
System-Call Based Problem Diagnosis for PVFS

Michael P. Kasick, Keith A. Bare, Eugene E. Marinelli III, Jiaqi Tan, Rajeev Gandhi, Priya Narasimhan
Electrical & Computer Engineering Department; Carnegie Mellon University; Pittsburgh, PA 15213-3890

Email: {mkasick, kbare, emarinel, jiaqit, rgandhi, priyan}@andrew.cmu.edu

Abstract

We present a syscall-based approach to automati-
cally diagnose performance problems, server-to-client
propagated errors, and server crash/hang problems
in PVFS. Our approach compares the statistical and
semantic attributes of syscalls across PVFS servers
in order to diagnose the culprit server, under these
problems, for different file-system benchmarks—dd,
PostMark and IOzone—in a PVFS cluster.

1. Introduction

The Parallel Virtual File System (PVFS) [1] is an
open-source, parallel file-system that provides high-
performance computing (HPC) applications with high-
speed data read/write access to files in a cluster of
commodity computers. PVFS is designed as a client-
server architecture, with many clients communicating
with multiple I/O servers and one or more metadata
servers. To facilitate parallel access to a file, PVFS
distributes (or “stripes”) that file across multiple disks
located on physically distinct I/O servers.

Problem diagnosis is important in long-running jobs
in HPC environments. Often the effects of problems
can be magnified due to computations exhibiting long
durations and being performed at large scales. Server-
to-client propagated errors and server crash/hang fail-
ures are two other relevant categories of PVFS prob-
lems. Current diagnosis involves the manual analysis of
client/server debug logs that record PVFS operations;
this logging has a high runtime overhead and requires
code-level (white-box) PVFS instrumentation.

On the other hand, syscall tracing does not require
any modification of either the traced client application
or PVFS, making it a black-box diagnosis strategy.
Syscall instrumentation of the PVFS server and client
processes yields statistical data about disk/network I/O
transfer times that then enable us to detect perfor-
mance anomalies. Syscall instrumentation of the client
application yields semantic data about hung or failed

requests, which we then trace back to misconfiguration
or resource-exhaustion.

Concretely, our contributions are: (i) a new syscall-
based approach to diagnose problems automatically
and transparently in parallel file-systems, such as
PVFS, (ii) a statistical diagnosis algorithm that cor-
relates syscall service-times across PVFS servers, to
localize the culprit server, and (iii) a semantic di-
agnosis algorithm that correlates errors returned by
syscalls at the PVFS client and servers, to diagnose
non-performance problems.

2. Problem Statement

Our research seeks to explore to what extent syscall-
based instrumentation is useful in diagnosing a variety
of file system problems, including those that occur in
or are motivated by production deployments (see § 3).

We aim for our approach to be: (i) transparent, i.e.,
no modifications to the PVFS applications, and inde-
pendent of PVFS’s operation; (ii) able to differentiate
between anomalous and legitimate behavioral changes
(e.g., workload shifts); (iii) able to diagnose the culprit
server under performance problems, misconfigurations,
and resource exhaustions that cause degraded or halted
PVFS operation. Fine-grained diagnosis, which would
trace the bug to culprit lines of PVFS source-code, is
outside our current scope.

We assume that a majority of the PVFS servers
exhibit fault-free behavior. We assume that the physical
clocks on the cluster’s nodes are synchronized so that
their time-stamped data can be temporally correlated.

Hypotheses: Based on PVFS’s design, we have spe-
cific expectations of its behavior. For performance
problems, we expect non-faulty I/O servers to exhibit
similar wall-clock service times for read/write syscalls,
while we expect a faulty I/O server to exhibit longer
service times for the same syscalls. Thus, the statisti-
cal comparison of read/write syscall durations, across
PVFS servers, should identify an anomalous server.

For server-to-client propagated errors, we expect a
server’s host file-system’s errors to propagate, through

jdigney
Text Box
Proceedings of the 5th Workshop on Hot Topics in System Dependability (HotDep '09).
Lisbon, Portugal. June 2009.

