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Objectives

AIM-C : Accelerated Insertion of Materials — Composites
(Funded by DARPA and managed by NavAIr)

The goal of the AIM-C program
(1) Accelerate the insertion of new materials and processes

(2) Evaluate the effects of material, processing, and design
on the performance of composite structures

Our objective is to analyze
* Environmental effects (temperature, moisture)

* Durability (creep and fatigue life, residual strength)
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State of the Art in Composite Analysis AM

No principal stresses or strains
- Composites are highly orthotropic and viscoelastic

Involves numerous parameters

= == ply failure
NV
=227 E,E,E,G,,G,G, _ |
S{A Oy Oys Oy Ty Tyupn Ty Laminate failure
X X.Y,Y",S
isotropic materials Composite materials

Smallest level of imperfection is at the fiber / matrix level

Infinite combinations of parameters must be tested
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Analytical Models AM

Strain Invariant Failure Theory (SIFT)
- Predicts initial and final failure of composite structures

Micromechanics
- Predicts 3-D ply properties and strain magnification factors

Accelerated Testing Methodology (ATM)
- Rapid generation of durability database as master curves

Linear Cumulative Damage Law (LCD)

- Life estimation under combined fatigue/creep loads
- Residual strength prediction
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Input/Output Durability Assessment Structure

—_————ee e —— - —_————- - -, — — —_—_— - - —_—— — ——— — — ——— — — —

Inputs ——> Input Screen

' | - Resin properties | | i l T i i
| -Fi i N ICro- |

| - Fiber properties | | | |, _ i : i
i - Volume fraction i i ATM Mechanics i i SIFT AnaIySIS i
i - etc. i i : i> 3-D FEA based analysis i
I B ! | | of complex composite | |
i | . . ' | laminates and structures i
| Outputs ||| Durability Prediction [«i—- |
| Long term strength | ! i v i i i
| Life estimation |« Output Screen - |

—_—_———— e — — —_—_——— - e — — ~N—_——— e -

Approved for Public Release, Distribution Unlimited 7



Verification Process

Evaluation of NASA HSR Data

- Mainly residual modulus and strength after thermal and mechanical load cycles
- IM7/5250-4 and IM7/K3B

IM7/K3B quasi-isotropic laminates after 3 types of ---@---  (0°Fto 350°F

: —8— - 65°F to 415°F
thermal and mechanical load cycles (Gates, 2003) 65°F tg e

1.1 7 Residual Modulus 11 Residual Tensile Strength
0 -2.5% <
E o
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Profile hours [log hrs] Profile hours [log hrs]

Use for the verification of the durability assessment methodology
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Strain Invariant Failure Theory (SIFT) AM

s
v dilatational
(& Ji=gtete, | L
—
7 distortional ~ -------,
e — =& &)+ (51-&3)
5 +( - 52)2}/2]1/2 '
3-D macro strains 3-D micro strains Strain invariants
due to mechanical —) at various locations E— In the resin
and thermal loads In the fiber and resin and In the fiber
+
Micro thermal strains compare

due to CTE mismatch

of fiber and resin
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Final Failure Prediction Using MER

Maximum Energy Retention (MER) monitors retained and dispersed
strain energies during the progressive damage to predict the final failure

(2002, Gosse)

Schematic of MER used in the Stanford software
[0/90/0] il i
-, 2D i -, ~
* 2 -
Intact state 90° J, failure ~ 0° J, failure 00 e,y failure
Dispersed Energy  90° o,¢, 0° o, 0° o4
Stiffness Assume Eeff: Eintact(l = O'5Udispersed /Uintact)
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Examples of Failure Envelopes
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Micromechanics Finite Element Models

Cross-sectional view of Square Array I\/Iodel Unit Cells
continuous fiber composites D R

Predicts 3-D ply properties and strain magnification factors
as functions of V, E;, and E....
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Arceerabnd siertan of Mafenas

