorization was done two ways; first by depicting higher and lower than mean MELK
expression in the datasets, and second, by depicting quartile expression of MELK as

listed in the figures in Chapter 5. This analysis was done by Corey Speers.

2.5.6 Multivariate Analysis:

A Cox proportional hazards model was constructed to identify potential factors

of survival. Survival time was defined as the time from the date of the initial diagnosis
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of breast cancer to the date of death. Subjects who were alive at the last follow-up
were censored on that date. The initial multivariate model contained all variables
independently associated with survival in univariate analyses. A backward selection
procedure, using p<0.05 as the criterion for inclusion, was then implemented to build
the final model. All statistical tests were conducted using STATA 10.0 (College Station,

TX) and were done by Krystal Sexton at Baylor College of Medicine.

2.6 Summary

This chapter has been a brief discussion of the most relevant materials and
methods used to generate the data for this thesis. Additional information may be
obtained by reviewing the laboratory notebooks from these studies archived under the
supervision of Dr. Powel Brown. The following chapters will detail the studies

conducted in this thesis as well as the results and summary of these findings.
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Chapter 3

Identification of Novel Kinase Targets for the Treatment of Estrogen Receptor-

Negative Breast Cancer
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3.1 Abstract

Previous gene expression profiling studies of breast cancer have focused on the entire
genome to identify genes differentially expressed between estrogen receptor alpha
(ER)-positive and ER-alpha-negative cancers. Here we used gene expression microarray
profiling to identify a distinct kinase gene expression profile that identifies ER-negative
breast tumors and subsets ER-negative breast tumors into 4 distinct subtypes. Based
upon the types of kinases expressed in these clusters, we identify a cell cycle regulatory
subset, a S6 kinase pathway cluster, an immunomodulatory kinase expressing cluster,
and a MAPK pathway cluster. Furthermore, we show that this specific kinase profile is
validated using independent sets of human tumors, and is also seen in a panel of breast
cancer cell lines. Kinase expression knockdown studies show that many of these kinases
are essential for the growth of ER-negative, but not ER-positive, breast cancer cell lines.
Finally, survival analysis of patients with breast cancer shows that the S6 kinase pathway
signature subtype of ER-negative cancers confers an extremely poor prognosis, while
patients whose tumors express high levels of immunomodulatory kinases have a
significantly better prognosis. This study identifies a list of kinases that are prognostic

and may serve as druggable targets for the treatment of ER-negative breast cancer.
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3.2 Introduction

The genomic era has produced an exponential increase in our understanding of
cancer biology and has greatly accelerated cancer drug development. With the advent
and implementation of microarray expression profiling, it is now possible to evaluate
gene expression in tumors on a genome-wide basis. Gene expression analysis is now
extensively used to subtype cancers, predict prognosis and disease free survival, and
determine optimal treatment [1-7].

Estrogen receptor alpha (ER)-positive breast cancers account for 60-70% of
breast cancers, but the remaining 30-40% of breast cancers are ER-negative and are
poorly responsive to traditional therapies [8]. Selective estrogen receptor modulators
(SERMs), such as tamoxifen and raloxifene, and aromatase inhibitors are currently used
to treat ER-positive breast cancer and have been shown to reduce ER-positive breast
cancer recurrence by approximately 50% [9]. These agents, however, are not effective
in treating ER-negative breast cancer. Currently, chemotherapy is used to treat ER-
negative tumors [10]. Such therapy is generally toxic and is not specifically targeted to
ER-negative breast cancer.

A major goal of current breast cancer research has been to identify targets that
are unique to cancer cells and to identify drugs that kill only cancerous cells without
affecting normal tissue. While achieving this goal has been difficult, there are several
examples of effective targeted therapies, including development of the monoclonal

antibodies trastuzumab (targeting the HER2/neu receptor) and bevacizumab (targeting

100



vascular epithelial growth factor) which have been shown to be effective in treating
breast cancer [11, 12]. Other successes include the development of small molecule
tyrosine kinase inhibitors including gefitinib and erlotinib (both of which target the
epidermal growth factor receptor), and lapatinib (a dual kinase inhibitor targeting both
the epidermal growth factor receptor and the HER2/neu receptor) [13-16]. Despite
these advances, such therapies are effective only in the 10-15% of patients whose
tumors overexpress HER2. To develop targeted therapies for the remaining ER-negative
breast cancers, including the aggressive ER-negative, PR-negative, HER2-negative
(“triple-negative”) breast cancers, we have used expression microarray analysis to
identify molecules that play a role in breast cancer development and progression.
Subsequent validation of these findings, along with the development of specific targeted
inhibitors of these molecules, will certainly broaden treatment options and improve
patient survival.

The purpose of this study was to identify the kinases that are over-expressed in
ER-negative breast cancer and which may serve as “druggable targets” for the
treatment of ER-negative breast cancer and in particular, “triple-negative” breast
cancer. We have used transcriptional profiling data to evaluate the expression of the
human kinome and have identified a set of kinases which are differentially expressed
and are critical for the growth of ER-negative breast cancer. Our results also
demonstrate that ER-negative breast cancer can be subdivided into four separate

subgroups, each of which is distinct in the type and level of kinases they express. We
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used siRNA knockdown studies to identify a subset of these kinases that are required for
the growth of ER-negative breast cancer cells. These kinases represent promising

targets for the treatment of ER-negative breast cancers.
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3.3 Results

To identify kinases that are differentially expressed in ER-negative breast
cancers, we designed a study to compare kinase expression levels in ER-positive and ER-
negative human breast tumor samples. A summary of the study design is outlined in

Figure 3.1.

3.3.1 Patient Population

A total of 102 patients with invasive breast cancer were recruited by Dr. Jenny
Chang through IRB-approved, neoadjuvant studies to investigate gene expression in
human tumors before and after drug treatment. Breast biopsies using a core needle
were taken by Dr. Jenny Chang before initiation of any treatment and were used in this
study. Because the patients did not receive systemic adjuvant or neoadjuvant therapy
prior to the biopsy, the results from the gene expression analysis represent basal gene
expression in these breast cancers. For these gene expression profiling experiments,
102 breast tumors were studied in the laboratory of Dr. Jenny Chang, 58 of which were
ER-positive and 44 ER-negative by IHC-staining (24 of which were confirmed as “triple-
negative”). The tumors were all stage Ill or IV from pre- and post-menopausal women,
with all tumors showing >30% cellularity. The women were from several racial groups
(as shown in Table 3.1) and the majority had no palpable nodes at baseline. Most of the

women were premenopausal and presented with relatively large tumors (ranging from
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Figure 3.1 Overview of Study Design

Human Breast Tumor Samples
Analysis of 102 human breast tumor samples collected by Dr. Jenny Chang
58 ER-positive, 44 ER-negative, 24 “triple negative”

l

Affymetrix Microarray data analyzed for kinase expression

86 kinases differentially expressed between ER-negative and ER-positive
samples. Profiling done by Dr. Jenny Chang.

52 kinases identified as being at least 2-fold higher in ER-negative tumors
(permutation p-value <.05)

1

Validation of kinases identified in kinase expression array analysis

1 1 1

Validation using

publicly available Validation done in an Validation done in ER-
data sets of independent set of human negative and ER-positive
human breast breast tumors using Q-RT-PCR breast cancer cell lines
cancers profiled analysis using Affymetrix
using gene expression profiling data
expression and Q-RT-PCR analysis
profiling 1

Kinase knockdown of differentially expressed, validated kinases to
assess effect on growth of ER-negative and ER-positive breast
cancer cells

!

Identified kinases that are critical for the growth of ER-negative
breast cancer
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Table 3.1. Clinical characteristics of the patients and tumor samples used in
the study.

Characteristic Tumor Set
N=102 (%)
Age
Mean 48.1
Range (32-72)
Race
Caucasian 50 (57%)
Hispanic 7 (8%)
African-American 23 (27%)
Asian 7 (8%)
Menopausal Status
Pre 49 (62%)
Post 30 (38%)
BMI
Mean 29.7
Range (16.1-48.3)

Baseline Tumor Size, cm
Mean 6.3
Range (2.5-25.0)

Palpable Nodes at Baseline

Yes 20 (21%)

No 77 (79%)
ER

Positive 57 (56%)

Negative 45 (44%)

Unknown 0 (0%)
PR

Positive 37 (36%)

Negative 47 (46%)

Unknown 18 (18%)
HER2/Neu

Positive 27 (26%)

Negative 58 (57%)

Unknown 17 (17%)

Table 3.1- Characteristics of 102 patients with breast cancer. Tumors from these
patients were collected by Dr. Jenny Chang and used for gene expression profiling
to identify overexpressed kinases in ER-negative breast tumors
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2.5 to 25 cm). The clinical and demographic features of these tumors are summarized in

Table 3.1.

3.3.2 Affymetrix Gene Expression Profiling Identified Kinases Overexpressed in Human
ER-Negative Breast Tumors

To identify signaling molecules that are differentially expressed in ER-negative
breast cancers, we performed Affymetrix gene expression profiling to compare human
ER-negative and ER-positive breast tumors. The profiling was done in the laboratory of
Dr. Jenny Chang, with data generously provided for further analysis. Subsequent data
analysis and clustering was limited to the known kinome with interrogation of the 779
known and putative human protein, nucleotide, and lipid kinases as well as kinase-
interacting proteins and regulatory subunits as previously described [17-19]. These
kinases and kinase associated genes are listed in Supplementary Table 3.1. We first
performed analysis to identify those kinases that were differentially expressed in ER-
positive and ER-negative breast tumors. Our analysis revealed a significant difference
(permutation P-value< 0.05, hereafter referred to as P-value) in the expression of 86
kinases between ER-negative and ER-positive tumors, with a false discovery rate (FDR)
of less than 1% (Tables 3.2 and 3.3). To visualize the clustering of the ER-positive and
ER-negative tumors, hierarchical clustering analysis was done using only those kinases
identified as being differentially expressed between the two groups (Figure 3.2A).

Hierarchical clustering showed that these 86 kinases were able to segregate ER-positive
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fold change over ER-

Gene name EntrezGene ID positive perm. p-value
PFKP: phosphofructokinase, platelet 5214 3.84 0.000007
CXCL10: chemokine (C-X-C motif) ligand 10 3627 3.81 0.000026
MET 4233 2.75 0.000052
maternal embryonic leucine zipper kinase 9833 2.72 0.000005
PDXK 8566 2.70 0.000001
LYN 4067 2.60 0.000114
CCL4: chemokine (C-C motif) ligand 4 6351 2.54 0.000298
CHEK1 1111 2.54 0.000049
SRPK1 6732 2.52 0.000550
EGFR 1956 2.51 0.000112
PRKX /// PRKY 5613 2.49 0.000009
RIPK4 54101 2.48 0.000015
AURKB: aurora kinase B 9212 2.48 0.000571
BUB1 699 2.39 0.000013
YES1 7525 2.37 0.000022
LCK 3932 2.31 0.000358
SEPHS1: selenophosphate synthetase 1 22929 2.28 0.000173
CDC2 983 2.27 0.000311
UGP2 7360 2.24 0.000002
SGK 6446 2.22 0.000042
LYN 4067 2.22 0.000160
CHEK1 1111 2.22 0.000022
MAP4K4 9448 2.22 0.000077
PLK1 5347 2.21 0.005490
CCL2: chemokine (C-C motif) ligand 2 6347 2.19 0.006306
IRAK1 3654 2.16 0.000138
PTK7 5754 2.16 0.002156
RPS6KA1 6195 2.15 0.000423
PIM1: pim-1 oncogene 5292 2.15 0.000283
MPZL1: myelin protein zero-like 1 644387 2.13 0.000000
EPHA2 1969 2.12 0.000126
CDC7: cell division cycle 7 homolog 8317 2.10 0.002258
STK38L: serine/threonine kinase 38 like 23012 2.10 0.000754
SMG1 23049 2.10 0.000520
RIOK3 8780 2.09 0.000243
PGK1: phosphoglycerate kinase 1 5230 2.09 0.004493
PRKX: protein kinase, X-linked 5613 2.09 0.000768
YWHAQ 10971 2.07 0.000049
YES1 7525 2.07 0.000002
LYN 4067 2.07 0.000030
STK38: serine/threonine kinase 38 11329 2.06 0.000093
MAP3K5 4217 2.06 0.002712
PIK3CB 5291 2.05 0.000158
EPHB2 2048 2.05 0.000216
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fold change over ER-

Gene name EntrezGene ID positive perm. p-value
MAP4K2 5871 2.05 0.005400
SRPK1: SFRS protein kinase 1 6732 2.04 0.000081
VRK2 7444 2.04 0.000158
CSK 1445 2.04 0.000545
DAPK1: death-associated protein kinase 1 1612 2.03 0.000109
MALT1 10892 2.03 0.000043
SEPHS1: selenophosphate synthetase 1 22929 2.03 0.001312
UCK2: uridine-cytidine kinase 2 7371 2.03 0.000253
EPHB6 2051 2.02 0.002540
MAPK1 5594 2.01 0.001285
LIMK2 3985 2.00 0.000162
RYK: RYK receptor-like tyrosine kinase 6259 2.00 0.000191
RPS6KA3 6197 2.00 0.000657
PGK1: phosphoglycerate kinase 1 5230 2.00 0.000284
EPHB4: EPH receptor B4 2050 2.00 0.001583
TTK: TTK protein kinase 7272 2.00 0.000435
AK2: adenylate kinase 2 204 2.00 0.000063
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fold change over ER-

Affy probe set ID Gene name EntrezGene ID negative perm. p-value

204379 _s_at FGFR3: fibroblast growth factor receptor 3 2261 4.32 0.000061

204686_at IRS1: insulin receptor substrate 1 3667 3.47 0.00001

221667_s_at HSPB8: heat shock 22kDa protein 8 26353 3.46 0.000085

204014 _at DUSP4: dual specificity phosphatase 4 1846 3.42 0.004515

220038_at SGK3: serum/glucocorticoid regulated 23678 3.30 0.016929
kinase family, member 3

211535 _s_at FGFR1: fibroblast growth factor receptor 1 2260 2.80 0.019118
(fms-related tyrosine kinase 2, Pfeiffer
svndrome)

205399_at DCLK1: doublecortin-like kinase 1 9201 2.74 0.014443

209341 _s_at IKBKB: inhibitor of kappa light polypeptide 3551 2.70 0.000001
gene enhancer in B-cells, kinase beta

206197_at NMES5: non-metastatic cells 5, protein 8382 2.67 0.000016
expressed in (nucleoside-diphosphate
kinase)

202962_at KIF13B: kinesin family member 13B 23303 2.58 0.000943

221207_s_at NBEA: neurobeachin 26960 2.56 0.003208

202786_at STK39: serine threonine kinase 39 27347 2.53 0.000082
(STE20/SPS1 homolog, yeast)

210740_s_at ITPK1: inositol 1,3,4-triphosphate 5/6 kinase 3705 2.50 0.000034

207119_at PRKG1: protein kinase, cGMP-dependent, 5592 2.42 0.015191
type |

219686_at STK32B: serine/threonine kinase 32B 55351 2.42 0.000189

205448 s_at MAP3K12: mitogen-activated protein kinase 7786 2.32 0.000002
kinase kinase 12

202454 s_at ERBB3: v-erb-b2 erythroblastic leukemia 2065 2.29 0.000206
viral oncogene homolog 3 (avian)

204862_s_at NME3: non-metastatic cells 3, protein 4832 2.27 0.000627
expressed in

207169_x_at DDR1: discoidin domain receptor family, 780 2.26 0.008385
member 1

210749_x_at DDR1.: discoidin domain receptor family, 780 2.24 0.009653
member 1

208779_x_at DDR1: discoidin domain receptor family, 780 2.22 0.011492
member 1

221918 _at PCTK2: PCTAIRE protein kinase 2 5128 2.22 0.000091

208383 _s_at PCK1: phosphoenolpyruvate carboxykinase 5105 2.18 0.004562
1 (soluble)

213264 _at PCBP2: poly(rC) binding protein 2 5094 2.18 0.000343
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fold change over ER-

Affy probe set ID Gene name EntrezGene ID negative perm. p-value
202281 _at GAK: cyclin G associated kinase 2580 2.14 0.009556
40225_at GAK: cyclin G associated kinase 2580 2.13 0.012694
57540_at RBKS: ribokinase 64080 2.11 0.000008
204589_at NUAK1: NUAK family, SNF1-like kinase, 1 9891 2.11 0.018574

110




Figure 3.2A - Supervised hierarchical clustering identifies different
subsets of ER-negative breast cancer. (A) Hierarchical clustering
analysis of kinases that distinguish ER-positive from ER-negative human
breast tumors. Gene expression analysis of 102 human breast tumors
reveals 86 kinases that are differentially expressed between ER-negative
and ER-positive human breast tumors with a permutation P-value <.05.
Clustering done by Corey Speers with input from Dr. Anna Tsimelzon and
Dr. Susan Hilsenbeck.
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and ER-negative tumors and that the majority of the HER2-positive tumors were ER-
negative (as expected). Upon further analysis, 52 of these 86 differentially expressed
kinases were expressed at least 2 fold higher with a P-value <.05 in the ER-negative
breast tumors as compared to ER-positive tumors. These 52 kinases were selected for
further study. Original data analysis in dChip and with BRB array tools was done by Dr.
Anna Tzsimelson and Dr. Susan Hilsenbeck. Reanalysis with MeV and dChip and further

bioinformatic analysis was done by Corey Speers.

3.3.3 Unsupervised Clustering Analysis Revealed Four Distinct Subtypes of ER-negative
Breast Cancer

We next determined whether this list of 52 kinases overexpressed in ER-negative
breast cancers could subcluster the ER-negative tumors in an unbiased manner. We
performed unsupervised clustering analysis using only the ER-negative breast cancer
samples and found that these tumors clustered broadly into 4 distinct subtypes of ER-
negative breast cancer (Figure 3.2B, labeled as groups 1-4). Upon further inspection of
these four subsets of tumors, there was one subset of tumors defined by kinases
involved in cell cycle checkpoint control and mitogenesis, including CHK1, BUB1, TTK,
and AK2 (group 1 termed the “cell cycle checkpoint group”). Another tumor subset was
defined by kinases involved in the S6 kinase signaling pathway and includes RPS6KA3,
SMG-1, and RPS6KA1 kinases (group 2 termed the “S6 kinase group”). Of the two other

ER-negative clusters, one is defined by kinases that are involved in modulating the

113



Figure 3.2B - Supervised hierarchical clustering identifies different
subsets of ER-negative breast cancer. (B) Unsupervised hierarchical
clustering analysis of overexpressed kinases only in ER-negative tumors
using kinases overexpressed in ER-negative breast cancers reveals 4
distinct subsets of ER-negative breast cancer. These four subset are
defined by kinases that are involved in cell cycle checkpoint control
(group 1), S6 kinase signaling (group 2), immunomodulatory (group 3),
or paracrine signaling involving many MAPKs (group 4). Subtype refers
to the breast cancer subtypes identified by Sorlie et al. (6) Clustering
done by Corey Speers with input from Dr. Anna Tsimelzon and Dr. Susan
Hilsenbeck.
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Figure 3.2B
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immune system (/RAK1, TLR1, LCK, and LYN) (group 3, termed the “immunomodulatory
group”). The fourth group is defined by kinases that govern paracrine growth signaling
and include mitogen activated protein kinases MAP4K2, MAP4K4, and MAPK1 (group 4

termed the “MAPK group”).

3.3.4 Gene Ontology Analysis

To gain insight into the function of kinases highly expressed in ER-negative
breast cancer, we performed gene ontology (GO) enrichment analysis using EASE and
found that several classes of biological function were highly enriched in our selected
sets (Table 3.4). We observed enrichment for kinases involved in the regulation of
metabolism (P-value <10™), cell cycle checkpoint control (P-value <10™*?), DNA damage
checkpoint control (P-value <10™), cell-to-cell signaling (P-value <10®), and apoptosis
regulation (P-value <1O'9). Many of these kinases fell in linear pathways, for example
TTK, CHK1, and BUB1 kinases (group 1), all of which play a role via sequential
phosphorylation and activation in regulating G2/M transitioning as well as DNA damage
checkpoint control pathways, and PIK3CB, RPS6KA1, and SMG-1 kinases (group 2), that
mark tumors with activated cytoplasmic kinases involved in mitogenesis and signal

transduction.
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Table 3.4. Kinases identified in analysis as most highly overexpressed in ER-negative tumors

Gene bank accession

Cell cycle checkpoint cluster number Kinase function

BUB1

NM_001211

cell cycle checkpoint

CHK1 checkpoint homolog NM_001274 cell cycle checkpoint
TTK protein kinase NM_003318 cell cycle checkpoint
serum/glucocorticoid regulated kinase NM_005627 cell cycle checkpoint
SFRS protein kinase 1 NM_003137 cell cycle checkpoint
maternal embryonic leucine zipper kinase NM_014791 cell cycle checkpoint

RYK receptor-like tyrosine kinase

NM_001005861

positive regulation of proliferation

vaccinia related kinase NM_006296 anti-apoptosis
phosphoglycerate kinase 1 NM_000291 metabolism
selenophosphate synthetase 1 NM_004226 metabolism
uridine-cytidine kinase 2 NM_012474 metabolism
UDP-glucose pyrophosphorylase 2 NM_006759 metabolism
adenylate kinase 2 NM_001625 metabolism
aurora kinase B NM_004217 cell cycle checkpoint
cell division cycle 2 NM_001786 cell cycle checkpoint
cell division cycle 7 homolog NM_003503 cell cycle checkpoint

S6 kinase pathway cluster

ribosomal protein S6 kinase, 90kDa, polypeptide 1

NM_001006665

positive regulation of proliferation

P1-3-kinase-related kinase SMG-1 NM_015092 DNA repair

EPH receptor B4 NM_004444 positive regulation of proliferation
serine/threonine kinase 38 like (NDR2) NM_015000 positive regulation of proliferation
PI3K catalytic subunit beta NM_006219 positive regulation of proliferation
death-associated protein kinase 1 NM_004938 anti-apoptosis

pim-1 oncogene NM_002648 anti-apoptosis

LIM domain kinase 2 NM_001031801 cell adhesion
phosphoribosyl pyrophosphate synthetase 1 NM_002764 metabolism

EPH receptor B6 D83492 nervous system development
EPH receptor B2 NM_017449 maintainance of polarity

ribosomal protein S6 kinase, 90kDa, polypeptide 3

MAPK cluster

NM_001006665

positive regulation of proliferation

mitogen-activated protein 4K4 NM_004834 response to stress

mitogen-activated protein kinase kinase 6 NM_002758 DNA damage, cell cycle arrest

mitogen-activated protein kinase 1 (ERK2) NM_002745 positive regulation of proliferation

mitogen-activated protein 4K2 NM_004579 positive regulation of proliferation

mindbomb homolog 1 (14-3-3) NM_020774 receptor mediated endocytosis

v-raf-1 murine leukemia viral oncogene homolog NM_002880 anti-apoptosis

protein kinase, X-linked NM_005044 unknown

PTKY protein tyrosine kinase 7 NM_002821 cell adhesion

myelin protein zero-like 1 NM_003953 cell to cell signaling

phosphofructokinase, platelet NM_002627 metabolism

epidermal growth factor receptor NM_005228 positive regulation of proliferation

MET proto-oncogene NM_000245 activation of MAPK activity
Immunomodulatory cluster

toll-like receptor 1 NM_003263 immune system modulation

MALT lymphoma translocation gene 1 NM_006785 anti-apoptosis

serine/threonine kinase 17b NM_004226 anti-apoptosis

interleukin-1 receptor-associated kinase 1 NM_001569 positive regulation of transcription

chemokine (C-X-C matif) ligand 10 NM_001565 immune system modulation

lymphocyte-specific protein tyrosine kinase

NM_001042771

immune system modulation

chemokine (C-C motif) ligand 4 NM_002984 cell to cell signaling
pyridoxal (pyridoxine, vitamin B6) kinase NM_003681 metabolism
v-yes-1 NM_005433 positive regulation of proliferation

Table 3.4- 52 overexpressed kinases in ER-negative breast cancer fall into 4 distinct subsets with varying biological
functions. Gene ontology analysis shows that these kinases have varying biological functions, but most regulate growth,
affect cell cycle, or are involved in DNA damage sensing gnd repair.



