
NIST Rich Transcription Workshop November 2004 

The MIT Lincoln Laboratory RT-04F Diarization Systems: 
Applications to Broadcast Audio and Telephone Conversations•

D. A. Reynolds and P. Torres-Carrasquillo 

{dar,ptorres}@ll.mit.edu

MIT Lincoln Laboratory, Lexington, MA USA 
 

                                                           
• This work is sponsored by the Defense Advanced Research Agency under Air Force Contract F19628-00-C-0002.  Opinions, interpretations, conclusions 
and recommendations are those of the author and are not necessarily endorsed by the United States Government. 

ABSTRACT 
Audio diarization is the process of annotating an input audio 
channel with information that attributes (possibly overlapping) 
temporal regions of signal energy to their specific sources. These 
sources can include particular speakers, music, background noise 
sources, and other signal source/channel characteristics. 
Diarization has utility in making automatic transcripts more 
readable and in searching and indexing audio archives. In this 
paper we describe the systems developed by MITLL and used in 
DARPA EARS Rich Transcription Fall 2004 (RT-04F) speaker 
diarization evaluation. The primary system is based on a new 
proxy speaker model approach and the secondary system follows 
a more standard BIC based clustering approach. We present 
experiments analyzing performance of the systems and present a 
cross-cluster recombination approach that significantly improves 
performance. In addition, we also present results applying our 
system to a telephone speech, summed channel speaker detection 
task.   

1. INTRODUCTION 

Audio diarization is the process of annotating an input audio 
channel with information that attributes (possibly overlapping) 
temporal regions of signal energy to their specific sources. These 
sources can include particular speakers, music, background noise 
sources, and other signal source/channel characteristics. 
Diarization has utility in making automatic transcripts more 
readable, searching and indexing audio archives and as input to 
other automatic human language technologies (HLT) (e.g., for 
adaptation in Speech-to-Text (STT) systems).   

While the general task of diarization can cover many types of 
audio sources, the focus if the DARPA EARS project and the 
NIST Rich Transcription evaluations is primarily speaker 
diarization: marking where speaker changes occur in speech and 
associating segments of speech coming from the same speaker. 
This is task is also referred to as “who spoke when” and as 
speaker segmentation and clustering in the literature. For the 
EARS task there is no prior knowledge of the number of 
speakers present or samples of any of the speakers. An overview 
of the general diarization problem and approaches can be found 
in [1]. 
In this paper, we describe the speaker diarization systems 
developed by MITLL and applied to the NIST RT-04F 
evaluation. In the next section we describe the components and 
operation of our primary and secondary systems. The diarization 
data and error measure used for system development and the RT-

04F evaluation is described in Section 3. This is followed in 
Section 4 with presentation of development experiments, 
evaluation results and some post-evaluation experiments. In 
Section 5 we then describe systems and experiments for applying 
our diarization system to aid in a telephone speech, summed 
channel speaker detection task. Lastly, we wrap up with some 
conclusions and discussion of future directions.  

2. DIARIZATION SYSTEMS 

2.1 Full-Covariance System – Baseline 
The baseline system, shown in Figure 1, is built upon four main 
components found in most canonical speaker diarization systems: 
speech detection, speaker change detection, clustering and re-
segmentation. Details of these components are given in the 
following sub-sections 
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Figure 1 Baseline full-covariance diarization system. 

2.1.1 Speech Detection 
A Gaussian Mixture Model (GMM) based speech detector with 
five class models was used for this stage. The five classes in the 
classifier include three speech classes (speech, speech+music, 
and speech+other), music, and other. The extra speech models 
are used to help minimize false rejects of speech occurring in the 
presence of music or other noise. The “other” class is composed 
of any event occurring in the signal that could not be categorized 
as one of the previous four classes and is the most problematic to 
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adequately characterize. Each class model is a 128 mixture,  
diagonal GMM with 30 cepstra plus 30 delta-cesptra features 
trained using about 2 hours each of labeled data from the Hub4 
1996 ‘a’ and ‘b’ shows.  