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
JUN 2009 2. REPORT TYPE

3. DATES COVERED
 00-00-2009 to 00-00-2009

4. TITLE AND SUBTITLE
System-Call Based Problem Diagnosis for PVFS

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Carnegie Mellon University,Electrical & Computer Engineering
Department,Pittsburgh,PA,15213

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
U.S. Government or Federal Rights License

14. ABSTRACT
see report

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

6

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

the server, and manifest as an error at a client ap-
plication’s syscall. By observing and correlating such
errors at both the client application and the servers, we
should be able to identify the culprit server. For server
crash/hang failures, we expect that client application
syscalls will either return with a connection error
(server crash) or never terminate (server hang). Thus,
by waiting for a connection error or explicit time-out,
we should be able to identify when a crash/hang has
occurred and then trace it back to the culprit server.

3. Anecdotal Motivation

The faults that we study in our work are motivated
by the PVFS developers’ anecdotal experience [2] of
problems faced/reported in various production PVFS
deployments, one of which is Argonne National Labo-
ratory’s 557 TFlop Blue Gene/P (BG/P) PVFS cluster.

Anomalous disk behavior motivates two of our
performance problems. RAID controllers that inadver-
tently create disk contention while proactively search-
ing for media defects [3], [4] motivate our disk-busy
problem. The accidental launch of an interfering rogue
process such as a second, colocated file server (e.g.,
PVFS and GPFS) [2] motivates our disk-hog problem.

Network problems primarily manifest in packet-
loss errors, which are the “most frustrating” [sic] to
diagnose [2]. They often result from faulty switch
ports that enter a degraded state and send CRC-failing
packets, spreading poor performance throughout the
network. They also result from overloaded switches
that “just can’t keep up” [sic], in which case diagnostic
tests of individual links might exhibit no errors, yet
problems will manifest while PVFS is running [2].

Non-performance problems (e.g., misconfigurations
that leads to server crashes) are somewhat easier to de-
tect as they typically alter the behavior of the system in
an observable fashion, e.g., by the application returning
errors or indefinitely hanging during an operation, po-
tentially triggering an application-level timeout. While
easier to detect than performance problems, it is still
difficult to diagnose the faulty server.

For instance, PVFS bug ticket #50 documents a
scenario where a single I/O server was accidentally
misconfigured with an unintentionally low resource
limit [5]. The server, at its configured open-file limit,
reacted to an attempt to open a new client socket by
killing the message-handling thread which hung all
subsequent requests. Our study of this problem reveals
a more subtle manifestation: if the open-file limit is
reached when opening a new storage file (instead of
a new socket) the open syscall returns an EMFILE

errno that is propagated to the client application and
returned unintuitively from a read or write syscall.

Finally, intermittent disk availability problems, such
as Fibre Channel disks that are temporarily unplugged,
can result in a failure mode where the host file-system
switches over to read-only operation [2], [6]. In our
study of this problem, PVFS returns either an EROFS
errno, or suspends a server thread, depending on the
operations that are performed after this event.

4. Instrumentation

We have developed a tool, syscap, that uses ptrace
(a user-space Linux API for syscall interception and
modification, without changes to the monitored pro-
cess) to trace syscalls and signals. Each local process’
traced events are written, in the order of event com-
pletion, as a record to a syscall-event log (sclog).
Record fields include a record number, a sequence
number (identifying events in order of start), times-
tamp (at the start of the event), light-weight process
ID, syscall/signal number, syscall register arguments,
syscall result, and syscall wall-clock service time.
syscap also produces a file-descriptor update-log

(fdlog) with records that describe updates to traced
processes’ file-descriptor tables due to syscalls (e.g.,
open, close) that change the open-file table. The tar-
get file name is provided by the /proc/pid/fd/#
symlink. For anonymous “files” (e.g., network sock-
ets), a special identifier captures other characteristics,
e.g., TCP-socket IP address and port number. On
observing the creation of a file-descriptor, we auto-
matically track all syscalls that subsequently use the
file-descriptor, and extract the service times of all
associated read and write syscalls.

