ACOUSTIC CRUISE MISSILE DETECTION: SYSTEM CONCEPT

1 km

50 km

HVT

HIGH-VALUE TARGET

“ACOUSTIC FENCE”
“ACOUSTIC SENTRY”
“ACOUSTIC PICKET”
Acoustic Cruise Missile Detection

Report Date: 25 AUG 1999
Report Type: N/A
Dates Covered: -

Title and Subtitle: Acoustic Cruise Missile Detection

Performing Organization Name(s) and Address(es):

The University of Mississippi

Abstract:

DARPA, Air-Coupled Acoustic Microsensors Workshop held on August 24 and 25, 1999 in Crystal City, VA., The original document contains color images.

DISTRIBUTION/AVAILABILITY STATEMENT:

Approved for public release, distribution unlimited

Security Classification of:

- a. Report: unclassified
- b. Abstract: unclassified
- c. This Page: unclassified

Limitation of Abstract: UU

Number of Pages: 4

*Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18*
TECHNICAL ISSUES

FY99:

• SIGNAL TO NOISE RATIO MUST BE SOLID

FY00:

• AUTOMATED UNALERTED DETECTION MUST BE RELIABLE
ON-GOING ACOUSTIC ANALYSIS

- RAW RECEIVED SIGNAL LEVEL (RL)
- TRANSMISSION LOSS (TL)
- SOURCE LEVEL (SL)
 \[RL = SL - TL \quad SL = RL + TL \]
- RAW NOISE LEVEL
- SIGNAL TO NOISE RATIO (SNR)
DAY/NIGHT PROPAGATION

DAY
- **UPWARD REFRACTION**
 - C_{eff}
 - Shadow Zone
 - 1 km

NIGHT
- **DOWNWARD REFRACTION NEAR SURFACE**
 - C_{eff}
 - DUCTED PROPAGATION
 - 4-8 km

"Sky Wave" SCAT By TURB