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PREFACE 

This Note was written under a grant from the National Science 

Foundation for investigations into political science using methods 

of game theory (SES 77-23676). It describes the first application 

of a new, "attitude-dependent" measure of voting power to a real 

political institution, namely the 1978-79 term of the u.S. Supreme 

Court. It was presented at the 1981 Annual Meeting of the Midwest 

Political Science Association in Cincinnati, Ohio, April 16-18, 1981. 

Arthur Frank, a Rand consultant, is in the Department of 

Political Science at the University of Rochester. 
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SUMMARY 

The distribution of power among the nine justices of the 

U.S. Supreme Court is calculated using techniques of factor analysis 

in conjunction with a generalized Shapley-Shubik power index that 

takes into account the ideological or philosophical profiles of the 

voters. A three-dimensional profile space is constructed, based on 

data from the 1977-78 term. It is found that, because of his central 

position in I this space, Justice Powell has the highest probabili ty-­

about 35 percent--of being pivotal in a typical decision. 
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1. Introduction 

Since Shapley and Shubik's seminal paper in 1954, mathematicians, 

political scientists, and others have used power indices to study 

the distribution of power in political institutions such as the U.S. 

Electoral College (Mann and Shapley, 1962; Banzhaf, 1968; Owen, 1975), 

the United Nations Security Council (Riker and Ordeshook, 1973), the 

county legislatures of New York State (Banzhaf, 1965; Imrie, 19731), and 

the proposed new Canadian constitution (Miller, 1973; Straffin, 1977). 

Both the Shapley-Shubik (S-S) and the Banzhaf power indices, which have 

been used to study these institutions, depend only on an institution's 

voting system, not on any political factors, such as the ideologies or 

predispositions of the members of the voting body. 

Owen (1971) and Shapley (1977) have developed slightly different 

"nonsymmetric" generalizations of the S-S index which measure the power 

of individual members of a voting body, given prior knowledge of each 

member's ideological attitudes or predilections. To date, no one has 

published any application of these indices to the distribution of power 

in a real political institution. This paper is a first attempt to do 

so. We use the voting records of the nine Supreme Court justices to 

estimate their ideological positions, and then apply the new, attitude­

dependent index to estimate the distribution of power in the current 

Supreme Court. 

2. The Generalized S-S Index 

Consider a simple voting game with a finite set of voters 

N {I, 2, ... , n} whose "voting rule" is defined by W, the set of all 
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subsets of N which are winning coalitions. Suppose that each issue 

ranks the voters in order of the degree of their support; the most 

dedicated advocates first, the less fervid supporters next, then the 

most persuadable opponents, and so on, down to the most stubborn 

opponent at the end of the list. For such an ordering of the voters, 

the person who, together with his predecessors, forms a minimal 

winning coalition is called the pivot. The pivot is the one whose 

preferences decide how strong a bill gets passed, or how much money 

actually gets appropriated for a given program. The S-S index of power 

is defined to be the fraction of orderings for which each voter is 

pivotal; thus, a voter's power is calculated simply as the number of 

orderings for which he is the pivot, divided by n!, the total number 

of orderings. In other words, a voter's power may be regarded as the 

probability of his being the pivot, given that all orderings are 

equally likely to occur. 

For an abstract measure of constitutional power in a voting 

system, the S-S index may be very appropriate. If one only wants to 

measure how the voting system itself distributes power a priori, without 

considering any information one might have about the individual voters 

in the system, the assumption of equiprobable permutations is 

unassailable. But if one wants to measure the actual distribution of 

power in a particular body at a particular time, the information that 

one has about the political beliefs of the voters should enable one to 

make better estimates of their probabilities of being pivotal. 
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For example, if one considers the U.S. Electoral College as a 

weighted majority game with 51 players (the 50 states and the 

District of Columbia), then the S-S index yields the same power for 

Delaware as it does for the District of Columbia, since each has three 

electoral votes. But Delaware, a politically marginal state which has 

been carried by the winning presidential candidate in the last eight 

elections, is much more likely to be pivotal in the 1984 presidential 

election than is the heavily Democratic District of Columbia, with its 

predominantly Black electorate. The nonsymmetric, generalized S-S index 

differentiates among voters according to such identifiable political 

attributes of the electorate (Shapley, 1977). 