3.3.5 Differentially Expressed Kinases Validated Using Publicly Available Data Sets
Having identified differentially expressed kinases using gene expression profiling
in a test set of tumors, we next wanted to validate these kinases as being differentially
expressed in an independent set of human breast tumors. To demonstrate that these
kinases are indeed overexpressed in ER-negative tumors compared to ER-positive
tumors, we analyzed gene expression data from 12 additional publically available data
sets to validate the list of kinases we found overexpressed in our tumors. This data set
from multiple investigators includes over 1800 additional tumor samples (556 ER-
negative and 1282 ER-positive tumors) for which there is gene expression profiling data
and is the most comprehensive breast tumor set available [3, 20-29]. To utilize the
power of such a large combined dataset, we employed a technique recently described
by Whitlock that relies on a weighted Z-method to combine P-values [30]. This robust
approach, superior to Fisher’s combined probability test, revealed that all of the
selected 52 kinases validated as being significantly more highly expressed (with
extremely high z-scores and low P-values) in ER-negative breast tumors as compared to

ER-positive tumors in an effective sample size of over 1800 tumors (Table 3.5).

3.3.6 Validation of Kinase Overexpression in an Independent Set of Human Breast
Tumors
We also wanted to confirm that the overexpression identified using Affymetrix

gene expression profiling could be validated using another technique. We therefore
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Table 3.5- validation of kinases in 12 different breast tumor datasets

Gene symbol Z-score P -value Gene symbol Z-score P -value
SRPK1 20.84 <1.0e-20 AK2 14.97 <1.0e-20
PRKX 20.39 <1.0e-20 UGP2 14.76 <1.0e-20
MELK 19.76 <1.0e-20 LIMK2 14.52 <1.0e-20
SRPK1 19.72 <1.0e-20 PIM1 14.44 <1.0e-20
PFKP 19.69 <1.0e-20 CDC2 14.36 <1.0e-20
EGFR 19.59 <1.0e-20 LCK 14.14 <1.0e-20
LYN 19.57 <1.0e-20 MET 13.80 <1.0e-20
CHEK1 19.02 <1.0e-20 EPHA2 13.73 <1.0e-20
BUB1 18.64 <1.0e-20 CcCL2 13.59 <1.0e-20
DAPK1 18.50 <1.0e-20 AURKB 13.49 <1.0e-20
TTK 18.14 <1.0e-20 RPS6KA3 13.25 <1.0e-20
YES1 17.86 <1.0e-20 EPHB6 13.03 <1.0e-20
MAP4K4 17.81 <1.0e-20 MAPK1 12.35 <1.0e-20
STK38 17.81 <1.0e-20 MAP3K5 12.30 <1.0e-20
RIPK4 17.43 <1.0e-20 EPHB2 12.20 <1.0e-20
UCK2 17.02 <1.0e-20 EPHB4 12.19 <1.0e-20
CXCL10 16.87 <1.0e-20 CSK 12.18 <1.0e-20
PDXK 16.87 <1.0e-20 ccL4 10.86 <1.0e-20
SEPHS1 16.55 <1.0e-20 STK38L 10.80 <1.0e-20
IRAK1 16.51 <1.0e-20 SGK 10.40 <1.0e-20

MALT1 16.43 <1.0e-20 RIOK3 9.93 2.2e-20

PLK1 15.89 <1.0e-20 VRK2 8.90 1.0e-17

YWHAQ 15.46 <1.0e-20 RPS6KA1 5.51 0.000000005
PGK1 15.20 <1.0e-20 MAP4K2 5.15 0.00000008

CcDC7 15.19 <1.0e-20 RYK 4.55 0.0000008
PTK7 15.16 <1.0e-20 PIK3CB 4.31 0.000009

Table 3.5- Kinase overexpression validated in independent human tumor sample data sets.
Data analysis of an additional 12 publically available human breast tumor datasets shows the 52 kinases
identified as being overexpressed in this study are also significantly overexpressed in ER-negative breast
tumors in the other datasets. Z-scores were calculated using the Z-transform test and are listed with their

correlating P -value. Analysis performed by Corey Speers with input from Dr. Susan Hilsenbeck.
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used an independent set of 60 human breast tumors from the tumor bank at Baylor
College of Medicine for further validation. After identifying approximately equal
numbers of ER-positive and negative samples, we used quantitative RT-PCR (Q-RT-PCR)
to confirm the overexpression of the kinases identified in the array profiling. To date, 34
of the 34 kinases assayed were significantly more highly expressed in ER-negative
human breast tumors than ER-positive tumors in this additional tumor set (P-value
<0.05). Representative results from these experiments showing expression of six

kinases (CHK1, BUB1, PTK7, TTK1, TLR1, and RAF1) are displayed in Figure 3.3.

3.3.7 Validation of Kinase Overexpression in Breast Cancer Cell Lines

To conduct further in vitro experimentation in cell lines, we wanted to confirm
that our selected kinases identified in human breast tumors were also overexpressed in
ER-negative breast cancer cell lines. Twelve ER-positive or ER-negative breast cancer
cell lines were chosen and the expression of the identified kinases was measured under
basal growth conditions. Of 42 kinases evaluated to date, all 42 were found to be
statistically significantly increased (P-value <.05) in this panel of ER-negative breast
cancer cell lines as compared to ER-positive cell lines using Q-RT-PCR. Representative
results for several of these kinases (CHK1, BUB1, PTK7, TTK1, TLR1, and RAF1) are shown

in Figure 3.4.
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Figure 3.3 - Kinase overexpression validated in a panel of human tumor
samples. The expression of 34 of 34 kinases identified in the array
profiling were validated as being more highly expressed in ER-negative
tumors compared to ER-positive tumors as measured by Q-RT-PCR in an
independent set of breast tumors. Expression data for 6 representative
kinases (CHK1, BUB1, PTK7, TTK, TLR1, and RAF1) are shown. Asterisks
indicate P-value <0.01. Data are represented as mean + SEM.
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Figure 3.4 - Kinase overexpression validated in a panel of breast cancer
cell lines. The expression of 42 of 42 kinases was significantly higher in
ER-negative breast cancer cell lines as compared to ER-positive cell lines.
Again, expression data as measured by Q-RT-PCR, this time in a panel of
breast cancer cell lines, for 6 representative kinases (CHK1, BUB1, PTK7,
TTK, TLR1, and RAF1) are shown. Asterisks indicate P-value <0.01. Data
are represented as mean = SEM.
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3.3.8 Cluster of Human Breast Cancer Cell Lines using the Kinase Profile

To determine whether the 52 kinases could accurately subgroup breast cancer
cell lines, we used available expression data from 51 breast cancer cell lines. Recent
work by Neve et al. showed that the recurrent genomic and transcriptional
characteristics of breast cancer cell lines mirror those of primary breast tumors [31].
These investigators performed Affymetrix gene expression profiling on a set of 51 ER-
positive and ER-negative breast cancer cell lines and used hierarchical clustering to show
that the cell lines clustered into three main groups: basal A, basal B, and luminal [31].
We used this expression information from breast cancer cell lines to determine whether
our list of 52 kinases would group these cell lines into the similar groups as with the
profiling of human tumors (cell cycle checkpoint control, S6 kinase, immunomodulatory,
and MAPKs groups). When hierarchical cluster analysis was performed on the
expression data from these 51 cell lines using the list of 52 kinases identified here, the
cell lines were accurately clustered into ER-positive or ER-negative groups (Figure 3.5A).
Furthermore, the overexpressed kinases were able to subset ER-negative breast cancer
cell lines into 4 groups in an unsupervised manner (Figure 3.5B). These results indicate
that the expression profile of the identified kinases is sufficiently robust to accurately
discriminate between most ER-positive and ER-negative breast cancer cell lines and may

serve as a reliable diagnostic tool to categorize human tumors in the future.
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Figure 3.5- List of kinases validates in an independent data set of human
breast cancer cell lines. (A) Publically available breast cancer cell line
expression data was clustered in an unsupervised manner using only the 52
kinase genes identified in our analysis. Unsupervised hierarchical clustering
using the 52 kinases identified as being at least 2 fold more highly expressed
clusters ER-positive from ER-negative breast cancer cell lines and identifies
the luminal, basal A, and basal B subtypes. (B) Clustering only of ER-
negative breast cancer cell lines using the 52 kinases identifies 4 subsets of
ER-negative breast cancer cell lines. Analysis done by Corey Speers with
input from Dr. Anna Tsimelzon and Dr. Susan Hilsenbeck.
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3.3.9 Kinase Knockdown Exerts Differential Growth Effects on ER-negative and ER-
positive Breast Cancer Cell Lines

While the expression array profiling data allowed us to evaluate which kinases
were differentially expressed, we wanted to determine whether these kinases are
critical for the growth of ER-negative breast cancer and thus potentially tractable targets
for the treatment of ER-negative disease. To do this we performed siRNA knockdown
studies to determine the effect of individual kinase knockdown on breast cancer cell
proliferation. ER-positive (MCF-7 and T47D) and ER-negative (MDA-MB-468 and MDA-
MB-231, both “triple-negative”) cells were transfected with siRNAs for 20 of the 52
kinases identified in our screen. All siRNA constructs used in the study showed at least
70% knockdown of target kinase expression for 4 days after transfection (representative
examples are shown in Figure 3.6).

Of the 20 kinases evaluated, 14 were critical for the growth of ER-negative breast
cancer. Knockdown of 9 (EPHB4, LIMK2, DAPK1, YES1, RYK, VRK2, PTK7, RAF1, UCK2)
had a significant growth-inhibitory effect on ER-negative breast cancer (MDA-MB-468
and MDA-MB-231) but had little or no effect on ER-positive breast cancer cells. An
additional 5 of 20 kinases (BUB1, CHK1, IRAK1, CCL4, TTK) inhibited growth of all breast
cancer cell lines. Knockdown of 5 of the 20 kinases (STK38L, PIM1, SFRS1, PKXL, TLR1)
had no effect on any breast cancer cell line growth, while knockdown of 1 of 20 kinases

(MPZL1) had a significant growth-stimulatory effect on all breast cancer cell lines
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examined. Representative growth curves from these knockdown experiments are
shown in Figure 3.7.

Knockdown of many of the kinases in the “cell cycle checkpoint” cluster of ER-
negative breast cancer had a profound inhibitory effect on ER-negative breast cancer
cell growth but no effect on ER-positive breast cancer, while knockdown of certain
kinases in the “immunomodulatory” cluster inhibited the growth of all breast cancer cell
lines examined. A summary of results is shown in Figure 3.8, with bolded genes
exhibiting a differential growth phenotype between ER-negative and ER-positive breast
cancer cell lines. These results indicate that many of the kinases found to be highly

expressed in ER-negative breast cancers are indeed critical for breast cancer cell growth.

3.3.10 S6 kinase Subtype of ER-negative Breast Cancer Predicts Poor Metastasis-Free
Survival

To determine whether the identified list of differentially-expressed kinases
provided prognostic information, we analyzed the survival data from the Wang and van
de Vijver data sets using the kinases that we identified as being overexpressed in ER-
negative breast tumors [3, 20]. The Wang dataset was obtained using breast cancer
samples from patients with lymph-node negative breast cancer who were treated with
breast conserving surgery or modified radical mastectomies from 1980-95. These
patients also received radiotherapy when indicated, but did not receive systemic

chemotherapy or hormonal adjuvant therapy. This time period was also prior to the
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Figure 3.7- Effect of siRNA knockdown on the growth of ER-negative and
ER-positive breast cancer cells. DAPK1, PTK7, and RYK knockdown
inhibited growth in the ER-negative breast cancer cell lines MDA-MB-468
and MDA-MB-231 but not in the ER-positive breast cancer cell lines MCF-7
and T47D. Asterisk denotes significant difference in curves between kinase
of interest knockdown and mock transfected growth curves, P-value <
0.05. Data are represented as mean + SD.
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Figure 3.8 - Effect of siRNA knockdown on the growth of ER-negative and
ER-positive breast cancer cells. Similar growth inhibitory effects were seen
with other kinases identified in the expression profiling. Effect of growth
inhibition was based on the percentage of growth at day 4 compared to
mock transfected controls. Cut-off percentages for inhibition, slight
inhibition, no effect, and enhanced growth are shown. Bolded genes
exhibited a differential growth phenotype between ER-negative and ER-
positive breast cancer cell lines. Data are represented as mean + SD.
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development of the anti-HER2 therapy, trastuzumab (Herceptin), and these patients
were not treated with trastuzumab (Herceptin). 219 patients had undergone breast-
conserving surgery and 67 modified radical mastectomy. Radiotherapy was given to 248
patients (87%), and metastasis free survival was tracked in all patients. In this data set,
we first determined whether our list of 52 kinases overexpressed in ER-negative breast
tumors could subcluster the Wang dataset tumors into the 4 subtypes of ER-negative
tumors identified in our analysis. Hierarchical clustering of the ER-negative tumors from
the Wang dataset using expression values of the kinases identified in this analysis did
indeed identify 4 groups of ER-negative tumors (Figure 3.9). Figure of merit analysis
showed that these four groups were stable against reclustering. Furthermore, these 4
clusters were similar in their kinase expression profiles to those identified previously,
again identifying a S6 kinase signature cluster, a cell cycle checkpoint cluster, an
immunomodulatory cluster, and a MAPK cluster. Kaplan-Meier analysis of the
metastasis-free survival between the different subgroups of ER-negative tumors shows
that women with the S6 kinase signature-expressing tumors have a much worse
prognosis than the other groups, while women with breast cancers expressing the
immunomodulatory kinases will have a much better prognosis (Figure 3.10). As a
further means of validation, we performed the same analysis in the van de Vijver [3]
data set and found similar results. In this dataset, all patients had stage | or Il breast
cancer and were younger than 53 years old; 151 had lymph-node—negative disease, and

144 had lymph node—positive disease. Ten of the 151 patients who had lymph-node—
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Figure 3.9 - Hierarchical clustering and Kaplan-Meier metastasis free
survival analysis of ER-negative tumors in the Wang et al. dataset.
Hierarchical clustering of only ER-negative tumors identified the 4 clusters of
ER-negative breast tumors in the Wang data set. The tumors were classified
based on the expression level of the kinases identified in the analysis.
Tumors that fell into the immunomodulatory cluster had a decreased risk of
metastasis, and tumors in the cell cycle regulatory and S6 kinase clusters
had a substantially elevated risk of metastasis at 5 years. Overall P-value
was calculated based on the assumption that there would be no difference
between any of the survival curves and was initially used to determine
whether any one of the curves were significantly different. Further P-values
were calculated comparing the designated two groups with the calculation
of Chi square values. Immune refers to immunomodulatory group, CCC to
the cell cycle checkpoint group, and S6 kinase to the S6 kinase group.
Analysis done by Corey Speers with input from Dr. Susan Hilsenbeck.
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Figure 3.10 - Hierarchical clustering and Kaplan-Meier metastasis free
survival analysis of ER-negative tumors in the van de Vijver et al. dataset.
Similar results were found when hierarchical clustering was done in the
van de Vijver data set. Overall survival was substantially higher in the
immunomodulatory group than in the S6 kinase or cell cycle checkpoint
groups. Overall P-value was calculated based on the assumption that there
would be no difference between any of the survival curves and was initially
used to determine whether any one of the curves were significantly
different. Further P-values were calculated comparing the designated two
groups with the calculation of Chi square values. Immune refers to
immunomodulatory group, CCC to the cell cycle checkpoint group, and S6
kinase to the S6 kinase group. Analysis done by Corey Speers with input
from Dr. Susan Hilsenbeck.
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negative disease and 120 of the 144 who had lymph-node—positive disease had received
adjuvant systemic therapy consisting of chemotherapy (90 patients), hormonal therapy
(20), or both (20). As with the Wang dataset, hierarchical clustering of the ER-negative
tumors identified the four groups of ER-negative tumors, which were again stable
against reclustering, and, as with the Wang dataset, patients whose tumors had high
expression of the immunomodulatory kinases had a significantly better overall survival
than those with high expression of the S6 kinase and cell cycle checkpoint clusters.
These data suggest that our list of differentially-expressed kinases can be used to
identify distinct subtypes of ER-negative breast tumors, and that the tumor clusters
defined by the expression of these kinases have either a good prognosis
(immunomodulatory group) or a particularly poor prognosis (S6 kinase signature group)

based on their kinase expression profile.
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3.4 Discussion

In this report we show that Affymetrix gene expression profiling of human breast
tumors is able to identify kinases that are differentially-expressed in ER-negative breast
cancers as compared to ER-positive breast cancers. Further analysis revealed that ER-
negative tumors can be clustered into 4 distinct groups, depending on the specific
kinases expressed and the level of their expression. Analysis of publicly available breast
tumor data sets confirmed that these kinases are indeed upregulated in ER-negative
breast cancer. Studies in which knockdown of selected kinases using siRNA were
conducted and demonstrated that many of the identified kinases are critical for ER-
negative, including “triple-negative”, breast cancer growth. Finally, analysis of kinase
expression in human breast tumors demonstrated that the individual subtypes of ER-
negative breast cancer identified by their kinase profile here have different outcomes.
Specifically, these studies demonstrate that women whose ER-negative tumors highly
express the kinases from the S6 kinase group have a particularly bad prognosis, while
women whose tumors highly express immunomodulatory kinases have a relatively good
prognosis. Such results suggest that characterization of human tumors based on kinase
expression can be used to select patients appropriate for novel therapies. In addition,
this study identifies potential targets for the treatment of ER-negative breast cancer,
including the aggressive “triple-negative” form of breast cancer.

This is the first report to show that ER-negative breast cancers can be subdivided

into biologically distinct groups based on expression levels of specific kinases. Our data
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indicate that ER-negative breast tumors can be subdivided into 4 distinct groups, of
particular importance are group 2 (S6 kinase group) and group 3 (immunomodulatory
group), and that patients whose tumors express these kinases have very different
prognoses. The immunomodulatory group (group 3) identified in this report has
recently become of a focus of increasing scientific inquiry. In this report, we show
differential expression of these immunomodulatory kinases in the epithelial
compartment (as demonstrated by high expression in breast cancer cell lines grown in
vitro). There remains a question of whether these kinases are also expressed in the
non-epithelial cells present in breast tumors, specifically in infiltrating immune cells.
Two lines of evidence suggest that this difference is predominantly from the epithelial
compartment. First, recent work by Neve et al. [31] validates the differential expression
identified in this report in ER-negative breast cancer epithelial cell lines as compared to
their ER-positive cell line counterparts. Their experiments were conducted using a
purified, homogenous population of breast cancer epithelial cell lines that show the
same differential expression we note in our human tumor studies. Secondly, the siRNA
knockdown experiments reported herein also show that knockdown of these
immunomodulatory kinases in vitro in epithelial breast cancer cell lines have a
differential effect on cell growth. We are currently examining whether there are
differences in the immune and stomal components of the different subtypes of ER-
negative breast cancer, including the immunomodulatory subtype, identified in this

study.
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The role of the immune system in cancer has historically investigated how the
immune system itself responds to the “foreign” cancer as the primary focus. It is now
being appreciated that the tumor itself may act autonomously to influence the stromal
microenvironment and evade recognition by the immunosurveillance machinery. It is
possible that the immune-regulatory genes expressed by the epithelial cancer cells
affect this local immune response to these tumors. Recent work by Teschendorff et al.
supports our findings [32]. This group also identified an immunomodulatory profile in
ER-negative breast cancer which was shown to confer better prognosis [32]. It will be
interesting to investigate in the future whether modulation of intrinsic gene expression
by the tumor is an important mechanism by which cancer cells can avoid
immunosurveillance, including the proper controls meant to keep aberrant growth in
check [32, 33].

These studies provide a large number of promising new targets for the
treatment of ER-negative breast cancer. ER-positive breast cancers are now routinely
treated using SERMs and aromatase inhibitors, and these cancers are now even
prevented using such pharmacologic intervention [9]. Recent studies have shown that
intrinsic breast cancer subtypes differ depending on the ethnicity of the patient from
whom the tumor is obtained. Carey et al. refined an IHC-based assay to categorize the
prevalence of varying breast cancer subtypes in different populations [8]. It was shown
that the prevalence of the basal-like subtypes was strongly influenced by race and

menopause status. The highest prevalence of basal-like tumors was noted in
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premenopausal African American breast cancer patients [8, 34]. Basal-like tumors,
which are almost uniformly ER-negative, PR-negative, and HER2 negative (“triple-
negative”), are more aggressive, carry a higher proliferative capacity, occur at a younger
age, and carry a particularly bad prognosis [34, 35]. This work provides the rationale for
targeted therapy using multi-kinase inhibitors to treat this type of breast cancer more
prevalent among a traditionally underserved population.