Diagnosing performance problems. The metrics
of interest are: (i) disk-read service time (dread),
(ii) disk-write service time (dwrite), (iii) server’s
network-read time (nsread), and (iv) client’s
network-read time (ncread). dread and dwrite
are the values of the wall-clock service times for read
and write syscalls, respectively, on I/O server file-
objects. nsread and ncread represent the amount
of time that it takes for the server (client) to read a
single PVFS request (response) over the network.

Diagnosing propagated errors. We also seek to
study errors that are returned from PVFS server
syscalls to an server’s host file-system, which are then
propagated to clients, and finally appearing as return
values from client application read/write syscalls. The
metrics of interest for diagnosing propagated errors

are: (i) the errnos of failed syscalls, and (ii) times-
tamps of failed syscalls.

Diagnosing crash/hang faults. We also seek to
study cases where a PVFS server either crashes,
closing all client connections, or stops responding to
requests, leaving clients in a hung state. Although
execution halts in either case, it is still difficult to
manually diagnose the faulty server. The metrics of
interest for diagnosing crash/hang faults are: (i) service
time of application’s PVFS I/O syscalls, and (ii) most
recent client syscall to each server socket.

5. Experimental Set-up

We perform our experiments on a cluster of AMD
Opteron 1220 machines, each with 4 GB RAM, two
Seagate Barracuda 7200.10 320 GB disks (one dedi-
cated for PVFS storage), and a Broadcom NetXtreme
BCM5721 Gigabit Ethernet controller. Each node runs
Debian GNU/Linux 4.0 (etch) with Linux kernel 2.6.18
and PVFS 2.8.0. Server nodes use the PVFS Direct
I/O storage method1 with a 4 MB Flow buffer size2.
Our PVFS experiments consist of 10 combined I/O and
metadata servers and 10 clients.

Our study of performance problems involves the
workload running for 120 seconds in fault-free mode,
the fault injected for 300 seconds and then deacti-
vated. The experiment continues to the completion of
the benchmark, typically taking 600 seconds in the
fault-free case. Our study of propagated errors and
crash/hang faults involves the fault persisting for the
entire experiment, which runs for shorter durations
(approx 60 seconds), long enough for the workload
to activate the fault.

Workloads. Our first two workloads, ddw and ddr,
consist of the same benchmark, dd, either writing ze-
ros (from /dev/zero) to a client-specific temporary
file in PVFS, or reading the contents of a previously
written client-specific temporary file and writing the
output to /dev/null. dd models HPC scientific
workloads with constant data-write rates.

Our next two workloads, iozonew and iozoner,
comprise the same common file-system benchmark,
IOzone v3.283. We run iozonew in write/rewrite
mode and iozoner in read/reread mode. IOzone is
a large-file I/O-heavy benchmark with few metadata
operations, with an fsync and a workload change
half-way through the benchmark. Our fifth benchmark
is PostMark v1.51, a metadata-server heavy workload

1. Ensures metrics reflect disk service times instead of cache hits.
2. Allows larger bulk transfers for more efficient disk usage.

with small file writes (all writes < 64kB; thus, writes
occur only on a single server per file).

For the ddw workload, we use a 17 GB file with a
record size of 40 MB. Write-record sizes were chosen
so that 4 MB of data is sent to each server in a single
bulk transfer, which is necessary for good PVFS per-
formance. For ddr, we use a 27 GB file with a record-
size of 40 MB. For iozonew, we use a 8 GB file
with a record-size of 16 MB (the maximum supported
by IOzone). For iozoner, we use a 8 GB file with
a record-size of 16 MB. For postmark, we use the
default configuration with 9,000 transactions.

Injecting performance problems. The six faults we
inject that manifest as performance problems are:
• disk-hog—A dd process that reads 256 MB blocks

from an unused partition on one of our storage disks.
• disk-busy—An sgm_dd process that issues low-

level SCSI I/O commands to read 1 MB blocks from
the same unused partition on our storage disk.

• write-network-hog—A third-party node opens a
TCP connection to a listening port on one of the
PVFS servers and sends zeros to it.

• read-network-hog—One of the PVFS servers opens
a connection and sends zeros to the third-party node.