Suppose that the members of a voting body all make their voting 

decisions on the basis of a few underlying political attitudes. If 

there are m different attitude scales, then we can represent each voter 

by a point inRm 
[= m-dimensional Euclidean space], sometimes called a 

"political profile," where each coordinate represents where the player 

falls on that attitude scale. Now we want to consider how an issue, 

arising at random, might align the voters in order of their intensity 

of support or opposition. We represent issues generally as real-valued 

functions on the profile space Rm, with the interpretation that voter i 

precedes voter j in the order of support of issue f if f(x
i

) > f(x
j
), 

where xi and xj denote the profiles of voters i and j, respectively. 

For convenience and interpretability, we restrict ourselves to homogeneous 

linear functions on Rm, i.e., functions of the form 
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f(x) (s, x) 

[= E s'.x. , 
1 1 

the inner product of the m-dimensional vectors sand xJ. 

Thus, issues will be represented by m-dimensional vectors s, and the 

issue space is the set of all such vectors, in other words, ~m again. 

(Note that although the issue space and the profile space are isomorphic, 

they should not be regarded as the same space. For example, the origin 

in the profile space has no particular significance, but in the issue 

space it is the center that determines the direction in which each 

issue "points.") 

We have, then, the definition: i < j (read "voter i is more 
s 

supportive of issue s than voter jlt) if and only if (s, xi) 

We think of issues as representing linear combinations of the underlying 

attitudes in accordance with which voters make their decisions. For 

example, if we have a voting body in which voters decide how to vote 

according to their views on only two scales, a liberal/conservative 

scale and an urban/rural scale, then s = (1, 0) would represent a 

purely liberal/conservative issue, s (0, 1) a purely urban/rural issue, 

and s = (2, 1) an issue in which the liberal and urban goals are in 

opposition to the conservative and rural goals, with the liberal/ 

conservative factor twice as important as the urban/rural factor. 

Under this interpretation, only the direction of an issue matters, not its 

magnitude and so (if we ignore the "null" issue s 0) we can normalize 

by II s II = 1, where II • 1/ represents the Euclidean norm. With this 

assumption, the inner product (xi, s) has a simple geometrical 

--interpretation: it is the signed distance along the ray Os between the 
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origin a and the perpendicular projection of 
i 

onto that ray. The order x 

--of these projections along the ray as gives the ordering of the voters 

support of s. (See Figure 1.) If the profiles 
i 

be all we assume x to 

distinct points, then with negligible exceptions each s will in fact 

generate a complete ordering, i.e., one without ties. 

As before, for each ordering of the voters, the voting rule will 

yield a unique voter who is pivotal. For a given s and for each i, 

define P.(s) to be the set of voters who are more supportive than i of 
1 

issue s: 

p. (s) 
1 

{j EN: j < i}. 
s 

Each voter i will then have a region S. on the surface of the unit 
1 

in 

sphere S {s E ]R
m

: II s II = I}, consisting of those normalized issues for 

which he is pivotal: 

S. {s E S: P.(s) ~ Wand P.(s) U {i} E W}. 
1 1 . l 1 

If we assume that the issue direction is a random variable uniformly 

distributed over S, then its probability of being pivotal is 

i 

surface area of S. 
1 

surface area of S 

This will be taken as the definition of the "attitude-dependent" (AD) 

power index that we shall use. 
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1,6,5,4,2, 7, 3 

7 

" 2,4,3,6, 6, 7 

Fig. 1 - Orders generated by two issues in lR 2 
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That this index generalizes the original, symmetric Shapley-

Shubik index may be seen as follows. Take the dimension of the 

profile space equal to the number of voters: m = n, and take the 

profiles themselves to be the unit vectors of ~m. (In this 

representation, we may think of each coordinate of ~m representing 

the corresponding voter's private welfare.) Then, by symmetry, each 

ordering of the voters is equally likely, and so the AD power index 

just defined will coincide in this case with the original, symmetric 

Shapley-Shubik index. 