The frame scores from the models are smoothed using a 50 frame 
(0.5 sec) window and segments are created and labeled based on 
the maximum score per frame. All segments from speech, 
speech+music and speech+other are merged into a single speech 
label. Likewise, music and other labeled segments are merged 
into a non-speech label. The sequence of speech/non-speech 
segments are then passed through filters to merge speech 
segments separated by less than 0.5 seconds, remove remaining 
speech segments less than 0.5 seconds and finally pad speech 
segment times by 0.2 seconds. Some development results for the 
speech detector are given in Table 1. It is clear that the 
classification of the ill-defined class other is the most difficult. 

Table 1 Development results (percent correct) for the 
speech detector using segments of varying durations 
from the 1998 Hub4 corpus 

Hypothesis  

speec
h 

non-speech 

speech 96.5 3.5 

speech+music 91.4 8.6 

speech+other 92.1 7.9 

music 8.9 91.1 

T
ru

th
 

other 28.9 71.1 

 

2.1.2 BIC Based Change Detection 
The aim of this change detection stage is to find speaker change 
points within the speech segments. We employ the widely used 
Bayesian Information Criterion (BIC) technique introduced in 
[2]. This technique searches for change points within a window 
using a penalized likelihood ratio test of whether the data in the 
window is better modeled by a single distribution (no change 
point) or two different distributions (change point). As illustrated 
in Figure 2, at each point in a window of N frames we compute 
the penalized likelihood ratio (BIC score) between modeling the 
pdf of the window as a single full-covariance Gaussian (hyp 0) 
versus two full-covariance Gaussians (hyp 1), one for each 
portion of the window about the point. The BIC score is 

 
( | ) ( | )

BIC score log
( | )
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z

p x p y
P

p z
λ λ

α
λ

= −  (1) 

where P is the BIC penalty and α is the BIC weight (typically set 
to 1.0). For d-dimensional, full-covariance Gaussian models in a 
window of size N, the penalty is  

 1 1
2 2( ( 1)) logP d d d= + +

For a segment x with Nx frames and a full-covariance Gaussian 
pdf model, ( , )

x x
N μ Σ ,  

 1
2( | ) logx xp x Nλ x= − Σ  (3) 

A change point is detected when the BIC score is > 0. If a change 
is found, the window is reset to the change point and the search 
restarted. If no change point is found, the window is increased 
and the search is redone.  

p(x|λx) p λy)

p(z|λz)

(y|
Putative change point

Hyp 1:

Hyp 0:

 

Figure 2 Illustration of BIC change point detection for a 
point in a window. 

To reduce computations, we apply a faster Hotelling-T2 test at 
each pointi in a window, find a putative change point at the 
maximum, and then run the full BIC test at that point to validate 
[3]. The initial window size is set to 100 frames with a size 
increase of (50+10*(k-1)) frames and start offset of (50+10*(k-
2))/4 for the kth time no change point is found. A maximum 
window size of 3000 frames is allowed, at which time a change 
point is forced at the leading edge and a new window is begun. 
Speech segments of 200 frames or less are not searched for 
change points. The features used are 30 dimensional cepstral 
vectors without channel compensation, since wish to exploit all 
possible varibailities to detect change points.  

While the BIC change detector works well in general, it has high 
miss rates on detecting short turns (< 2-5 seconds), so can be 
problematic to use on fast interchange speech like conversations. 
Tuning the change detector is a tradeoff between the desires to 
have long, pure segments to aid in initializing the clustering 
stage, and minimizing missed change points which produce 
contaminations in the clustering.  

2.1.3 Full-Covariance Agglomerative Clustering 
The purpose of this stage is to associate or cluster segments from 
the same speaker together. The clustering ideally produces one 
cluster for each speaker in the audio with all segments from a 
given speaker in a single cluster. Our systems use a hierarchical, 
agglomerative clustering algorithm consisting of the following 
steps: 

0. Initialize leaf clusters of tree with segments from the 
change detection stage. 

1. Compute pair-wise distances between each cluster. 
2. Merge closest clusters. 

N  (2)                                                            
i This test does not require computing the covariance matrix determinant 
at each point, but it is not as stable for detection threshold testing as the 
BIC test. 
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3. Update distances of remaining clusters to new cluster. 
4. Iterate steps 1-3 until stopping criterion is met. 