One particularly promising agent for the treatment of triple-negative breast
cancer is the multiple kinase inhibitor dasatinib. Dasatinib is an oral kinase inhibitor that
inhibits several kinases, including c-Src, BCR/Abl, YES1, and EPHB4, and is currently
approved for the treatment of chronic myelogenous leukemia (CML) and acute
lymphoblastic leukemia (ALL). Intriguingly, this kinase inhibitor blocks the activity of
many of the kinases identified in this analysis including c-Src, BCR/Abl, YES1, EPHB4, as
well as KIT, and EPHA2. There is increasing pre-clinical and clinical data to suggest that
this multi-kinase inhibitor may be an effective treatment for triple-negative breast
cancer. Initial experiments in both prostate and breast cancer cell lines demonstrated
that dasatinib significantly inhibited breast cancer cell line growth [36]. Further in vitro
experimentation shows that dasatinib is especially efficacious at inhibiting basal-like and
post-EMT ER-negative breast cancer cell line growth and these studies led to the
identification potential biomarkers of response [37]. Clinical trials are currently being
conducted, with preliminary promising results already being presented, using dasatinib

in women with ER-negative breast cancer in the metastatic setting.
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The results reported here demonstrate that genomic profiling of human breast
cancers can identify subtypes of ER-negative breast cancer, but even more importantly,
can also identify new targets for effective treatment of these aggressive breast cancers.
Given the current difficulty in treating ER-negative breast cancer, and particularly the
triple-negative form of breast cancer, the identification of the kinases that are critical
for the growth of these cancers represents the first step towards effective individualized

targeted therapy for these poor prognosis ER-negative breast cancers.
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Supplementary table 3.1- Al kinases and associated genes used in the expression profiling

GeneSymbol Accession LocusLink
AAK1 NM_014911 22848
AATK XM_290778 9625
ABL1 NM_005157 25
ABL2 NM_005158 27
ACK1 NM_005781 10188
ACVR1 NM_001105 90
ACVR1B NM_004302 91
ACVR2 NM_001616 92
ACVR2B NM_001106 93
ACVRL1 NM_000020 94
ADAM9 NM_003816 8754
ADCK1 NM_020421 57143
ADCK2 NM_052853 90956
ADCK2 NM_024876 79934
ADCK5 NM_ 174922 203054
ADK NM_001123 132
ADRA1A NM_000680 148
ADRA1B NM_000679 147
ADRB2 NM_000024 154
ADRBK1 NM_001619 156
ADRBK2 NM_005160 157
AGTR2 NM_000686 186
AK1 NM_000476 203
AK2 NM_001625 204
AK3 NM_013410 205
AK3L1 NM_016282 50808
AK5 NM_012093 26289
AK7 NM_152327 122481
AKAP1 NM_003488 8165
AKAP11 NM_016248 11215
AKAP13 NM_006738 11214
AKAP3 NM_006422 10566
AKAP4 NM_003886 8852
AKAPS NM_004857 9495
AKAP6 NM_004274 9472
AKAP7 NM_004842 9465
AKAP8 NM_005858 10270
AKT1 NM_005163 207
AKT2 NM_001626 208
AKT3 NM_005465 10000
ALK NM_004304 238
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ALK7 NM_145259 | 130399
ALS2CR2 NM_018571 | 55437
ALS2CR7 NM_139158 | 65061
AMHR?2 NM_020547 | 269
ANGPT4 NM_015985 | 51378
ANKK1 NM_178510 | 255239
ANKRD3 NM_020639 | 54101
APEG1 NM_005876 | 57518
APPL NM_012096 | 26060
ARAF1 NM_001654 | 369
ARK5 NM_014840 | 9891
ASK NM_006716 | 10926
ASP NM_031916 | 83853
ATM NM_000051 | 472
ATR NM_001184 | 545
AURKB NM_004217 | 9212
AURKC NM_003160 | 6795
AVPR1A NM_000706 | 552
AVPR1B NM_000707 | 553
AXL NM_001699 | 558
AZU1 NM_001700 | 566
BCKDK NM_005881 | 10295
BCR NM_004327 | 613
BDKRB2 NM_000623 | 624
BLK NM_001715 | 640
BLNK NM_013314 | 29760
BMP2K NM_017593 | 55589
BMPR1A NM_004329 | 657
BMPR1B NM_001203 | 658
BMPR2 NM_001204 | 659
BMX NM_001721 | 660
BRAF NM_004333 | 673
BRD2 NM_005104 | 6046
BRDT NM_001726 | 676
BTK NM_000061 | 695
BUB1 NM_004336 | 699
BUB1B NM_001211 | 701
C140RF20 NM_174944 | 283629
C200RF64 NM_033550 | 112858
C200RF97 NM_021158 | 57761
C60RF199 NM_145025 | 221264
C70RF16 NM_006658 | 10842




C8FW NM_025195 10221
CI90RF12 NM_022755 64768
CALM3 NM_005184 5509
CAMK1 NM_003656 8536
CAMK1D NM_020397 57118
CAMK1G NM_020439 57172
CAMK2A NM_015981 815
CAMK2B NM_001220 816
CAMK2D NM_001221 817
CAMK2G NM_001222 818
CAMKA4 NM_001744 814
CAMKK1 NM_172206 84254
CAMKK2 NM_006549 10645
CARD10 NM_014550 29775
CARD14 NM_024110 79092
CARK NM_015978 51086
CARKL NM_013276 23729
CASK NM_003688 8573
CCL2 NM_002982 6347
CCL4 NM_002984 6351
CCRK NM_012119 23552
CD3E NM_000733 916
CD4 NM_000616 920
CD7 NM_006137 924
CDACD1 NM_030911 81602
CDC2 NM_001786 983
CDC2L1 NM_001787 984
CDC2L2 NM_024011 985
CDC2L5 NM_003718 8621
CDC42BPA NM_003607 8476
CDC42BPB NM_006035 9578
CDC7L1 NM_003503 8317
CDK10 NM_003674 8558
CDK11 NM_015076 23097
CDK2 NM_001798 1017
CDK3 NM_001258 1018
CDK4 NM_000075 1019
CDK5 NM_004935 1020
CDK5R1 NM_003885 8851
CDK5R2 NM_003936 8941
CDK5RAP1 NM_016082 51654
CDK5RAP3 NM_025197 80279
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CDK6 NM_001259 1021
CDK7 NM_001799 1022
CDK8 NM_001260 1024
CDK9 NM_001261 1025
CDKL1 NM_004196 8814
CDKL2 NM_003948 8999
CDKL3 NM_016508 51265
CDKL5 NM_003159 6792
CDKN1A NM_000389 1026
CDKN1B NM_004064 1027
CDKN1C NM_000076 1028
CDKN2B NM_004936 1030
CDKN2C NM_001262 1031
CDKN2D NM_001800 1032
CDKN3 NM_005192 1033
CERK NM_022766 64781
CGEF2 NM_007023 11069
CHEK1 NM_001274 1111
CHEK2 NM_007194 11200
CHK NM_001277 1119
CHKL NM_005198 1120
CHRM1 NM_000738 1128
CHUK NM_001278 1147
CINP NM_032630 51550
CIT NM_007174 11113
CKB NM_001823 1152
CKM NM_001824 1158
CKMT1 NM_020990 1159
CKMT2 NM_001825 1160
CKS1B NM_001826 1163
CKS2 NM_001827 1164
CLK NM_009905 12747
CLK1 NM_004071 1195
CLK2 NM_001291 1196
CLK3 NM_001292 1198
CLK4 NM_020666 57396
CNK1 NM_006314 10256
COLAA3BP NM_005713 10087
COPB2 NM_004766 9276
CRK7 NM_016507 51755
CRKL NM_005207 1399
CSF1R NM_005211 1436




CSK NM_004383 1445
CSNK1A1 NM_001892 1452
CSNK1D NM_001893 1453
CSNK1E NM_001894 1454
CSNK1G1 NM_022048 53944
CSNK1G2 NM_001319 1455
CSNK1G3 NM_004384 1456
CSNK2A1 NM_001895 1457
CSNK2A2 NM_001896 1459
CSNK2B NM_001320 1460
CXCL10 NM_001565 3627
DAPK1 NM_004938 1612
DAPK2 NM_014326 23604
DAPK3 NM_001348 1613
DCAMKL1 NM_004734 9201
DCK NM_000788 1633
DDR1 NM_001954 780
DDR2 NM_006182 4921
DGKA NM_001345 1606
DGKB NM_004080 1607
DGKD NM_003648 8527
DGKE NM_003647 8526
DGKG NM_001346 1608
DGKI NM_004717 9162
DGKQ NM_001347 1609
DGKZ NM_003646 8525
DGUOK NM_001929 1716
DKFZP434C1 | XM_044630 25989
31

DKFZP434C1 | NM_173655 285220
418

DKFZP586B1 | NM_015533 26007
621

DKFZP761P0 | XM_291277 157285
423

DKFZp761P1 | NM_018423 55359
010

DLG1 NM_004087 1739
DLG2 NM_001364 1740
DLG3 NM_021120 1741
DLG4 NM_001365 1742
DMPK NM_004409 1760
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DNAJC3 NM_006260 | 5611
DOK1 NM_001381 | 1796
DTYMK NM_012145 | 1841
DUSP1 NM_004417 | 1843
DUSP10 NM_144728 | 11221
DUSP2 NM_004418 | 1844
DUSP22 NM_020185 | 56940
DUSP4 NM_057158 | 1846
DUSP5 NM_004419 | 1847
DUSP6 NM_001946 | 1848
DUSP7 NM_001947 | 1849
DUSP8 NM_004420 | 1850
DYRK1A NM_001396 | 1859
DYRK1B NM_004714 | 9149
DYRK2 NM_006482 | 8445
DYRK3 NM_003582 | 8444
DYRK4 NM_003845 | 8798
EDN2 NM_001956 | 1907
EEF2K NM_013302 | 29904
EGFR NM_005228 | 1956
EIF2AK3 NM_004836 | 9451
EIF2AK4 XM_031612 | 27104
EKI1 NM_018638 | 55500
EPAC NM_006105 | 10411
EPHA1 NM_005232 | 2041
EPHA2 NM_004431 | 1969
EPHA3 NM_005233 | 2042
EPHA4 NM_004438 | 2043
EPHAS NM_004439 | 2044
EPHA7 NM_004440 | 2045
EPHAS NM_020526 | 2046
EPHB1 NM_004441 | 2047
EPHB2 NM_004442 | 2048
EPHB3 NM_004443 | 2049
EPHB4 NM_004444 | 2050
EPHB6 NM_004445 | 2051
ERBB2 NM_004448 | 2064
ERBB3 NM_001982 | 2065
ERBB4 NM_005235 | 2066
ERKS NM_139021 | 225689
ERN1 NM_001433 | 2081
EVI1 NM_005241 | 2122




FASTK NM_006712 | 10922
FER NM_005246 | 2241
FES NM_002005 | 2242
FGFR1 NM_000604 | 2260
FGFR2 NM_000141 | 2263
FGFR3 NM_000142 | 2261
FGFR4 NM_002011 | 2264
FGR NM_005248 | 2268
FLI10074 NM_017988 | 55681
FL10761 NM_018208 | 55224
FLI10842 NM_018238 | 55750
FLI11149 NM_018339 | 55312
FU12476 NM_022784 | 64799
FU13052 NM_023018 | 65220
FU14813 NM_032844 | 84930
FL20574 NM_017886 | 54986
FLJ22002 NM_024838 | 79896
FLI23074 NM_025052 | 80122
FLI23119 NM_024652 | 79705
FL23356 NM_032237 | 84197
FLI25006 NM_144610 | 124923
FL32685 NM_152534 | 152110
FL32704 NM_152572 | 158067
FLJ34389 NM_152649 | 197259
FU35107 NM_182629 | 348825
FLT1 NM_002019 | 2321
FLT3 NM_004119 | 2322
FLT4 NM_002020 | 2324
FN3K NM_022158 | 64122
FN3KRP NM_024619 | 79672
FRAP1 NM_004958 | 2475
FRDA NM_000144 | 2395
FRK NM_002031 | 2444
FUK NM_145059 | 197258
FYB NM_001465 | 2533
FYN NM_002037 | 2534
GAK NM_005255 | 2580
GALK1 NM_000154 | 2584
GALK2 NM_002044 | 2585
GAP43 NM_002045 | 2596
GCK NM_000162 | 2645
GFRA2 NM_001495 | 2675
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GK NM_000167 2710
GK2 NM_033214 2712
GMFB NM_004124 2764
GMFG NM_004877 9535
GNE NM_005476 10020
GPRK2L NM_005307 2868
GPRK5 NM_005308 2869
GPRK6 NM_002082 2870
GPRK7 NM_139209 131890
GSG2 NM_031965 83903
GSK3A NM_019884 2931
GSK3B NM_002093 2932
GTF2H1 NM_005316 2965
GUCY2C NM_004963 2984
GUCY2D NM_000180 3000
GUCY2F NM_001522 2986
GUK1 NM_000858 2987
H11 NM_014365 26353
HAK NM_052947 115701
HCK NM_002110 3055
HIPK1 NM_152696 204851
HIPK2 NM_022740 28996
HIPK3 NM_005734 10114
HIPK4 NM_144685 147746
HK1 NM_000188 3098
HK2 NM_000189 3099
HK3 NM_002115 3101
HRI NM_014413 27102
HSA250839 NM_018401 55351
HSMDPKIN XM_290516 55561
HUNK NM_014586 30811
ICAP-1A NM_004763 9270
ICK NM_014920 22858
IGF1R NM_000875 3480
IHPK1 NM_153273 9807
IHPK2 NM_016291 51447
IHPK3 NM_054111 117283
IKBKAP NM_003640 8518
IKBKB XM_032491 3551
IKBKE NM_014002 9641
IL2 NM_000586 3558
ILK NM_004517 3611




ILKAP NM_030768 80895
IMPK NM_152230 253430
INSR NM_000208 3643
INSRR NM_014215 3645
IPMK NM_152230 253430
IRAK1 NM_001569 3654
IRAK2 NM_001570 3656
IRAK3 NM_007199 11213
IRS1 NM_005544 3667
ITK NM_005546 3702
ITPK1 NM_014216 3705
ITPKA NM_002220 3706
ITPKB NM_002221 3707
ITPKC NM_025194 80271
JAK1 NM_002227 3716
JAK2 NM_004972 3717
JAK3 NM_000215 3718
JIK NM_016281 51347
KDR NM_002253 3791
KHK NM_000221 3795
KIAAO551 XM_039796 23043
KIAAO561 XM_038150 23031
KIAA0999 NM_025164 23387
KIAA1361 XM_290796 57551
KIAA1399 XM_046685 57574
KIAA1639 XM_290923 57729
KIAA1765 XM_047355 85443
KIAA1804 NM_032435 84451
KIAA1811 NM_032430 84446
KIAA1883 XM_055866 114783
KIF13B NM_015254 23303
KIS NM_144624 127933
KIT NM_000222 3815
KPI2 NM_014916 22853
KSR2 NM_173598 283455
LAK NM_025144 80216
LATS1 NM_004690 9113
LATS2 NM_014572 26524
LCK NM_005356 3932
LCP2 NM_005565 3937
LIM NM_006457 10611
LIMK1 NM_002314 3984
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LIMK2 NM_005569 3985
LOC115704 NM_145245 115704
LOC149420 NM_152835 149420
LOC221823 NM_175886 221823
LOC340371 NM_178564 340371
LOC91807 NM_182493 91807
LTK NM_002344 4058
LYKS NM_153335 92335
LYN NM_002350 4067
MADH7 NM_005904 4092
MAGI-3 NM_020965 260425
MAK NM_005906 4117
MALT1 NM_006785 10892
MAP2K1 NM_002755 5604
MAP2K1IP1 NM_021970 8649
MAP2K2 NM_030662 5605
MAP2K3 NM_002756 5606
MAP2K4 NM_003010 6416
MAP2K5 NM_002757 5607
MAP2K6 NM_002758 5608
MAP2K7 NM_145185 5609
MAP3K1 XM_042066 4214
MAP3K10 NM_002446 4294
MAP3K11 NM_002419 4296
MAP3K12 NM_006301 7786
MAP3K13 NM_004721 9175
MAP3K14 NM_003954 9020
MAP3K2 NM_006609 10746
MAP3K3 NM_002401 4215
MAP3K4 NM_005922 4216
MAP3K5 NM_005923 4217
MAP3K6 NM_004672 9064
MAP3K7 NM_003188 6885
MAP3K8 NM_005204 1326
MAP3K9 XM_027237 4293
MAP4K1 NM_007181 11184
MAP4K?2 NM_004579 5871
MAP4K3 NM_003618 8491
MAP4K4 NM_004834 9448
MAP4K5 NM_006575 11183
MAPK1 NM_002745 5594
MAPK10 NM_002753 5602




MAPK11 NM_002751 | 5600
MAPK12 NM_002969 | 6300
MAPK13 NM_002754 | 5603
MAPK14 NM_001315 | 1432
MAPK3 NM_002746 | 5595
MAPK4 NM_002747 | 5596
MAPK6 NM_002748 | 5597
MAPK7 NM_002749 | 5598
MAPKS NM_002750 | 5599
MAPKSIP1 | NM_005456 | 9479
MAPKSIP2 | NM_012324 | 23542
MAPKSIP3 | NM_015133 | 23162
MAPK9 NM_002752 | 5601
MAPKAPK2 | NM_004759 | 9261
MAPKAPK3 | NM_004635 | 7867
MAPKAPK5 | NM_003668 | 8550
MARK1 NM_018650 | 4139
MARK2 NM_004954 | 2011
MARK3 NM_002376 | 4140
MARKL1 NM_031417 | 57787
MAST205 NM_015112 | 23139
MATK NM_002378 | 4145
MBIP NM_016586 | 51562
MELK NM_014791 | 9833
MERTK NM_006343 | 10461
MET NM_000245 | 4233
MGC16169 | NM_033115 | 93627
MGC22688 | NM_145001 | 202374
MGC26597 | NM_152700 | 206426
MGC33182 | NM_145203 | 122011
MGC42105 | NM_153361 | 167359
MGC43306 | XM_291304 | 169436
MGC45428 | NM_152619 | 166614
MGC46424 | NM_173492 | 138429
MGC4796 NM_032017 | 83931
MGC5601 NM_025247 | 80724
MGC8407 NM_024046 | 79012
MIDORI NM_020778 | 57538
MINK NM_015716 | 50488
MKNK1 NM_003684 | 8569
MKNK2 NM_017572 | 2872
MOS NM_005372 | 4342
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MPP1 NM_002436 | 4354
MPP2 NM_005374 | 4355
MPP3 NM_001932 | 4356
MPZL1 NM_003953 | 9019
MRC2 NM_006039 | 9902
MST1R NM_002447 | 4486
MST4 NM_016542 | 51765
MUSK NM_005592 | 4593
MVD NM_002461 | 4597
MVK NM_000431 | 4598
MYLK NM_005965 | 4638
MYLK2 NM_033118 | 85366
MYO3A NM_017433 | 53904
MYO3B NM_138995 | 14069
NAGK NM_017567 | 55577
NBEA NM_015678 | 26960
NBP NM_025233 | 80347
NEK1 XM_291107 | 4750
NEK11 NM_024800 | 79858
NEK2 NM_002497 | 4751
NEK3 NM_002498 | 4752
NEK4 NM_003157 | 6787
NEK6 NM_014397 | 10783
NEK7 NM_133494 | 140609
NEKS NM_178170 | 284086
NEK9 NM_033116 | 91754
NLK NM_016231 | 51701
NME1 NM_000269 | 4830
NME2 NM_002512 | 4831
NME3 NM_002513 | 4832
NME4 NM_005009 | 4833
NMES NM_003551 | 8382
NME6 NM_005793 | 10201
NME7 NM_013330 | 29922
NPR1 NM_000906 | 4881
NPR2 NM_000907 | 4882
NRBP NM_013392 | 29959
NRG3 XM_166086 | 10718
NTRK1 NM_002529 | 4914
NTRK2 NM_006180 | 4915
NTRK3 NM_002530 | 4916
NYD-SP25 NM_033516 | 89882




OSR1 NM_005109 9943
P15RS NM_018170 55197
PACE-1 NM_020423 57147
PACSIN1 NM_020804 29993
PAG NM_018440 55824
PAK1 NM_002576 5058
PAK2 NM_002577 5062
PAK3 NM_002578 5063
PAKA4 NM_005884 10298
PAK6 NM_020168 56924
PAK7 NM_020341 57144
PANK1 NM_138316 53354
PANK3 NM_024594 79646
PANK4 NM_018216 55229
PAPSS1 NM_005443 9061
PAPSS2 NM_004670 9060
PASK NM_015148 23178
PCK1 NM_002591 5105
PCK2 NM_004563 5106
PCTK1 NM_006201 5127
PCTK2 NM_002595 5128
PCTK3 NM_002596 5129
PDGFRA NM_006206 5156
PDGFRB NM_002609 5159
PDK1 NM_002610 5163
PDK2 NM_002611 5164
PDK3 NM_005391 5165
PDK4 NM_002612 5166
PDPK1 NM_002613 5170
PDXK NM_003681 8566
PFKFB1 NM_002625 5207
PFKFB2 NM_006212 5208
PFKFB3 NM_004566 5209
PFKFB4 NM_004567 5210
PFKL NM_002626 5211
PFKM NM_000289 5213
PFKP NM_002627 5214
PFTK1 NM_012395 5218
PGK1 NM_000291 5230
PGK2 NM_138733 5232
PHKA1 NM_002637 5255
PHKA2 NM_000292 5256
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PHKG1 NM_006213 5260
PHKG2 NM_000294 5261
PIAK2B NM_018323 55300
PIAKII NM_018425 55361
PIK3C2A NM_002645 5286
PIK3C2B NM_002646 5287
PIK3C2G NM_004570 5288
PIK3CA NM_006218 5290
PIK3CB NM_006219 5291
PIK3CG NM_002649 5294
PIK3R2 NM_005027 5296
PIK3R3 NM_003629 8503
PIK3R4 NM_014602 30849
PIKACA NM_002650 5297
PIK4CB NM_002651 5298
PIM1 NM_002648 5292
PIM2 NM_006875 11040
PINK1 NM_032409 65018
PIP5K1A NM_003557 8394
PIP5K2A NM_005028 5305
PIP5K2B NM_003559 8396
PIP5K2C NM_024779 79837
PITPNM3 NM_031220 83394
PKE NM_173575 282974
PKIA NM_006823 5569
PKIB NM_032471 5570
PKLR NM_000298 5313
PKM2 NM_002654 5315
PKMYT1 NM_004203 9088
PKNBETA NM_013355 29941
PLK NM_005030 5347
PMSCL2 NM_002685 5394
PMVK NM_006556 10654
PNKP NM_007254 11284
PPP1R1B NM_032192 84152
PPP2CA NM_002715 5515
PPP2CB NM_004156 5516
PPPAC NM_002720 5531
PRKAA1 NM_006251 5562
PRKAA2 NM_006252 5563
PRKACA NM_002730 5566
PRKACB NM_002731 5567




PRKACG NM_002732 | 5568
PRKAG1 NM_002733 | 5571
PRKAG3 NM_017431 | 53632
PRKAR1A NM_002734 | 5573
PRKAR2A NM_004157 | 5576
PRKAR2B NM_002736 | 5577
PRKCA NM_002737 | 5578
PRKCABP NM_012407 | 9463
PRKCB1 NM_002738 | 5579
PRKCD NM_006254 | 5580
PRKCE NM_005400 | 5581
PRKCG NM_002739 | 5582
PRKCH NM_006255 | 5583
PRKCI NM_002740 | 5584
PRKCL1 NM_002741 | 5585
PRKCL2 NM_006256 | 5586
PRKCM NM_002742 | 5587
PRKCN NM_005813 | 23683
PRKCQ NM_006257 | 5588
PRKCSH NM_002743 | 5589
PRKCZ NM_002744 | 5590
PRKD2 NM_016457 | 25865
PRKDC NM_006904 | 5591
PRKG1 NM_006258 | 5592
PRKG2 NM_006259 | 5593
PRKR NM_002759 | 5610
PRKRA NM_003690 | 8575
PRKWNK1 NM_018979 | 65125
PRKWNK2 NM_006648 | 65268
PRKWNK3 NM_020922 | 65267
PRKWNK4 NM_032387 | 65266
PRKX NM_005044 | 5613
PRKY NM_002760 | 5616
PRPF4B NM_003913 | 8899
PRPS1 NM_002764 | 5631
PRPS2 NM_002765 | 5634
PRPSAP1 NM_002766 | 5635
PRPSAP2 NM_002767 | 5636
PSK NM_016151 | 51677
PSKH1 NM_006742 | 5681
PSKH2 NM_033126 | 85481
PTK2 NM_005607 | 5747
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PTK2B NM_004103 2185
PTK6 NM_005975 5753
PTK7 NM_002821 5754
PTK9 NM_002822 5756
PTKIOL NM_007284 11344
PTPNS NM_032781 84867
PTPRG NM_002841 5793
PTPRJ NM_002843 5795
PTPRR NM_002849 5801
PTPRT NM_007050 11122
PXK NM_017771 54899
PYCS NM_002860 5832
RAC1 NM_006908 5879
RAF1 NM_002880 5894
RAGE NM_014226 5891
RASGRF2 NM_006909 5924
RBSK NM_022128 64080
RET NM_000323 5979
RFP NM_006510 5987
RHOK NM_002929 6011
RIOK1 NM_031480 83732
RIOK3 NM_003831 8780
RIPK1 NM_003804 8737
RIPK2 NM_003821 8767
RIPK3 NM_006871 11035
RNASEL NM_021133 6041
ROCK1 NM_005406 6093
ROCK2 NM_004850 9475
ROR1 NM_005012 4919
ROR2 NM_004560 4920
ROS1 NM_002944 6098
RP2 NM_006915 6102
RPS6KA1 NM_002953 6195
RPS6KA2 NM_021135 6196
RPS6KA3 NM_004586 6197
RPS6KA4 NM_003942 8986
RPS6KA5 NM_004755 9252
RPS6KA6 NM_014496 27330
RPS6KB1 NM_003161 6198
RPS6KB2 NM_003952 6199
RPS6KC1 NM_012424 26750
RPS6KL1 NM_031464 83694