In some applications of the AD power index, the assumption that 

issue directions are distributed uniformly over the unit sphere may 

be unreasonable. In this case, one might seek a linear transformation 

T of the given issue space that yields a new space in which spherical 

uniformity would be a more reasonable assumption. (Note that linear 

transformations will generally distort the unit sphere into some sort 

of ellipsoid, so that "spherical uniformity" is not an invariant quality.) 

A simple example of such a transformation would be to rescale one of the 

"ideological" coordinates and thereby increase or decrease its 

relative importance. Other linear transformations might be employed 

to compensate for intrinsic correlations between the different 

coordinates. Applying T to the issue space is equivalent to applying 

-1 
T to the profile space. Thus, we can get the effect of any 

"elliptically uniform" probability measure on the space of issue 

directions by applying a suitable linear transformation to the profiles 
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i 
x instead, and then using ordinary spherical measure on the resulting 

transformed data. (See the second appendix in Shapley (1977).) 

3. Power in the United States Supreme Court 

The Supreme Court is a nine-member voting body which operates 

under simple majority rule, so that for any ordering of the justices, 

the one ranked fifth is the pivot. For an extreme example, if 

the dimension of the attitude space were just 1, so that the justices 

always considered cases in purely liberal/conservative terms, then the 

median justice in the center of the liberal/conservative ordering 

would have all the power. Thus, for m = 1 there is no computational 

i problem to speak of, once the x have been determined. For m = 2, 

again, once the justices' profiles have been properly located in the 

plane, the computation of the power index is a fairly routine exercise 

in plane trigonometry (Shapley, 1977). For m = 3, however, the 

computation is not at all routine; the methods used to get answers will 

be described presently. For m ~ 4, we do not at this time have a 

systematic method for computing the AD power index. 

In order to estimate the attitudes of the justices and the 

ideological distribution of the cases that they decide, we performed 

a principal-components factor analysis of the 94 nonunanimous votes that 

occurred during the Court's 1977-78 term. There were a few more nonunanimous 
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votes than there were cases decided by nonunanimous vote, for in some 

* instances two separate issues in the same case were voted on. The 

votes were tabulated from U.S. Law Week, and missing data were 

handled by pairwise deletion. 

From the principal components analysis three factors were 

retained; together they accounted for 64.7 percent of the variance in the 

ninety-four votes. The factor pattern matrix gave us a (preliminary) 

placement of the issues in ~3, and the factor score matrix gave us a 

placement of the voters. The first principal component was clearly 

interpretable as a liberal/conservative measure, which by itself accounted 

for 35.3 percent of the variance. This is the horizontal axis in 

Figure 2, along which the justices may be seen to line up from left to 

right much as one would expect from journalistic accounts of their 

judicial philosophies. Subsequent principal components are less clearly 

interpretable. The second principal component, represented by the vertical 

axis in Figure 2, accounts for 15.6 percent of the variance; it seems to 

load most highly on issues pertaining to judicial restraint in overturning 

* For example, in the most publicized case of the term, Bakke vs. 
University of California at Davis Medical School, there were two 
separate votes: one on whether the racial quota system for admission 
to the Davis Medical School violated Bakke's rights under the Fourteenth 
Amendment or the 1964 Civil Rights Act, and a different vote on whether 
any race conscious admissions policy was permissible. 

This was a rare case in which it was obvious who the pivot was. 
Four Justices voted to uphold the Davis quota system, four Justices voted 
to strike down race conscious admission programs at public universities 
generally, and Justice Powell, by siding with the "liberals" on one vote 
and the "conservatives" on the other, was able to determine the final 
content of the decision. 
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state laws and regulations. Justices with a negative score on this 

dimension are inclined to permit the states to legislate as they 

please unless the case for federal pre-emption is quite strong, while 

those with a positive score are more inclined to overturn state actions. 