Our systems’ clustering schemes differ in selection of the 
distance function, the merging process and the stopping criterion. 

The baseline system uses a generalized likelihood ratio distance 
function, model re-estimation with combined data for cluster 
merges, and a BIC based stopping criterion [2].  If the data in 
two clusters are denoted as x and y, then the distance between 
the clusters is computed as 

 
( | ) ( | )

( , ) log
( | )
x y

z

p x p y
d x y

p z
λ λ

λ
=  (4) 

where z is the union of x and y and λz is the joint pdf. As with 
the change detection, this is a likelihood ratio test between 
whether the two clusters are better modeled by two separate 
distributions or a single distribution; the lower the distance the 
more likely the clusters should be merged. Previously, we have 
used a tied-Gaussian mixture model for the cluster pdf models 
[4], but changed to a full-covariance Gaussian model based on 
improved performance. Cluster likelihoods are computed as in 
Equation (3). For each iteration, the closest pair of clusters are 
replaced by the combined data z and model λz, and distances to 
the remaining clusters are updated.  The process is stopped when 
the penalized minimum distance (ΔBIC score) is greater than a 
specified threshold (typically 0). The ΔBIC score is  

 
( , )
min ( , )
ci cj

BIC d ci cj PαΔ = −  (5) 

where (ci,cj) are the current clusters, α is the BIC weight, and P 
is the BIC penalty given in Equation (2).  

We found that using 12 linear filterbank cepstra vectors with no 
channel compensation gave the best performance. Contrary to 
results in [2] stating that the BIC penalty factor can be set at 1.0, 
we found that a BIC penalty factor of 6.0 was needed for best 
performance.  

While other factors are important for clustering (distance, 
merging, features), the stopping criterion is critical to good 
performance. Under-clustering fragments speaker data over 
several clusters, while over-clustering produces contaminated 
clusters containing speech from several speakers. How the output 
is used determined the impact of these errors. For indexing 
information by speaker, both are suboptimal. However, when 
using cluster output to assist in speaker adaptation of speech 
recognition models, under-clustering may be suitable when a 
speaker occurs in multiple acoustic environments and over-
clustering may be advantageous in aggregating speech from 
similar speakers or acoustic environments.  

2.1.4 Cluster Recombination 
In this recent approach [5], state-of-the-art speaker recognition 
modeling and matching techniques are used as a secondary test 
for re-fining speaker clusters. While not used in our RT-04F 
evaluation systems, we did implement this step for post-
evaluation experiments with our baseline system.  

The speech processing and modeling used in the clustering stage 
are simple: no channel compensation, such as RASTA, since we 

wish to take advantage of common channel characteristics 
among a speaker’s segments, and limited parameter distribution 
models, since the model needs to work with small cluster data at 
the start. With cluster recombination, clustering is run to under-
cluster the audio and produce clusters with a reasonable amount 
of speech (> 30s). Each cluster’s data is then used to train an 
adapted GMM with channel compensated features [6] and a 
cross-cluster likelihood ratio distance is computed between 
clusters by scoring each cluster’s data against all cluster models. 
For cluster data c1 and c2, their adapted models λc1 and λc2, and 
the UBM λubm, the cross-cluster likelihood ratio distance is 

 2 1( 1| ) ( 2 | )1( 1, 2) log
2 ( 1| ) ( 2 |

c

ubm ubm

p c p cd c c
p c p c )

cλ λ
λ λ

= −  (6) 

A similar distance has been used for inter-audio file clustering 
[7]. These distances are then used to drive an agglomerative 
clustering with an empirically derived stopping threshold on the 
minimum distance. As done in [5], for each merge a new speaker 
model can be trained with the combined data and distances 
updated.  In our experiments, we instead used a static distance 
matrix between input clusters and the minimum distance between 
cluster elements (single linkage) for clustering. In our 
experiments, a 1024 mixture GMM UBM using RATSA filtered 
cepstra and delta-cepstra features and 1000 frame feature mean 
and variance normalization, was trained using data from the 
Hub4 1996 corpus. 