Evaluation of Random Fiber Array

Finite element model (Ha, 2003) *V,=0.60
* Number of fibers = 120

Modulus Magnification
-m- Square 0.30
E,JE,, | - Hexagonal .. 0.25 N
2 gg Random — Square
£ 5 1 —— Random
5 10|
£ 05
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Identical to idealized array Distribution of microscopic failures
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Accelerated Testing Methodology

Series of tests at elevated temperature

Modulus
Measurements
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[ ]

Time-Temperature

Superposition

Static Strength
Master Curve

¢

-
Time-Temperature

Superposition

N

Creep Strength
Master Curve

Fatigue Strength
Master Curves
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/

Predictions for wide ranges of temperature and time to failure
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AM

L Time-Temperature Superposition (TTSPY™ "

Assumption: Same shape for any temperature = Master Curve

Strength Strength
T;>T,> T,

TTSP
>

e —— >

« > test range

Log time to failure

Curves can be superposed by horizontal shifts

— Master curve can be generated from the
fragments of curves at different temperatures

= Accelerated evaluation of long term performance

[T~

Log time to failure

Shift factors

Temperature
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Time-Temperature Shift Factors

Failure Load [kN]
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Same shift factors for various cases with common resin system
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Creep Life Prediction

Linear Cumulative Damage Law (LCD) relates static and creep failures

Static loading Creep loading

stress stress stress
static MC creep MC

failure Gy failure

static MC

LCD
Gj :

At =t /N

creep MC

ts,css time tC,GS tC,Gi time

Static (constant strain rate) loading considered as log time
series of creep loads with increasing stress level.

Using LCD,

At At At At creep lifeat o
+ =+ =4 +...=
s Loy tovs  Tous L= = ()

[~

c,ol C,02 c,03
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L Creep Life Predictions and I\/Ieasurementéq:N'-

CFRP Bolted Joint Tensile

Creep Test (Miyano) — Prediction T=25 © Test Data T=25
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Time to Failure [log min]

Creep life predictions agree with the creep test measurements
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Fatigue / Creep Life Prediction

Creep and fatigue are related when rate dependence is considered

This allows
- Linear interpolation for arbitrary stress ratio (R=c..;./;4,)
- Life prediction for combination of creep and fatigue loads using LCD

S Stress
tress
S Omax Creep R=1
- Fatigue O<R<1
Fatigue R=0
Inas time
At o .., R, and N
l0g tnreo 109 tigs Predicted life is
Time to failure log t; ting=Rxtpayt (1-R) Xt ypoo |
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_Normalized &', master curves
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Fatigue / Creep Combined Load

Linear Cumulative Damage (LCD) = Miner’s Rule

with respect to time only if correct frequencies are used

Ly + 7 + G + L + .. =1 = Require ATM
tf,l tf,2 tf,3 1:f,4

Example: Simplified flight load
Applied strain

Temperature Repeated
c = 150-3 10000 ﬂlghtS | t. tf,i Ai

e=1e-3 1 10°> 1084 0.11

i ATM 2 1050 1052 0.57

i &LCD 5 050 102 0.00

O\ T 4 1055 105 000

3 4 sum 0.68

0 30 |40 140 180 time

_50°C [min] Life=1/068=1.5
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Residual Strength Prediction

Linear Cumulative Damage (LCD) After a damage of 1
Loy by =1 = PR R
1:f,l tf,2 tf,3 tf,l tf,2 1:f,3
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Effects of Moisture

Reversible effects
- reduced modulus
- reduced strength
- lower T,
- swelling of the resin

Irreversible effects

- fiber/matrix interface failure

Temperature-Moisture Superposition
(2002, Miyano and Sekine)
T =T + ay M, where a,,= Moisture shift factor

CFRP [0] flexural strength

(Miyano, 2001)

Irreversible <=

A 4

Micromechanics analysis
of interface failure

reversible <==)
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Load Independent Degradation

Separate the long-term degradation to

Load-dependent degradation

- Creep/fatigue failures

:> Systematic prediction of

- Due to applied or hygro-thermally induced stress

Load-independent degradation

- Assume no effect of applied loads

- Chemical degradation due to oxidization, UV, etc.

