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ABSTRACT 

Matching pursuit (MP) is an adaptive signal decomposition technique and can be applied to process 
Lamb waves, such as denoising, wave parameter estimation, and feature extraction, for health 
monitoring applications. This paper explored matching pursuit decomposition using Gaussian and 
chirplet dictionaries to decompose/approximate Lamb waves and extract wave parameters. While 
Gaussian dictionary based MP is optimal for decomposing symmetric signals, chirplet dictionary 
based MP is able to decompose asymmetric signals, e.g., dispersed Lamb wave. The extracted 
parameter, chirp rate, from the chirplet MP can be used to correlate with two Lamb wave modes, S0 
and A0. 

Keywords: Lamb wave, matching pursuit decomposition, Gabor dictionary, chirplet dictionary, 
structural health monitoring, Piezoelectric wafer active sensors, PWAS 

1. INTRODUCTION 

In recent years, a large number of papers have been published on the use of Lamb waves for 
nondestructive evaluation and damage detection for structural health monitoring (SHM) applications. 
The benefits of guided waves over other ultrasonic methods is due to their: (1) variable mode 
structures and distributions; (2) multimode charactesr; (3) propagation for long distances; (4) 
capability to follow curvature and reach hidden and /or buried parts; (5) sensitivity to different type of 
flaws. Some modes (e.g. A0 mode) are sensitive to surface defects and some modes (e.g., S0 mode) are 
sensitive to internal defects. Displacement fields across the experiment wave structure thickness can 
explain the sensitivity of lamb modes to defect types (Pan et. al., 1999; Edalati et. al., 2005; Giurgiutiu 
2008). Properly identification of Lamb wave modes and tracking the change of a certain mode is of 
great significance for SHM applications. 
The objective of this paper is to explore the application of matching pursuit to decompose and 
approximate Lamb waves using two types of dictionaries, i.e., Gabor dictionary and chirplet 
dictionary, and to demonstrate the capabilities of this method to identify low-frequency Lamb wave 
modes (S0 and A0 modes) and other wave parameters, such as central frequency, time-of-flight, etc., 
that are useful for structural health monitoring applications. 

2. SIGNAL DECOMPOSITION 

The purpose of signal decomposition is to extract a set of features characterizing the signal of interest. 
This is usually realized by decomposing the signal on a set of elementary functions (Lankhorst 1996) 
(Durka 2007). A widely used signal decomposition method is Fourier transform, which decomposes 
signals on a series of harmonic functions. However, the harmonics basis functions have global 
support. For example, to decompose a signal with a presence of a discontinuity in time, all the weights 
of the basis functions will be affected; the phenomenon of discontinuity is diluted. Therefore, Fourier 
transform is usually used for stationary signals. To better characterize a signal with time-varying 
nature, basis functions that are localized both in time and frequency are desired. This gives rise to 
time-frequency decomposition methods, including short time Fourier transform (STFT), wavelet 
transform, Wigner-Ville distribution, matching pursuit decomposition, etc. 

 1

mailto:xub@engr.sc.edu
mailto:giurgiut@engr.sc.edu
mailto:yu3@engr.sc.edu


Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number. 

1. REPORT DATE 
2009 

2. REPORT TYPE 
N/A 

3. DATES COVERED 
  -   

4. TITLE AND SUBTITLE 
Lamb Waves Decomposition and Mode Identification Using Matching
Pursuit Method 

5a. CONTRACT NUMBER 

5b. GRANT NUMBER 

5c. PROGRAM ELEMENT NUMBER 

6. AUTHOR(S) 5d. PROJECT NUMBER 

5e. TASK NUMBER 

5f. WORK UNIT NUMBER 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
Department of Mechanical Engineering, University of South Carolina,
Columbia, SC 29208 