2.1.5 Iterative Re-segmentation 
The last stage we applied in our baseline system is re-
segmentation of the audio via an iterative Viterbi-like decoding 
using the final cluster models and the music and other non-
speech models. The purpose of this stage is to refine the original 
segment boundaries using information from the clustering. We 
first train 128 mixture GMMs for each cluster. Clusters with less 
than 1 sec of data are not used. The entire audio file is scored 
using these speaker models as well as the music and other non-
speech models from the speech detection stage. The frame scores 
from the models are smoothed using a 100 frame (1 sec) window 
and segments are created and labeled based on the maximum 
score per frame. Segments corresponding to the speakers are 
used to retrain models (non-speech models are not retrained) and 
the process is iterated. Typically only 1-3 iterations are needed.  

2.2 Proxy-Model System - Primary 
The primary system, shown in Figure 3, uses the same speech 
detection, change detection and iterative re-segmentation stages 
as the baseline system, but uses a sex/bandwidth segregation of 
segments and a new clustering scheme based on proxy-models.  

2.2.1 Sex/Bandwidth Classification 
The aim of this stage is to partition the segments into common 
groupings of sex (male or female) and bandwidth (low-
bandwidth: narrowband/telephone or high-bandwidth: studio).  
This is done to reduce the load on subsequent clustering, provide 
more flexibility in clustering settings (for example female 
speakers may have different optimal parameter settings than 
male speakers), and supply more side information about the 
speakers in the final output. The potential drawback in this 
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partitioning stage prior to clustering is if a subset of a speaker’s 
segments is misclassified the errors are unrecoverable.  

Joint sex and bandwidth labeling of segments is done using 
maximum likelihood classification with four 128 mixture 
GMMs, high-bandwidth female, low-bandwidth female, high-
bandwidth male, and low-bandwidth male, trained on labeled 
data from the hub4 1996 corpora. Due to a paucity of low-
bandwidth audio, training data for the low-bandwidth models 
was obtained by processing the high-bandwidth data through a 
telephone line simulator. Features vectors of 30 mel-filterbank 
cepstra and delta cepstra with no RASTA equalization  Some 
development results for classifying segments of varying 
durations from the Hub4 1998 corpus is shown in  Table 2

ClusterProxy 
cluster
Proxy 
cluster
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ClusterProxy 
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ClusterProxy 
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Figure 3 Primary proxy-model diarization system. 

Table 2 Development results (percent correct) for the 
sex/bandwidth classifier using segments of varying 
durations from the 1998 Hub4 corpus. 

Hypothesis  

HM HF LM LF 

HM 93.4 2.0 4.6 0 

HF 2.0 96.6 0 1.4 

LM 4.5 4.5 86.5 4.5 Tr
ut

h 

LF 0 16.7 0 83.3 

 

 Proxy-model clustering 
el system is to project the 

2.2.2
The general idea behind the proxy mod
speaker-homogeneous speech segments from the change detector 
into a “speaker space” and then use standard vector distances and 
clustering techniques (see Figure 4). The speaker space is 
defined by a set of reference or proxy speaker models that 

provide good coverage of the space. A segment is projected into 
the space by computing its likelihood against each proxy model 
and then treating these likelihoods as elements of a 
characterization vector. Various vector distances can then be 
used to compute a distance matrix which is then used to drive a 
clustering process. This approach is based on ideas of anchor 
models [8] and eigenvoices [9] and is similar to a speaker 
indexing system described in [10]. 
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Figure 4 Components of a proxy/anchor speaker model 

While the proxy speaker models can be obtained from a different 

sing a simple 

ex-bandwidth class clustering is complete, the union 

clustering algorithm. 

corpus, we instead trained models using the segment data so as to 
make the system as portable and self contained as possible. For 
the segments in each sex-bandwidth class (high-male, high-
female, low-male and low-female), a set of models is built by 
adapting a 128 mixture GMM from a universal background 
model (UBM) trained with data from the Hub4 1996 corpus. 
Segments in each sex-bandwidth class are scored against their 
respective proxy models to produce the characterization vectors. 
These vectors are then fed into a hierarchical, agglomerative 
clustering algorithm as described in section 2.1.3. 

