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Executive Summary 
 

Under AFRL contract FA8650-08-C-7850, this report offers novel designs for active 

optical imaging through clouds and fog, motivated by many military applications, such as 

laser range-finder, target designation for seekers and laser radar. 

The report focuses on jointly-optimized wireless optical multi-input multi-output (MIMO) 

transceivers for through-clouds airborne active optical imaging systems. Photolithographic 

techniques are employed in designing the optical transceiver subsystems. Our design goal is 

to select the diversity receiver branches Field-of-View (FOV) in a way that the effect of 

multi-scattering dispersion is reduced by as much as possible. The light beam is converted to 

multiple beams for transmission over several independent wireless optical channels. At the 

optical imaging receiver platform, combined received beams are photo-detected, and an 

electronic receiver is employed to recover the images. We demonstrate high-resolution 

imaging can be achieved with a high reliability everywhere within the coverage area. 

In airborne active optical imaging systems, characterization of light propagation through 

clouds is essential to understanding and designing appropriate systems. We at Penn State have 

developed a Monte-Carlo-Ray-Tracing (MCRT) computer simulation modeling tool to 

investigate light propagation through different cloud obscurant media. We have used this tool 

plus extension tools we have developed, based on Markov modeling, to assess our proposed 

mitigation techniques for this application. 

From channel characterizations made for RF Multi-Input-Multi-Output (MIMO) systems, 

we know that characteristics are heavily feature-dependent. This is due to the multiple images 

produced from different angles by having multiple beams departing the transmitter. These are 

provided to direction diversity receivers via multiple spatial transmissions. 

We originated and designed concepts for a Multi-Input-Multi-Output (MIMO) wireless 

optical architecture referred to as Multi-Spot Diffuse (MSD) configuration with Multi-element 

optical transmitters and multi-branch optical receivers, proposed in [7]. We intend to use such 

configurations in this research. Professor Joseph Kahn of Stanford University, in a nice 

overview paper [73] describes our contributions in [7], as follows: 

 Implementation of multi-branch angle diversity using non-imaging elements requires 

a separate optical concentrator for each receiving element, which may be excessively 

bulky and costly. Yun and Kavehrad proposed the fly-eye receiver [7], which 

consists of a single imaging optical concentrator (e.g., a lens) that forms an image of 

the received light on a collection of photo-detectors, thereby separating signals that 

arrive from different directions. In this article, we refer to this design as an imaging 

angle-diversity receiver, or simply an imaging receiver. Implementation of an angle-

diversity receiver using imaging optics offers two advantages over a non-imaging 

implementation. First, all photo-detectors share a common concentrator, reducing 

size and cost. Second, all the photo-detectors can be laid out in a single planar array, 

facilitating the use of a large number of receiving elements or pixels. 

 In non-Line-of-Sight (LoS) wireless optical links, Yun and Kavehrad [7] also 

proposed the spot-diffusing transmitter, which utilizes multiple narrow beams 

pointed in different directions, as a replacement for the conventional diffuse 

transmitter, which utilizes a single broad beam aimed at an extended reflecting 

surface. In this article, we refer to the spot-diffusing transmitter as a multi-beam or 

quasi-diffuse transmitter. While the diffuse transmitter provides considerable 



 

2 

immunity against beam blockage near the receiver, it yields a high path loss. The 

quasi-diffuse transmitter is expected to reduce path loss compared to the diffuse 

transmitter, because the narrow beams experience little path loss traveling from the 

transmitter to the illuminated reflective surfaces. 

Later in [54], Kavehrad and Jivkova explained in detail the designs and implementation 

aspects of the two concepts described above. 

Narrow wireless optical beams can minimize interference; subsequently making these 

links difficult to tap, thus providing inherent security which has been a point of major concern 

and a focus point for current research efforts. However, wireless optical links are most 

vulnerable to atmospheric particles, and relatively less vulnerable to rain. A great challenge in 

providing a near continuous availability for optical wireless links is their vulnerable nature to 

obstruction by fog, cloud, and dust particles. We note that, pure atmosphere represents a 

relatively clear medium for a transiting beam of light, typically 1dB of loss per kilometer 

(horizontally), is the accepted value. In vacuum, this transmission distance can grow to 

millions of kilometers and is really only limited by the inverse square law of spherical wave 

power dispersion. Photons tend to travel in a straight line until they hit something, are 

absorbed, reflected or refracted. Water as liquid droplets (rain, fog and snow) suspended in 

the atmosphere is a medium that presents three loss mechanisms in which; two are optical, 

and one is molecular. These are classified as geometric scattering, Mie scattering and 

molecular absorption. Liquid water attenuation for 1.5-micron light is very many decibels per 

meter. The common thread among these attenuation mechanisms is the atomic/molecular 

coupling properties between light and matter - more specifically, the light-waves electrical 

field and the molecules dipole (in the case of water). 