8. PERFORMING ORGANIZATION
REPORT NUMBER 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 

11. SPONSOR/MONITOR’S REPORT 
NUMBER(S) 

12. DISTRIBUTION/AVAILABILITY STATEMENT 
Approved for public release, distribution unlimited 

13. SUPPLEMENTARY NOTES 
The original document contains color images. 

14. ABSTRACT 

15. SUBJECT TERMS 

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 
ABSTRACT 

UU 

18. NUMBER
OF PAGES 

12 

19a. NAME OF
RESPONSIBLE PERSON 

a. REPORT 
unclassified 

b. ABSTRACT 
unclassified 

c. THIS PAGE 
unclassified 

Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Std Z39-18 



2.1. Time-Frequency Decomposition 

For STFT, the signal is multiplied with a window function to delimit the signal in time. In the case of a 
Gaussian window, the STFT becomes Gabor transform. The STFT spectrogram can be viewed as 
representing the signal in a dictionary containing truncated sines of different frequencies and time 
positions, but constant time widths. In contrast to the STFT, which uses a single analysis window, the 
wavelet transform offers a tradeoff between time and frequency resolution, i.e., it uses short windows 
at high frequencies and long windows at low frequencies. As a result, the time resolution improves – 
while the frequency resolution degrades – as the analysis frequency increases. When viewing results 
of the STFT and wavelet transforms, energy density on time-frequency plane is usually used. A more 
direct approach to obtain an estimation of the time-frequency energy density is the Wigner-Ville 
distribution (WVD). However, WVD suffers from severe interferences, called cross-terms. Cross-
terms are the area of a time-frequency energy density estimate that may be interpreted as indicating 
false presence of signal activity in time-frequency coordinates. Moreover, the WVDs are two-
dimensional maps; post-processing, such as visual interpretation, to identify certain structures in the 
signal map is usually needed. This is not desirable for real-time SHM applications. 

2.2. Matching Pursuit Algorithm 

Matching pursuit (MP) algorithm, introduced independently by Mallat and Zhang (1993) and Qian et 
al. (1992), is a highly adaptive time-frequency signal decomposition and approximation method. The 
idea of this algorithm it to decompose a function on a set of elementary functions or atoms, selected 
appropriately from an over-complete dictionary. The MP decomposition procedure can be described as 
follows (Durka 2007): 

1. Find in the dictionary D the first function gγ0 that best fits the signal x.  
2. Subtract its contribution from the signal to obtain the residual R1x. 
3. Repeat these steps on the remaining residuals, until the representation of the signal in terms of 

chosen functions is satisfactory. 
In the first MP step, the waveform gγ0 which best fits the signal x is chosen from dictionary D. The 
fitness is evaluated by inner product. In each of the consecutive steps, the waveform gγn is fitted to the 
signal Rnx, which is the residual left after subtracting results of previous iterations, i.e. 

 

0

1 ,

arg max ,
i

n n n
n

n
n ig D

R x x

nR x R x R x g g

g R x g
γ

γ γ

γ γ

+

∈

⎧
=⎪

⎪
= −⎨

⎪
⎪ =
⎩

 (1) 

In practice we use finite expansions, for example of N iterations, signal x is given by 
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Ignore the Nth residual term RNx, we have approximated x as 
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The actual outputs of matching pursuit are given in terms of numbers – parameters of the functions or 
atoms, fitted to the signal: 

1. Parameters of basis functions; 
2. Plots of the corresponding basis functions in time domain; 
3. Two-dimensional blobs representing concentrations of energy density in the time-frequency 
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plane, corresponding to functions from the MP expansion, free of cross-terms. 
These parameters provide an exact and complete description of the signal structures. Therefore, the 
analyzed signal can be readily approximated or reconstructed. This provides good synthesis for 
applications, such as denoising. Also, these numbers can be used directly to identify those functions 
that correspond to the signal’s structures of interest.  

3. GABOR MATCHING PURSUIT 

In principle, the basis functions used for the decomposition can be very general. However, efficient 
and informative decomposition can be achieved only on a dictionary containing functions reflecting 
the structure of the analyzed signal. Since Gaussian-type signal achieves the lower bound of the 
uncertainty inequality, it is natural to choose Gabor functions (Gaussian envelopes modulated by sine 
oscillations) to construct dictionary, i.e. 

 [( ) ( ) cos ( )t ug t K g t u
sγ ]γ ω−⎛ ⎞ φ= − +⎜ ⎟

⎝ ⎠
 (4) 

where, 
2

( ) tg t e π−= , K(γ) is chosen such that 1gγ = . Hence contribution of each Gabor function to 
the signal under analysis can be directly calculated. By scaling, translating, and modulating, i.e., 
varying the s, u and ω parameters in Eq.(4), Gabor Gaussian functions can describe variety of shapes. 
For example, pure sine waves and impulse functions can be treated as sinusoidal with very wide and 
narrow Gaussian modulating windows. 