The third dimension, represented by the axis perpendicular to the 

surface of the paper, accounts for 13.8 percent of the variance, and 

is more difficult to identify heuristically. It loads most highly 

on technical cases, particularly those having to do with taxes. 

Justices with a negative score on this dimension tend to support the 

taxpayer, while those with a positive score tend to support the Internal 

Revenue Service. Succeeding factors accounted for considerably smaller 

portions of the total variance and were not included in the analysis. 

Table 1 

FACTOR SCORES (UNADJUSTED COORDINATES) 

Justice xl x
2 x3 

1. Burger 1.074 .407 -.384 

2. Brennan -1.433 -.934 .723 

3. Stewart -.Oll -.145 -.206 

4. White -.424 1.173 .899 

5. Marshall -1.262 -.916 .542 

6. Blackmun -.015 1.415 -.040 

7. Powell .034 .947 -.001 

8. Rehnquist 1. 774 -1.142 1.266 

9. Stevens .021 -.820 1.694 
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The factor scores listed in Table 1 were used to estimate 

the justices' ideological positions, but the factor pattern matrix 

was not used directly to estimate the distribution of issues. Some 

of the issues did not load very highly on any of the three factors 

retained, and for those issues the coordinates given by the factor 

pattern matrix are not very useful. From the model of voting we are 

using, if the placement of the justices perfectly reflects their 

ideologies, then for each issue direction there should be a plane 

perpendicular to the issue line that clearly divides those who actually 

voted "nay" on the issue from those who voted "yea." Since the three 

retained factors do not account for all of the variance in the votes, 

such a discriminating plane cannot always be found. Nevertheless, we 

want to choose for each issue a direction, s, which optimizes some 

measure of how well its best discriminating plane succeeds in 

the "yeas" and "nays." 

Let s be issue direction, with II s II 1, and let i an = x , 

i = 1, 2, ... , 9 be the profile vectors of the nine justices. 

i -
t. = (s, x ), and define t to be the mean of the t .. Then 

1 1 

2 
(j (s) 

9 
1/9 ~ t~ 

1 1 

-2 
t 

explaining 

Define 

--I 

measures the dispersion of profiles in the direction s. If t is _1 
the (signed) distance from 0 of an arbitrary plane perpendicular to 

the issue line, then a reasonable measure of its failure to explain 



the "yeas" and "nays" is 

v (t) 
s 

e 

i E YEA 

13 

(t-t .) /a 
1 + e 

j ENAY 

- (t-t . ) /a 
J 

I This measure is to be minimized with respect to t in (- co, o!l) for 

1< 
each s, and then minimized with respect to s in S. 

We see that V (t) is a convex function of t that goes to +co 
s 

as to .... ±. co (since all the votes are nonunanimous), so it has a 

unique, finite minimum in t for each s. By simple calculus, the 

minimum is attained at t = t where 
0' 

i E YEA 

so we have 

t 
o 

t (s) 
o 

(t -t.)/a 
o 1 

e 

Then the minimum value of V is 
s 

V (t ) 
s 0 

* 

j ENAY 

- (t -t.) /a 
e 0 J 

Note that if the plane separates perfectly, then the exponent 
of e is negative for every term. The exponential function was chosen 
because it increases slowly for negative arguments (when t. is on the 
"correct" side of t) but rapidly for positive arguments (wEen t. is 
on the "wrong" side of t); it also has very attractive analytic~l 
properties. 
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Call this value V . (s). The issue-direction s which minimizes V . (s) mln mln 

is the one which best explains the "yeas" and "nays," within the 

restrictions of our model. Since /I s II = 1 by assumption, s may be 

specified by its longitude e (0° S; e ~ 360°) and its latitude ¢ 

(- 90° s;: cp ~ 90'). If we measure the longitude of s by the angle it 

makes in the (xl' x
Z

) plane with the xl axis, and the latitude by its 

angle of elevation above the (xl' x
Z

) plane--the "north pole" being 

the point (0, 0, l)--then the three coordinates of s are given by 

Xl = cof!lj; cose, Xz = cof!lj; sino, x3 = si~. Thus we have 

t. 
1 

i .. i i 
Xl cof!lj; cose + Xz cos¢> sin¢ + x3 si~. 