RYK NM_002958 6259
SAST XM_032034 22983
SCAP1 NM_003726 8631
SCYL1 NM_020680 57410
SEPHS1 NM_012247 22929
SGK NM_005627 6446
SGK2 NM_016276 10110
SGKL NM_013257 23678
SHC1 NM_003029 6464
SIK2 NM_015191 23235
SLK NM_014720 9748
SMG1 NM_014006 23049
SNARK NM_030952 81788
SNF1LK NM_173354 150094
SNK NM_006622 10769
SNRK NM_017719 54861
SOCS1 NM_003745 8651
SOCS5 NM_014011 9655
SPA17 NM_017425 53340
SPEC2 NM_020240 56990
SPHK1 NM_021972 8877
SPHK2 NM_020126 56848
SPS2 NM_012248 22928
SQSTM1 NM_003900 8878
SRC NM_005417 6714
SRMS NM_080823 6725
SRPK1 NM_003137 6732
SRPK2 NM_182691 6733
SSH3BP1 NM_005470 10006
SSTK NM_032037 83983
STK10 NM_005990 6793
STK11 NM_000455 6794
STK16 NM_003691 8576
STK17A NM_004760 9263
STK17B NM_004226 9262
STK18 NM_014264 10733
STK19 NM_004197 8859
STK22B NM_053006 23617
STK22C NM_052841 81629
STK22D NM_032028 83942
STK23 NM_014370 26576
STK24 NM_003576 8428
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STK25 NM_006374 10494
STK29 NM_003957 9024
STK3 NM_006281 6788
STK31 NM_031414 56164
STK33 NM_030906 65975
STK35 NM_080836 140901
STK36 NM_015690 27148
STK38 NM_007271 11329
STK38L NM_015000 23012
STK39 NM_013233 27347
STK4 NM_006282 6789
STK6 NM_003600 6790
SYK NM_003177 6850
TAF1 NM_004606 6872
TAF1L NM_153809 138474
TAO1 NM_004783 9344
TBK1 NM_013254 29110
TEC NM_003215 7006
TEK NM_000459 7010
TESK1 NM_006285 7016
TESK2 NM_007170 10420
TEX14 NM_031272 56155
TGFBR1 NM_004612 7046
TGFBR2 NM_003242 7048
TIE NM_005424 7075
TIP2 NM_004817 9414
TK1 NM_003258 7083
TK2 NM_004614 7084
TLK1 NM_012290 9874
TLK2 NM_006852 11011
TLR1 NM_003263 7096
TLR3 NM_003265 7098
TLR4 NM_003266 7099
TLR6 NM_006068 10333
TNFRSF10A NM_003844 8797
TNK1 NM_003985 8711
TOPK NM_018492 55872
TPK1 NM_022445 27010
TRAD NM_007064 11139
TRB2 NM_021643 28951
TRIM NM_016388 50852
TRIO NM_007118 7204




TRPM6 NM_017662 140803
TRPM7 NM_017672 54822
TSKS NM_021733 60385
TTBK1 XM_166453 84630
TTBK2 NM_173500 146057
TTK NM_003318 7272
TTN NM_133378 7273
TXK NM_003328 7294
TXNDC3 NM_016616 51314
TYK2 NM_003331 7297
TYRO3 NM_006293 7301
UCK1 NM_031432 83549
UGP2 NM_006759 7360
ULK1 NM_003565 8408
ULK2 NM_014683 9706
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UMP-CMPK NM_016308 51727
UMPK NM_012474 7371
URKL1 NM_017859 54963
VRK1 NM_003384 7443
VRK2 NM_006296 7444
VRK3 NM_016440 51231
WEE1 NM_003390 7465
WIF1 NM_007191 11197
XYLB NM_005108 9942
YES1 NM_005433 7525
YWHAH NM_003405 7533
YWHAQ NM_006826 10971
ZAK NM_016653 51776
ZAP70 NM_001079 7535




Chapter 4

Functional Proteomic Profiling Subdivides Estrogen Receptor-Negative Breast Cancer

Into Four Distinct Prognostic Groups
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4.1 Abstract

Breast cancer is marked by a deregulation of intracellular and extracellular
signaling networks which lead to aberrant cell survival and mitogenesis. Though the
critical mitogenic pathways are well described in estrogen receptor alpha (ER)-positive
breast cancer, the critical pathways regulating growth of estrogen receptor alpha (ER)-
negative breast cancer are still largely unknown. Reverse phase protein microarray
technology has the potential to identify differentially expressed and activated proteins
and phosphoproteins in large numbers of samples simultaneously. This proteomic
approach facilitates the identification of proteins that are differentially expressed and
activated by phosphorylation in a way that traditional transcriptional profiling does not
allow. We used this proteomic profiling approach to investigate protein expression and
activation status in a large panel of human breast tumors. Analyzing the results of these
experiments, we identified proteins that are overexpressed and activated in ER-negative
breast cancer as compared to ER-positive breast cancer. Furthermore, we demonstrate
that ER-negative tumors can be subdivided into four distinct subgroups based on their
expression of these proteins, and that these different subgroups have distinct
prognostic profiles. We also identified protein signatures that are associated with
particularly poor prognosis. Finally, we correlated specific proteomic signatures with
previously described breast cancer subtypes identified by transcriptional profiling in

human breast cancers. These studies identified proteins and pathways that are
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activated in specific subsets of ER-negative breast cancers that can now serve as targets

of future drug development for effective treatment of ER-negative breast cancer.

161



5.2 Introduction

Recent efforts to identify the aberrant signaling pathways that lead to breast
cancer transformation and cause breast cancer have focused on identifying DNA or RNA
changes in breast cancer. Indeed, studies using comparative genomic hybridization
(CGH) arrays and transcription profiling have provided valuable insight into the
molecular abnormalities that cause the development of breast cancer [1-6]. These high-
throughput technologies have allowed for the evaluation of gene expression or DNA
copy number changes on a genome-wide basis and are used to subtype cancers, predict
prognosis, and select optimal treatment [3, 5-10]. They have also greatly accelerated
cancer drug development [11]. However, by measuring only DNA or RNA changes, these
assays are unable to assess the regulation, modification, and activation of proteins,
which ultimately effect change in the cell. The development of reliable proteomic
characterization techniques is critical for the identification of proteins and pathways
that are expressed, activated, and important in human breast cancer.

Proteomics has the potential to complement and further enlarge the wealth of
information generated by genomics in breast cancer. It has long been appreciated that
MRNA levels do not necessarily correlate with protein abundance [12-14]. Additional
complexity is conferred by protein post-translational modifications, including
phosphorylations, acetylations, and glycosylations, or protein cleavages (reviewed in

[15]). These modifications are not detectable at the mRNA level but play significant
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roles in regulating protein stability, localization, interactions, and functions. Finally
proteins represent more accessible and relevant therapeutic targets than nucleic acids.

A variety of techniques exist to measure and quantitate protein levels in the cell.
Tissue microarrays, protein microarrays, 2-D gel electrophoresis, and mass spectrometry
approaches have all been used to probe the proteome in cells and cancers. Tissue
microarrays allow for the molecular information to be obtained in the context of cell
morphology and tissue architecture, and have been used to query bladder, prostate,
colorectal cancers [16-18]. The tissue microarray technique is, however, limited by the
need for pathologist scoring and concerns about how representative a small sample (0.6
mm in diameter) is in a potentially heterogeneous tumor. 2-D gel electrophoresis and
mass spectrometry approaches have also been used to evaluate protein expression in
tumors [19-21]. SELDI-TOF-MS is now routinely used to interrogate protein expression
in cells, serum, and tumors. These techniques are limited by the difficulty separating
complex protein mixtures and detecting tumor-specific protein traces within a large
amount of nonspecific protein species, particularly in a screening or early diagnosis
setting where tumor burden is expected to be minimal. Additionally, the need for large
starting sample quantities and the labor intensive nature of the techniques limit their
clinical utility.

Proteomic arrays depend on immobilizing various protein probes (or protein
lysates in the case of reverse phase proteomic arrays) onto specific surfaces and then

measuring interactions with specific proteins in complex samples. Recent advances in
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robotics and antibody production have allowed for proteomic arrays to subgroup breast
cancers [22-28]. Using a novel quantitative protein detection system termed “reverse
phase protein arrays” (RPPAs) that relies on validated high-quality antibodies,
expression levels and functional activation states of many signaling pathways can now
be defined. This technique has provided a novel way to subclassify leukemias [26] and
ovarian cancers [25]. RPPA is also able to quantitate very small amounts of protein
expression (femtograms of target in nanograms of starting material), and in particular
the activation state of cellular signaling pathways and networks using phospho-specific
antibodies. Thus, reverse phase protein arrays may be useful for target discovery in
addition to being a means of measuring the global activation status of multiple signaling
pathways at one time in individual tumor samples.

Estrogen receptor alpha-positive (hereafter referred to as ER-positive) breast
cancers account for 60-70% of breast cancers, but the remaining 30-40% of breast
cancers are ER-negative and are poorly responsive to traditional therapies [29].
Selective estrogen receptor modulators (SERMs), such as tamoxifen and raloxifene, and
aromatase inhibitors are currently used to treat ER-positive breast cancer and have
been shown to reduce ER-positive breast cancer recurrence by approximately 50% [30].
Several other examples of effective targeted therapies, including development of the
monoclonal antibodies trastuzumab (targeting the HER2/neu receptor) and
bevacizumab (targeting vascular epithelial growth factor), have been shown to be

effective in treating breast cancer [31, 32]. Other primary treatments include small
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molecule tyrosine kinase inhibitors including gefitinib and erlotinib (both of which target
the epidermal growth factor receptor), and lapatinib (a dual kinase inhibitor targeting
both the epidermal growth factor receptor and the HER2/neu receptor)[33-36]. These
drugs are now being tested in clinical trial and may in the future be used to treat ER-
negative breast cancer. These agents, however, are not effective in treating ER-negative
breast cancer which don’t overexpress HER2. Current treatment options for these
tumors are limited to chemotherapy [37]. Such therapy is generally toxic and is not
specifically targeted to ER-negative breast cancer cells. Thus, targeted agents that are
effective are critically needed for the treatment of ER-negative breast cancer.

To identify novel targets for the treatment of ER-negative breast cancer,
including the aggressive ER-negative, PR-negative, HER2/neu-negative (“triple-
negative”) breast cancers, | analyzed data from reverse phase protein arraying (RPPA)
experiments done by Dr. Gordon Mills and Dr. Bryan Hennessy at M.D. Anderson Cancer
Center to identify proteins and phosphoproteins that are differentially expressed
between ER-positive and ER-negative breast cancer. Using RPPA to interrogate the
global activation status of approximately 90 proteins and pathways in 166 human breast
tumors, my analysis identified 40 proteins and phosphoproteins that were differentially
expressed or activated between ER-positive and ER-negative breast tumors. Next, my
analysis demonstrated that ER-negative tumors could be subdivided into four distinct
subgroups (ER-low, stathmin high, S6 kinase-activated, and HER2-activated) based on

the expression of these 40 differentially expressed proteins. We also identified protein
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signatures that were associated with a particularly poor prognosis. We then
investigated whether this list of differentially expressed proteins and phosphoproteins
was able to distinguish ER-positive and ER-negative breast cancers in a larger validation
set of 712 human breast tumors profiled and provided by Dr. Gordon Mills at M.D.
Anderson Cancer Center. Analysis demonstrated that this list is again robust at
distinguishing ER-positive and ER-negative tumors in an unsupervised manner. We also
demonstrated that this proteomic signature separated ER-negative tumors into the 4
subgroups identified in the training set (ER-low, stathmin high, S6 kinase-activated, and
HER2-activated), and that these different subgroups had distinct prognostic profiles.
These results identified proteins and pathways that are activated in specific subsets of
ER-negative breast cancers that now serve as targets of future drug development for

effective treatment of ER-negative breast cancer.
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4.3 Results

To identify potentially important proteins and pathways that are differentially
expressed or activated in ER-negative breast cancers, we designed a study to compare
protein and phosphoprotein expression levels in ER-positive and ER-negative human
breast tumor samples. A summary of the study design is outlined in Figure 4.1. Briefly,
we measured the expression of 58 proteins and 31 phosphoproteins in 2 sets of human
breast cancers. The first set, hereafter referred to as the “training set”, contained 166
human breast tumors and was used to identify those proteins and phosphoproteins that
were more highly expressed in ER-negative tumors as compared to ER-positive tumors.
We then investigated whether this list of differentially expressed proteins and
phosphoproteins could segregate ER-positive from ER-negative tumors in an
unsupervised manner in a second set of human tumors. This second set, hereafter
referred to as the “validation set”, was much larger and contained 712 human breast
tumors. Because the validation tumor set has comprehensive clinical follow-up data, we
were able to use this sets to evaluate time to recurrence, metastasis-free survival, and
overall survival. All the tumors were collected by investigators in Denmark and at M.D.
Anderson Cancer Center under the direction of Dr. Gordon Mills, and the data for this
work was generously provided to us by Dr. Mills for further analysis. All analyses in this
chapter were done by Corey Speers with input from Dr. Susan Hilsenbeck at Baylor

College of Medicine, unless otherwise noted.

167



Figure 4.1- Overview of the study design
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Figure 4.1 Human Breast Tumor Samples
Analysis of 878 human breast tumor samples using reverse phase

protein lysate arrays

Training Set of Human Breast Tumor Samples

166 human breast tumors with gene expression and reverse phase protein lysate arrays
performed in the laboratory of Dr. Gordon Mills at M.D. Anderson. Training set identifies
40 proteins and phosphoproteins differentially expressed between ER-positive and ER-

negative tumors. (permutation p-value <.01). Unsupervised hierarchical clustering using
differentially expressed protein values identifies 4 subtypes of ER-negative breast cancer

Validation Set of Human

Kruskal-Wallis analysis
Breast Tumor Samples
Identification of proteins 712 human breast tumors with reverse
and phosphoproteins phase protein lysate arrays performed in
associated with the the laboratory of Dr. Gordon Mills at M.D.
previously identified Anderson. 40 differentially expressed
subtypes of human proteins and phosphoproteins from
breast cancer training set validated in this larger tumor
set. Same 4 subtypes of ER-negative

breast cancer identified in the training set
also identified in this validation set.

!

Kaplan-Meier analysis in validation set shows that HER2 and S6 kinase groups of
ER-negative breast cancer have poor overall survival compared to ER-low and
Stathmin high groups of ER-negative breast cancer

|

Identified potential targets for the treatment of ER-negative breast cancer
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4.3.1 Patient Population

A total of 878 patients with invasive breast cancer were included in these studies
and these tumors were divided into two sets, a training set and a validation set. A
summary of the clinical and demographic features of these tumors are summarized in
table 4.1. These tumors were collected by investigators in Denmark and at M.D.
Anderson Cancer Center under the direction of Dr. Gordon Mills, and the data was
generously provided to us for further analysis. Breast biopsies using a core needle were
taken before initiation of any treatment and were used in this study. Because the
patients did not receive systemic adjuvant or neoadjuvant therapy prior to the biopsy,
the results from the proteomic analysis represent basal protein expression in these
breast cancers. In the training set, 166 patients were obtained from a cohort of patients
in Norway (kindly provided by Dr. Myhre to Dr. Mills). In this set, 126 tumors were ER-
positive and 40 were ER-negative by IHC-staining. The majority of the tumors (93%) had
at least one lymph node positive for disease and came from women who were all under
the age of 70.

The validation set was comprised of 712 tumors assembled from centers at M.D.
Anderson Cancer Center (621 tumors) and Baylor College of Medicine (91 tumors). In
this set, 449 tumors were ER-positive and 263 were ER-negative. The women whose
tumors comprised this set tended to be older than the women in the training set (age

mean 60.3 and 54.8, respectively) but again, the majority of these women had lymph
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Table 4.1- Characteristics of the 166 patients and tumors
used in the “training” set and the 712 patients and tumors in
the “validation” set to identify differentially expressed
proteins and phosphoproteins in human breast cancer.
These tumors were acquired by Dr. Gordon Mills at M.D.
Anderson and were processed in his laboratory, with data
kindly provided for further analysis. SD refers to standard
deviation.
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Table 4.1. Clinical characteristics of the patients and tumor samples used in the study.

Characteristic

Age

Tumor Stage

Nodal Status

Tumor Type

Recurrence Status

Metastasis

Survival Months- All

Survival Months- ER-positive

Survival Months- ER-negative

Molecular Profile Subtype

ER

HER2/neu

<40

40-49
50-59
60-69
>70

Mean
Range

T1
T2
T3
Unknown

0 nodes positive
1-3 nodes positive
>3 nodes positive
Unknown

Ductal
Non-Ductal
Unknown

No local recurrence
Local recurrence
Unknown

No distant metastasis
Distant metastasis
Unknown

Mean
Range

Mean
Range

Mean
Range

Luminal A
Luminal B
ErbB2
Normal
Basal

Positive
Negative
Unknown

Positive
Negative
Unknown

Training Set Independent Validation Set
N=166 (%) N=712 (%)
11 (7%) 57 (8%)

39 (23%) 88 (12%)
55 (33%) 112 (16%)
63 (37%) 145 (20%)
0 (0%) 174 (24%)
54.8 (SD 9.14) 60.3 (SD 14.9)
30-69 23-89
49 (30%) 181 (25%)
97 (58%) 268 (38%)
20 (12%) 103 (15%)
0 (0%) 160 (22%)
11 (7%) 270 (38%)
77 (46%) 198 (28%)
78 (47%) 78 (11%)
0 (0%) 166 (23%)

132 (80%)
34 (20%)
0 (0%)

124 (75%)
42 (25%)
0 (0%)

67 (40%)
99 (60%)
0 (0%)

107.5 (SD 80.65)
6-258

119.3 (SD 77.5)
6-258

70.25 (SD 80.1)
6-250

47 (28%)
28 (17%)
42 (25%)
24 (15%)
25 (15%)

126 (76%)
40 (24%)
0 (0%)

34 (21%)
102 (61%)
30 (18%)

411 (58%)
164 (22%)
137 (20%)

363 (51%)
216 (30%)
133 (19%)

359 (50%)
216 (30%)
137 (20%)

69.86 (SD 58.61)
1-265.4

80.32 (SD 58.19)
1-268

54.15 (SD 58.05)
2.5-236.5

NA
NA
NA
NA
NA

449 (63%)
263 (37%)
0 (0%)

21 (3%)
148 (21%)
543 (76%)
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node positive disease (60%). In addition, the tumor samples obtained at M.D. Anderson
had clinical follow-up data including date of diagnosis, disease and recurrence free
survival, metastasis-free survival, and overall survival). The tumor samples obtained at
Baylor College of Medicine did not have clinical follow-up data and thus were censored
from any analysis involving clinical follow-up data. The overall survival curves of
patients in the two datasets are shown in Figure 4.2. The training set had poorer than
average overall survival, especially in the patients with ER-negative tumors at 5 years
(Figure 4.2). Over 75% of these women died within 5 years, suggesting that these
women had particularly aggressive disease. Survival curves from the validation set were
more consistent with previously reported curves in which initially patients with ER-
negative tumors have a worse overall survival at 5 years, (although survival is similar

after 12 years follow-up) (see Figure 4.2).

4.3.2 Proteomic Profiling Identified Proteins and Phosphoproteins Overexpressed in
Human ER-Negative Breast Tumors

To identify proteins that are differentially expressed in ER-negative breast
cancers, we performed reverse phase protein lysate array (RPPA) profiling using 89
antibodies (58 total protein antibodies and 31 phosphoprotein antibodies) to compare
human ER-negative and ER-positive breast tumors in the training set. A comprehensive
list of the antibodies and sources of antibodies can be found in Supplementary Table

4.1. This RPPA technique, described in detail elsewhere [25], has previously been shown
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Figure 4.2- Kaplan-Meier analysis shows that ER-negative
patients have a worse overall survival in both the training
and validation sets at 5 years. (A) Kaplan-Meier analysis of
the training set shows that women with ER-negative breast
cancer have poorer overall survival at 5 years (26%)
compared to ER-positive patients (60%). (B) Kaplan-Meier
analysis of the validation set shows that women with ER-
negative breast cancer have poorer overall survival at 5
years (53%) compared to ER-positive patients (70%).
Outcome data kindly provided by Dr. Gordon Mills at M.D.
Anderson.
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Figure 4.2

Percent Survival (%)

Percent Survival (%)

Overall Survival- Training Set (N=166)

5 yea

BN ER-negative

B ER-positive

ER-positive: 60.1%
ER-negative: 26.6%

rs

Months P-value < 0.0001

Overall survival- Validation Set (N=612)

BN ER-negative
B ER-positive

5 year survival-
ER-positive: 70.2%
ER-negative: 53.1%

5 years

Months P-value 0.002
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to subcluster leukemias and ovarian tumors into clinically useful subgroups [25, 26].
These experiments were done in the laboratory of Dr. Gordon Mills using his proteomic
facilities. Dr. Bryan Hennessy did the proteomic analysis at M.D. Anderson and kindly
provided the data for our analysis. In addition to RPPA analysis, we also performed
gene expression profiling on this training dataset which allowed us to correlate gene
expression changes at the RNA level with protein changes as measured by RPPA. While
this study focused on changes identified at the protein level, references to the intrinsic
gene set identified by applying the intrinsic gene list [10] are mentioned here and
depicted in the Figure 4.3.

We used a significance analysis of microarray (SAM) method to identify those
proteins and phosphoproteins that were differentially expressed in ER-positive and ER-
negative breast tumors. Our analysis revealed a significant difference (permutation P-
value< 0.01, hereafter referred to as P-value) in the expression of 40 proteins between
ER-negative and ER-positive tumors with a false discovery rate (FDR) of 1%. To visualize
the clustering of the ER-positive and ER-negative tumors, hierarchical clustering analysis
was done using only those proteins identified as being differentially expressed between
the two groups (Figure 4.4). Hierarchical clustering showed that these 40 proteins and
phosphoproteins were able to segregate ER-positive and ER-negative tumors. This
clustering based on protein expression shows four main clusters of tumors. Two that
are ER-positive and two that are ER-negative. One of the ER-positive tumor clusters is

marked largely by high expression of ER-alpha (ER), progesterone receptor (PR),
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Figure 4.3- Application of the intrinsic gene set to the
training set of human tumors identifies the 5 subtypes of
human breast cancers (Luminal A, Luminal B, Normal, HER2,
and Basal). This classification was used for the Kruskal-
Wallis test to identify proteins associated with the breast
tumors subtypes.
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Figure 4.3
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Figure 4.4- Supervised hierarchical clustering of the training
set of tumors identifies proteins that are differentially
expressed between ER-positive and ER-negative breast

tumors. Supervised hierarchical clustering analysis using the 40
differentially expressed proteins and phosphoproteins accurately
clusters the ER-positive from ER-negative human breast tumors. These
proteins include those previously known to be associated with ER-
status as well as proteins which are associated with pathway

activation.
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Figure 4.4
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androgen receptor (AR), GATA binding protein 3 (GATA3), B cell lymphoma 2 (Bcl2),
insulin growth factor receptor 1 (IGFR1), phospho MAPK, and breast cancer 1, early
onset (BRCA1), amongst others. The samples in this cluster tended to be mostly luminal
A tumors, a subset of breast cancers first identified by Sorlie et al. [10], though this
group did include some ER-positive tumors that were also HER2-positive and thus fell
into the gene expression HER2 subtype of breast cancer described previously [10]. The
other ER-positive cluster defined by protein expression is marked by tumors with high
expression of fibroblast growth factor receptor 1 (FGFR1), caveolin, collagen VI, and
cyclin-dependent kinase inhibitor 1B (p27) and is distinct from the first ER-positive
cluster of tumors as it has lower relative expression of ER and GATA3 proteins. These
tumors were a mix of luminal A, luminal B, basal, and normal-like tumors as determined
by application of the intrinsic gene list. Though these tumors are classified as ER-
positive by IHC analysis, they represent tumors that express lower levels of estrogen
receptor and higher levels of phosphor Rb and phospho EGFR.

The largest ER-negative cluster is marked by complex and heterogenous
expression of several proteins including stathmin, c-Src, ribosomal S6 kinase (S6), cyclin
E1 (CCNE1), cyclin B1 (CCNB1), plasminogen activator inhibitor 1 (PAI1), cleaved Poly
(ADP-ribose) polymerase (PARP), and cleaved caspase 7, and also includes some tumors
that express epidermal growth factor receptor 1 (EGFR) and HER2/neu. As expected,
the majority of these tumors were classified as either basal or HER2 tumors as

determined by gene expression profiling (as depicted in Figure 4.3), though there was
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some luminal B and normal-like tumors as well. The second cluster included tumors
that were high in the expression of epidermal growth factor receptor 1 (EGFR),
HER2/neu, but also had high expression of S6 and phospho-S6 kinase. These tumors
were predominantly classified as HER2 as determined by gene expression profiling.
Proteins expected to be overrepresented in ER-negative tumors like EGFR, HER2, and
phosphorylated HER2 were identified as being overexpressed in ER-negative tumors.
This analysis also identified the S6 signaling pathway, as well as cyclin E and cyclin B, as
potentially important targets in ER-negative breast cancer. In addition to levels of total
c-Src protein being elevated in ER-negative tumors, phosphorylated c-Src is also
elevated, which may identify c-Src as potentially important target in ER-negative breast
cancer. A complete list of the proteins differentially expressed between ER-positive and

ER-negative breast cancer is shown in Table 4.2.

4.3.3 Subtyping of Breast Tumors Using Gene Expression Values and the Intrinsic Gene
List Identifies Proteins Associated with Luminal A, Luminal B, Normal-like, Basal, and
ErbB2 Breast Tumors.