Current research in wireless communication has focused on spatial-temporal diversity 

techniques (including coding) in an effort to increase transmission capacity and quality-of-

service.  Traditional modes of diversity include time, frequency, polarization, space, angle, 

field and multi-path.  In digital communications applications [2], we demonstrated diversity 

through spectral encoding applied to ultra-short laser light pulses, using wavelet pulse 

shaping, in order to increase the robustness against temporal intersymbol-interference over the 

highly dynamic optical cloudy channels. We have established that using wavelet-shaped ultra-

short pulses through clouds (multi-scattering channels) [2], it is possible to have transmission 

with a higher optical thickness compared to transmission of conventional non-return-to-zero 

square pulses, for the same target performance and transmission range.  In other words, 

wavelet shaped ultra-short pulse streams propagate through thin clouds with less degradation 

than conventional pulse streams at the same transmission speeds. Using Fractal modulation, 

each receiver has a menu to choose the best received signal transmission rate, thus adaptation 

is feed-forward.  At the same time, wavelets have the desirable properties of being both time 

and frequency limited, thus are able to pack a large amount of power in very short pulses, in 

addition to providing inherent diversity. A 100 fs pulse at 100 mJ would produce a peak 

power of 1 Terawatt. 

Matched filtering can then be applied through Spatial Encoding and Decoding of 

frequency components of the broadband ultra-short light pulses. The encoding/decoding may 

be realized all-optically through photolithographic masks or other types of spatial light 

modulators. Some of these techniques might be suitable to the current investigation, namely 

imaging through clouds and fog, as they can be utilized against spatial intersymbol-

interference. We will investigate these issues in this report. 
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A convenient way to produce ultra-short pulses of laser light is to employ mode-locked 

lasers. Many applications require ultra-fast optical waveform generation according to user 

specifications. This can be accomplished through manipulations on amplitude and phase of 

frequency elements in an ultra-short laser pulse spectrum. Optical pulse shaping techniques 

exploit the connection between frequency content and temporal shape of a signal. Basically, a 

waveform is synthesized by parallel modulation (or encoding) of spatial optical wavelength 

components that make up the ultra-short pulse. 

We originally intended to apply this approach on the imaging system. However, if beam 

splitting is to be done on the shaped ultrashort pulses, it would distort these pulses, as splitting 

the light beam through a photolithographic beam splitter acts as linear filtering and band 

limiting the ultrashort pulses which happen to be extremely broadband. So, instead, the 

splitting is done prior to mode-locking, on the pump laser which is a CW laser. 

The space-time focusing properties of this approach leads to a new class of 

“Opportunistic” imaging systems with significant advantages over current RF approaches. 

The spatial focusing potential of this approach is an appealing quality, in power saving. 

Interference issues of shared RF bands are non-existent here. 

 

Innovative Claims 

This report is focused on a novel design of a jointly-optimized wireless optical MIMO 

transceiver system for broadband through-cloud multi-channel optical imaging. 

Photolithographic techniques are employed in designing the optical transceiver subsystems. 

The source light is converted to multiple beams for transmission over several independent 

wireless optical channels. At the receiver platform, combined received beams are photo-

detected, and an electronic receiver is employed to recover the images. A high resolution and 

a high reliability everywhere within the coverage area can be expected. To achieve this, we 

worked on novel subsystems designs as listed below: 

 Computer simulation modeling of the cloud channel; 

 Mathematical analysis of the MIMO imaging performance over the coverage area; 

 Computer simulation evaluation of the MIMO imaging system resolution and 

performance; 

 Investigation of the effects of turbulence and scintillation on imaging performance; 

 Performance evaluation of adaptive optics compensation techniques on imaging 

resolution; 

 Investigation of different types of deconvolution techniques that are able to 

reconstruct scintillation-degraded blurred images; 

 Numerical link performance assessment with transmit power and transmission rate 

as variables of the computations; 

 Identify the number of transmitted beams for satisfactory link performance; 

 Identify the best number of receiver branches and the associated FOV of each 

branch; 

 Several types of curved holographic optical mirrors can potentially be employed at 

the receiver. We compared the performance of spherical mirror on a spherical 

substrate, a spherical mirror on a flat substrate, a parabolic mirror on a flat 

substrate; 
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 Design and fabrication of a computer generated photolithographic beam-splitter, 

used at the transmitter for producing multiple collimated transmitted light beams 

within a controlled solid angle; 

 Design and fabrication of a Holographic Optical Element (HOE) for combining the 

received light concentration and filtering functions, in order to create a reasonably 

wide FOV angle-diversity photo-receiver; 

 Determined the relation between the solid-angle of the transmitted light beam and 

the channel diversity requirements, for a specified performance requirement; 

 Examined the impact of different operational wavelengths on the hologram 

efficiency. 