The distance between segments is computed u
Euclidean distance. This was selected after development 
experiment results showed it outperformed other metrics, such as 
Mahalanobis and Chebyshev. The distance between any two 
clusters is the minimum distance between them (single linkage). 
When two clusters are merged, the union of their vectors defines 
the new cluster. The stopping criterion is simply a threshold on 
the percentage of the number of segments clustered at each step. 
This ad-hoc stopping criterion empirically outperformed other 
approaches based on cluster temporal coverage and BIC-like 
measures.  

After each s
of the clusters is passed to the iterative re-segmentation stage. As 
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with the baseline system we also implemented a cluster 
recombination stage for post-evaluation experiments.   

3. RT-04F DIARIZATION DATA AND ERROR 
MEASURE 

3.1 Development and Evaluation Data 
The data for development and evaluation were drawn from 
multiple U.S. broadcast sources (television and radio) and show 
types (primarily news but also some discussion/lectures). 
Approximately 30 minute excerpts from 12 shows were used for 
the development and evaluation sets. The style of show varied 
from a set of lectures from a few speakers (CSPAN) to rapid 
headline news reporting (CNN Headline News). Details of the 
exact composition of the data sets can be found in [11].  

The tables below list the shows used. The first field in the show’s 
name, with fields delimited by ‘_’, is the show’s date, the next 
two are the start and end times, and the last are an indication of 
the source and, sometimes , the language.  

 Development Data 

20010206_1830_1900_ABC_WNT 

20010217_1000_1030_VOA_ENG 

20010220_2000_2100_PRI_TWD 

20010221_1830_1900_NBC_NNW 

20010225_0900_0930_CNN_HDL 

D
ev

1 

20010228_2100_2200_MNB_NBW 

20031115_180413_CSPAN_ENG 

20031118_050200_CNN_ENG 

20031120_003511_PBS_ENG 

20031127_183655_ABC_ENG 

20031129_000712_CNNHL_ENG 

D
ev

2 

20031201_203000_CNBC_ENG 

 

Evaluation Data 

20031202_050216_CNN_ENG 

20031202_203013_CNBC_ENG 

20031203_183814_ABC_ENG 

20031204_130035_CNN_ENG 

20031206_163852_CSPAN_ENG 

20031209_193152_ABC_ENG 

20031209_193946_PBS_ENG 

20031215_204057_CNNHL_ENG 

20031215_231058_WBN_ENG 

20031217_184122_ABC_ENG 

20031218_004126_PBS_ENG 

20031219_202502_CNBC_ENG 

 

3.2 Speaker Diarization Error Measure 
The diarization output of a system is a set of hypothesized 
speaker segments each of which consists of a speaker-ID label 
and the corresponding start and end times. This is then scored 
against reference ‘ground-truth’ speaker segmentation. 
Commercials or adverts, as well as some non-lexical events, are 
excluded from scoring. A one-to-one mapping of the reference 
speaker IDs to the hypothesis speaker IDs is performed so as to 
maximize the total overlap of the reference and (corresponding) 
mapped hypothesis speakers. Speaker diarization performance is 
then expressed in terms of the miss (speaker in reference but not 
in hypothesis), false alarm (speaker in hypothesis but not in 
reference), and speaker-error (mapped reference speaker is not 
the same as the hypothesized speaker) rates. The overall 
diarization error (DER) is the sum of these three components.  

A complete description of the evaluation measure and scoring 
software implementing it can be found at 
http://nist.gov/speech/tests/rt/rt2004/fall. Note that this measure 
is time-weighted, so the DER is primarily driven by loquacious 
speakers. The same formulation can be modified to be speaker 
weighted. The utility of either weighting depends on the end use 
(is finding all speakers important or finding the most talkative 
ones?).  