Plugging this into the above formula for V. gives us a function of 
mln 

the two variables ¢, 8 to minimize. Using the factor pattern matrix 

to provide our initial guesses, we used Newton's method to minimize 

the 94 functions V
min

, one for each issue. 

Now let us consider these 94 points on the sphere S as a random 

sample from some underlying issue-generating process. We would like 

to find a linear transformation on R3 that makes these 94 points look 

"most uniform" on S. The untransformed distribution is certainly not 

uniform, because the first coordinate is so much more prominent than 

the other two. In issue space, this means that more issues are observed 

near the xl axis (i.e., more issues are almost pure liberal/conservative 

issues) than are near the other two axes. In the profile space, this 

means that if we are going to make the assumption of spherical uniformity 
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the configuration of profiles in Figure 2 should be more 

"one-dimensional," clustered along a line parallel to the xl axis, since 

the second and third coordinates are less significant than the first. 

This suggests that a simple transformation in issue space whose matrix 

has the diagonal form 

(1) with a, b > 1 

would improve the representation, since it would magnify the second 

and third coordinates and cause fewer issues to fall near the "pure" 

liberal/conservative issue-direction (1, 0, 0). Further examination 

of the data also suggests that b should be greater than a. Of course, 

more general transformations than (1) should also be considered; as 

it turns out, the form 

(2) 

* provides full generality. 

a, b > ° 

We would like to proceed by minimizing some goodness-of-fit I 
statistic for the transformed issues that measures the "distance" 

between an empirical distribution of 94 points and the uniform 

~" Further detail in the matrix would merely introduce rotations, 
reflections and Euclidean similarities, none of which affect the power 
index calculations. In other words, we have just five essential degrees 
of freedom to work with, corresponding to the parameters a, b, c, d. e. 
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distribution on the sphere S. Unfortunately, there is no multivariate 

goodness-of-fit statistic with all the optimality properties that the 

Cramer-von Mises statistic has for the univariate case (Durbin, 1973). 

In the following we tried two expedients. Our first approach was 

to use the univariate Cramer-von Mises statistic to measure the 

goodness-of-fit of the empirical marginal distributions to the 

theoretical marginal distributions, and then minimize their sum. Now 

if the joint distribution of (xl' x
2

' x
3

) is uniform on S, then the 

marginal distributions of xl' x
2

' and x3 are each uniform on the 

interval [-1, 1]. (This follows directly from the surface area formula 

for the sphere.) Transform the 94 pairs of angles (C/J, e) back to 

rectangular coordinates by the formula xl = cos¢; cose, x
2 

= cos¢; sine, 

x3 = sin¢, and also double the observations to include the points 

(-Xl' -x
2

' -x
3
), since the only difference between an issue direction 

and its reverse is the way the vote was coded. To find a linear 

transformation of the diagonal form (1) that makes this distribution 

look "as uniform as possible," consider now the transformed coordinates 

where p, b a, 

(

Xl 
t-- , 

a,b 

aX
2 

t-- , 
a,b 

'12 22 22 xl + a x
2 

+ b x
3

.• We want to find the a and b with 

b :> a :> 1 that minimizes the sum of the univariate Cramer-von Mises 

statistics 
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_[1 [no. 
2 

of (x/ta,b) 's ~ t 1 Ct+ll] 188 2 
dt + 

_/1 [no. of (axzlR.a,b)'s~ t 1 ct+lJ 2 
188 2 

dt + 

_11 [no. of (bx/R. a,b)' s ~ t 1 Ct+ll] 2 
188 2 

dt. 