 

In comparison with any currently available imaging system, this research and design effort 

has resulted in higher resolution images and a larger range of coverage. The imaging system 

configuration is tolerant to shadowing and blockage. Also, the optical medium is more secure 

than the RF counterparts against any intrusion. 
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Chapter 1 

Introduction 
 

1.1 Motivation 
Since the invention of Laser in 1960, it has found multiple applications including 

communications, remote sensing, and imaging. The advantages of performing imaging in the 

optical band are manifold. Modern Lidar and Ladar systems are preferred over their RF 

counterparts due to the higher resolution, faster area search rate, and ease of human 

interpretation. All these benefits are direct results of the smaller wavelength of optical waves. 

Medical imaging benefits from the ability of laser to penetrate soft tissues and organs, for 

detecting tumors and cancerous glands. Active imaging using laser beams is also of particular 

importance to the military community. Laser imaging systems find use in ground battlefields 

as well as air-to-ground surveillance. The ability of obtaining high-powered short-pulsed laser 

modules today has transformed our abilities to image through aerosols and turbulence. One 

good example of the use of laser for air-to-ground surveillance is the Synthetic Aperture 

Ladar for Tactical Imaging (SALTI) [1], which is an airborne interferometric synthetic 

advanced laser radar imager capable of producing high-resolution three-dimensional imagery 

at long ranges. The advantage of active imaging is particularly noted in its daytime and 

nighttime use, control over the pattern and strength of the emanating laser from the 

transmitter, and incorporation of parallel schemes. 

The challenges associated with active laser imaging are also manifold. The success of the 

SALTI was in clear atmosphere, but the same approach does not necessarily apply to clouds 

and turbulent atmosphere, which is a more likely scenario in long-distance imaging case. In 

contrast to radio wavelengths, the optical wavelengths are of the same order of particles size 

as vapor; therefore, atmospheric phenomena such as cloud, fog and haze interact with laser 

beams and scatter them [2]. As a result of multiple scattering events, the transmitted laser 

beam is broadened and the energy is redistributed in time and space. This atmospheric 

attenuation imposes a big challenge on laser imaging systems, and it can be as severe as 300 

dB/km in heavy fog [3]. As a result, the light reaching the target to be imaged undergoes 

attenuation, and similar attenuation is also present on the return path. Furthermore, in an 

optical imaging system, back-scattered light from the scattering media impinges on the 

receiver and gives rise to a steady background noise and limits contrast. 

Multiple scattering is not the only degrading factor. Temperature and wind speed 

variations in different layers of the atmosphere contribute to turbulence, which introduces 

refractive index fluctuations along the optical path. This causes amplitude and phase 

fluctuations in the received wave-front [4][5][6]. Optical imaging systems experience severe 

resolution degradation due to PSF broadening [6]. Fig. 1.1 shows the issues that an optical 

imaging system should resolve. 
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1.2 Objective 
To exploit the great potential of optical imaging systems, a comprehensive knowledge of 

the channel is required. Furthermore, various simulation tools must be developed to model the 

optical channel and imitate the performance limiting factors. Given such a channel model, 

special measures should be taken in design of any optical imaging and communications 

system to make it sustainable to possible sources of degradation. Such measures are necessary 

in both hardware and software design. In other words, both transmitter and receiver physical 

configurations should be chosen to optimize system performance. Additionally, corrective 

modules and proper post-processing blocks should be considered in the system design. 

Multiple-Input Multiple-Output (MIMO) configuration is proved to be effective in fading 

RF channels. Moreover, multi-spot diffuse configuration, first introduced by Yun and 

Kavehrad [7], has a great potential to be exploited in optical imaging, as discovered by MIT 

Lincoln Lab [8][9][10]. In this report, we propose MIMO imaging systems and investigate 

their performance under various atmospheric conditions. Then, using restoration techniques, 

we try to find a solution for performance degrading atmospheric phenomena. 