Recent studies using gene expression profiling have established a widely applied
molecular classification of breast cancers [3, 10, 38]. These studies have repeatedly
identified 5 subtypes of breast cancer, two luminal-like subtypes (comprised mostly of
ER-positive breast tumors and referred to as luminal A and luminal B groups), an erbB2

subtype (comprised mostly of breast cancers, both ER-positive and ER-negative, that
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Table 4.2- List of 40 proteins and phosphoproteins that are
differentially expressed between ER-positive and ER-
negative samples in the “training” set.
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overexpress HER2), a basal-like subtype (which tend to be the most aggressive with the
poorest prognosis and lack appreciable expression of ER, PR, and HER2; the so called
“triple-negative” tumors), and a normal-like subtype (comprised of tumors whose gene
expression profile is similar to normal breast epithelial tissue). These subtypes are
characterized as having distinct transcriptional profiles, but more importantly, having
distinct patient outcomes.

Because we had both gene expression and protein expression data in the
training set, we wanted to see if we were able to identify those proteins and
phosphoproteins that were associated with each of these 5 subtypes of breast cancer.
By applying the intrinsic gene list described previously [3, 10, 38] we assigned the
tumors in the training set into one of the 5 subtypes of breast cancer (see Figure 4.3).
After assigning tumors into one of the five subtypes of human breast cancer, we
identified the proteins and phosphoproteins whose expression was significantly
correlated with one of these subtypes (using Kruskal-Wallis one-way analysis of variance
by ranks). Using this technique, we identified 9 proteins and phosphoproteins
associated with luminal A tumors, 6 proteins with luminal B, 12 proteins with normal-
like, 3 proteins with erbB2 tumors, and 10 proteins with basal-like tumors. A list of the
proteins and their association with the different groups listed in Table 4.3. Hierarchical
clustering of the significantly associated proteins and phosphoproteins identified using

this Kruskal-Wallis test is depicted in Figure 4.5.
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Table 4.3- List of proteins associated with the previously
described subtypes of human breast cancer.

187




Proteins associated Kruskal-Wallis P-value Adjusted P-value (Benjamini-
with subtypes of Statistic (H) Hochberg corrections)
breast cancer
Luminal A tumors
ER 76.6784 4.107825E-15 3.5327297E-13
GATA3 BD 72.19122 3.5860204E-14 1.5419888E-12
AR 47.499954 4.492669E-9 6.439492E-8
bel2 43.662155 2.7123452E-8 3.3323096E-7
PR 41.677444 6.8454035E-8 7.3588086E-7
ERp118 41.390305 7.8245314E-8 7.4767746E-7
IGF1R 37.13757 5.620918E-7 4.028325E-6
MAPKp 27.860415 3.875839E-5 1.5151006E-4
LKB1 25.29582 1.221518E-4 4.3771064E-4
Luminal B tumors
PDK1 31.322906 8.087718E-6 3.819905E-5
PDK1p241 28.13063 3.431982E-5 1.4054783E-4
p70S6 Kinase 25.049938 1.3627403E-4 4.6878267E-4
stat3 18.111946 0.0028093283 0.0075500696
AcCoAp 16.986477 0.0045255153 0.010810953
Akt 15.819983 0.007377275 0.01586114
Normal-like tumors
ckit 31.358723 7.95696E-6 3.819905E-5
Collagen VI 31.229378 8.439325E-6 3.819905E-5
CCND1 28.211899 3.3086344E-5 1.4054783E-4
SGKp 26.986217 5.739606E-5 2.1461137E-4
SGK 20.84895 8.6504855E-4 0.0026569348
stat3p727 18.124868 0.002793913 0.0075500696
INK 17.286942 0.003986559 0.010389214
VEGFR2 17.061573 0.00438449 0.010810953
COX2 17.008156 0.004484355 0.010810953
INKp 16.704386 0.0050959396 0.0116916755
FGFR1 16.65237 0.0052085286 0.0116916755
p27 16.609997 0.005302039 0.0116916755
erbB2 tumors
HER2 47.727 4.0381334E-9 6.439492E-8
HER2p1248 47.517212 4.456397E-9 6.439492E-8
EGFR 35.24769 1.3427375E-6 7.6983615E-6
Basal-like tumors
CCNB1 50.816437 9.43092E-10 2.7035306E-8
cleaved PARP 39.601665 1.7966485E-7 1.4769213E-6
cleaved caspase 7 39.493526 1.8890854E-7 1.4769213E-6
PAI1 36.14887 8.868587E-7 5.866911E-6
CCNE1 35.713253 1.0838664E-6 6.6580365E-6
S6p240_4 31.993458 5.959009E-6 3.202967E-5
S6p235-236 22.233332 4.7272968E-4 0.0015636443
S6 20.895502 8.477206E-4 0.0026569348
cMYC 19.83501 0.0013420202 0.003979784
p53 15.217132 0.009473762 0.019398656
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Figure 4.5- Kruskal-Wallis analysis identifies proteins
associated with the breast tumors subtypes identified by
gene expression profiling. After accurately classifying
tumors into their intrinsic subtype, Kruskal-Wallis analysis
identifies proteins that are associated with the intrinsic
subsets of human breast tumors. Analysis done by Corey
Speers with input from Dr. Susan Hilsenbeck.
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4.3.4 Unsupervised Clustering Analysis Reveals Four Distinct Subtypes of ER-Negative
Breast Cancer

We next determined whether this list of 40 proteins differentially expressed
between ER-positive and ER-negative breast cancers could subcluster the ER-negative
tumors in an unbiased manner. We performed unsupervised hierarchical clustering
analysis using the 40 proteins and phosphoproteins previously identified as being
differentially expressed and found that these tumors clustered broadly into 4 distinct
subtypes of ER-negative breast cancer (Figure 4.6). Figure of merit analysis showed that
these four groups were stable against reclustering. These groups were marked by the
coordinated elevation of pathways that fall broadly into 4 different categories.

The first group identified in the training set was small but distinct and had
relatively high expression (when compared to the other ER-negative tumors) of proteins
that are associated with estrogen receptor positivity, and low expression of the other
proteins and phosphoproteins associated with ER-negativity (EGFR, HER2, S6, Src, PAI1,
CCNE1, CCNB1). This group, hereafter called the “ER-low” group, is defined by tumors
with higher expression of ER alpha, AR, PR, GATA3, Bcl2, and IGF1R than other ER-
negative tumors. These tumors fell into the luminal B, HER2, or normal group based on
RNA gene expression profiling. The histology and staining of the tumors that fell into
this group was reviewed to ensure that they were not misclassified and they were
confirmed as negative for ER expression by immunohistochemistry. Additionally, when

compared to the other ER-positive tumors in the training set, these tumors expressed

191



Figure 4.6- Unsupervised hierarchical clustering of the
training set tumors identifies 4 distinct subgroups of ER-

negative breast cancer. This unsupervised clustering of ER-negative
tumors identifies 4 subgroups of ER-negative tumors and includes a
ER-low subgroup, a stathmin subgroup, a HER2 subgroup, and a S6
kinase group. The corresponding breast cancer subtype (luminal A,
luminal B, normal-like, HER2, or basal) is noted above the figure.
These groupings were derived by applying the intrinsic gene list to
gene expression data also collected from these tumors.
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lower levels of ER, PR, and GATA3 protein. Thus, this group represents tumors with low
levels of ER expression and activation that is detected by the sensitive RPPA analysis but
not detected by less sensitive IHC techniques.

The second group was marked by elevated expression of stathmin (STMN1), Src,
phospho-Src, cMYC, and cJUN. This group will be referred to as the “stathmin” group,
and correlates to the basal group with some tumors falling into the luminal B group
based on RNA gene expression profiling. A third group, hereafter referred to as the
“HER2” group, was marked by elevated expression of HER2/neu, phospho-HER2/neu,
EGFR, and phospho-EGFR. This group correlates to the HER2/neu subtype of breast
tumors identified by intrinsic gene set analysis and is more common in ER-negative
breast tumors [4]. The final group was marked by the coordinated high expression of
proteins including cyclin B, cyclin E, PAI1, and total and phospho-S6 kinase expression.
This group, hereafter referred to as the “S6 kinase” group may identify those tumors
that are particularly mitotically active as many of the cyclins (CCNE1, CCNB1), as well as
proteins involved in mitogenesis (S6 kinase), are elevated. They are also identified by
apparent activation of the S6 kinase signaling pathway. These tumors fall into the basal
or luminal B groups based on RNA gene expression profiling. These results indicate that
ER-negative tumors may be subdivided into 4 distinct classes based upon their protein

expression profile.
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4.3.5 Correlation Between RNA and Protein Expression

Because almost all of the tumors in the training set had also been used for
previous gene expression profiling experiments, we were able to perform a large scale
comparison of RNA and protein expression levels in human breast tumors. Using
Spearman’s rank correlation test we compared total protein expression with RNA levels
for the 166 tumors in the training set, with results reported in Figure 4.7. In our hands,
for many genes, it appears that RNA and protein levels are not strongly correlated, at
least when RNA expression is measured using the Applied Biosystem Human Genome
Survey Microarray version 2.0 and protein expression is measured by RPPA. There was
a strong correlation between protein and RNA levels (r values > .5) in only 9 of 43 genes.
There was moderate correlation between protein and RNA levels (r values between 0.3-
0.5) in 7 of 43 genes, and 27 of 43 genes showed weak or no correlation between

protein and RNA levels (r values < 0.3) (for all results refer to Table 4.4).

4.3.6 Validation of Differentially Expressed Proteins in an Independent Set of Human
Breast Tumors

We next used the 40 differentially expressed proteins that we identified in the
training set in a validation set of tumors. The validation dataset was comprised of 712
tumors (612 tumors from M.D. Anderson Cancer Center and 91 tumors from Baylor
College of Medicine). The tumor samples obtained and processed at M.D. Anderson by

Dr. Gordon Mills, and had clinical follow-up data including date of diagnosis, disease and
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Figure 4.7- Correlation between RNA and protein expression

in the training set. The RNA and protein expression for many of the
genes interrogated is displayed and corresponding correlation
coefficients are listed in table 4.4. RNA expression units are log2
transformed values and protein expression units are mean centered
relative expression. Analysis done by Corey Speers with input from Dr.
Susan Hilsenbeck.
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Figure 4.7
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Figure 4.7 (continued)
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Figure 4.7 (continued)
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Table 4.4- Correlation r values for the RNA and protein
expression in the training set. Analysis done by Corey Speers
with input from Dr. Susan Hilsenbeck.
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from Dr. Susan Hilsenbeck.

Protein

estrogen receptor
progesterone receptor
Cyclin B1
cKIT

IGF1R
GATA3
HER2
androgen receptor
FGFR1
4EBP-1
Cyclin D1
caveolin
Cyclin E
EGFR

cMYC

Akt

AMPK1
STAT3

PTEN

Rb

BRCA-1
MEK1

TSC2

p53
stathmin
beta catenin
cJUN
NOTCH3
GSK3

XIAP

p27

COX2

PAI1

p21

LKB1
VEGFR2
p38

p70 S6 Kinase
ERK2

Bcl-2

E cadherin
PDK1

SGK

Overall r value

0.85
0.69
0.69
0.69
0.63
0.58
0.57
0.55
0.54
0.47
0.46
0.44
0.41
0.36
0.34
0.31
0.29
0.24
0.21
0.18
0.17
0.17
0.17
0.13
0.12
0.11
0.11
0.09
0.09
0.09
0.08
0.07
0.07
0.06
0.05
0.04
0.03
0.02
-0.014
-0.02
-0.12
-0.12
-0.19
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Table 4.4 — Correlation coefficients between RNA and protein expression values in
the training set of human breast tumors. Analysis done by Corey Speers with input

P-value

<0.0001
<0.0001
<0.0001
<0.0001
<0.0001
<0.0001
<0.0001
<0.0001
<0.0001
<0.0001
<0.0001
<0.0001
<0.0001
<0.0001
<0.0001
<0.0001
0.002
0.002
0.004
0.01
0.03
0.03
0.018
0.11
0.06
0.14
0.15
0.25
0.26
0.13
0.34
0.32
0.18
0.44
0.55
0.29
0.36
0.39
0.82
0.75
0.12
0.06
0.007




recurrence free survival, metastasis-free survival, and overall survival. The tumor
samples obtained at Baylor College of Medicine were processed by Corey Speers and
had initial diagnosis data but did not have clinical follow-up data and thus were
censored from any analysis involving clinical follow-up data. The clinical characteristics
of this dataset were generally similar to those of the training set, though there were
differences in the percentage of lymph node-positive patients, HER2 status, and median
survival (see Table 4.1). Using the 40 differentially expressed proteins and
phosphoproteins identified in the training set, we performed unsupervised hierarchical
clustering to determine whether these specific proteins and phosphoproteins could
accurately segregate ER-positive and ER-negative tumors. Using clustering by Pearson’s
rank correlation with complete linkage this set of proteins accurately clustered ER-
positive and ER-negative tumors in an unsupervised manner (Figure 4.8). As with the
training set, 4 high order groups were seen: 2 groups of ER-positive tumors and 2 groups
of ER-negative tumors. Again the ER-positive tumors showed one group with high
expression of ER, PR, AR, GATA3, Bcl2, IGFIR, among others. The other ER-positive
group had lower relative expression of ER but had higher expression of Src or caveolin.
In the ER-negative tumors, there were again two groups with complex expression
patterns. One was a complex group of tumors with high HER2 or CCNB1 or CCNE1
expression. The other complex group has high caveolin and collagen VI expression or

high stathmin, EGFR, and Src expression. Notably, all of the proteins and
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Figure 4.8- Unsupervised hierarchical clustering in the
validation set accurately clusters ER-positive and ER-negative
tumor samples based on the previously identified protein

signature. Unsupervised hierarchical clustering analysis of
differentially expressed proteins and phosphoproteins identified in the
training set show that this signature separates ER-positive and ER-

negative tumors in the validation set.
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Figure 4.8
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phosphoproteins identified as being differentially expressed in the training set were

significantly differentially expressed in the validation set.

4.3.7 Unsupervised Clustering Analysis Again Reveals Four Distinct Subtypes of ER-
Negative Breast Cancer.

Utilizing the same approach we did with the training set, we performed
unsupervised hierarchical clustering using only the ER-negative tumors in the validation
set. Using Pearson’s rank correlation and complete linkage, we again identified four
distinct subsets of ER-negative breast cancer (Figure 4.9). As with the training set, figure
of merit analysis showed that these four groups were stable against reclustering. These
groups again included an ER-low cluster, stathmin expressing cluster, an S6 kinase
cluster, and a HER2 overexpressing cluster. The clustering of the proteins was also very
similar in this dataset, with the ER-associated proteins (ER alpha, PR, AR, GATA3, Bcl2)
clustering closely, HER2/neu and EGFR clustering closely, S6 and phospho-S6 clustering
again with cyclin B and E and PAI1, and stathmin clustering closely with cMYC, Src, and
phospho-Src. As with the training set, a small group of “ER-low” tumors were identified,
and may represent tumors that have estrogen receptor expression that is too low to be
detected by IHC analysis, but are identified as having estrogen receptor expression by

the more sensitive RPPA technique.
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Figure 4.9- Unsupervised hierarchical clustering of the ER-
negative tumors in the validation set. Using the 40
differentially expressed proteins, unsupervised hierarchical clustering
again identifies 4 subsets of ER-negative tumors. These clusters
include the ER-low, stathmin, HER2, and S6 kinase groups.
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4.3.8 S6 Kinase and HER2/neu Subtype of ER-Negative Breast Cancer Predicts Poor
Overall Survival.

To determine whether any additional insight into these subtypes of ER-negative
breast cancer could be ascertained in this larger dataset, we analyzed the survival data
from this dataset (only the 621 tumors from M.D. Anderson that had clinical follow-up
data). The median follow-up time of these tumors was 96 months Based on the
unsupervised clustering of the ER-negative tumors, these tumors were categorized into
one of the four subsets: 1) ER-low, 2) stathmin, 3) HER2/neu, or 4) S6 kinase tumors.
Kaplan-Meier analysis of the overall survival between the different subgroups of ER-
negative tumors (ER-low, stathmin, HER2/neu, S6 kinase) shows that there were
differences in the overall survival curves between the women belonging to these
different subtypes. Women with the S6 kinase and HER2/neu signature-expressing
tumors had significantly worse overall survival than the women in the ER-low or
stathmin groups (see Figure 4.10). These data validate the 40 proteins and
phosphoproteins as being differentially expressed between ER-positive and ER-negative
tumors and again demonstrate that protein expression in ER-negative tumors identify

women who have distinct clinical outcomes based on their protein expression profile.
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Figure 4.10- Kaplan-Meier analysis of overall survival in the

ER-negative tumors in the validation set. Patient’s tumors were
assigned to one of the 4 subsets of ER-negative breast cancer based on
unsupervised hierarchical clustering of the differentially expressed
proteins. Analysis shows those patients with activated HER2/neu or S6
kinase signaling pathways have reduced survival as compared to those
patients with an ER-low or stathmin signaling pathway signature.
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Figure 4.10
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4.4 Discussion

In this report we demonstrate that ER-negative tumors can be subdivided into
prognostically distinct subgroups based on their expression and activation of signalling
proteins. Additionally, we identify many proteins and pathways that are overexpressed
or activated in ER-negative breast cancer. Women whose tumors express low levels of
ER or ER-regulated genes (ER-low group) or have high stathmin expression (stathmin
group) have relatively good prognoses as compared to women whose tumors have the
HER2/neu (HER2 group) or S6 kinase pathways (S6 kinase group) activated. These
studies underscore the utility of RPPA in assessing the global protein and pathway
activation status of human breast tumors and identify proteins and pathways which may
be particularly attractive targets for the treatment of ER-negative breast cancer.

This is the first study to use such a large set of human breast tumors for
proteomic profiling. This large dataset allows for the identification of smaller but
perhaps significant subtypes of breast cancer that may remain undetected in a smaller
sample set. The ER-low subgroup of ER-negative breast cancer represents one such
subtype. In these datasets, only about 5% of ER-negative tumors fell into this category,
but this subgroup may represent a clinically important group of patients who are not
currently treated with anti-estrogen therapy (based on negative ER staining by IHC).
Based on the low but detectable expression of ER in these patients, they may in fact

benefit from such anti-estrogen therapy, and though they fall into a group with
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relatively good prognosis, such anti-estrogen therapy may further improve their
prognosis.

Having accurate and extensive clinical follow-up data on these tumors allowed
for analyses of prognostic biomarkers and the identification of proteins whose
expression is correlated with either good or poor overall survival. Additionally, having
also transcriptionaly profiled the training set of tumors, we were able to characterize
the discordance between the 4 subgroups of ER-negative breast cancer and the groups
they cluster into by RNA expression analysis. While RNA gene expression profiling
studies show that ER-negative tumors are either normal-like, basal-like, or express
HER2, we identify additional, clinically relevant subtypes. This correlation showed that,
unlike with RNA expression clustering, basal-like tumors had heterogeneity in their
protein expression profiles, as did the normal-like and HER2-overexpressing tumors. We
found that not all S6-kinase group tumors were basal, but were a mixture of basal and
luminal B tumors. The stathmin high group tumors were basal or luminal B by gene
expression profiling, and the ER-low group of ER-negative tumors included multiple
subtypes including normal-like, basal, and HER2 based on gene expression profiling.
This represents a novel classification based on protein expression, and the differences in
clinical outcomes between these groups merits further investigation.

Another advantage of having both RNA and protein expression data, was the
ability to identify proteins that are associated with the breast cancer subtypes

previously identified using gene expression profiling [4, 10]. We identified several
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proteins and phosphoproteins associate with luminal A tumors (ER, GATA3, AR, Bcl-2,
PR, ERp118, IGF1R, MAPKp, amongst others). Luminal B tumors were associated with
PDK1, PDK1p241, p70S6 Kinase, and Akt expression, amongst others. These proteins,
known to interact and phosphorylate each other after mitogen stimulation [39, 40],
represent a potential novel targetable pathway in these more aggressive, ER-positive
tumors. Future work will need to evaluate whether inhibition of the PDK1/S6 kinase
signaling pathway in models of aggressive, ER-positive tumors (luminal B), is an effective
treatment strategy.

ER-negative tumors include normal-like, ErbB2-positive, and basal-like tumors.
Normal-like tumors were associated with a wide variety of protein and phosphoprotein
expression, including cKIT, SGKp, SGK, COX2, and p27 amongst others. ErbB2-positive
tumors were correlated with expression of total and phosphor-HER2 and EGFR, known
to be overexpressed and dimerization partners in tumors which overexpress the
HER2/neu gene. Finally, basal-like tumors were associated with expression of CCNB1,
cleaved PARP, cleaved caspase 7, PAI1, CCNE1, S6 kinase, and cMYC, as well as others.
These proteins are involved in cell cycle regulation as well as apotosis, and may
represent two pathways that are particularly active in these aggressive, basal tumors.
As patients with basal-like tumors have a poor prognosis and significantly worse
outcomes than patients in the other subtypes [29, 38], this list represents potential

targets for specific therapy in patients with basal-like tumors.
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Proteomic profiling identified 40 proteins that were differentially expressed
between ER-positive and ER-negative breast cancer. Many of these proteins have
previously been associated with either ER-positivity or ER-negativity. Our results
validate previously reported studies, and underscore the ability of RPPA to detect
differences at the protein level between different types of breast cancer. As was
expected, proteins like estrogen receptor-alpha, progesterone receptor, GATA3, Bcl-2,
all previously reported to be elevated in ER-positive breast cancer, were also more
highly expressed in our sets of ER-positive breast cancer. The heterogeneity, however,
in protein expression amongst the ER-positive tumors wasn’t expected. There were
groups of ER-positive tumors that had lower relative expression of ER and ER-associated
proteins, but had high expression of IGF1R, FGFR1, CCND1, and phospho-MAPK. Indeed,
previous studies have identified many of these genes as being under estrogen receptor
transcriptional control [41-44]. Estrogen receptor is also known to be a rapid activator
of the IGF1R pathway (and IGF activates ER signaling pathways) and the interplay
between these signaling networks drive proliferation, metastasis, and defends against
apoptosis in breast cancer cell lines [45, 46]. Both CCND1 and FGFR1 can be amplified in
ER-positive breast cancer and may be involved in endocrine therapy resistance [47-49].
Interestingly, the identification of activated MAPK in ER-positive breast cancer may
again identify an important pathway involved in endocrine therapy resistance. This

alternate signaling pathway is currently an area of intense investigation and trials are
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currently underway to determine whether inhibition of MAPK signaling in combination
with anti-estrogen therapy will overcome such resistance [50-52]

There has been much debate about whether gene expression profiling is an
accurate surrogate measurement with relevance to biology as there are many post-
transciptional levels of control which may affect cellular physiology. As proteins are
responsible for transduction of cellular signals, attempts have been made to determine
whether RNA and protein levels correlate. These previous reports have been
conflictory, with some reporting strong correlations, while others report much lower
correlation between RNA and protein expression [12, 14, 53, 54]. In this study RNA and
protein levels did not correlate very well for many proteins measured (27 or 43), at least
when RNA expression is measured using the Human Genome Survey Microarray
platform (Applied Biosystems) and protein expression is measured using RPPA. Why,
then, does RNA expression profiling give biologically relevant and robust profiles that
can be validated in multiple datasets? While it is true that RNA and protein levels do
not correlate for all genes, many do and it is these genes that may be the drivers of
biologically relevant clusters. Furthermore, despite discrepancies in RNA and protein
expression, RNA levels may actually reflect the activation of other upstream proteins
that regulate important biological functions. Thus, though the RNA and protein levels a
particular gene may not correlate well, it may represent a biomarker of a pathway that
is truly important in disease. Finally, RNA may itself as a regulator of cellular function

(examples include small interfering RNAs and microRNAs) which modulate gene
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expression and translation. RNA levels may also be sensed by cellular machinery that
can activate pathways regulating mitogenesis, cell cycle entry, and apoptosis while the
RNA itself is never translated into protein. Thus, though RNA and protein levels would
not correlate in such a circumstance, there would be reason for RNA levels to influence
the biology of these tumors.