3.1. State of the Art of Gabor Matching Pursuit 

Mallat and Zhang (1993) applied the MP algorithm using a Gabor dictionary with discretized 
parameters, i.e. 

 ( , , ) (2 , 2 , 2 )j j js u p u kγ ω − ω= Δ Δ  (5) 

where Δu=½, ω=π, 0<j<logΔ 2(M), 0≤p<M·2-j+1, 0≤k<2j+1, ω is the normalized angular frequency 
ranging from 0 to 2π (sampling frequency), and M denotes the signal length. 
 To reduce computation effort in each iteration of Eq.(1), Mallat and Zhang (1993) proposed an 
updating formula derived from Eq.(1) after the vector gγn is selected, i.e. 

 1 , , ,n n n
n n ,R x g R x g R x g g gγ γ γ γ

+ = − γ  (6) 

Since ,nR x gγ and ,n
nR x gγ  are previously stored, only ,ng gγ γ  needs to be calculated. This 

particular implementation gives only M·log2(M) numerical complexity for each iteration.  
 A variety of discretizing of dictionary parameters, allows for different implementation of MP 
algorithm. Durka et al (2001) and Durka (2007) randomized the Gabor parameters and formed 
stochastic dictionary to decompose large amounts of electroencephalogram (EEG) data to eliminate 
the statistical bias after a careful selection of a subset Da of the potentially infinite dictionary D∞. The 
choice of gγn in each iteration is performed in two steps:  

1. First perform a complete search of the subset Da to find th eparameters γ  of a function gγ , 

giving the largest product with the residuum 
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2. Secondly, search the neighborhood of the parameter γ  for a function gγn, giving possibly an 

even larger product ,nR x gγ  than ,nR x gγ .  

 Lu and Michaels (2008) used a similar strategy as described in Durka (2007) to decompose 
ultrasonic signals using Gabor dictionary and applied constrained MP algorithm to identify the change 
in the PZT transducer data caused by temperature variation for structural health monitoring 
application. Ferrando and Kolasa (2002) presented two implementations of MP decomposition using 
Gabor dictionary. In the first implementation, the fixed interval constrains described by Eq.(5) are 
alleviated. The method allows for greater flexibility in the choice of parameters defining the Gabor 
dictionary. The second implementation takes advantage of fast Fourier transform algorithm and 
utilizes a analytical method to optimize the phase parameter Φ, while phase parameter Φ in Mallat and 
Zhang (1993) is sub-optimal.. However, it is still within the interval framework of Eq.(5).  

3.2. Simulation Results 

3.2.1. Excitation Signals 
The excitation signal (Figure 1a) was simulated by the Gabor function in Eq.(4) with 

 ( , , , ) (1 ,3 ,2 ,0)s u f f fγ ω φ π=  (7) 

where frequency f=350 kHz at which the S0 Lamb wave is dominant, moderately dispersive, with a 
group velocity cgr=4988 m/s on 3-mm aluminum plate (Figure 1b). 

3.2.2. Reception Signals 
Assuming the transmission wave is reflected by three ideal reflectors, the reflected wave (Figure 2a) 
can be simulated as 

  (8) 1 2( ) ( )2 ( )2( ) { ( )[ ]}s s sik x ik x ik xf t IFFT GTB e e eω ω ωω − − −= + + 3

where IFFT{·} denotes the inverse fast Fourier transform; GTB(ω) denotes Fourier transform of the 
excitation signal based on Gabor function; 1x =100 mm, 2x =200 mm, 3x =350 mm are locations of the 
three reflectors; and ks(ω) are S0 mode wavenumbers obtained by solving Rayleigh-Lamb wave 
equation. A reflected wave contaminated by uniform noise at signal to noise ratio SNR=1.6 dB is also 
simulated, as shown in Figure 2b. In both plots, due to the dispersion effect, the wave packets become 
more and more spreading out in time domain as the propagation distance increases. 
 The reception signals are processed by L2 normalization before decomposition in the format of 
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where x  denotes the normalized signal and x is the signal before normalization. 
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Figure 1 Excitation signal simulation. (a) 350 kHz S0 mode Lamb toneburst excitation simulated by Eq. (7); (b) 

group velocity plot of Lamb wave modes A0 and S0 on a 3-mm aluminum plate. 
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Figure 2 Simulated reception signals. (a) Clean signal; (b) Noisy signal with SNR=1.6 dB 