4. RT-04F RESULTS AND ANALYSIS  

In Figure 5 we show the per-show and total RT-04F evaluation 
results from baseline full-covariance clustering system. The total 
DER was 16.9% (Miss=0.4%, FA=2.4%, Error=14.1%). All 
steps shown in Figure 1 except cluster recombination were used 
for these results. In Figure 6 we show the per-show and total RT-
04F evaluation results from primary proxy-speaker clustering 
system. The total DER was 14.2% (Miss=0.9%, FA=1.7%, 
Error=11.6%). For these results, cluster recombination and 
iterative re-segmentation were not used. It is interesting to note 
that the ‘do-nothing’ system (i.e., label all audio as a single 
speaker) has a DER of 69.5% (Miss=0.1%, FA=5.0%, 
Error=64.4%). The number reflects the upper limit for this data 
set with which to compare results.  

Comparing these results we can note a few things. First we see 
that there is significant variance over the shows reflecting the 
different composition (number of speakers, speaking styles, etc.) 
of the shows. This also indicates that, with only 12 shows, the 
mean performance, which is dominated by the most talkative 
speakers in all shows, may not adequately characterize system 
performance on new shows. We also see that the error profile 
over the shows is very different for the two systems; the most 
errorful show for one is not the most errorful for the other. This 
implies that the systems have different relative strengths that 
could be combined via some combination. We also note that the 
false alarm component of the baseline system is higher than that 
of the primary system. This is an effect of the iterative re-
segmentation which tends to lower the miss rate at the expense of 
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increasing the false alarm rate by broadening boundaries around 
speech segments.  
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Figure 5 Per-show and total RT-04F evaluation results 
from baseline full-covariance clustering system. The 
total DER was 16.9% (Miss=0.4%, FA=2.4%, 
Error=14.1%) 
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Figure 6 Per-show and total RT-04F evaluation results 
from primary proxy-speaker clustering system. The total 
DER was 14.2% (Miss=0.9%, FA=1.7%, Error=11.6%) 

Since the stopping threshold is critical to performance, we ran 
some post-evaluation experiments to examine this factor in our 
systems. In Figure 7 we show results from the baseline system 
while sweeping out BIC cluster stopping thresholds (these results 
do not include re-segmentation). We see that the system DER is 
relatively flat over thresholds with only about 1% absolute DER 
change between selected and optimal thresholds.  
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Figure 7 Sweep of global BIC stopping threshold for 
baseline system. Note these results do not include re-
segmentation.  

In Figure 8 we show DER as a function of the clustering 
threshold for the proxy model system. Again the DER profile is 
relative flat around the selected threshold. The DER difference 
between optimal and selected thresholds is only 0.41% absolute.  
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Figure 8 Sweep of global stopping percentage threshold 
for proxy-model system. 

In the next set of experiments, we examined performance when 
using an ‘oracle’ test to find the optimum stopping point for each 
show. As shown in Table 3 we see that there are significant error 
reductions when using a per-show stopping threshold. The main 
implication of this is we need to examine ways to better 
normalize our clustering goodness measure to be more robust per 
show. 

Table 3 Comparison of optimum global and local (per-
show) cluster stopping for the two systems 

System Global threshold 
DER(%) 

Local threshold 
DER(%) 

Baseline 16.19 12.8 

Proxy speakers 13.72 9.8 

 

Lastly we present some initial experiments using the cluster 
recombination stage for both the baseline and proxy clustering 
systems.. For each system, we under-clustered to provide more 
pure clusters for the cluster recombination to work with The 
baseline system was run to produce an average of 51 clusters per 
show (range 21-80); the proxy system was run to produce an 
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average of 69 clusters per show (range 46-95). The under-
clustering for the recombination was not optimized.  

Table 4 summarizes the results for the two systems. We clearly 
see that the cluster recombination provides a significant 
reduction in DER for both systems. The largest drop was for the 
baseline system. These results represent performance for the 
complete systems depicted in Figure 1 and Figure 3. 

Table 4 Initial results of applying cluster recombination 
and re-segmentation to the baseline and proxy systems.  