The long term goal of these studies is to identify novel targets for the treatment
of ER-negative breast cancer. While HER2/neu is an important target for those ER-
negative tumors that express HER2/neu, there are no clear targets for the remainder of
ER-negative, PR-negative, HER2-negative tumors. ER-negative breast cancer is currently
defined in terms of the proteins that it does NOT express. This work alters the paradigm
and identifies genes and proteins that ARE expressed in these tumors. It is no longer
necessary to describe these tumors as lacking the expression of estrogen receptor,
progesterone receptor, or HER2. Instead, these tumors can be described as expressing
an activated S6 kinase pathway, Src, or stathmin. Such markers can subgroup these
tumors and are putative targets of treatment. The identification of these proteins and
pathways that are overexpressed or activated in ER-negative breast cancer represents
an important first step. Besides previously known proteins including EGFR, HER2, and
cKIT, these studies identify CCNB1, CCNE1, Src, PAI1l, cJUN, stathmin, and GSK3 as
proteins highly expressed and activated in ER-negative tumors. Future studies should

focus on determining which of these proteins and pathways are critical for growth,
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invasion, and metastasis in ER-negative breast cancer, but it is clear that these proteins

represent promising targets for the treatment of ER-negative tumors.

217



References:

10.

11.

12.

13.

14.

15.

Ahr, A., et al., Molecular classification of breast cancer patients by gene
expression profiling. J Pathol, 2001. 195(3): p. 312-20.

Ivshina, A.V., et al., Genetic reclassification of histologic grade delineates new
clinical subtypes of breast cancer. Cancer Res, 2006. 66(21): p. 10292-301.

Sorlie, T., et al., Gene expression patterns of breast carcinomas distinguish tumor
subclasses with clinical implications. Proc Natl Acad Sci U S A, 2001. 98(19): p.
10869-74.

Sotiriou, C., et al., Breast cancer classification and prognosis based on gene
expression profiles from a population-based study. Proc Natl Acad Sci U S A,
2003. 100(18): p. 10393-8.

van de Vijver, M.J,, et al., A gene-expression signature as a predictor of survival in
breast cancer. N Engl ) Med, 2002. 347(25): p. 1999-2009.

van 't Veer, LJ., et al.,, Gene expression profiling predicts clinical outcome of
breast cancer. Nature, 2002. 415(6871): p. 530-6.

Chang, J.C., et al., Gene expression profiling for the prediction of therapeutic
response to docetaxel in patients with breast cancer. Lancet, 2003. 362(9381): p.
362-9.

Chang, J.C., et al., Patterns of resistance and incomplete response to docetaxel by
gene expression profiling in breast cancer patients. J Clin Oncol, 2005. 23(6): p.
1169-77.

van 't Veer, L.J., et al., Expression profiling predicts outcome in breast cancer.
Breast Cancer Res, 2003. 5(1): p. 57-8.

Sorlie, T., et al., Repeated observation of breast tumor subtypes in independent
gene expression data sets. Proc Natl Acad Sci U S A, 2003. 100(14): p. 8418-23.
Finn, R.S., et al., Dasatinib, an orally active small molecule inhibitor of both the
src and abl kinases, selectively inhibits growth of basal-type/"triple-negative"
breast cancer cell lines growing in vitro. Breast Cancer Res Treat, 2007. 105(3): p.
319-26.

Nishizuka, S., et al., Proteomic profiling of the NCI-60 cancer cell lines using new
high-density reverse-phase lysate microarrays. Proc Natl Acad Sci U S A, 2003.
100(24): p. 14229-34.

Chen, G,, et al., Protein profiles associated with survival in lung adenocarcinoma.
Proc Natl Acad Sci U S A, 2003. 100(23): p. 13537-42.

Neve, R.M., et al., A collection of breast cancer cell lines for the study of
functionally distinct cancer subtypes. Cancer Cell, 2006. 10(6): p. 515-27.

Tyers, M. and M. Mann, From genomics to proteomics. Nature, 2003. 422(6928):
p. 193-7.

218



16.

17.

18.

19.

20.

21.

22.

23.

24,

25.

26.

27.

28.

29.

30.

31.

32.

Richter, J., et al., High-throughput tissue microarray analysis of cyclin E gene
amplification and overexpression in urinary bladder cancer. Am J Pathol, 2000.
157(3): p. 787-94.

Schraml, P., et al., Tissue microarrays for gene amplification surveys in many
different tumor types. Clin Cancer Res, 1999. 5(8): p. 1966-75.

Bertucci, F., et al., Gene expression profiling of colon cancer by DNA microarrays
and correlation with histoclinical parameters. Oncogene, 2004. 23(7): p. 1377-91.
Wulfkuhle, J.D., et al., New approaches to proteomic analysis of breast cancer.
Proteomics, 2001. 1(10): p. 1205-15.

Hondermarck, H., et al., Proteomics of breast cancer for marker discovery and
signal pathway profiling. Proteomics, 2001. 1(10): p. 1216-32.

Bini, L., et al., Protein expression profiles in human breast ductal carcinoma and
histologically normal tissue. Electrophoresis, 1997. 18(15): p. 2832-41.
Kattenhorn, L.M., et al., Identification of proteins associated with murine
cytomegalovirus virions. ) Virol, 2004. 78(20): p. 11187-97.

Petricoin, E.F., et al., Use of proteomic patterns in serum to identify ovarian
cancer. Lancet, 2002. 359(9306): p. 572-7.

Polley, A.C., et al., Proteomic analysis reveals field-wide changes in protein
expression in the morphologically normal mucosa of patients with colorectal
neoplasia. Cancer Res, 2006. 66(13): p. 6553-62.

Sheehan, K.M., et al., Use of reverse phase protein microarrays and reference
standard development for molecular network analysis of metastatic ovarian
carcinoma. Mol Cell Proteomics, 2005. 4(4): p. 346-55.

Tibes, R., et al., Reverse phase protein array: validation of a novel proteomic
technology and utility for analysis of primary leukemia specimens and
hematopoietic stem cells. Mol Cancer Ther, 2006. 5(10): p. 2512-21.

Nimeus, E., et al.,, Proteomic analysis identifies candidate proteins associated
with distant recurrences in breast cancer after adjuvant chemotherapy. J Pharm
Biomed Anal, 2007. 43(3): p. 1086-93.

Stemke-Hale, K., et al., Molecular screening for breast cancer prevention, early
detection, and treatment planning: combining biomarkers from DNA, RNA, and
protein. Curr Oncol Rep, 2006. 8(6): p. 484-91.

Carey, LA, et al., Race, breast cancer subtypes, and survival in the Carolina
Breast Cancer Study. Jama, 2006. 295(21): p. 2492-502.

Swaby, R.F., C.G. Sharma, and V.C. Jordan, SERMs for the treatment and
prevention of breast cancer. Rev Endocr Metab Disord, 2007. 8(3): p. 229-39.
Miller, K., et al., Paclitaxel plus bevacizumab versus paclitaxel alone for
metastatic breast cancer. N Engl J Med, 2007. 357(26): p. 2666-76.

Viani, G.A., et al., Adjuvant trastuzumab in the treatment of her-2-positive early
breast cancer: a meta-analysis of published randomized trials. BMC Cancer,
2007.7: p. 153.

219



33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

Dowell, J.E. and J.D. Minna, EGFR mutations and molecularly targeted therapy: a
new era in the treatment of lung cancer. Nat Clin Pract Oncol, 2006. 3(4): p. 170-
1.

Herbst, R.S., M. Fukuoka, and J. Baselga, Gefitinib--a novel targeted approach to
treating cancer. Nat Rev Cancer, 2004. 4(12): p. 956-65.

Minna, J.D. and J. Dowell, Erlotinib hydrochloride. Nat Rev Drug Discov, 2005.
Suppl: p. S14-5.

Dancey, J. and E.A. Sausville, Issues and progress with protein kinase inhibitors
for cancer treatment. Nat Rev Drug Discov, 2003. 2(4): p. 296-313.

Tan, A.R. and S.M. Swain, Adjuvant chemotherapy for breast cancer: an update.
Semin Oncol, 2001. 28(4): p. 359-76.

Hu, Z., et al., The molecular portraits of breast tumors are conserved across
microarray platforms. BMC Genomics, 2006. 7: p. 96.

Le Good, J.A., et al., Protein kinase C isotypes controlled by phosphoinositide 3-
kinase through the protein kinase PDK1. Science, 1998. 281(5385): p. 2042-5.
Alessi, D.R., et al., 3-Phosphoinositide-dependent protein kinase 1 (PDK1)
phosphorylates and activates the p70 S6 kinase in vivo and in vitro. Curr Biol,
1998. 8(2): p. 69-81.

Kushner, P.J., et al., Estrogen receptor pathways to AP-1. ) Steroid Biochem Mol
Biol, 2000. 74(5): p. 311-7.

Altucci, L., et al., 17beta-Estradiol induces cyclin D1 gene transcription, p36D1-
p34cdk4 complex activation and pl05Rb phosphorylation during mitogenic
stimulation of G(1)-arrested human breast cancer cells. Oncogene, 1996. 12(11):
p. 2315-24.

Geum, D., et al., Estrogen-induced cyclin D1 and D3 gene expressions during
mouse uterine cell proliferation in vivo: differential induction mechanism of cyclin
D1 and D3. Mol Reprod Dev, 1997. 46(4): p. 450-8.

Dong, L., et al., Mechanisms of transcriptional activation of bcl-2 gene expression
by 17beta-estradiol in breast cancer cells. J Biol Chem, 1999. 274(45): p. 32099-
107.

Zhang, X. and D. Yee, Tyrosine kinase signalling in breast cancer: insulin-like
growth factors and their receptors in breast cancer. Breast Cancer Res, 2000.
2(3): p. 170-5.

Kahlert, S., et al., Estrogen receptor alpha rapidly activates the IGF-1 receptor
pathway. ) Biol Chem, 2000. 275(24): p. 18447-53.

Reis-Filho, J.S., et al., FGFR1 emerges as a potential therapeutic target for lobular
breast carcinomas. Clin Cancer Res, 2006. 12(22): p. 6652-62.

Elbauomy Elsheikh, S., et al., FGFR1 amplification in breast carcinomas: a
chromogenic in situ hybridisation analysis. Breast Cancer Res, 2007. 9(2): p. R23.

220



49.

50.

51.

52.

53.

54.

Bautista, S. and C. Theillet, CCND1 and FGFR1 coamplification results in the
colocalization of 11q13 and 8pl2 sequences in breast tumor nuclei. Genes
Chromosomes Cancer, 1998. 22(4): p. 268-77.

Johnston, S.R., et al., Integration of signal transduction inhibitors with endocrine
therapy: an approach to overcoming hormone resistance in breast cancer. Clin
Cancer Res, 2003. 9(1 Pt 2): p. 524S-32S.

Massarweh, S. and R. Schiff, Unraveling the mechanisms of endocrine resistance
in breast cancer: new therapeutic opportunities. Clin Cancer Res, 2007. 13(7): p.
1950-4.

Massarweh, S. and R. Schiff, Resistance to endocrine therapy in breast cancer:
exploiting estrogen receptor/growth factor signaling crosstalk. Endocr Relat
Cancer, 2006. 13 Suppl 1: p. S15-24.

Varambally, S., et al., Integrative genomic and proteomic analysis of prostate
cancer reveals signatures of metastatic progression. Cancer Cell, 2005. 8(5): p.
393-406.

Tian, Q., et al., Integrated genomic and proteomic analyses of gene expression in
Mammalian cells. Mol Cell Proteomics, 2004. 3(10): p. 960-9.

221



Supplementary Table 4.1- List of protein antibodies used in
the reverse phase protein lysate arrays.
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Chapter 5

Maternal Embryonic Leucine Zipper Kinase (MELK) is a Key Regulator of Proliferation

and is Independently Prognostic in Estrogen Receptor-Negative Breast Cancer
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5.1 Abstract

Cancer therapies directed at specific molecular targets in signaling pathways of cancer
cells, such as tamoxifen, aromatase inhibitors and trastuzumab, have proven useful for
treatment of breast cancer. However, these targeted therapies have significant side
effects and do not effectively treat or cure all breast cancers, especially estrogen
receptor alpha (ER)-negative, progesterone receptor (PR)-negative, HER2-negative
(“triple-negative”) breast cancer. The long term goal of our study is to identify critical
growth regulatory molecules in ER-negative breast cancer that could be targeted for the
treatment of these aggressive breast cancers. Using gene expression profiling of human
breast cancers, we discovered that maternal embryonic leucine-zipper kinase (MELK) is
significantly overexpressed in ER-negative breast cancers as compared to ER-positive
breast cancers. We demonstrated that MELK was overexpressed in ER-negative breast
cancers in independent breast tumor data sets using gene expression profiling and
guantitative real time polymerase chain reaction (Q-RT-PCR) analysis. MELK was also
significantly more highly expressed at the RNA and protein levels in ER-negative breast
cancer cell lines as compared to ER-positive breast cancer cell lines. We next conducted
MELK expression knockdown studies which demonstrated that MELK is essential for the
growth of most ER-negative, but not ER-positive, breast cancer cell lines. Finally,
survival analysis of patients with breast cancer shows that those patients whose tumors
have high expression of MELK have a significantly poorer prognosis than patients with

low expression of MELK. In multivariate analysis, MELK is an independent prognostic
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factor in breast cancer. These results show that MELK is highly expressed in ER-
negative, including “triple-negative” breast cancer, and that it is essential for breast
cancer cell growth. This study suggests that MELK is a promising target for the

treatment of ER-negative, and especially “triple-negative”, breast cancer.
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5.2 Introduction

Estrogen receptor alpha (hereafter referred to as ER)-positive breast cancers
account for 60-70% of breast cancers, while the remaining 30-40% of breast cancers are
ER-negative and poorly responsive to traditional therapies [1]. Selective estrogen
receptor modulators (SERMs), such as tamoxifen and raloxifene, and aromatase
inhibitors have been shown to reduce ER-positive breast cancer recurrence by
approximately 50% [2]. These agents, however, are not effective for the treatment of
ER-negative breast cancer. Currently, chemotherapy is used to treat ER-negative tumors
[3]. Such therapy is generally toxic and is not specifically targeted to ER-negative breast
cancer, instead only non-specifically killing rapidly dividing cells.

A major goal of current breast cancer research has been to identify targets that
are unique to cancer cells which are critical for the growth and survival of the cancer
cells. While achieving this goal has been difficult, there are several examples of
effective targeted therapies, including the monoclonal antibodies trastuzumab
(targeting the HER2/neu receptor) and bevacizumab (targeting vascular epithelial
growth factor) [4, 5]. Other targeted therapies include the small molecule tyrosine
kinase inhibitors gefitinib and erlotinib (both of which target the epidermal growth
factor receptor), and lapatinib (a dual kinase inhibitor targeting both the epidermal
growth factor receptor and the HER2/neu receptor) [6-9]. However, these therapies are
effective only in approximately 20% of patients whose tumors overexpress HER2.

Additionally, due to deleterious side effects of these drugs and the emergence of
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therapeutic drug resistance, it is necessary to discover additional critical growth
regulatory molecules that can be targeted for the treatment of ER-negative breast
cancer.

To identify novel targets for the treatment of ER-negative breast cancers,
including the aggressive ER-negative, PR-negative, HER2-negative (“triple-negative”)
breast cancers, we used expression microarray analysis to identify molecules that are
highly expressed in ER-negative breast cancer that may play a role in breast cancer
development and progression. Through these studies we identified maternal embryonic
leucine zipper kinases (MELK) as a potential target for the treatment of ER-negative
breast cancer. MELK was identified as being significantly overexpressed in ER-negative
breast tumors.

We demonstrate that MELK expression is significantly elevated in multiple breast
cancer datasets as well as in ER-negative breast cancer cell lines. We also show that
MELK expression is critical for the growth of ER-negative, but not ER-positive, breast
cancer cells. Furthermore, we show that MELK expression is significantly associated
with poor metastasis-free and overall survival, and that it is independently prognostic in
breast cancer. These results implicate MELK as a promising target for the treatment of

ER-negative breast cancer.
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5.3 Results

To identify novel targets for the treatment of ER-negative breast cancers, we first
identified kinases that were overexpressed in ER-negative breast tumors using

Affymetrix gene expression profiling.

5.3.1 Patient Population

For the profiling experiments, the same tumors and patient information
described in Chapter 3 were used, and are again described here. A total of 102 patients
with invasive breast cancer were recruited through IRB-approved, neoadjuvant clinical
trials to investigate gene expression in human tumors before and after drug treatment
by Dr. Jenny Chang at Baylor College of Medicine. Breast biopsies taken before
initiation of any treatment were used in this study. Because the patients did not receive
systemic adjuvant or neoadjuvant therapy prior to the biopsy, the results from the gene
expression analysis represent basal gene expression in these breast cancers. For the
gene expression profiling experiments, 102 breast tumors were studied, 58 of which
were ER-positive and 44 ER-negative by IHC-staining (24 of which were confirmed as
“triple-negative”). The tumors were all stage Ill or IV from pre- and post-menopausal
women, with all tumors showing >30% cellularity. The women were from several racial
groups and the majority had no palpable nodes at baseline. Most of the women were
premenopausal and presented with relatively large tumors (ranging from 2.5 to 25 cm).

The clinical and demographic features of these tumors are summarized in Table 5.1.
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Table 5.1. - Clinical characteristics of the patients and tumor samples used to
identify MELK overexpression by Affymetrix gene expression profiling.

Characteristic Tumor Set
N=102 (%)
- ————————————————————————————|
Age
Mean 48.1
Range (32-72)
Race
Caucasian 50 (57%)
Hispanic 7 (8%)
African-American 23 (27%)
Asian 7 (8%)
Menopausal Status
Pre 49 (62%)
Post 30 (38%)
BMI
Mean 29.7
Range (16.1-48.3)

Baseline Tumor Size, cm
Mean 6.3
Range (2.5-25.0)

Palpable Nodes at Baseline

Yes 20 (21%)

No 77 (79%)
ER

Positive 57 (56%)

Negative 45 (44%)

Unknown 0 (0%)
PR

Positive 37 (36%)

Negative 47 (46%)

Unknown 18 (18%)
HER2/Neu

Positive 27 (26%)

Negative 58 (57%)

Unknown 17 (17%)

Table 5.1- Characteristics of 102 patients with breast cancer. Tumors from these patients
were used for gene expression profiling to identify MELK as being overexpressed in ER-negative
breast tumors. The tumors were collected and profiled by Dr. Jenny Chang at Baylor College of
Medicine.
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These tumors were obtained, processed, and profiled in the laboratory of Dr. Jenny
Chang. All analyses in this chapter were done by Corey Speers with input from Dr. Susan

Hilsenbeck at Baylor College of Medicine, unless otherwise indicated.

5.3.2 Affymetrix Gene Expression Profiling Identified Maternal Embryonic Leucine
Zipper Kinase (MELK) as One of the Most Overexpressed Kinases in Human ER-
Negative Breast Tumors

This gene expression profiling study identified 52 kinases that were
overexpressed in ER-negative breast cancer compared to ER-positive breast cancers (P-
value < 0.05) (a list of the 52 kinases is shown in Table 3.4). The Affymetrix techniques
and statistical analysis are described in Chapter 2 and were done in the laboratory of Dr.
Jenny Chang. One of the most highly expressed kinase in ER-negative breast cancer was
maternal embryonic leucine zipper kinase (MELK), which was expressed 3.75 fold higher
in the ER-negative tumor samples. A list of the 10 most highly overexpressed kinases in
this analysis is found in Table 5.2. Because little was known about the function of MELK,
or its potential role in carcinogenesis, we determined its expression level in ER-positive
and ER-negative breast cancers using other datasets. These datasets and their

characteristics are described in Chapter 2.2.7.
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Table 5.2 Top 10 most highly expressed in ER-negative breast cancer

. Fold . Gene Permutation
difference Description | Probe set |
(ER-/ER+) symbo p-value

5.49 phosphofructokinase, platelet PFKP 201037_at <0.001
5.42 CHK1 checkpoint homolog (S. pombe) CHEK1 205393 s _at <0.001
4.18 uridine-cytidine kinase 2 UCK2 209825_s_at <0.001
3.81 chemokine (C-X-C motif) ligand 10 CXCL10 204533 _at 0.011
3.75 maternal embryonic leucine zipper kinase MELK 204825_at 0.009
3.72 v-yes-1 viral oncogene homolog 1 YES1 202932 _at 0.032
3.71 cell division cycle 2, G1to Sand G2 to M CcDC2 210559 s_at <0.001
3.42 pyridoxal (pyridoxine, vitamin B6) kinase PDXK 202671 _s_at <0.001
3.40 mitogen-activated protein kinase kinase kinase 5 MAP3K5 203836_s_at 0.01
3.40 BUB1 homolog (yeast) BUB1 209642 _at 0.003

Table 5.2 - List of the 10 kinases and kinase associated proteins with highest
expression in ER-negative tumors compared to ER-positive tumors.
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5.3.3 Confirmation of High MELK Expression in an Independent Set of Human Breast
Tumors using Q-RT-PCR

We also wanted to confirm that MELK is more highly expressed in ER-negative
than in ER-positive breast cancers using another technique. We therefore used an
independent set of 60 human breast tumors obtained from the tumor bank at Baylor
College of Medicine for further validation. After identifying equal numbers of ER-
positive and negative samples (30 of each), we used quantitative RT-PCR (Q-RT-PCR) to
confirm higher expression of MELK in ER-negative tumors. Q-RT-PCR analysis showed
that MELK expression was significantly higher in ER-negative breast tumor samples
compared to ER-positive tumors (P-value 0.02) (Figure 5.1). This set of data validated
the gene expression profiling experiments and confirmed that MELK is indeed more

highly expressed in ER-negative breast cancer.