3.2.3. Gabor dictionary matching pursuit decomposition 
In our work, MP algorithm presented in Ferrando and Kolasa (2002) was implemented in Visual 
studio 2005 and tested to decompose/approximate Lamb waves and extract the wave parameters.  Stop 
criteria of MP decomposition is set to either (1) maximum iteration number at 300 (Nmax=300) or (2) 
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residual energy d < 0.01, whichever is reached first. The residual energy d is defined as 
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In the clean signal example, the MP decomposition stopped after 45 iterations when the residual 
energy satisfied the stop criteria (2). The residual energy at each iteration is plotted in Figure 3. The 
procedure took about four minutes for the sampled signal of M=214 data points. 

  0.8

 
Figure 3 Residual energy at each iteration during the Gabor matching pursuit of the clean signal 

 Figure 4 is the reconstructed signal using all the 45 decomposed dictionary atoms. Comparison 
between Figure 2a and Figure 4 reveals that the original wave can be fully reconstructed using the 
decomposed atoms. 

 
Figure 4 Signal approximated with all the 45 decomposed Gabor dictionary atoms 

 Figure 5a shows the reconstructed wave using only the first three decomposed atoms (#0, #1, #2). 
As given in Figure 5b where the first 10 decomposed atoms from dictionary are plotted, the first three 
dictionary atoms possess most of the energy of the signal. 
 An estimation of the first three wave packets parameters is tabulated in Table 1 and compared to 
their actual values. For the first decomposed vector which actually is a non-dispersive wave packet, 
the estimated parameters by Gabor matching pursuit approach are very close to their actual values. As 
the wave packets become dispersive, for example the second and the third atom in the dictionary, an 
increased deviation of the estimated parameters from their actual values was observed. 

3.2.4. Effects of noise in the signal 
To check the additive noise effects on the algorithm, the contaminated signal with uniform noise 
shown in Figure 2b was analyzed with Gabor MP algorithm. After normalization, the noisy signal was 
processed as described above. The residual energy plot is given in Figure 6. The decomposition 
process stopped with criteria (1) was satisfied when iteration number reached 300. Compared with the 
residual energy plot of the clean signal in Figure 3, we see the presence of noise increases the 
decomposition efforts that the residual energy d ≈ 0.07 in the end, much larger than the clean signal 
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case. However, the presence of noise does not affect the accuracy of the extracted wave parameters, 
such as time-of-flight, central frequency, etc. The parameters estimation of the first three wave packets 
by the decomposition in this case is identical to the case of a clean signal. 
 The first ten decomposed atoms of the noisy signal are presented in Figure 7b. Due to the presence 
of noise, the first decomposed vector does not resemble any of the wave packets in the raw signal. 
However, we have found out that this can be avoided by careful selection of the time scale of basis 
functions. Decomposed atoms #1, #2 and #3 were used to reconstruct the signal, which is given in 
Figure 7a.  
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Figure 5 Signal approximated with the first 3 decomposed Gabor dictionary atoms. (a) The partially reconstructed 

signal; (b) the first 10 decomposed dictionary atoms 

Table 1 Wave packet parameter estimation by Gabor matching pursuit in comparison with actual values 
 wave packet 0 wave packet 1 wave packet 2 
 MP actual MP actual MP actual 