Master curves from ATM

log t;

p

—> Aging Tests

ATM

load-dependent degradation

Simplified tests without
mechanical load

Degradation factors from aging tests
(Thermal stability models by Boeing)

combine

factor

Iog t;
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Conventional Carpet Plot

Applied load Last ply failure stress for various laminates
N, =1 MPa-m
N, =0 MPa-m |
N6 _ O Mpfi:m\ . e 100% O plys
TZ4EF03— 80% 0 plys
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1.2E+03 | 10%0 phys
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0% O plys
1.0E+03 -3 - Quasi isotropic

8.0E+02 -
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4.0E+02 //

2.0E+02
|
|
|

0.0E+00 ‘ ‘ ‘
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Electronic Carpet Plot Output AmM

Applied load | Required thicknesses of various laminates under bi-axial static loads
N, = 2 MPa-m
N, = -1 MPa-m Quasi-isotropic

No = 0 MPa-m 25/50/25 | /
/ \

AN

N
N

80/0/20

e 100% O plys
80% 0 plys
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40% 0 plys
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0% O plys

- - - Quasi isotropic

40/20/40

;

Required Thickness LPF [mm)]

60/0/40

[

0

0 20 40 60 80 100
% 45 Plys

Up to 50% reduction in required thickness using wide ranges of ply orientations
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Electronic Carpet Plot — Multiple Loads:m-

Required thicknesses of various laminates
under multiple fatigue/creep loads 1. Pressure Load (RTD)

N, =2 MPa-m t. =20 years
N, =1 MPa-m creep load
Ng =0 MPa-m

12 N\ A

DN

[
o

2. Landing Load (40C, 0.5%)
N1=-2 MPa-m t;=50000 min

Quasi-isotropic

(o]

Required Thickness LPF [mm)]

25/50/25 N2 = 0 MPa-m N, =50000 cycles
| N6 = 0 MPa-m
6 e 100%0 plys 60/40/0 50/50/0 |
kO 10 to 15% reduction | 3. Gust Load (RTD)
4 40% 0 plys | N1=4MPa-m t =100 min
———20% 0 plys i N2 =1 MPa-m N, =100 cycles
0% 0 plys | N6 = 2 MPa-m
° ~© - Quasiisotropic i (Pressure load plus axial and shear
| loads superposed)
0 l | |
0 20 40 60 80 100

. % 45 Plys .
Optimum layup for multiple loads are not obvious
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Parameter Study

Initial and final fatigue strength ratios of quasi-isotropic laminate | applied load
for RTD (room temperature dry) to HTW (hot wet) conditions N, =2 MPa-m
N, =1 MPa-m
40 Ng = 0 MPa-m
Reduction of final failure strength | Fatigue Parameters
Sy - due to temperature and moisture | N = 10°cycles
» t. = 10’min=20years
o
5 30 R =6,/ Ornax = 0
o
e
D 2.5 -
3
rar —O— Strength Ratio - FPF (fail if <1)
9 20
g —A— Strength Ratio - LPF (fail if <1)
=
S 15 -
c
@©
S 10 —0
z
- 43/0/%/%
0.5 O0— ; ; ;
C Reduction of curing stress leading
0.0 to higher initial failure strength

T=20,M=0 T=30,M=0.2 T=40,M=0.4 T=50,M=0.6 T=60,M=0.8
Temperature [C] and Moisture [%]
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Conclusions

Accelerated Testing Methodology (ATM) allows rapid generation
of durability database as master curves.

Strain Invariant Failure Theory (SIFT) relates basic material
durability database to the durability of composite laminates and
structures

ATM/SIFT combination provides framework for evaluating the

effects of various parameters associated with material selection,
processing, design, loads, and environmental conditions.
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