• receive-pktloss—Server receive-packet-loss. A net-
filter firewall rule probabilistically drops packets
received at one of the servers with probability 5%.

• send-pktloss—Server send-packet-loss. A firewall
rule on all clients probabilistically drops packets
incoming from a single servers with probability 5%.

Injecting propagated errors. The three faults we
inject that manifest as propagated errors are:
• err-inodes—Insufficient inodes for storage space.

An ENOSPC errno is returned by the server’s host
file-system and propagated to the client application
through a write syscall, potentially misleading the
client into believing that PVFS ran out of metadata
structures. To inject this, we set one of the server’s
storage partition to have low number of inodes
(2048) for its size (8 MB).

• err-files—Insufficient maximum open files (rlimit).
An EMFILE errno is returned by the server
to the application, unusually as the result of a
read or write call, misleading the client into
believing its resource limit (and not the server’s)
is misconfigured. To inject this, we execute one
of the PVFS servers as an unprivileged user with
RLIMIT_NOFILE set to 50.

• err-remount—Emergency remount read-only. This
occurs when a PVFS server experiences an er-
ror due to the underlying storage device or file-
system corruption. To inject this, at 15 sec-

onds into the experiment, we write a “u” to
/proc/sysrq-trigger, forcing the server to
remount as read-only. We run a custom workload for
this experiment that repeatedly opens a new file and
writes a single null byte, then waits half a second.
This ensures that the next PVFS operation after the
fault-injection is an open (not a write) call.

Injecting crash/hang faults. The four faults we
inject that manifest as crash/hang failures are:
• err-space—Insufficient storage partition space. The

server’s host file-system returns an ENOSPC errno
for a write syscall. The server reacts by killing
the message-handling thread, hanging all subsequent
client requests. To inject this, we select a server and
set its storage-partition size lower (256 MB).

• err-fsize—Insufficient maximum file size (rlimit).
Results in a server write call returning an EBIG
errno; then the process is signaled SIGXFSZ
leading to a server crash. To inject this, we execute
one of the server processes as an unprivileged user
with the maximum file-size set to 128 MB.

• err-vmsize—Insufficient process maximum virtual-
memory size (rlimit). Results in a server memory-
allocation syscall (e.g., mmap) returning an
ENOMEM errno; then the process is signaled
SIGABRT leading to a server crash. To inject
this, we execute one of the server processes as
an unprivileged user with the maximum virtual-
memory size to 300,000 kB.

• err-remount–Emergency remount read-only. Same
as propagated error but uses a ddw workload with
unbounded file-size. Results in server hang.

6. Statistical Syscall-Based Diagnosis

This diagnosis algorithm relies on our hypothesis that
fault-free I/O servers have similar average behavior.
However, even under fault-free conditions, servers can
behave differently (even small hardware differences
can cause some of the servers to be saturated). We
account for such heterogeneity through a fault-free
training phase. The underlying hypothesis is that while
a saturated server’s service time would likely differ
from those of non-saturated servers under fault-free
conditions, the deviation of a faulty server would be
more pronounced.

For each syscall of interest, we generate a time-
series of average syscall service times at each server
by dividing the sum syscall duration by the num-
ber of syscalls at 1-second intervals. Our algorithm
compares the time-series of syscall service times at
all of the servers to detect any anomalous time-series

(and thence, the associated anomalous server). Every
second, we compute a representative value (currently,
we use the median of the syscall service times across
all the non-faulty/non-saturated servers) of the syscall
service times for the non-faulty nodes. A server is
flagged as anomalous if its syscall service time differs
by more than a predetermined threshold from this
representative value.

In the training phase, we determine the maximum
deviation of a server’s syscall service times from the
representative (median) value under fault-free condi-
tions. This phase also determines which servers are
likely to be saturated under fault-free conditions. We
currently use the ddw and ddr workloads only under
fault-free conditions to determine the threshold values.
These workloads place the highest throughput demands
on server disks, and thus are most likely to saturate
some servers and produce maximum deviation. For
each server, we detect the maximum deviation of its
service times from the median value and use the max-
imum deviation to choose our threshold value for that
server. For actual deployment, a PVFS administrator
would first run the ddr and ddw workload under fault-
free conditions to determine the threshold values for
each server.