 

1.3 Organization 
First and foremost, we investigate the mechanisms of scattering and absorption and study 

theories that describe these phenomena in chapter 2. Next and in chapter 3, based on Mie 

theory, Monte Carlo Ray tracing (MCRT) algorithm is implemented and some of the channel 

parameters are found through post-processing of the simulation results. In chapter 4, by direct 

extraction of classical Markov chain, associated with angular distribution, evolution of laser 

beam and Second Largest Eigen Module (SLEM) of Monte Carlo Markov Chain, feasibility 

and achievable rates in FSO are investigated. Next in chapter 5, atmospheric turbulence 

models are studied and different methods of generating phase screens are reviewed and 

compared based on accuracy and computational complexity. Chapter 6 discusses MIMO 

wireless optical communications and illustrates Bit Error Rate (BER) performance 

improvements obtained in an Intensity Modulation/ Direct Detection (IM/DD) optical 

channel. Furthermore, a Single-Input Single-Output (SISO) configuration equipped with 

Adaptive Optics (AO) correction module is simulated and compared to a MIMO equivalent 

system. Chapter 7 introduces a spatially-multiplexed MIMO imaging system, inspired by 

multi-spot diffuse indoor wireless optical communication scheme. Given the comprehensive 

channel model developed in chapters 2 to 5, performance limitations and challenges that such 

 
(a) 

 
(b) 

Fig. 1.1:  (a) Backscattering and (b) PSF broadening in an Optical imaging system. 
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an imaging system faces in an atmospheric channel are explored. Chapter 8 demonstrates 

performance improvements achieved using a combination of image restoration techniques, 

such as time-gating, Blind Deconvolution (BD) and AO. Finally chapter 9 concludes this 

document and outlines possible future work. 
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Chapter 2 

Mie Scattering Theory 
2.1 Introduction 

Light propagation through clouds is basically a multiple-scattering problem in which 

beams or photons undergo several scatterings before either exiting the cloud or reaching the 

receiver. Most of the particles in scattering media such as atmosphere and ocean have 

dimensions comparable to (or less than) optical wavelengths. As a result, the study of optical 

signal propagation in such media needs some knowledge of Mie scattering theory. This theory 

is “the application of the Maxwell‟s equation to the problem of a homogeneous sphere 

radiated by a plane wave from a single direction” [11]. 

 

2.2 Single Scattering 
In calculation of scattering from aerosols, it is usually assumed that the particles are 

spherical. This assumption is reasonable as a result of random orientation of particles. 

Nevertheless, some authors have addressed the problem of Mie scattering from non-spherical 

particles [12]. Fig. 2.1 illustrates the underlying geometry of Mie theory [13]. 

Assume a spherical particle of diameter D with refractive index mi is suspended in a 

medium with refractive index mo. The relative refractive index is m=mi/mo and the 

wavelength of the incident beam is . The incident electric field can be expressed as 

where E0 is amplitude of the incident field, and 


2
k  is the wave number and the wave 

is traveling in z


  direction. The incident electric field can be decomposed to a parallel and a 

perpendicular component to the scattering plane [14]. 

 

jjkz

i eEE  0  (2.1) 

 
Fig. 2.1:  Illustration of geometry for calculation of Mie scattering. 

iii EEE  ||  (2.2) 
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The solution for the scattered electric field is given in terms of two scalar components 

)(1 S and )(2 S , which are functions of perpendicular and parallel-polarized components of 

incident field with respect to scattering plane (the plane in which   is measured) 

[13][14][15]. 

 

where  

and  

Note that, )(xJ n  and )(xYn  are the ordinary Bessel functions of first and second kind, 

respectively. Also, )(xjn  is the spherical Bessel function of first kind while )(xhn  is the 

Spherical Hankel function of first kind. Moreover, the argument x  in the above equations is 

the size parameter and is equal to: 

and n is the refractive index of the particle; Furthermore, n  and n  in (2.3) and (2.4) are as 

follows:  

where )(cos1 nP  is the first order associated Legendre function. Also, we have the following 

recursive equation for n  and n . 
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Given )(1 S  and )(2 S  from (2.3)to (2.13), we can finally compute the scattered electric 

field as: 

From these equations, one can see that basis vectors are different for incident and 

scattered fields (see Fig. 2.1). Furthermore, since the transfer matrix is diagonal, the incident 

field does not depolarize. The effect of polarization is better understood by studying the 

Stokes vector [I,Q,U,V], the elements of which are given by: 

With this notation, the relationship between the Stokes vectors of the incident and scattered 

fields becomes 

where the (Mueller) matrix elements are defined as: 

Stoke formulation is useful since it enables us to apply superposition principle to the 

Stokes parameters of the light scattered by a collection of randomly separated particles. From 

the above formulation, it can be seen that an incident wave with parallel polarization results in 

a scattered radiation with parallel polarization. This is the same for the case of perpendicular 
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polarization. The energy removed from the incident beam by scattering on the particle is 

proportional to the extinction cross section extC .  

which is the sum of the absorption and scattering cross-sections. The extinction cross section 

is  

where i =1 or 2. (Note: ),0(),0( 21 rSrS  ). The scattering cross-section is expressed as: 

and the integration is over the entire solid angle. The single scattering albedo   (or in some 

texts  ) is the ratio of scattering and extinction cross-sections.  

Finally, backscattering cross section is given by 

By normalizing the above scattering and extinction cross-sections to the geometrical cross-

sections, one may define the corresponding efficiencies. 