System Miss 
(%) 

False 
Alarm 

(%) 

Spkr 
Error 
(%) 

DER (%)

Baseline 0.9 1.7 14.6 17.2 

+ recombination 0.7 1.8 10.7 13.2 

+ re-segmentation 0.5 1.9 10.3 12.8 

Proxy speakers 0.9 1.7 11.6 14.1 

+ recombination 1.7 1.5 8.5 11.7 

+ re-segmentation 0.9 1.7 8.4 11.0 

 

5. TELEPHONE SPEECH SPEAKER 
RECOGNITION EXPERIMERNTS 

One key application of speaker diarization is to aid some 
downstream process. In this section we describe how we have 
applied our speaker diarization system to improve performance 
in a speaker recognition task using conversational telephone 
speech.  

5.1 Summed Channel Speaker Recognition Task 
One of the recent challenges in the NIST Speaker Recognition 
Evaluations (SREs) has been speaker detection using summed 
channel telephone speech. The core task is speaker detection: 
given telephone conversations known to include a particular 
speaker (training data), determine if that speaker is speaking in a 
new telephone conversation between unknown participants 
(testing data). Normally, only one channel of the telephone 
conversations is used, which is the classic text-independent 
speaker detection or verification task.  In the summed channel 
task, the two channels are summed for the training data, the 
testing data or both. Such a situation could arise when searching 
through audio containing more than one speaker, such as call 
center or meeting archives. The problem now becomes dealing 
with “contaminated” training and testing audio and a natural 
approach is to use speaker diarization to aid in purifying the 
audio prior to training and testing a speaker detection system. 
Other approaches are discussed in [12]. 

The data used in experiments presented here is the 2004 NIST 
SRE [13] and was derived from the MIXER/MMSR corpus [14]. 
The data is comprised of telephone conversations from 310 
speakers. Most of the conversations are in English, although a 
subset is in Arabic, Mandarin, Spanish or Russian. For the 
summed channel task, the training data for a speaker consists of 

three conversations, each containing the speaker talking with 
three different participants, and the test data consists of one 
conversation between two unknown speakers. The non-summed 
data for training and testing (i.e. the individual sides) are also 
used for contrastive experiments when only the training or 
testing data is summed.  

5.2 Application to Test Data 
Figure 9 shows how we apply speaker diarization when the test 
input is multi-speaker audio. We use the diarization system to 
produce speaker-homogeneous speech clusters that are then 
processed as normal through our speaker detection system. The 
detection scores for each cluster are then combined via a max 
function to produce the final detection score for the input 
conversation.  
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Figure 9 Application of speaker diarization in summed 
channel speaker detection  

We applied the baseline full-covariance clustering system to the 
data. In the speech detection only a non-speech model trained 
from non-speech audio from telephone audio was used. Cluster 
re-combination was not applied. The fact that conversations 
generally only contain two speakers can be used to assist the 
diarization system. However, this is not always the case and it 
can be beneficial allow the diarization system to produce more 
than two clusters to deal with not only extra speakers, but 
extraneous audio sources. In our experiments we did not 
explicitly use knowledge of the number of speakers, but did do 
development experiments using two speaker telephone 
conversations.   

The detection error tradeoff (DET) curves for the experiment are 
shown in Figure 10. For these results the speaker model was 
trained using the individual side (un-summed) data. The 1s test 
also used the individual side data for test and processed it 
through the standard speaker detection system. This is provided 
to show the optimum case of using uncontaminated test data. The 
1c test uses the summed test audio and processes with the 
diarization system shown in Figure 9ii. It is clear that the 
diarization system pre-processing is able to bring the detector 
performance very close to the uncontaminated situation.  

                                                           
ii Performance for processing the 1c test data through the standard speaker 
detector is particularly poor and not shown here since it is not considered 
a viable alternative.  
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5.3 Application to Training Data 
For speaker model training from summed channel audio, we 
need to first diarize each training conversation into speaker 
homogeneous clusters, second determine which conversation 
clusters are from a common speaker, and finally train a speaker 
model with the data from the common speaker. Figure 11shows 
the system used for summed channel training involving these 
steps. 