7. Semantic Syscall-Based Diagnosis

Propagated errors. Our strategy consists of two
phases: (i) a training phase to identify (and ignore)
errnos that result from “failed” syscalls in normal
PVFS operation, and (ii) a diagnosis phase to identify
unexpected failed syscalls with propagated errors.

For training, we invoke the pvfs2-ping utility on
a single client immediately after launching all of the
PVFS servers. This exercises the code paths involved
in a complete client session. As the utility executes,
we examine the errnos returned by “failed” syscalls
on the servers and flag these errnos as normal so that
they can be safely considered as a part of normal PVFS
operation. For diagnosis, if a server syscall returns an
errno that we did not previously flag as normal, we
examine whether the same errno is returned to the
client application during a 3-second window around
the server call’s timestamp. If the errno is indeed
propagated to the client, we declare the server where
the errno originated as the culprit.

Crash/hang faults. Our examination of PVFS’s be-
havior leads to three observations: (i) application
syscalls that fail with connection error indicate that
one or more PVFS servers has crashed, (ii) syscalls
that never return indicate that one or more servers

has hung, and (iii) the crashed/hung servers can be
identified based on whether or not the client daemon
has received a response from the server for its most
recent request. Thus, we first examine the client appli-
cation’s syscalls to find I/O syscalls that either return
ECONNREFUSED (server crash) or exceed a timeout
threshold of 30 seconds3 (server hang). Second, we
examine the PVFS client daemon’s I/O syscalls to
server sockets, keeping track of the syscall that was
most recently performed in communication with each
server, until the time of the application-syscall error or
timeout. Based on these observations, we expect that
the last syscall completed with the faulty server will
differ from that completed with the non-faulty servers.

8. Results

Table 1 shows the performance (true- and false-positive
rates4 of our statistical algorithm for diagnosing perfor-
mance faults using different syscalls for the different
workloads. For each fault, we only show those syscalls
causing a non-zero true/false positive.

The dread and ncread syscalls, which are not
used by the write-intensive (ddw and iozonew) work-
loads, do not help with diagnosis for those work-
loads. Thus, the left half of the table omits the ddw
and iozonew workloads. Similarly, the dwrite and
nsread syscalls, which are not used by the read-
intensive (ddr and iozoner) workloads, do not help
with diagnosis for those workloads. Thus, the right half
of the table omits the ddr and iozoner workloads.
We include the postmark workload in both halves of
the table since it includes read as well as write syscalls.

Our low false-positive rates are an artifact of our
threshold selection (which minimizes only the false-
positive rate). An ROC-based approach to threshold
selection would likely increase the false-positive (as
well as the true-positive) rate. Different syscalls are
useful for diagnosing different problems. For instance,
dread and dwrite are useful for diagnosing disk-
related problems while nsread and ncread are
useful for diagnosing network-related problems. While
each syscall diagnoses only a subset of the problems, a
combination of syscalls can effectively diagnose many
performance problems.

For propagated errors and crash/hang faults, our
diagnosis algorithms successfully diagnosed the faulty
server with no false positives.

3. Must be longer than the time required to flush client flow
buffers to avoid misdiagnosis in the event of a server crash. 15
seconds or more is sufficient for our experiments.

4. TP is the fraction of experiments where all faulty servers are
correctly diagnosed as faulty, FP is the fraction where at least one
non-faulty server is misdiagnosed as faulty.

Overhead for Workload
Inst. ddr ddw iozoner iozonew postmark
syscap 0.2% 0.6% −0.4% 0.7% 64.4%
strace −0.1% −0.8% −3.3% 0.0% 138.8%
sysstat 0.7% 0.4% −0.9% 0.4% 5.4%

Table 2. Instrumentation overhead: Increase in
run-time w.r.t. non-instrumented workload.

Overheads. Table 2 reports overheads for three dif-
ferent kinds of black-box instrumentation5 for our five
workloads. They are calculated as the increase in mean
workload runtime over uninstrumented counterparts.