TOF (µs) 20.23 20.05 81.03 80.19 138.63 140.34 
f (kHz) 351.56 351.56 351.58 351.560 341.38 351.56 
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Figure 6 Residual energy plot of uniform noise signal processed by Gabor matching pursuit 
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Figure 7 Signal approximated with the #1 to #3 decomposed Gabor dictionary atoms of a noisy signal. (a) The 

partially reconstructed signal; (b) the first 10 decomposed dictionary atoms 

4. CHIRPLET MATCHING PURSUIT 

As it can be seen both from Figure 5b and Figure 7b, the decomposed atoms from Gabor dictionary are 
typically an even-symmetric toneburst because the associated Gabor dictionary basis functions exhibit 
symmetric time-domain behavior. This is problematic for decomposing signal with asymmetric 
features, such as dispersed or asymmetric signals which occur frequently in guided wave propagation. 
To decompose such signals, matching pursuit using other dictionaries, such as damped sinusoidal and 
chirplet, may be needed. In our application, we use the matching pursuit algorithm based on chirplet 
dictionary to take the dispersion effect into account. 
 Gribonval (2001) introduced a fast MP algorithm using Gaussian chirplet implemented as a 
toolbox in the LASTWAVE (2008). The algorithm is based on post-processing of the Gabor atom and 
aimed at optimizing the chirp rate. Hong et al. (2006) used matching pursuit based on chirplet 
dictionary with quadratic group delay to decompose a longitudinal wave in a rod. Raghavan and 
Cesnik (2007) used LASTWAVE to analyze Lamb waves and correlated chirp-rates to different Lamb 
wave modes. The correlation procedure was performed in two steps. In the first step, matching pursuit 
was performed on each simulated mode of Lamb wave at possible time and frequency centers to 
extract the chirp rates and generate a database of chirp-rates for different mode Lamb waves. In the 
second step, matching pursuit was performed on the wave under analysis to extract chirp rate and then 
correlated the chirp rate to the database to identify wave mode. However, since the knowledge of time 
center needed in the first step is usually unknown, the procedure is not trivial and a large database has 
to be generated. 
 In our research, matching pursuit based on Gaussian chirplet dictionary was explored to 
decompose Lamb waves using LASTWAVE software package. The decomposition results were 
analyzed and compared to the results obtained with Gabor dictionary. In addition, a simple but 
effective way to identify low-frequency Lamb wave modes using the extracted chirp rates has been 
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developed. 

4.1. Gaussian Chirplet  

Gaussian chirplet is a Gaussian smoothed linear chirp (with quadratic phase) that can be expressed as 
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Defining phase 2
0( ) ( ) ( )

2
ct t u t uφ ω= − + − , we have instant frequency of the Gaussian chirplet as 

 0
( ) (inst

d t c t u
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)φω ω= = + −  (12) 

When chirp rate c=0, Gaussian chirplet is degraded to a Gabor function which has a constant instant 
frequency. When chirp rate c>0, the instant frequency increases linearly with time, indicating a 
positively chirped pulse. When chirp rate c<0, the instant frequency decreases linearly with time, 
indicating a negatively chirped pulse accordingly. Defining 22 sα π= , cβ = , Eq.(11) can be written 
as 
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Fourier transform of Eq.(13) using time delay, frequency translation and Gaussian function Fourier 
transform pairs, yields  
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Separating the imaginary and real parts of Eq.(14), we are able to define the phase and group delay as 

Phase delay 
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The group delay in Eq.(16) shows that the group delay of a linear chirp varies linearly with the 
frequency ω. The group delay derivative w.r.t. ω can be expressed as  

 2 2 2

( )d G c
d c2

τ ω β
ω α β α

= =
+ +

 (17) 

The sign of the derivative (group delay slope) is determined by the sign of chirp rate, c, as shown in 
(17)Eq.  

4.2. Lamb Wave Mode Identification Using Chirplet Decomposition 

For a propagating wave at distance x=x0, its expression in frequency domain can be approximated as 

 0

0

( )
0( , ) ( , ) ik x

x x xS x S x e ωω ω −
= ==  (18) 

Then its group delay can be represented as 
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Group delay versus frequency curves can be obtained from Eq.(19), as plotted in Figure 8 for S0 and 
A0 Lamb wave modes on a 3mm aluminum plate. We can see that the group delays of S0 and A0 
modes are not in linear relationship with frequency. This implies that if we use the linear chirp 
dictionary to decompose a single Lamb wave packet, though the wave packet will still be decomposed 
into a number of dictionary atoms, the residual energy might diminish faster as compared to the case 
of using Gabor dictionary, which has a constant group delay. In other words, fewer atoms might be 
needed to decompose a Lamb wave packet when using a Gaussian chirp dictionary than when using a 
Gabor dictionary.  