The scattering direction is defined via a three-dimensional probability density function 

known as the Phase Function )(P . The phase function is given by: 

where it is normalized so that its integral over the entire solid angle is 4  [16], i.e.: 

scaabsext CCC   (2.18) 
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Note that, ),(11 rS   encompasses both parallel and perpendicular polarizations as defined in 

(2.17). Hence, the above-mentioned phase function accounts for both parallel and 

perpendicular incident wave scattering. Fig. 2.2 and Fig. 2.3 demonstrate the phase function 

for the case 1


r
, while Fig. 2.4 and Fig. Fig. 2.5 show the phase function for 1.0



r
. It is 

clear from these figures that as the ratio of particle radius to wavelength increases, the 

scattering becomes more anisotropic. 

2.3 Poly-dispersion 
Clouds are composed of many particles from various sizes. Thus, we have to generalize 

the above concepts and take into account the particle size distribution of a scattering medium. 

To this end, we define a scattering cross-section per unit volume sca , expressed as:  

where the function n(r) is the particle size distribution function defined as the number of 

particles per unit volume with radii between r and r+dr. 

 

Fig. 2.2:  Phase function for 


r
 = 1 





0

)()( drrnrCscasca  (2.28) 
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These distribution functions are usually expressed in units of cm
-3

 m
-1

. Also, note that 

the scattering cross-section per unit volume has the units of inverse length. It is often called 

the scattering “coefficient”. The extinction coefficient is defined similarly and the 

corresponding single-scattering albedo is defined as extsca  / . The corresponding 

generalization of the Mueller matrix elements are: 

Note that, the elements are now defined per unit scattering volume. Also, we can generalize 

the phase function to the case of poly dispersion as follows: 

 

 

Fig. 2.3:  Phase function for 
r


 = 1 (Polar Coordinate). 


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)(),()( drrnrSS ijij  . (2.29) 
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2.4 Particle-size Distribution Models 
Clouds and aerosols are frequently a combination of more than one type; each type may 

have its own relative density distribution and refractive index properties. Each particle has a 

particulate bulk density, , in units of g cm
-3

, or as a dimensionless specific gravity. 

Moreover, each species may be characterized by a given mass concentration, C (g cm
-3

), 

which represents the weight of lofted material mixed within a unit volume of air. The 

quantities C and  are related by particle size distribution, denoted as n(r). The total number 

 

Fig. 2.4:  Phase function for 


r
 = 0.1. 

 

Fig. 2.5:  Phase function for 


r
 = 0.1(Polar Coordinate). 
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of particles per unit volume, Number Density, is denoted by N, which is related to particle 

size distribution through:  

where, as mentioned before, n(r) has the units of particle per cm
3
 m. We may now write 

mass concentration C, as a function of n(r) and , as: 

where  3

3

4
r  is the mass of particle of radius r . There are a number of analytic models of 

aerosol size distributions in current use. These include gamma, modified gamma, and 

lognormal. 

 

2.4.1 Gamma Distribution 
 

Gamma Distribution, used by snow and rain models, is given by: 

where 0N  is the y intercept,   is the slope, and m is the order of gamma size distribution. 

Taking m = 0, we find the number density to be 

The mass concentration for this distribution can be expressed as: 

2.4.2 Modified Gamma Distribution 
 

Modified Gamma (MG) Distribution, first introduced by Deirmendjian [17] and used by 

fog models, is given by: 

Defining the mode or modal radius as 




b
rc  , we can rewrite (2.36) as: 

In this case, the total number density is  





0

)( drrnN , (2.31) 
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3)(
3

4
drrrnC  , (2.32) 

)exp()( 0 rrNrn m  , (2.33) 

 /0NN . (2.34) 
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0 /8)3/()4(4   NNC . (2.35) 

)exp()(  brarrn  . (2.36) 
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The mass concentration for this distribution can be expressed as  

Table 2.1 shows the parameters of “Modified Gamma” Distribution for different kinds of 

cloud. 

 

2.4.3 Lognormal Distribution 
 

The lognormal distribution, used by the smoke, dust, rural, urban, maritime, tropospheric, 

desert, and the Navy aerosol model, is given by the equation (2.40): 

where gir  is the geometric mean radius (or mode radius) in m, i  is the width of 

distribution, and iN  is the number density of the i
th

 component. The mass concentration for 

this distribution is given by: 

2.5 Phase Function 
Phase function gives the directional distribution of radiation scattered by the particle. The 

phase function is the probability that incident wave is scattered through a scattering angle θ 

into an element of solid angle d . Given the above particle size distributions, we can derive 

the phase function for different kinds of clouds, using equations in sections 2.2 and 2.3. Fig. 