By a grid technique, we found that the values a 1. 85, b 1.96 

minimized the above measure. 

We would like to consider the more general class of transformations 

(2), but the above technique would be substantially more difficult to 

apply if five variables were involved. So to find the "best" 

transformation in the larger class, we used a different approach. One 

property of the uniform distribution on a sphere is that the coordinates 

are uncorrelated with each other, and that this remains the case if the 

coordinate system is rigidly rotated or reflected. If we could find a 

linear transformation that would, when applied to our 188 points on the 

sphere, make their coordinates uncorrelated even when rotated or reflected, 

we would have a good candidate for a transformation that makes the issue 

distribution "look uniform" on S. It is plausible to expect that a 
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transformation that does this will exist and be essentially unique 

(i.e., up to rigid motions); this question is discussed in Shapley 

(1977, Appendix B). 

We have developed an algorithm for finding such a transformation 

which will be explained fully in a later edition of this paper. 

Applied to our present problem, the transformation matrix that resulted 

is 

( ~ 
-.133 

1. 789 

o 

.204 ) 
-.327 

1.930 

This is reassuringly close to the matrix obtained by the previous 

method. The inverse of this matrix, when applied to the political 

profiles in Table 1 and Figure 2, yields the results shown in Table 2 

and Figure 3. As stated earlier, the geometric effect is to bring 

the profiles of the nine justices in closer alignment to the x-axis, 

making it more likely that a randomly-chosen issue in S will order the 

justices in accordance with their positions on the liberal/conservative 

axis. 



Whitef 
I 
I 

Blackmun 

Powell 

19 

f Burger 

f " --------7 
J /1 / 
f 'J( I I 

I ~1 slewart " I ~ I I 
,~ ~ Stevens I 

I 
-----------{ 

I 
I 
I 

I 
/ 

I 

! Rehnqulst 

Fig. 3 -- Adjusted position of justices in three-dimensi~nal space 



20 

Table 2 

FACTOR SCORES (ADJUSTED COORDINATES) 

Justice Xl x
2 x3 

1. Burger 1.136 .191 -.999 

2. Brennan -1.561 -.453 .375 

3. Stewart .094 -.196 -.625 

4. White -.436 .741 .466 

5. Marshall -1. 371 -.461 .281 

6. Blackmun .078 .787 -.021 

7. Powell .094 .529 -.001 

8. Rehnquist 1.582 -.518 .656 

9. Stevens .130 -.619 -.877 

Now all that remains is to determine the partition of the sphere 

S into the regions {S.} and to compute their areas. Computing the areas 
1 

is not difficult, since each S. consists of a number of spherical 
1 

polygons, each spherical polygon can be cut up into spherical triangles, 

and there is a standard formula for finding the area of a spherical 

triangle given its vertices. So all that needs to be done is to 

locate and identify the regions S .• 
1 

For the pivotal role to pass from voter i to voter j, the 

great circle defined by the equation (s, xi) 

crossed. Thus the edges of the partition of S into the nine regions 

Si must lie along the (;) = 36 great circle paths where there is a 

two-way tie between voters. The vertices of the partition must be 

among the intersections of these great circle paths 

three-way ties among the voters, i.e., the (; ) = 84 

that represent 

points V. 'k defined 
lJ 



by 

(V xi) 
ijk' 

* 
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( Xi) 
V. 'k' 
~J 

where 1 ~ i < j < k ~ q. To discover which of these points are 

actually partition vertices we compute, for each triplet (i, j, k), 

the number n, 'k of t 's such that (Vijk , xl,) > (V
ijk

, xi), in other 
~J 

words, the number of voters that precede the tied voters. If n
ijk 

is 0, 1, 5, or 6, then V, 'k is not a vertex of the partition, because 
~J 

the triple tie does not include fifth place. If n, 'k = 2 or 4, then 
~J 

we get a partition vertex of degree 3, exhibiting a pattern 

illustrated by the vertex V
ABC 

at the left of Figure 4. Three of the 

spherical polygons of the partition meet at such a vertex. Finally, 

if n, 'k 
~J 

3, we get a partition vertex of degree 6, like VABD at the 

right of Figure 4. Six of the polygons meet here, two belonging to 

each of the three voters that are tied at that vertex. 