  
f

 
Figure 8 Group velocity of S0 and A0 Lamb wave modes on a 3mm aluminum plate 

 As aforementioned, the decomposed Gaussian chirplet atoms have an additional parameter, the 
chirp rate c, which can be correlated with the mode of Lamb wave. For a low frequency SHM 
applications below several hundred kHz such as the example presented in Figure 8, below the critical 
frequency fcritical=760 kHz, only two modes exist, A0 and S0; and the group delay slope of the A0 mode 
is always negative; while the group delay slope of the S0 mode is always positive. Therefore, based on 
the Eq. (17), one can correlate the sign of chirp rate c with the two widely used Lamb wave modes that 
usually are excited below certain critical frequency point, which we call “mode identification”. If the 
decomposed chirp atom satisfies the condition c>0, the wave packet being decomposed is S0 mode; if 
the decomposed chirp atom has the case of c<0, the wave packet is A0 mode.  

4.3. Chirplet decomposition of S0 Lamb wave 

MP decomposition using chirplet dictionary was applied to a simulated S0 mode Lamb wave shown 
previously in Figure 2a. Wigner-Ville distribution of the simulated signal is plotted in Figure 9. As we 
predicted and expected, S0 mode wave packets should have positive chirp rates. In addition, due to 
dispersion, as the wave propagates along the structure, the wave spreads out in the time domain. The 
spreading will cause a decrease in the chirp rates according to the definition of chirp rate (Eq.(12)). 
The positive and decreasing chirp rates of each wave packets in this S0 mode signal can be seen 
clearly in the WVD plot as indicated, confirming our theoretical prediction and verified that we can 
determine the mode of the wave being decomposed by evaluating the sign of the chirplet rate.  
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Figure 9 Wigner-Ville distribution of simulated S0 Lamb wave. 

 The estimation of the first three wave packets parameters is tabulated in Table 2. Comparing the 
data in Table 1 using Gabor MP and Table 2 using Chirplet MP, we found the results are very close to 
each other. However, chirplet approach shows slightly better decomposition result in that fewer atoms 
are needed to reconstruct the simulated S0 mode wave when using chirplet dictionary, as revealed by 
the plots of residual energy vs. iteration number in Figure 10. 

Table 2 Wave packet parameter estimation by Chirplet matching pursuit in comparison with actual values 
  wave packet 1  wave packet 2  wave packet 3  
  MP actual MP actual MP actual 

TOF(µs) 20.23 20.05 81.03 80.19 138.63 140.34 
f(kHz) 349.92 351.56 353.24 351.56 351.56 351.56 

 

 
Figure 10 Residual energy plots for both chirplet and Gabor dictionary decomposition w.r.t. iteration number 

Chirplet dict

Gabor dict

5. CONCLUSIONS 

Matching pursuit (MP) is an adaptive signal decomposition technique and can be easily implemented 
and automated to process Lamb waves, such as denoising, wave parameter estimation, and feature 
extraction for SHM applications. This paper explored matching pursuit algorithm based on Gabor and 
chirplet dictionaries to decompose/approximate Lamb waves and extract wave parameters. While 
Gabor dictionary based MP is optimal for decomposing symmetric signals, chirplet dictionary based 
MP is able to decompose asymmetric signals, e.g., dispersed Lamb wave. The extracted parameter 
from the chirplet MP, chirp rate c, can be used to correlate with and identify low-frequency Lamb 
wave mode. We have found out that a wave with positive sign of chirp rate (c>0) denotes S0 mode 
Lamb wave and one with negative sign of chirp rate (c<0) denotes A0 mode Lamb wave. A simulation 
has been conducted to verify the S0 mode identification using chirplet dictionary MP and compared 
with Gabor approach in terms of residual energy and iteration numbers. 
 The next stage we will verify mode identification the A0 mode and mixed modes situations with 
the chirplet decomposition. Further work will also be done on Gaussian-windowed nonlinear chirp 
(with cubic phase) atoms which has the potential to fully describe the nonlinear group delay feature of 
Lamb waves. 
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