2.6 demonstrates some of these phase functions. Since the azimuth scattering angle, φ, is 

uniformly distributed in [0,2 ] , the Phase Function can be plotted only against the polar 

scattering angle, θ. The “normalized” phase function, as generally used in the literature, is 

normalized so that its integration over all possible scattering angles (4π steradians) is unity, 

thus qualifying it to be a PDF. With no   dependence of )(P , the integration over   

simply contributes a factor of 2π. This leads to normalization definition for )(P  of: 

)/)1(()(
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
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


NrC c
. 

(2.39) 

Table 2.1:  Parameters of “Modified Gamma” distribution for various kinds of clouds. 
Distribution Type N (cm

-3
) a 

cr      b 

Cumulus 250 2.604 6 3 1 0.5 

Stratus 250 27.0 3.3333 2 1 0.6 

Stratus/ strato-cumulus 250 52.734 2.6667 2 1 0.75 

Stratocumulus 150 9.375 4 2 1 0.5 

Alto-stratus 400 6.268 1.8 2 1 1.111 

Nimbo-stratus 200 7.676 11.7647 5 1 0.425 

Cirrus 0.025 2.2110
-12 64 6 1 0.09375 

Thin cirrus 0.5 0.011685 4 6 1 1.5 
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Thus, PDF of θ can be extracted from the „normalized‟ phase function and be expressed as: 

Unfortunately, expressing the phase function versus θ caused a great deal of confusion in 

the published literature [18][19]. For example, in the case of isotropic scattering, by mistaking 

the “phase function” for PDF of θ, one may think that θ is uniformly distributed in [0, π]. 

However, it is the phase function (PDF of solid angle  ) that is flat and θ is distributed as 

2

sin
)(


 f  [18][19][20]. 

 

When many scattering events have occurred and/or optical thickness is sufficiently large, 

the phase function can simply be approximated. One such approximation is the Henyey-

Greenstein (HG) phase function [21], 

where g is called the asymmetry parameter and is a measure of the ratio of forward to 

backward scattering. This phase function is interesting since it depends only on a single 

parameter g. For isotropic scattering g is 0 and for highly peaked scattering it approaches 1. 

Asymmetry parameter can also be negative in the case of back scattering. This parameter can 

be derived from (2.45). 
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Fig. 2.6:  Scattering Phase Function for different types of cloud. 
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In this project, we are mostly interested in cumulus clouds. While this cloud demonstrates 

a highly peaked phase function, which may be helpful from imaging perspective, it has the 

largest extinction coefficient as well, and can be considered as the “worst case” in this sense. 

For cumulus cloud g is 0.85. Fig. 2.7 compares the cumulus cloud phase function and the 

approximate phase function of g equal to 0.85. From this figure, one can see that although 

these phase functions have the same asymmetry parameter, g, they are completely different.  

One reason that causes these two different phase functions have the same asymmetry 

parameter is the definition of asymmetry parameter. As (2.45) shows, )(P is multiplied by 

)sin( in both nominator and denominator. This causes the g parameter to be biased against 

highly peaked phase functions [23]. Also, note that the approximate phase function is 

monotonically decreasing and does not demonstrate back scattering phenomenon properly. As 

a result, since the exact function slightly increases at large angles to account for back 

scattering, its asymmetry parameter becomes the same as the approximate phase function, 

even though it has a stronger peak in forward direction. In this dissertation, we use exact 

phase function. It can be shown that the results using exact and approximate phase functions 

turn out to be quit similar. However, in some previous works, [24] and [18], it has been shown 

that approximate and exact phase functions generate different results in biomedical 
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Fig. 2.7:  Comparison of Cumulus cloud phase function with Henyey-Greenstein phase 

function of asymmetric parameter g=0.85.  
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applications. As will be illustrated later, this contradiction is a result of mistaking the phase 

function (or volume scattering function) with the PDF of   [19].  

 

2.6 Conclusions 
In this chapter, single-scattering of light by particles is studied and parameters and 

functions involved in Mie theory are described. Mie Theory, although very useful in 

characterizing single scattering event, is not sufficient for describing multiple scatterings in a 

particulate medium. To explain wave propagation in a scattering medium, this theory should 

be combined with a powerful tool that can demonstrate consecutive scattering events. One 

such a tool is the Monte Carlo Ray Tracing (MCRT) algorithm, which basically implements a 

Markov Chain and tracks the path of a large body of photons in the propagation medium. 