5.3.4 SAGE Analysis Identifies MELK as being Highly Expressed in Cancerous, but not
Normal, Tissue

To gain insight into the role of MELK in ER-negative breast carcinogenesis, we
analyzed serial analysis of gene expression (SAGE) data that was drawn from multiple
human tissues and cancer cell lines. This analysis demonstrated that MELK was
overexpressed at a significantly higher level in a great majority of cancerous tissues,
especially ovary, breast, and prostate, but was not expressed at appreciable levels in

normal vital organs including heart, liver, lung and kidney, among others (Figure 5.2).
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Figure 5.1 — Q-RT-PCR analysis of RNA expression from an independent
set of human breast tumors shows MELK is significantly more highly
expressed in ER-negative breast tumors. The expression of MELK in 60
human breast tumor samples (30 ER-negative and 30 ER-positive) was
measured using Q-RT-PCR analysis. Levels of MELK expression were
confirmed as being significantly higher in ER-negative human breast
tumors than in ER-positive human breast tumors. Data are represented as
mean = SD. Experiment and analysis done by Corey Speers.
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Figure 5.1
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Figure 5.2 SAGE Analysis Comparing Normal to Cancer

Figure 5.2 — Serial analysis of gene expression (SAGE) analysis in the NCI-
160 shows that MELK is more highly expressed in cancerous tissue,
especially when compared to normal tissue. Prostate, Kidney, Ovary, and
Breast tissues have little to no expression of MELK in normal tissues, but
expression is increased at least 10-fold in cancerous tissue. Analysis done
by Corey Speers.
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5.3.5 Differentially Expressed Kinases Validated Using Publicly Available Data Sets

To demonstrate that MELK was indeed more highly expressed in ER-negative
tumors compared to ER-positive tumors, we analyzed gene expression data from 12
additional publically available data sets as a validation method. These datasets from
multiple investigators include over 1800 additional tumor samples (556 ER-negative and
1282 ER-positive tumors) for which there is gene expression profiling data and
constitutes the most comprehensive breast tumor set currently available [10-20]. To
utilize the power of such a large combined dataset, we employed a technique recently
described by Whitlock that relies on a weighted Z-method to combine P-values [21].
This robust approach, superior to Fisher’s combined probability test, revealed that MELK
was significantly more highly expressed (z-score of 19.76 and P-value < 1.0 e-20) in ER-
negative breast tumors as compared to ER-positive tumors in an effective sample size of
over 1800 tumors (Table 5.3). Many other kinases that are more highly expressed in ER-
negative breast cancer are also listed in Table 5.3. These kinases represent additional
targets of interest in the lab, and some are already the target of directed therapies
(EGFR, CHEK1, LYN, LCK, AURKB). Many of these kinases are involved in cell cycle
checkpoint regulation (CHEK1. BUB1, TTK, CDC7, CDC2), are involved in cellular
metabolism (PFKP, UCK2, PDXK, SEPHS1, PGK1, AK2, UGP2) or are members of the
Ephrin family of receptors and kinases (EPHA2, EPHB6, EPHB2, EPHB4). Because very

little had been published regarding the function of MELK and its very high significance in
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Table 5.3 - Kinases that are more highly expressed in ER-negative breast cancers

Gene symbol Z-score P -value Gene symbol Z-score P -value
SRPK1 20.84 <1.0e-20 AK2 14.97 <1.0e-20
PRKX 20.39 <1.0e-20 uUGP2 14.76 <1.0e-20
MELK 19.76 <1.0e-20 LIMK2 14.52 <1.0e-20
SRPK1 19.72 <1.0e-20 PIM1 14.44 <1.0e-20
PFKP 19.69 <1.0e-20 CDC2 14.36 <1.0e-20
EGFR 19.59 <1.0e-20 LCK 14.14 <1.0e-20
LYN 19.57 <1.0e-20 MET 13.80 <1.0e-20
CHEK1 19.02 <1.0e-20 EPHA2 13.73 <1.0e-20
BUB1 18.64 <1.0e-20 CCL2 13.59 <1.0e-20
DAPK1 18.50 <1.0e-20 AURKB 13.49 <1.0e-20
TTK 18.14 <1.0e-20 RPS6KA3 13.25 <1.0e-20
YES1 17.86 <1.0e-20 EPHB6 13.03 <1.0e-20
MAP4K4 17.81 <1.0e-20 MAPK1 12.35 <1.0e-20
STK38 17.81 <1.0e-20 MAP3K5 12.30 <1.0e-20
RIPK4 17.43 <1.0e-20 EPHB2 12.20 <1.0e-20
UCK2 17.02 <1l.0e-20 EPHB4 12.19 <1.0e-20
CXCL10 16.87 <1.0e-20 CSK 12.18 <1.0e-20
PDXK 16.87 <1.0e-20 ccL4 10.86 <1l.0e-20
SEPHS1 16.55 <1.0e-20 STK38L 10.80 <1.0e-20
IRAK1 16.51 <1.0e-20 SGK 10.40 <1.0e-20

MALT1 16.43 <1.0e-20 RIOK3 9.93 2.2e-20

PLK1 15.89 <1.0e-20 VRK2 8.90 1.0e-17

YWHAQ 15.46 <1.0e-20 RPS6KA1 5.51 0.000000005
PGK1 15.20 <1.0e-20 MAP4K2 5.15 0.00000008

CDC7 15.19 <1.0e-20 RYK 4.55 0.0000008
PTK?7 15.16 <1.0e-20 PIK3CB 4.31 0.000009

Table 5.3- High MELK expression validated in independent human tumor sample data sets.
Data analysis of an additional 12 publically available human breast tumor datasets shows MELK expression
levels as being more highly expressed in ER-negative breast tumors in the other datasets. Z-scores were
calculated using the Z-transform test and are listed with their correlating P -value.
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multiple datasets being more highly expressed in ER-negative disease, we chose to focus

initial studies on MELK.

5.3.6 MELK is More Highly Expressed in ER-Negative Breast Cancer Cell Lines

To conduct further in vitro experimentation in cell lines, we needed to determine
the MELK expression levels in a number of breast cancer cell lines. Recent work by Neve
et al. showed that the recurrent genomic and transcriptional characteristics of breast
cancer cell lines mirror those of primary breast tumors (28). These investigators
performed Affymetrix gene expression profiling on a set of 51 commonly used ER-
positive and ER-negative breast cancer cell lines and used hierarchical clustering to show
that the cell lines clustered into three main groups: basal A, basal B, and luminal (28).
We used this expression information from breast cancer cell lines to determine the
expression level of MELK in these 51 breast cancer cell lines. This data shows that MELK
is expressed more highly in the ER-negative (Basal A and Basal B) breast cancer cell lines
(Figure 5.3). It also showed that the ER-negative cell lines HCC 2185, HCC 70, MDA-MB-
231, MDA-MB-468, and HCC 1937 have very high levels of MELK expression, while the
ER-positive cell lines SUM-44PE, SUM-52PE, HCC 1007, and SUM-185PE have very low
expression of MELK.

As this gene expression data indicated that MELK was overexpressed in ER-
negative breast cancer cell lines, we chose twelve ER-positive or ER-negative breast

cancer cell lines and measured the expression of MELK under basal growth conditions
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Figure 5.3 — Analysis of gene expression data from 51 breast cancer cell
lines shows MELK is significantly overexpressed in ER-negative (Basal A
and Basal B) cell lines. Mean centered log2 transformed gene expression
values from 51 common breast cancer cell lines shows that MELK
expression is significantly higher in ER-negative breast cancer cell lines,
including cell lines that are Basal A and Basal B as defined by Neve et al.
Cell lines including HCC 70, HCC 1954, MDA-MB-231, and MDA-MB-468
have especially high levels of MELK expression. Data are represented as
mean * SD. Red color indicate ER-negative breast cancer cell lines, green
color indicated ER-positive cell lines. Data was obtained from Dr. Joe Gray
and analysis was done by Corey Speers.
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Figure 5.3
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using Q-RT-PCR. MELK expression was again found to be significantly elevated in the ER-
negative breast cancer cell lines (P-value 0.007) as compared to the ER-positive breast
cancer cell lines (Figure 5.4).

We next verified that the protein levels of MELK were also increased in ER-
negative breast cancer cell lines. Using western blot analysis, we demonstrated that
MELK was more highly expressed in ER-negative breast cancer cell lines, thus correlating
with the RNA expression information obtained with gene expression profiling and Q-RT-
PCR (Figure 5.5). This RNA and protein expression data was used to design experiments
examining the effect of overexpressing MELK in cell lines with normally low endogenous
expression (i.e. SUM-44PE) or knockdown studies in cell lines that have high expression

of MELK (i.e. MDA-MB-468).

5.3.7 Effect of MELK Knockdown on the Growth of ER-negative and ER-positive Breast
Cancer Cell Lines

We next investigated whether MELK was critical for the growth of ER-negative
breast cancer. Using siRNA knockdown of MELK RNA levels, we were able to determine
the effect of MELK inhibition on breast cancer cell proliferation in 9 breast cancer cell
lines. ER-positive (MCF-7, MDA-MB-361, and T47D) and ER-negative (MDA-MB-468,
MDA-MB-231, HCC 1937, HCC 1187, HCC 1569, BT549, and Hs578T) cells were
transfected with siRNA designed to knockdown the expression of MELK. The siRNA

construct used in this study showed at least 70% knockdown of target kinase expression
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Figure 5.4 — Q-RT-PCR analysis of RNA expression from 14 breast cancer
cell lines shows MELK is significantly more highly expressed in ER-
negative breast cell lines. The expression of MELK in 14 breast cancer cell
lines (9 ER-negative and 5 ER-positive) was measured using Q-RT-PCR
analysis. Data is depicted as relative fold change normalized to cyclophilin.
Data are represented as mean * SD. Red color indicates ER-negative cell
lines, green indicates ER-positive cell lines. Experimentation and analysis
done by Corey Speers.
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Figure 5.4
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Figure 5.5 — ER-negative breast cancer cell lines express higher MELK
protein levels than ER-positive breast cancer cell lines. MELK protein
expression was measured using western blotting and protein levels were
normalized using beta actin, measuring pixel intensity in MELK bands
normalized to pixel intensity in loading control beta actin bands.
Comparison of the two groups using Student’s t-test shows that protein
expression levels were significantly higher (P-value 0.02) in the ER-negative
breast cancer cell lines. hTERT transformed HMEC cells overexpressing
MELK were used as positive controls and MCF-7 cells with MELK knocked
down with siRNA were included as negative controls. Green color
indicates ER-positive breast cancer cell lines, red indicates ER-negative
breast cancer cell lines. Experiment and analysis done by Corey Speers.
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Figure 5.5
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2 days after transfection in all the cell lines used, and MELK expression remained low
until at least day 5 (Figure 5.6).

MELK knockdown had significant growth-inhibitory effects in 6 of the 7 ER-
negative breast cancer lines (MDA-MB-468, MDA-MB-231, HCC 1937, HCC 1569, HCC
1187, and BT549) but had little or no effect on the ER-positive breast cancer cell lines
(slight effect in T47D cells). Representative growth curves are shown in Figure 5.7.
These experiments show that HCC 1187, HCC 1937, and MDA-MB-468 were most
sensitive to MELK inhibition. These are also the cell lines with the highest MELK
expression as measured by Q-RT-PCR analysis. These results indicate that MELK
expression is indeed critical for the growth of many ER-negative breast cancer cell lines,
while ER-positive breast cancer cells have mitogenic signaling pathways that can

compensate for the loss of MELK expression.

5.3.8 MELK Expression Predicts Poor Metastasis-Free Survival

While our studies identified MELK as being significantly overexpressed in ER-
negative breast cancers and knockdown of MELK led to significant growth inhibition in
ER-negative cell lines, we wanted to determine whether MELK expression was
correlated with prognosis in patients with breast cancer. For the prognostic studies we
analyzed the survival data from five very different datasets that had substantial clinical
follow up data (Wang, van de Vijver, Ivshina, Denmark, and Desmedt,) [10, 11, 17, 22].

While the datasets have been summarized previously in Chapter 2 (Chapter 2.2.7), a
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Figure 5.6 — siRNA designed against MELK effectively knocks down the
expression of MELK at day 2 and day 5. siRNA duplexes designed against
MELK shows that transient transfection can decrease expression of MELK
RNA by >70% in multiple cell lines. All cell lines used in the siRNA growth
studies showed at least 70% inhibition at day 2. Data are represented as
mean = SD. Experiment and analysis done by Corey Speers.
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Figure 5.6
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Figure 5.7- Effect of MELK siRNA knockdown on the growth of ER-
negative and ER-positive breast cancer cells. MELK knockdown inhibited
growth in the ER-negative breast cancer cell lines (HCC 1937, HCC 1569,
HCC 1187, BT549, MDA-MB-468 and MDA-MB-231) but not in the ER-
positive breast cancer cell lines (MDA-MB-361, and MCF-7). ER-positive
T47D cells were slightly inhibitied by MELK knockdown. Asterisk denotes
significant difference in curves between kinase of interest knockdown and
mock transfected growth curves, P-value < 0.05. Data are represented as
mean * SD. Experiment and analysis done by Corey Speers.
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Figure 5.7
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brief description follows. The Wang dataset was obtained using breast cancer samples
from patients with lymph-node negative breast cancer who were treated with breast
conserving surgery or modified radical mastectomies from 1980-95. These patients also
received radiotherapy when indicated, but did not receive systemic chemotherapy or
hormonal adjuvant therapy. This time period was also prior to the development of the
anti-HER2 therapy, trastuzumab (Herceptin), and these patients were not treated with
trastuzumab (Herceptin). 219 patients had breast-conserving surgery and 67 had
modified radical mastectomies. Radiotherapy was given to 248 patients (87%), and
metastasis free survival was tracked in all patients. In this data set, we first divided
tumors by the mean level of MELK expression. Kaplan-Meier analysis of the metastasis-
free survival between the different groups (higher than mean versus lower than mean
expression) showed that women who had higher than mean expression of MELK had a
much worse prognosis than those with lower MELK expression (Figure 5.8). In addition,
when expression was ordered in descending order and patients were divided into
guartiles based on the level of MELK expression, a step-like pattern was discovered in
Kaplan-Meier analysis. Those patients whose tumors were in the highest quartile of
MELK expression had the worst metastasis-free survival, followed by the second quartile
of patients (75-50%), who had the second worst outcomes. Women in the third quartile
had better survival, while women in the lowest quartile whose tumors had the lowest
expression of MELK had the best survival (Figure 5.8). To investigate whether MELK

expression was correlated with overall survival, we examined the van de Vijver dataset
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Figure 5.8 — Kaplan-Meier analysis in the Wang dataset shows women
whose tumors have higher than mean expression of MELK have
significantly worse metastasis-free survival. Higher MELK expression is
correlated with significantly worse metastasis-free survival, both when
expression is divided at the mean or into quartiles. Overall P-value
comparing the curves is listed. Analysis done by Corey Speers with input
with Dr. Susan Hilsenbeck.

255




Figure 5.8. MELK Expression and Metastasis-Free Survival: Wang dataset
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[10] and found similar results. In this dataset, all patients had stage | or Il breast cancer
and were younger than 53 years old; 151 had lymph-node—negative disease, and 144
had lymph node—positive disease. Ten of the 151 patients who had lymph-node—-
negative disease and 120 of the 144 who had lymph-node—positive disease received
adjuvant systemic therapy consisting of chemotherapy (90 patients), hormonal therapy
(20), or both (20). As seen with the Wang dataset, patients whose tumors had high
expression of MELK had a significantly worse overall survival than those with low
expression of MELK (Figure 5.9). The same discriminatory step-wise pattern was noted
when patients were divided into quartiles based on the expression of MELK in their
tumors (Figure 5.9). Hazards ratios and 95% confidence intervals were also calculated
for all of the analyses and are listed.

The lvshina dataset contains data from 307 tumors from a study initiated to
evaluate the differences in gene expression profiles between good and poor outcome
grade 2 breast tumors (see Supplementary Table 5.1.1 for complete dataset
characteristics). This relatively large dataset had clinical follow-up data that allowed for
the analysis of MELK expression and its correlation with clinical outcome. As with the
other datasets, patients whose tumors had high expression of MELK had a significantly
worse overall survival than those with low expression of MELK (Figure 5.10). The same
discriminatory step-wise pattern was noted when patients were divided into quartiles
based on the expression of MELK in their tumors (Figure 5.10). This association of high

MELK expression in patients’ tumors and poor overall survival was validated in two
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Figure 5.9 — Kaplan-Meier analysis in the vande Vijver dataset shows
women whose tumors have higher than mean expression of MELK have
significantly worse overall survival. Higher MELK expression is correlated
with significantly worse overall survival, both when expression is divided at
the mean or into quartiles. Overall P-value comparing the curves is listed.
HR refers to the hazards ratios and 95% Cl refers to the confidence
intervals. Analysis done by Corey Speers with input with Dr. Susan
Hilsenbeck.
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Figure 5.9. MELK Expression and Overall Survival: vande Vijver dataset
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Figure 5.10 — Kaplan-Meier analysis in the lvshina dataset shows women
whose tumors have higher than mean expression of MELK have
significantly worse overall survival. Higher MELK expression is correlated
with significantly worse overall survival, both when expression is divided at
the mean or into quartiles. Overall P-value comparing the curves is listed
and is based on the Chi squared score. HR refers to the hazards ratios and
95% ClI refers to the confidence intervals. Analysis done by Corey Speers
with input with Dr. Susan Hilsenbeck.
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Figure 5.10. MELK Expression and Overall Survival: lvshina dataset
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additional datasets (Denmark and Desmedt, Figure 5.11 and Figure 5.12, respectively;
for complete dataset characteristics see Supplementary Table 5.1.2). These data
suggest that MELK expression may be prognostic and identify patients who will have
better or worse outcomes based on the level of MELK expression, and may be clinically

useful in identifying patients requiring more aggressive clinical management.

5.3.9 MELK Expression is Prognostic in Breast Cancer

Though Kaplan-Meier analysis in multiple datasets suggested that MELK
expression may in itself be prognostic, we performed uni- and multivariate Cox
regression analysis to determine if MELK expression was independently prognostic,
including all available biological characteristics of the tumor in the model (excluding
treatment modalities). For this analysis, we used the training set of tumors from
Denmark that has previously been described (see Chapter 4). This dataset was chosen
because of its relatively large size, high percentage of aggressive tumors, and extensive
clinical data. MELK expression was measured by gene expression profiling and
normalized using a QC-RMA method. MELK was analyzed as a continuous variable, and
expression values ranged from 7 to 15, with mean expression of 11.91 in all tumors. Ina
multivariate Cox proportional hazards model, high MELK expression was shown to be
independently associated with a poor prognosis, (HR=1.19 95% Cl: (1.05, 1.36)
p=0.007). Thus, each unit increase in MELK expression resulted in a 19% increased risk

of death, that is patients whose tumors had a MELK expression value of 13 had an 76%
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Figure 5.11 - Kaplan-Meier analysis in the Denmark dataset shows
women whose tumors have higher than mean expression of MELK have
significantly worse overall survival. Higher MELK expression is correlated
with significantly worse overall survival, both when expression is divided at
the mean or into quartiles. Overall P-value comparing the curves is listed
and is based on the Chi squared score. HR refers to the hazards ratios and
95% ClI refers to the confidence intervals. Analysis done by Corey Speers
with input with Dr. Susan Hilsenbeck.
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Figure 5.11. MELK Expression and Overall Survival: Denmark dataset
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Figure 5.12 — Kaplan-Meier analysis in the Desmedt dataset shows
women whose tumors have higher than mean expression of MELK have
significantly worse overall survival. Higher MELK expression is correlated
with significantly worse overall survival, both when expression is divided at
the mean or into quartiles. Overall P-value comparing the curves is listed
and is based on the Chi squared score. HR refers to the hazards ratios and
95% ClI refers to the confidence intervals. Analysis done by Corey Speers
with input with Dr. Susan Hilsenbeck.
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Figure 5.12. MELK Expression and Overall Survival: Desmedt
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increased risk of death compared to patients whose tumors had a MELK expression
value of 9. ER status also significantly influenced survival. Patients with ER-positive
tumors were more likely to survive than patients with ER-negative tumors (HR=0.62,
95% Cl: 0.39-0.99, p=0.045). Though nodal status, which has previously been shown to
be independently prognostic in breast cancer, did not reach statistical significance in this
model, this dataset included patients that were 93% nodal positive, meaning that
almost all the patients were LN-positive and thus variance was insufficient for statistical
significance. These data indicated that MELK expression, in addition to ER status, are
independently prognostic in this dataset and that high expression of MELK is associated
with an increased risk of death. The multivariate analysis and modeling was done by

Krystal Sexton at Baylor College of Medicine.
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5.4 Discussion

In this report we show that gene expression profiling of human breast tumors is
able to identify MELK as a kinase more highly expressed in ER-negative breast cancers as
compared to ER-positive breast cancers. Further analysis revealed that MELK is not
normally expressed at appreciable levels in most normal tissues, but is highly expressed
in cancerous tissues, including breast cancer tissue. Analysis of publicly available breast
tumor data sets confirmed that MELK is indeed highly expressed in ER-negative breast
cancer. Additional validation in breast tumor samples as well as breast cancer cell lines
confirms MELK overexpression at the RNA and protein levels. Furthermore, studies in
which knockdown of MELK using siRNA demonstrated that it is critical for the growth of
7 of 8 ER-negative breast cancer cell lines tested. Analysis of MELK expression in human
breast tumors demonstrated that patients whose tumors have high expression of this
kinase have significantly poorer outcomes than patients with low expression of MELK.
Finally, multivariate analysis demonstrated that MELK is an independent prognostic
factor associated with poor prognosis. Such results suggest that women whose tumors
have high MELK expression have a poor prognosis and may benefit from aggressive
treatment. In addition, this study identifies MELK itself as a potential target for the
treatment of ER-negative breast cancer.

Currently effective target therapies for ER-positive breast cancer exist. These
therapies include anti-estrogens (anti ERa drugs) such as tamoxifen and fulvestrant, and

more recently aromatase inhibitors, that have led to significant improvements in the
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overall survival of patients with ER-positive breast cancer [23-27]. Even for ER-positive
and ER-negative breast tumors that overexpress HER2/neu (20-30% of breast cancers),
trastuzumab and more recently lapatinib drugs, which both interfere with HER2
signaling, have resulted in a marked improvement in both response and survival [28-34].
Unfortunately, only 30-60% of women with HER2-positive tumors benefit from
trastuzumab [32-34], and these therapies are of no use in patients whose tumors don’t
overexpress HER2. The development of effective targeted therapies in ER-negative
breast cancer has been hindered by a lack of verified targets.

Recent efforts have led to the identification of some potential targets in ER-
negative breast cancer. Peptide growth factors or their receptors are currently being
investigated as possible targets for the treatment of this kind of breast cancer. These
include the epidermal growth factor receptor (EGFR), the insulin-like growth factor
receptor (IGFR), fibroblast growth factor receptors (FGFR), vascular endothelial growth
factor (VEGF). In preclinical studies these pathways have been shown to be active in
breast cancer cells, and inhibitors of these pathways are being tested in both preclinical
and clinical trials [25, 28, 30, 31, 35-37]. Additional targeted therapies, including PI3-
kinase inhibitors, CHEK1 inhibitors, and Src inhibitors, are in various stages of clinical
trials in breast cancer [4, 38, 39]. Though these therapies may prove effective in
treating subsets of women with breast cancer, it is clear that additional therapies are
critically needed. Many of these therapies have side effects that limit their clinical

utility, and the problem of drug resistance remains a substantial limitation to their use.
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Additionally, though these targets hold promise for the treatment of tumors that
express the aforementioned markers, many ER-negative tumors do not express any of
these targets. Thus, it is critical that additional, novel targets for the treatment of ER-
negative breast cancer be developed.

MELK may be one such target. MELK is an atypical member of the snf1/AMPK
family of serine/threonine kinases [40]. This family is largely associated with cell
survival under conditions of environmental challenge, such as nutrient starvation [41,
42]. Previous studies, however, have demonstrated that MELK may regulate other
important processes, like stem cell self renewal through control of the cell cycle [43].
Likewise, MELK has been identified as a cell cycle modulator in tumor cell lines and was
recently identified as an important target for certain somatic tumors, including
colorectal, lung, and ovarian cancers [44]. Here we report that MELK is not expressed in
most normal tissues, is more highly expressed in ER-negative breast cancers compared
to ER-positive breast cancers, and is critical for ER-negative breast cancer cell line
growth. MELK is also independently prognostic in human breast cancer, and high MELK
expression is significantly associated with poor overall survival. The only other genes
shown to be independently prognostic in breast cancer (ER and HER2) are currently
targeted for the effective treatment of breast cancer. Thus, the results reported herein
demonstrate that MELK may be an ideal target for the effective treatment of aggressive
ER-negative breast cancers. Given the current difficulty in treating ER-negative breast

cancer, the identification of this kinase, shown to be critical for the growth of these
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cancers and independently prognostic, represents the first step towards developing and
utilizing additional targets for the treatment of these poor prognosis ER-negative breast

cancers.
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Supplementary Table 5.1.1 — Ilvshina dataset

Uppsala Stockholm Singapore
n=249 n=58 n=40
Variables, by grade G1 G2 G3 G2 n=58 G2 n=40
n=68 n=126 n=55

Age, median yrs 62 63 62 58 52
<55 years, % 26 25 44 41 60
Tumor size, cm 1.8 2.2 2.9 2.5 2.8
Nodes, positive, % 15 35 55 50 40
ER negative tumors, % 3 9 38 7 28
Follow up, median yrs 11 9 6 7 -
All recurrences, % 26 39 50 24 -
Endocrine therapy, % 18 37 36 62 -
Chemotherapy, % 4 6 22 5 -
Combine therapy, % 2 3 0 16 -
No systemic therapy, % 77 54 45.5 17

Supplementary Table 5.1.1 — Clinical characteristics of the tumors in the Ivshina
dataset. This study was designed to look at gene expression differences between
good and poor outcome Grade 2 tumors. For the purposes of analyzing the effect
of MELK expression on outcome, only tumors from the Uppsala and Stockcolm
cohorts were used as they were the tumors with clinical follow up data available.
Analysis was done by Corey Speers with input from Dr. Susan Hilsenbeck.