Now to start piecing the puzzle together we look for a vertex 

of degree 6. At least one exists on each of the 36 great circle paths, 

for i and j cannot get from being tied for, say 3rd and 4th to being 

th th ** tied for 6 and 7 without passing through a point where they are 

changing from being tied for 4th and 5th to being tied for 5
th 

and 6
th

, 

* We are assuming throughout this discussion that the data are 
"in general position," so that all 84 points are distinct. Thus we 
do not worry about four-way ties. Note that the great circles will 
also intersect at points where four voters are tied in pairs; these 
points have no significance at present. 

** th th Note that if i and j are tied for k and (k+l) at a point 
s, then at the diametrically opposite point -s they are tied for 
(9_k)th and (9-k+l)th. 



I Bpivots 1 
(A in 4th) 
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10 pivots I 
BO tied 5/6 

(B in 4th) 
(C in 3rd ) 
(0 in 6th) 

o 
< 

10 pivots I 
(A in 6th) 

Fig. 4 - Typical vertices in a partition 
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At that point they are in a three-way tie with some other voter k, with 

nijk = 3. Consulting Figure 4 again, we see that when we travel in any 

direction on a great circle path through a vertex of degree 6, we are 

on an edge of the partition. But when we hit a vertex of degree 3, the 

next section of the path we are following is not a partition boundary, 

and we can continue to ignore that path until another vertex of degree 3 

is reached. 

Using these observations, we can systematically piece together 

the regions S.; in this case they turned out to consist of from five to 
l 

* ten polygons each, ranging from triangles to hexagons. The areas may 

then be calculated by spherical trigonometry (Table 3). Figure 5 is 

an attempt to depict two of the regions on an astronomical sky chart; 

the heavy curve is the trace of the great circle along which 7 and 8 

are tied. 

Table 3 

AD POWER INDICES 

Justice Transformation (1) Transformation (2) 

1. Burger .065 .064 

2. Brennan .033 .034 

3. Stewart .157 .154 

4. White .129 .124 

5. Marshall .080 .084 

6. Blackmun .092 .085 

7. Powell .346 .356 

8. Rehnquist .051 .061 

9. Stevens .047 .039 
1.000 1.001 

* Note that the "jigsaw puzzle" has to be solved only once--the 
linear transformations (1) and (2) change the coordinates of the 
vertices and hence the areas of the polygons, but not the way the pieces 
fit together. 
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4. Potential Usefulness of the Attitude Dependent Power Index 

The methodology developed in this paper is limited in 

applicability to the case of a small number of voters and so far no more 

than three dimensions of ideology. For large bodies, such as the 

U.S. House of Representatives, a somewhat different approach is 

needed. Either voters with similar ideologies must be merged into 

blocs (the justification being that the sum of the power indices of 

voters of nearly equal ideologies is approximately the power index 

of a single voter casting all of their votes in a bloc), or a density 

function must be constructed that approximates the discrete distribution 

of political profiles, and methods of non-atomic game theory applied. 

One value of this AD power index might be in assessing the 

impact of membership changes on political institutions. Of course, 

one way of assessing the effect of a membership change is to compare 

the policy outputs of the institution before and after the change. 

But here the effect of membership change may be confounded with the 

effect of a change in the external situation with which the political 

body must deal: for example, energy crises, sudden changes in 

unemployment rates, etc. If, although the external situation changes, 

the underlying attitudes in accordance with which voters make their 

decisions remain the same, and if the distribution of the kinds of 

issues that arise (although not the actual content of these issues) 

remains constant over time, then the present power index could be 

a valuable tool in assessing the effect, for example, of new 

appointments to the Supreme Court or the effect of an election on the 

distribution of power in a particular Congressional committee. 
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