Then, at a location of interest, i.e., receiver plane, statistics of impinging photons can be 

extracted via some post-processing. In the next chapter, we elaborate on this algorithm in 

details.  
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Chapter 3 

Monte Carlo Ray Tracing through Cloud 
 

3.1 Introduction 
Airborne laser communication involves light propagation through atmospheric 

phenomena such as cloud, fog, haze, rain, or snow. In this process, transmitter launches laser 

pulses containing large number of photons. Due to the presence of particles in the atmosphere, 

laser pulse propagation through an optically thick medium is essentially a multiple-scattering 

problem, in which photons undergo several scattering before either escaping the medium or 

reaching the receiver. Since atmospheric conditions are always changing, we are dealing with 

a time-variant channel. This channel causes the optical signal to spread in space and time and 

produces angular, spatial, and temporal dispersions. To understand different aspects of this 

channel, both analytical methods and Monte Carlo simulations have been used. In this 

chapter, we study the multiple scattering problem and describe the Monte Carlo Ray Tracing 

algorithm as a means to explain light propagation through optically thick media. 

 

3.2 Multiple Scattering 
In chapter 2, single scattering from spherical particles is discussed using Mie theory. 

Moreover, different parameters of scattering such as phase function, extinction and scattering 

coefficients, and single scatter albedo are introduced. However, these parameters describe 

only a single scattering event. As mentioned earlier, light propagation through atmosphere, 

ocean, or any other optically thick medium is a multiple scattering problem. In other words, 

when photon is launched, it collides with several particles and is scattered or absorbed due to 

each collision.  

Assume that photon is initially traveling in the z direction. As this photon interacts 

with an atmospheric particle, it is either absorbed with a probability of 1  or scattered with 

a probability of  , where   is the single scatter albedo. If photon is scattered, the new 

traveling direction is governed by two random variables   and  , which are called polar and 

azimuthal angles of scattering, respectively. While   has a uniform distribution in ]2,0[  , the 

distribution of   is determined by the phase function, )(P . The photon continues traveling 

in this new direction until it collides with another particle. Traveling distance between the two 

successive collisions is an exponential random variable with a mean equal to the inverse of 

scattering coefficient. In other words: 

and
sca

aveD


1
 . When photon collides with the next particle, the new   and   are measured 

with respect to current traveling direction but not the initial z direction. Fig. 3.1 shows the 

geometry of multiple scatterings. 

 

3.3 Monte Carlo Ray Tracing 
Monte Carlo Ray Tracing (MCRT) tracks the path of a large number of photons from 

the transmitter to the receiver plane to get the statistical parameters required for channel 

)/exp(
1

)( ave

ave

Dd
D

dP   (3.1) 
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measurements. These parameters include the average cosine of angle of arrival or angular 

dispersion, the average distance from the centre of the receiver plane or spatial dispersion, and 

the maximum delay spread or temporal dispersion of the received light signal. MCRT 

continues tracking as many photons that the statistical fluctuations become negligible.   

From Fig. 3.1 we can see that whenever a photon is scattered, its propagation direction 

changes. Accordingly, it can be assumed that the trajectory of a photon is a random walk in 

two dimensions. Since the new direction of propagation is defined relative to the previous 

traveling direction, photon propagation in such a medium can be described by a Markov 

chain, in which the previous traveling direction can be considered as the previous state and 

random variables   and   are the system input at each scattering event.  

As mentioned earlier,   and   are defined relative to previous traveling direction; 

therefore, we need a series of geometric transformations to figure out the position and 

traveling direction of a photon with respect to global coordinates after multiple scatterings. 

Since in each scattering event, first z and x axes are rotated with an angle  , and then x and y 

axes are rotated with an angle  , we have to combine the effect of these two rotations to 

derive the rotation matrix B  for each scattering. First suppose that z and x axes are rotated 

with an angle  , while y-axis is kept fixed. Fig. 3.2 shows this rotation. Any point in the new 

coordinate system (x', y', z') can be mapped onto (x, y, z) coordinate with the following 

geometric transformation [25].  

 
Fig. 3.1:  Geometry of multiple scattering 



 

22 

Now, suppose that axes x and y are rotated with an angle φ, while z-axis is kept fixed. Fig. 3.3 

shows this rotation. One can relate any point in the new coordinate and the old one, as: 
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Fig. 3.2:  Rotation axes z & x while keeping the y-axis fixed. 
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Finally, combining the effect of these two rotations, we get  

 

All we know from a photon is the initial traveling direction and a series of random 

variables d,  , and  . When photon undergoes multiple scatterings, the effect of all these 

rotation matrices must be combined to find the final global position. For more illustrations, 

consider Fig. 3.1 and assume that a photon has undergone three scattering events so far and 

we have 3-tuples of random variables, )0,0,( 0d , 1 1 1( , , )d   , and ),,( 222 d . Global position 

of photon after these scattering events is:  

Similarly, if a photon undergoes n scattering events, its final global position would be [26], 

where 

 
Fig. 3.3:  Rotating axes x and y while keeping the z-axis fixed. 
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and 

Monte Carlo ray tracing tracks a large number of photons and records whether they have 

escaped from the cloud, absorbed by particles of the cloud, or arrive at the receiver plane. For 

the photons arriving at the receiver plane, MCRT records the position, angle of arrival, and 

the total traveled distance. By processing the outputs of the program, we can determine 

angular, spatial, and temporal dispersions of photons. For example, assuming that the total 

traveling distance of a photon is totd  and the physical length of the channel is chL , the time 

delay of such a photon is: 

where c is the speed of light. Moreover, spatial dispersion for a photon impinging on the 

receiver plane at (x, y) is 22 yxr  . Also, angle of incidence of a photon hitting the 

receiver plane is considered as the angular dispersion.  