Since four of our five workloads are I/O-heavy, with
large bulk transfers, relatively few syscalls are made
for the amount of data transferred. Since network and
disk transfers consume the majority of time in these I/O
operations, the added overhead (< 1%) is negligible.

In contrast, the metadata-heavy postmark work-
load has many small data transfers or metadata op-
erations (create, remove, etc.) on many small files.
Since the time to issue the syscall takes as long as (if
not longer than) the time to carry out the requested
operation, syscall instrumentation has a significant
overhead (64% and 139% for syscap and strace,
respectively). Because sysstat-based instrumentation
does not alter the operation of syscalls, its overheads
are more modest, making it more appropriate for
metadata-heavy workloads.

9. Related Work

Past work on failure diagnosis in distributed systems
has focused mainly on Internet services [7], [8], with
some work examining debugging performance prob-
lems in high-performance computing environments [9].
Our work is different in targeting HPC file-systems
instead of the deployed workload application.

Tracing and instrumentation generate system views
that are useful for failure diagnosis. File system-
specific tracing mechanisms include Stardust [10],
which traces causal request flows through a distributed
storage system, and TraceFS [11], which uses a thin
file-system interpositioned between the Linux VFS
layer and the underlying file-system to provide opera-
tion traces at multiple granularities. Performance tools
for HPC environments include TAU [12] and Paradyn
Parallel Performance Tools [13].

Shen [14] and OSprof [15] both use syscall statistics
to detect performance problems. Shen uses change
profiles to incrementally build predictive models of
system performance, which are used to detect perfor-
mance anomalies against reference workloads. OSprof

5. strace is included to compare syscap overheads against a
standard tool used for manual syscall debugging.

Fault Syscall read-heavy workloads Syscall write-heavy workloads
ddr iozoner postmark ddw iozonew postmark

TP FP TP FP TP FP TP FP TP FP TP FP
disk-hog dread 1 0 1 0 1 0.1 dwrite 0.4 0 0.4 0 1 0.1
disk-busy dread 1 0 1 0 0.9 0.1 dwrite 0.4 0 0.4 0 1 0.1
write-network-hog nsread 0 0 0 0 0.9 0
read-network-hog ncread 0 0 0 0 1 0 nsread 0 0 0 0 1 0

dwrite 0.2 0 0 0 1 0
receive-pktloss ncread 0 0 0 0 0.8 0 nsread 0 0 0 0 0.9 0
send-pktloss ncread 0 0 0 0 1 0

Table 1. Results of our statistical syscall-based diagnosis. TP (FP) = true (false) positive ratio.

captures and analyzes distributions of syscall latencies
under different system conditions to identify code
paths that exhibit latency peaks. Our statistical analysis
is similar to—but less general than—both in that it
leverages peer comparison of syscall latencies across a
set of nodes to establish, on the fly, a reference against
which individual nodes may be compared to diagnose
performance anomalies.

Ballista [16] tests code robustness by issuing func-
tion calls with exceptional arguments to elicit hangs
or crashes. Although our tool is not intended for
testing, we do diagnose server hangs, crashes, and even
Ballista’s “hindering” failures (propagated errors) as
result of syscalls issued in exceptional environments.

10. Conclusion

Exploiting syscall instrumentation, we were able to
detect and diagnose, with a low false-positive rate, a
number of performance problems, propagated errors,
and crash/hang faults in PVFS. We have effectively
shown the value of syscall-based statistical and seman-
tic analyses for diagnosing common PVFS problems.
To minimize instrumentation overheads, we plan to
develop a low-overhead, in-kernel utility that would
allow us to efficiently use syscall tracing for continuous
monitoring and online diagnosis.

Acknowledgements

We acknowledge Rob Ross, Sam Lang, Phil Carns
and Kevin Harms of Argonne National Laboratory for
their insightful discussions on PVFS, instrumentation
sources, troubleshooting procedures, and anecdotes of
performance problems in production PVFS deploy-
ments. We also thank Garth Gibson of Carnegie Mellon
for feedback on this work. This research was sponsored
in part by NSF grants #CCF-0621508 and by ARO
agreement DAAD19–02–1–0389.