The speaker diarization system processes each training 
conversation individually to produce conversation dependent 
clusters. We next run cluster recombination on these 
conversation clusters to find which ones are from a common 
speaker. One constraint added here is that clusters from the same 
conversation can not be merged during the recombination 
process. The constraint usually works to stop the recombination 
process before a single node is formed, thus this step does not 
require a stopping threshold. At the end of the recombination, the 
set of conversation clusters with the smallest average intra-
cluster distance is selected as the one containing the common 
speaker and a speaker model is trained from the corresponding 
data.  

3s train

1c test

1s test

 

Figure 10 DET curves for speaker detection system using 
summed channel test data. The 1c test applied the 
speaker diarization system to the summed conversation 
test. To contrast with no contamination, the 1s test uses 
the individual side test data in the standard detector.   
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Figure 11 Application of speaker diarization to model 
training with summed channel data. 

In Figure 12 we show the DET curves from applying this system 
to summed channel training data. In these results, the test data 
was always the individual side (un-summed) data. The 3c train 
case used summed training data and applied the system in Figure 
11for speaker model training. The 3s train case used un-summed 
data to train the speaker model and is presented to show the 
optimum uncontaminated training condition. Again we see that 
the application of the diarization system for summed training 
data produces results very close to the optimum un-summed 
condition.  
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3c train

3s train

 

Figure 12 DET curves for speaker detection system using 
summed channel training data. The 3c train applied the 
speaker diarization training system to the summed 
conversation data. To contrast with no contamination, the 
3s train uses the individual side train data to train the 
speaker model. . 

Finally, Figure 13 shows the performance of using summed 
channel data and the above systems for both training and testing. 
The optimum un-summed case is also shown. This again 
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demonstrates that diarization can indeed aid speaker detection 
systems when using summed channel audio. 
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Figure 13  DET curves for speaker detection system 
using summed channel train and test data. The 3c train / 
1c test curve applied the diarization systems described in 
the test. The 3s train / 1s train used un-summed data and 
standard train and detection systems.  

6. CONCLUSIONS 
This paper has outlined the speaker diarization systems 
developed by MITLL and applied in the DARPA EARS Rich 
Transcription evaluations on Broadcast audio. In addition to a 
baseline system using full-covariance Gaussian clustering, we 
also developed a new proxy-speaker based clustering system 
which uses anchor model concepts to project speech segments 
into vectors in a speaker space. Our systems produced diarization 
error rates of 16.9% and 14.2%, respectively, on the RT-04F 
evaluation. Subsequent experiments found using cluster 
recombination reduced our baseline system DER to 12.8% and 
our Proxy-speaker system DER to 11.0%. It is expected these 
numbers will decrease further with optimization. We also 
described systems and experiments that applied speaker 
diarization as input to improve speaker detection on multi-
speaker audio.  

As the DER continues to decrease, it is more important to 
correlate the DERs with application utility so as to know when 
and how to deploy these systems. The required DER for 
diarization consumption by machines, such as speaker detection 
or STT adaptation, may be very different that that needed for 
human consumption. Indeed, the error measure used may not be 
applicable for all consuming applications. Is temporal weighting 
optimal? How do we account for segment continuity? To help 
gain a better idea of human perception of diarization output and 
as a tool to aid research, we have produced a plug-in to 
WaveSurfer [15], an open source tool for sound visualization and 
manipulation, to allow display and play-back of diarization 
outputiii.  A screen shots from the plug-in are shown in Figure 

                                                           
iii The plug-in can actually display any RTTM record type. 

14. We expect to make this plug-in publicly availbe in the near 
future. 
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Figure 14 Screen shots of RTTM display tool plug-in for 
WaveSurfer. The plug-in displays multiple RTTMs, 
optional UEM masking, and speaker segment play-next/-
play-last features along with all display and analysis 
capabilities of WaveSurfer.  

Future research efforts will continue to focus on improving the 
diarization systems, with an emphasis on better exploiting STT 
output (e.g., [16]). 
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