275



Supplementary Table 5.1.2 — Denmark dataset

Characteristic

Training Set N=166 (%)

Age

Tumor Stage

Nodal Status

Recurrence Status

Metastasis

Mean
Range

T1

T2
T3

0 nodes positive
1-3 nodes positive
>3 nodes positive

No local recurrence
Local recurrence
Unknown

No distant metastasis
Distant metastasis

54.8 (SD 9.14)
30-69

49 (30%)

97 (58%)
20 (12%)

11 (7%)
77 (46%)
78 (47%)

124 (75%)
42 (25%)
0 (0%)

67 (40%)
99 (60%)

Survival Months- All Mean 107.5 (SD 80.65)
Range 6-258

ER Positive 126 (76%)
Negative 40 (24%)

HER2/Neu Positive 34 (21%)
Negative 102 (61%)

Supplementary Table 5.1.2 — Clinical characteristics of the tumors in the Denmark

dataset. This study from a Denmark cohort of patients was provided to Dr. Gordon

Mills at M.D. Anderson. This set had clinical follow-up data that allowed for the

analysis of the effect of MELK expression on outcome. Data generously provided by

Dr. Gordon Mills for analysis by Corey Speers.
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Chapter 6

Discussion and Future Directions
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6.1 Overview

Approximately 30% of breast tumors are estrogen receptor alpha (ER)-negative,
but these aggressive breast cancers account for a much greater proportion of deaths
than their prevalence would suggest. This is primarily because of poor tumor response
to traditional therapies [1]. Breast cancer development and progression involves the
interplay between two major classes of growth-promoting agents, steroid hormones
(estrogens and progestins) and polypeptide growth factors. These growth factors and
their receptors have served as important targets for the treatment of ER-positive and
HER2/neu (ErbB2) positive breast cancer. The development of anti-estrogens such as
tamoxifen and fulvestrant, and more recently aromatase inhibitors, has led to significant
improvements in the overall survival of patients with ER-positive breast cancer [2].
Similarly targeting HER2/neu (ErbB2), which is overexpressed on 20-30% of breast
cancers, with trastuzumab and more recently lapatinib has resulted in a marked
improvement in both response and survival [3]. Unfortunately, only 30-60% of women
with HER2-positive tumors benefit from trastuzumab, and none of these treatments are
useful in treating women with ER-negative, HER2-negative breast cancer.

Peptide growth factors or their receptors, in addition to HER2, are currently
being investigated as possible targets for the treatment of breast cancer. These include
the epidermal growth factor receptor (EGFR), the insulin-like growth factor receptor
(IGFR), fibroblast growth factor receptors (FGFR) and vascular endothelial growth factor

(VEGF) [4-6]. In preclinical studies these pathways have been shown to be active in
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breast cancer cells, and inhibitors of these pathways are being tested in both preclinical
and clinical trials. The FGFR has recently been shown to be a predisposing factor in the
development of breast cancer [7]. A blocking antibody to VEGF, bevacizumab, has been
shown in combination with paclitaxel to improve progression free survival and showed a
trend toward prolonging overall survival for women with metastatic breast cancer [6].
This growth factor inhibitor is now being tested in combination with other
chemotherapy agents and in early stage breast cancer. Additionally, EGFR inhibitors
such as gefitinib and erlotinib, and the dual EGFR/HER2 inhibitor lapatinib have also
shown promise in early clinical trials [8-11], and recently the FDA approved the use of
lapatinib for the treatment of HER2-positive metastatic breast cancer.

Despite the potential utility of the above targeted therapies, several factors limit
their efficacy. First, the patient profile that would benefit from these drugs has yet to
be clearly defined and even those that do initially respond often develop resistance to
the therapy. Second, the side effect profile of many of these drugs limit their clinical
utility. Though effective, many of these drugs have side effects that are themselves too
toxic for use in the clinic. Finally, even if the aforementioned drugs are effective and
have acceptable toxicity profiles, it is apparent that they will only be effective in a small
percentage of patients. Virtually none of these therapies are hypothesized to have
clinical utility in patients with ER-negative, HER2-negative breast cancer, especially

those with “triple-negative” (ER-negative, PR-negative, HER2-negative) breast cancer.
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Thus, it is critical that additional targets be identified and drugs against those targets be

developed for the treatment of ER-negative breast cancer.

The overarching goal of this thesis was to identify and validate therapeutic
targets unique to ER-negative breast cancer cells that can be the target of directed
therapies. To identify such molecules we used gene expression microarray
technologies and novel proteomic approaches to identify molecules that play a role in
the development and progression of ER-negative breast cancers. To identify novel
targets for the treatment of ER-negative breast cancer we hypothesized that breast
tumor genomic and proteomic profiling could be used to reveal molecules for the

treatment of ER-negative breast cancer.

The work reported in this thesis describes the results of experiments designed to
test this hypothesis. In chapter 3 we used gene expression microarray profiling to
identify a distinct kinase gene expression profile that identifies ER-negative breast
tumors and subsets ER-negative breast tumors into 4 distinct subgroups. Based upon
the types of kinases expressed in these clusters, we identified a cell cycle regulatory
group, a S6 kinase pathway group, an immunomodulatory kinase expressing group, and
a MAPK pathway group. Furthermore, we showed that this specific kinase profile is
validated using independent sets of human tumors, and is also seen in a panel of breast

cancer cell lines. Kinase expression knockdown studies showed that many of these
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kinases are essential for the growth of ER-negative, but not ER-positive, breast cancer
cell lines. Finally, survival analysis of patients with ER-negative breast cancer showed
that patients in the S6 kinase pathway signature subgroup had an extremely poor
prognosis, while patients whose tumors express high levels of immunomodulatory
kinases had significantly better overall survival. This study identified a list of kinases
that were prognostic and may serve as druggable targets for the treatment of ER-
negative breast cancer.

In chapter 4, we described the use of reverse phase proteomic assay (RPPA)
technologies to identify proteins, phosphoproteins, and activated pathways that were
elevated in ER-negative breast cancers. Again, we demonstrated that ER-negative
tumors could be subdivided into four distinct subgroups (ER-low, stathmin and
phospho-RB high, S6 kinase-activated, and HER2-activated) based on the expression of
these proteins, and that these different subgroups had distinct prognostic profiles. We
also identified protein signatures that were associated with a particularly poor
prognosis.  Finally, we correlated specific proteomic signatures with previously
described breast cancer subtypes identified by transcriptional profiling in human breast
cancers and identified proteins associated with these distinct intrinsic subtypes of
human breast cancer. These results identified proteins and pathways that are activated
in specific subsets of ER-negative breast cancers that now serve as targets of future drug

development for effective treatment of ER-negative breast cancer.
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In chapter 5 we investigated the growth regulatory activity of one of the kinases
identified in chapter 3 that was expressed more highly in ER-negative breast cancer.
This kinase, maternal embryonic leucine-zipper kinase (MELK), is more highly expressed
in ER-negative breast cancers as compared to ER-positive breast cancers. It was also
more highly expressed in ER-negative breast cancer cell lines, and MELK expression
knockdown studies showed MELK is essential for the growth of most ER-negative, but
not ER-positive, breast cancer cell lines. Finally, survival analysis of patients with breast
cancer shows that those patients whose tumors have high expression of MELK have a
significantly poorer prognosis than patients with low expression of MELK, and that MELK
is itself and independent prognostic factor in breast cancer with high expression
conferring a high probability of early relapse and early death. This study identifies
MELK as a particularly promising target for the directed treatment of these highly

aggressive, MELK-positive, ER-negative breast cancers.
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6.2 Implications of these Studies

The work reported in this thesis extends our current understanding of ER-
negative breast cancer and identifies novel targets for the treatment of this deadly
disease. Previously, ER-negative breast cancers were thought of as a homogenous
group of tumors, all lacking the expression of the estrogen receptor, but otherwise
similar. These studies show at both the RNA and protein levels, that significant
heterogeneity exists between these ER-negative tumors. Our studies show, for the first
time, that these ER-negative tumors can be subdivided into distinct subgroups based on
the level and type of kinases or proteins expressed. Furthermore, our studies show that
the patients that can be divided into these different subgroups based on their tumors’
gene or protein expression profile have very different outcomes. These results have
tremendous implications for the identification of patients with ER-negative breast
cancer that have a good prognosis and also for those patients with ER-negative breast
cancer that have a particularly poor outcome, who may require particularly aggressive
treatment. In addition, | have identified a particular protein kinase target, MELK, that is
both a prognostic marker and an important potential therapeutic target in triple-
negative breast cancer. This work extends the current understanding in the field and
will allow for a more personalized view of ER-negative breast cancer, identifying
subgroups with different outcomes so that ER-negative cancer will no longer be

discussed in such “negative” terms.
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This work also extends our knowledge of the basic expression patterns of
molecules in ER-negative breast cancer. ER-negative breast cancer is currently defined
in terms of the genes and proteins that it does NOT express. This thesis switches the
paradigm and identifies genes and proteins that ARE expressed in these tumors. It is no
longer necessary to describe these tumors as lacking the expression of estrogen
receptor, progesterone receptor, or HER2. Instead, these tumors can be described as
expressing an activated S6 kinase pathway, Src, or MELK. Such markers can subgroup
these tumors and are putative targets of treatment.

One of the novel findings is the identification of subtypes within ER-negative
breast cancer. Both gene expression profiling and proteomic analyses were able to
identify 4 subtypes of ER-negative disease. One of these subtypes of ER-negative breast
cancer identified by the gene expression profiling studies was the immunomodulatory
subtype of ER-negative breast cancer. The role of the immune system in cancer has
historically been viewed rather myopically, with investigation into how the immune
system itself responds to the “foreign” cancer as the primary focus. It is now being
appreciated that the tumor itself may act autonomously to influence the stromal
microenvironment and evade recognition by the immunosurveillance machinery.
Recent work by Teschendorff et al. has also identified an immunomodulatory profile in
ER-negative breast cancer which was shown to confer better prognosis [12]. Other
groups have published conflicting results on the impact of immunomodulatory genes

and what, if any, role they play in the development and prognosis of breast cancer [13,
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14]. Future studies will need to investigate whether modulation of intrinsic gene
expression by the tumor is an important mechanism by which cancer cells can avoid
immunosurveillance, including the proper controls meant to keep aberrant growth in
check [12, 13].

The goal of this thesis was to identify additional novel targets for the treatment
of ER-negative breast cancer. The gene expression profiling studies detailed in chapter
3 highlight some of the kinases that may be attractive targets for the treatment of ER-
negative breast cancer. Chapter 4 extends this work and identifies not only proteins
that are more highly expressed in ER-negative disease, but identifies pathways that are
also activated in ER-negative breast cancer. It is clear from these studies that proteins
involved in cell growth, cell cycle regulation, metastasis and invasion, and apoptosis are
elevated in ER-negative tumors. Two cyclins (cyclin E and cyclin A) are especially
elevated and represent potential therapeutic targets. PAI1, identified as being more
highly expressed in ER-negative disease, represents another such target. Recent work
developing PAI1 inhibitors have shown promise, and these studies provide the rationale
for using these drugs in models of ER-negative breast cancer [15]. Additionally, the
identification of the S6 kinase signaling pathway as being activated in ER-negative breast
cancer represents another promising target of directed inhibition in ER-negative breast
cancer.

The relevance of maternal embryonic leucine zipper kinase (MELK) expression

has previously been unappreciated in breast cancer biology. These studies identify
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MELK as a potentially important target for the treatment of this disease. My results
suggest that MELK is an important growth regulator in ER-negative breast cancer cells
that should be easily targeted with small molecule inhibitors. As very few potential
targets for the treatment of ER-negative disease exist, the identification of a subset of
ER-negative breast cancers that highly express this critical growth regulatory kinase
represents a significant advance in ER-negative breast cancer target discovery.

The work described in this thesis identifies genes, proteins, and pathways which
may be particularly attractive targets for the treatment of ER-negative breast cancer.
These studies identify novel subsets of ER-negative breast cancer, providing evidence
for the previously underappreciated clinical heterogeneity in this group of tumors, and
demonstrate that patients whose tumors fall into these subtypes have different
prognoses. This work utilizes both transcriptomic and proteomic technologies to
advance our understanding of the genes and proteins that are over-represented in ER-
negative breast cancer, and here we identify many genes that are critical for the growth
of ER-negative, but not ER-positive breast cancer. Finally, these studies demonstrate
that at least one of these identified targets, MELK, is independently prognostic and may
represent a novel and particularly attractive target for the treatment of ER-negative

breast cancer.
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6.3 Future Directions and Unanswered Questions

The work described in this thesis answers some questions, but also raises even
more. Though | have made significant progress in the identification of targets for the
treatment of ER-negative breast cancer, these studies lay a foundation for future drug
development.  With advances in experimental design, and, more importantly,
technology, the genomic era is now ushering in the age of systems biology that will aid
biological understanding of cancer and pharmaceutical drug development. Further
advances in understanding critical growth regulatory pathways of ER-negative breast
cancer will come about as genomic, transcriptomic, and proteomic data is integrated
and applied to complex questions involving treatment and resistance.

One future direction of these studies is to obtain DNA sequence information in
ER-negative breast cancer and perform complex overlap analysis of the changes in DNA,
RNA, and proteins in breast cancer. Indeed, DNA copy number determination using
comparative genomic hybridization (CGH) or comparative single nucleotide
polymorphism analysis (comparative SNP analysis) has shown that breast cancers harbor
many gene deletions or gene amplification and that these regions of DNA copy number
alteration identify genes or groups of genes that are involved in the oncogenic process
[16-21]. The well known breast cancer oncogenes HER2/neu and c-MYC, as well as more
recently defined oncogenes Rab25 [22], NRG1 [23, 24], and LSM1 [24], have been
identified using these DNA-based techniques. CGH and comparative SNP analysis also

can identify regions of DNA loss, typically occurring at the site of important tumor
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suppressor genes. These techniques have identified the p53 and PTEN tumor
suppressor genes specifically in breast cancer (both previously known tumor suppressor
genes) [25, 26], as well as novel breast cancer tumor suppressor genes such as PTK2b
[27] and BRIT1 [27], and several other DNA regions in which tumor suppressor genes are
thought to be located. Future experimental design will need to incorporate these DNA-
based technologies so that changes in DNA copy number and sequence can be added to
changes in RNA and proteins to obtain a comprehensive 3-dimensional systems biologic
fingerprint of breast cancers.

This gene expression microarray analysis (transcriptional profiling) has been
extensively used to subtype cancers, predict prognosis and disease free survival, and
determine optimal treatment [28-35]. Several landmark transcriptional profiling studies
demonstrated the validity of the technique in building a clinically useful molecular
taxonomy of breast cancers with a similar histological appearance. Clinically relevant
novel subgroups within the ER-positive and ER-negative breast cancers have also been
identified, including in this thesis, reflecting the vastly different biology inherent in these
tumor subtypes [29, 32]. Thus, identification of molecular markers from transcriptional
profiling holds great promise for refining our ability to accurately diagnose and treat
breast cancer. Additionally, groups have already used expression profiling to identify
gene signatures of chemotherapeutic resistance [30, 36, 37]. Future work will require
the integration of very large and very complex datasets that combine DNA sequence

and RNA expression data into a useful snapshot of the genomic aberrations in ER-
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negative breast cancer. Such information will certainly implicate certain chromosomal
regions and genes that are responsible for carcinogenesis, drug resistance, metastasis,
and ultimately lead to targetable regions for the treatment of ER-negative breast
cancer.

DNA sequence and RNA expression information has been used profile ER-
negative breast cancers, but the work reported in chapter 4 was the first attempt to
evaluate large-scale protein expression patterns in ER-negative breast cancer. This work
lays a foundation for understanding protein expression and activation status in these
tumors, but the role the discovered proteins play in carcinogenesis has yet to be
determined. This study identified proteins and activated pathways that may be
important in the process of transformation, potentiation, migration, or metastasis in
breast cancer. Future experiments utilizing siRNA and shRNA knockdown technologies
will address whether the identified molecules are necessary for mitogenesis,
angiogenesis, or invasion. The generation of dominant negative constructs of these
molecules will also aid in these functional studies. Xenograft studies using cells that
express constitutively active forms of the proteins identified will determine whether
activation of these pathways aids or accelerates tumorigenesis. Conversely, small
molecule inhibitors will need to be developed and tested in models of ER-negative
disease to see if these agents are effective at treating and even preventing breast cancer

development.
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The identification of the S6 kinase pathway as being overrepresented and
activated in ER-negative disease represents another area that merits further
exploration. This pathway, implicated previously in cancer, is important for cell survival,
growth, translation initiation, and metabolic processes (reviewed in [38]). Interestingly,
one of the proteins we found underrepresented in ER-negative disease, TSC2 (a putative
tumor suppressor), is a negative regulator of the S6 kinase signaling pathway [39].
Future studies will need to evaluate whether targeting of the S6 kinase pathway, either
upstream of S6 kinase with mTOR inhibitors, at the level of S6 kinase itself, or
downstream with elF4 inhibitors, is effective at treating or preventing ER-negative
breast cancer. These studies, which will certainly involve both in vitro tissue culture and
in vivo mouse experiments, continue to be a focus of Dr. Brown’s laboratory. In fact,
this paradigm of “backward screening” will continue to be an important in target
validation. This thesis identifies tens, if not hundreds, of potential important molecules
in ER-negative breast cancer etiology. All of them will need to be systematically
evaluated and validated as effective targets of treatment in ER-negative disease, and
will certainly be the focus of experimentation in the years to come. Despite the obvious
potential, the promise of novel target discovery has not yet been fulfilled. We contend
that this integrative genomic, transcriptional profiling, and functional proteomics
approach will more efficiently identify new targets for therapy.

One of the exciting areas of future research involves the translation of scientific

discoveries into clinically relevant treatments. The studies described in this thesis
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provided some of the preclinical rationale for the development of one such clinical trial.
As reported in chapter 3, our RNA profiling studies showed that ER-negative tumors
have increased expression of various tyrosine kinases, including EGFR, SRC, YES-1, KIT,
EPH receptors B4, and ABL compared to ER-positive tumors. Based on these
observations, we initiated a phase Il preoperative study of dasatinib, which is a potent
oral multi-kinase inhibitor that targets ABL, SRC, KIT, PDGFR, and other tyrosine kinases,
to treat women with metastatic ER-negative breast cancer. Table 6.1 lists the targets in
ER-negative breast cancer that are inhibited by dasatinib.  Dasatinib has already
received FDA-approval for the treatment of patients with chronic myeloid leukemia or
Ph-positive acute lymphoblastic leukemia [40], but recent data showed that dasatinib
selectively inhibits growth of basal-type ER/PR/HER2 negative breast cancer cell lines
growing in vitro [41]. Using in vitro assays, 7 (most of which were ‘basal like’) of 23 well-
characterized breast cancer cell lines, were shown to be relatively sensitive to dasatinib
(IC50 < 1uM) [41]. These data, validated independently, strongly supported our
preliminary data that dasatinib should inhibit a subset of triple negative breast cancers.
Thus, a phase Il clinical trial was designed and initiated using dasatinib in women with
“triple-negative” breast cancer. The primary endpoints in this preoperative trial will be
clinical response rate and toxicity in treatment-naive patients when given as a single
agent for two to four weeks. Secondary endpoints are also included and involve
measuring proliferation changes, biomarker response, predictive studies, and

monitoring response by novel imaging modalities. This clinical trial highlights the true
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Table 6.1 — Kinases targeted by Dasatinib

Gene Name Symbol Kp (nm)
abl-interactor 1 ABI1 0.5
epidermal growth factor receptor EGFR 100
EPH receptor A4 EPHA4 0.8
EPH receptor B4 EPHB4 0.3
FYN FYN 0.7
v-kit Hardy-Zuckerman sarcoma viral oncogene homolog KIT 0.6
lymphocyte-specific protein tyrosine kinase LCK 0.2
v-yes-1 Yamaguchi sarcoma viral related oncogene LYN (YES) 0.6
mitogen-activated protein kinase kinase kinase kinase 4 MAP4K4 50
mitogen-activated protein kinase kinase kinase kinase 5 MAP4K5 50
p38 alpha MAPK14 30
pim-1 oncogene /// pim-1 oncogene PIM1 300
receptor-interacting serine-threonine kinase 2 RIPK2 30
SRC SRC 0.2
serine/threonine kinase 38 like STK38L 200
serine/threonine kinase 38 STK38 200

Table 6.1 — List of kinases that are targeted by Dasatinib. This table lists the
kinases with the corresponding Kd values that are both overexpressed in ER-
negative breast cancer and are the targets of Dasitinib drug inhibition.
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promise of such translational studies, and underscores the true “bench-to-bedside”
potential of this work.

Future clinical management of women with breast cancer will employ a multi-
faceted approach. Women diagnosed with breast cancer will still be dichotomized
based on their estrogen receptor expression status, with patients either being ER-
positive or ER-negative. Whereas this is currently the extent of patient classification,
future management will include other measures meant to further stratify patients,
including the use of DNA, RNA, and proteomic profiling to molecularly profile each
individual tumor. Based on this information, the clinician will be able to design a
tailored treatment regimen that has been proven efficacious in breast cancer. This may
include the continued use of surgical resection and selective estrogen receptor
modulators and aromatase inhibitors for women whose tumors are ER-positive and
have a Luminal A gene expression profile. These women, then, would have reasonable
expectation of a good prognosis and possible cure. Other women who are ER-positive
but have a Luminal B gene expression profile may require more aggressive therapy, but
with the initiation of this therapy early in the course of disease management, these
women will also have a reasonable expectation of a good outcome. Similarly, this
profiling of tumors early in the course of disease treatment will benefit women with ER-
negative breast cancer. As effective inhibitors for the molecules identified in this thesis
are developed, additional treatment options will be available. Depending on the

molecules and signature that these ER-negative tumor’s have (S6-kinase high, Cell cycle
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checkpoint high, etc.), the treatment strategy will change. This ability to target the
molecular abnormalities of each tumor individually will certainly lead to better
outcomes in patients with breast, including those patients with difficult to treat “triple-
negative” breast cancer. Figure 6.1 outlines this future of breast cancer disease
treatment, including the molecularly selected treatment for ER-negative breast cancer.
In addition to the therapies currently available for treating breast cancer, future efforts
will lead to additional clinical trials evaluating inhibitors against the molecules identified
in this thesis, including S6 kinase, PAI1, CHEK1, and MELK, as effective therapies in the

treatment of ER-negative disease.
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6.4 Final Remarks

From the early use of hormonal therapy to trastuzumab, targeted therapies have
clearly found a place in the treatment of breast cancer. The last decade has seen
several new targets and new therapeutic approaches move from the laboratory into
clinical trials. As those trials mature, we will determine the impact of these new
targeted therapies. Equally exciting is the potential of genomics and proteomics to
discover the hidden targets of the current cytotoxic arsenal. In reality, all therapy is
targeted -- we just don’t know all of the targets yet. The groundwork laid in this thesis,
coupled with the continuing biotechnology revolution, holds the promise that effective
and tolerable treatments for ER-negative breast cancer will soon be available.

Some argue that this future of breast cancer treatment development relies on
the unigue combinations of existing drugs. They point to the initial excitement
surrounding the use of Herceptin and anthracyclines and point to its initial positive
results. Unfortunately, cardiotoxity also emerged as a severe side effect that limited the
utility of this drug regimen clinically. While not discounting the role of these potentially
useful combinations of pre-existing therapies, more specific targeted therapy may offer
more promise. The future of targeted therapy in ER-negative breast cancer is more
promising than the mix-and-match approach currently envisioned. In the future it will
be possible to treat women with targeted drugs for their particular type of breast cancer
using DNA, RNA, and proteomic profiling to select effective drugs at the time of

diagnosis. With the development of genome sequencing, gene expression profiling, and
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proteomic assessments, coupled with the concomitant decrease in the cost of “-omic”
technologies, personalized medicine is no longer a dream. Clinicians will soon have the
ability to thoroughly profile a patient’s tumor and design a targeted and tailored
treatment regimen. With greater understanding of the mechanisms that lead to drug
resistance, prognostic and predictive biomarkers, and novel treatment strategies that
overcome resistance, clinicians will soon be able to effectively treat ER-negative breast
cancer. Breast cancer will no longer be defined in terms of what is NOT known about
the tumor (i.e. ER-negative, PR-negative, HER2-negative breast cancer) but by what we
DO know (PI3-kinase pathway activated, caveolin high, or PAI-1 high expressing) and will
be treated accordingly. With this knowledge and progress, it will soon be possible to

effectively treat, and even cure, this now deadly disease.
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