Barriers to WDM Deployment on Military Platforms

John Gallo
BAE SYSTEMS
Aerospace Electronics
Lansdale, PA 19446

DARPA/MTO
WDM for Military Platforms Workshop
18 April 2000

REVIEW OF THIS MATERIAL DOES NOT IMPLY DEPARTMENT OF DEFENSE ENDORSEMENT OF FACTUAL ACCURACY OR OPINION
Barriers to WDM Deployment on Military Platforms

DARPA/MTO, WDM for Military Platforms Workshop held in McLean, VA on April 18-19, 2000, The original document contains color images.
Militarized (Flight-Qualified) 18 GHz Single-Mode Transmitters

Mature, Military Hardware for Point-to-Point Applications

-55 to +90 °C Operational
Generic WDM for Non-Blocking, Full Broadcast Antenna Selection

WDM Fiber Network Replacing Conventional RF Cabling, Optical Power Divider (PD) and Optical Tunable Filters (OTF) Replacing Conventional RF Switch; All Antenna Signals Available at Each Receiver

APPROVED FOR PUBLIC RELEASE, DISTRIBUTION UNLIMITED

REVIEW OF THIS MATERIAL DOES NOT IMPLY DEPARTMENT OF DEFENSE ENDORSEMENT OF FACTUAL ACCURACY OR OPINION
Current Analog 18 GHz Link WDM System
(80 Antennas to 16 Receivers using 4 Wavelengths)
Dual Channel (10.1 and 10.5 GHz) Switching (Optical Tunable Filter)

Switch Input Signal

100 ns/div

\(\lambda_1 \) on
\(\lambda_2 \) off
\(\lambda_1 \) off
\(\lambda_2 \) on

Switching Speed ~80 ns
RF Crosstalk <-76 dBe
RF Bandwidth 18 GHz
Insertion Loss ~8 dBe

Switching (Optical Tunable Filter)

To Rx

\(\lambda_1 \) from Tx #1
\(\lambda_2 \) from Tx #2

2x1 Coupler

Optical Circulator

2x2 Optical Switch

FBG #1
FBG #2

Optical Tunable Filter (OTF)

Switch Driver Circuit

Electrical Control Signal

REVIEW OF THIS MATERIAL DOES NOT IMPLY DEPARTMENT OF DEFENSE INDORSEMENT OF FACTUAL ACCURACY OR OPINION

APPROVED FOR PUBLIC RELEASE, DISTRIBUTION UNLIMITED
BAE SYSTEMS has developed proprietary technology to reduce the noise figure (RIN ~ -157 dB/Hz) of fiber optic microwave links with high optical processing losses due to WDM, switching, and other distribution components.
Desperately Needed Developments to Enable Replacement of RF Switches

- **Low Insertion Loss, High-Speed Switches**
 - 10 ms SONET Switching is Too Slow for Military Applications
 - <10 μs is Typical Requirement (<100 ns for High POI Appl.)
 - Narrow Bandwidth (FP), High-Speed Switches Don’t Help!!

- **Low-RIN EDFAs**
 - WDM Requires Muxing and Demuxing Multiple Channels
 - EDFAs **ALWAYS** Degrade Analog Link Performance
 - EDFA RIN Must be Reduced Below -155 dB/Hz

- **High Crosstalk Suppression Between WDM Channels**
 (Optical Switches for Tunable λ Filtering)
 - Easy for Narrowband RF Signals (<1 GHz)
 - Difficult for 18 GHz and Higher Sidebands
 - Fiber Bragg Gratings are the Only Demonstrated Technology to Achieve > 35 dBo Crosstalk Suppression for 18 GHz Sidebands

- **High-Power WDM DFB Arrays**
 - >40 mW/Channel @ RIN <-160 dB/Hz, < 1 MHz Linewidth