References

[1] P. H. Carns, W. B. Ligon, R. B. Ross, and R. Thakur,
“PVFS: A parallel file system for Linux clusters,” in

Annual Linux Showcase and Conference, Atlanta, GA,
Oct. 2000, pp. 317–327.

[2] P. H. Carns, S. J. Lang, K. N. Harms, and R. Ross,
Private communication, Dec. 2008.

[3] D. Habas and J. Sieber, “Background Patrol Read
for Dell PowerEdge RAID Controllers,” Dell Power
Solutions, Feb. 2006.

[4] J. Vasileff, “latest PERC firmware == slow,” Jul. 2005,
http://lists.us.dell.com/pipermail/linux-poweredge/
2005-July/021908.html.

[5] P. H. Carns, “need better error handling of “too many
open files” condition,” Jun. 2008, http://trac.mcs.anl.
gov/projects/pvfs/ticket/50.

[6] V. Prabhakaran, L. N. Bairavasundaram, N. Agrawal,
H. S. Gunawi, A. C. Arpaci-Dusseau, and R. H. Arpaci-
Dusseau, “IRON file systems,” in SOSP, Brighton, UK,
Oct. 2005, pp. 206–220.

[7] I. Cohen, S. Zhang, M. Goldszmidt, J. Symons,
T. Kelly, and A. Fox, “Capturing, indexing, clustering,
and retrieving system history,” in SOSP, Brighton, UK,
Oct. 2005, pp. 105–118.

[8] E. Kıcıman and A. Fox, “Detecting application-level
failures in component-based Internet services,” IEEE
Trans. on Neural Networks, vol. 16, no. 5, Sep. 2005.

[9] A. V. Mirgorodskiy, “Automated problem diagnosis in
distributed systems,” Ph.D. dissertation, University of
Wisconsin-Madison, Madison, WI, 2006.

[10] E. Thereska, B. Salmon, J. Strunk, M. Wachs, M. Abd-
El-Malek, J. Lopez, and G. R. Ganger, “Stardust:
Tracking activity in a distributed storage system,” in
SIGMETRICS, Saint-Malo, France, Jun. 2006.

[11] A. Aranya, C. P. Wright, and E. Zadok, “Tracefs: A
file system to trace them all,” in FAST, San Francisco,
CA, Apr. 2004, pp. 129–145.

[12] S. S. Shende and A. D. Malony, “The Tau parallel
performance system,” Int. J. of High Perform. Comput.
Appl., vol. 20, no. 2, pp. 287–311, May 2006.

[13] B. P. Miller, M. D. Callaghan, J. M. Cargille, J. K.
Hollingsworth, R. B. Irvin, K. L. Karavanic, K. Kun-
chithapadam, and T. Newhall, “The Paradyn paral-
lel performance measurement tool,” IEEE Computer,
vol. 28, no. 11, pp. 37–46, Nov. 2005.

[14] K. Shen, C. Stewart, C. Li, and X. Li, “Reference-
driven performance anomaly identification,” in SIG-
METRICS, Seattle, WA, Jun. 2009.

[15] N. Joukov, A. Traeger, R. Iyer, C. P. Wright, and
E. Zadok, “Operating system profiling via latency anal-
ysis,” in OSDI, Seattle, WA, Nov. 2006, pp. 89–102.

[16] J. DeVale, P. Koopman, and D. Guttendorf, “The Bal-
lista software robustness testing service,” in Testing
Computer Software, Washington, DC, Jun. 1999.

http://lists.us.dell.com/pipermail/linux-poweredge/2005-July/021908.html
http://lists.us.dell.com/pipermail/linux-poweredge/2005-July/021908.html
http://trac.mcs.anl.gov/projects/pvfs/ticket/50
http://trac.mcs.anl.gov/projects/pvfs/ticket/50

	Introduction
	Problem Statement
	Anecdotal Motivation
	Instrumentation
	Experimental Set-up
	Statistical Syscall-Based Diagnosis
	Semantic Syscall-Based Diagnosis
	Results
	Related Work
	Conclusion
	References