 

3.4 Simulation Results 
When a pulsed laser light travels through a scattering medium, photons collide with 

medium‟s particles. When the number of these collisions is large, the pulse broadens and the 

spatial coherence is lost. Moreover, the pulse projection on a plane perpendicular to traveling 

direction is no longer a small spot. Also, the intensity of the EM field is not uniform all over 

the beam cross-section. If we model the laser pulse with a large number of photons that are 

launched into the scattering medium together at the same time, we can use MCRT simulation 

to investigate the angular, spatial and temporal distribution of these photons on the receiver 

plane for various optical thickness values. To this end, photon transmission is continued until 

exactly 1 million photons hit the receiver plane, which is assumed to be very large. Then all 

the information about photon‟s incidence on the receiver plane is recorded. Namely, incidence 

point, time delay, and angle of incidence are stored in a data file. Based on these 

measurements, the following parameters are found. 
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cosθ : Mean value of cosine of incidence angle on the receiver plane. 

r : Average of photons’ distance from center of the receiver plane. 

Delay Spread: the time needed for 90% of the photons to get to the receiver plane.  

These parameters are measures of angular, spatial, and temporal dispersions, respectively. 

While delay spread can be normalized to the average time between two successive scatterings 

( scatkc ), r  may be normalized to average distance between two successive scattering 

events, 
scatk

1
. 

Fig. 3.4 and Fig. 3.5 give us a basic idea about the spatial and temporal distribution of 

photons at the exit plane of a cumulus cloud. While Fig. 3.4 (a) shows the spatial distribution 

of photons on the receiver plane for a cloud of optical thickness τ = 1 (very small number of 

scatterings along the path), Fig. 3.5 (a) demonstrates this distribution for τ = 20. When τ is 

small, most photons arrive at the center of the receiver plane; however, for large values of τ, a 

mountain of photons is formed around the center of the receiver plane. In other words, the 

variance of distribution increases with τ. 

Temporal dispersion shows how much a pulse broadens when it travels through a 

scattering medium. Fig. 3.4 (b) and Fig. 3.5 (b) demonstrate the distribution of photons‟ 

 
Fig. 3.4:  Distribution of photons on the receiver plane for an optical thickness=1. 
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arrival times on the receiver plane. Again, we see that for τ = 1, the photons arrive 

approximately at the same time; however, for τ = 20, it takes much longer for 90% of photons 

to arrive at the receiver plane and hence we have pulse broadening. Note that, photons in 

MCRT are simply a symbol of energy packets. For a more quantitative analysis of angular, 

spatial, and temporal dispersion, we designed two scenarios so that the effect of normalization 

on the channel parameters can be investigated, as well. In the first scenario, it is assumed that 

the particulate medium is a cumulus cloud, which has the scattering coefficient of 
-1131.8526   kmscatk  . In this case, the optical thickness of channel is varied from 1 to 50 and the 

physical channel length is proportional to optical thickness (
scat

avech
k

DL


  ). Then, for 

each of these optical thickness values (and corresponding physical channel length) the above 

parameters are calculated. 

In the second scenario, we assume that the scattering medium has the same phase 

function as the cumulus cloud. However, the scattering coefficient is changed to realize 

different optical thickness values from 1 to 50 in a fixed physical channel length (1 km). In 

other words, it is assumed that transmitter and receiver are at 1 km of each other and this 

distance is fixed, but the density of the cloud varies and results in different optical thickness 

values.  

 
Fig. 3.5:  Distribution of photons on the receiver plane for an optical thickness=20. 
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As mentioned before, we can normalize delay spread and r  to the time and distance 

between two successive scattering events, respectively. Fig. 3.6 shows r  (in meters) for 

different optical thickness values for scenarios 1 and 2. Here, one can see that in a fixed 

physical length channel, when the cloud becomes denser, r or spatial dispersion becomes 

saturated. This fact has been mentioned in [27]. Fig. 3.7 shows the normalized r  for both 

fixed physical channel length and the case where physical channel length is proportional to 

optical thickness. We realize that if spatial dispersion is normalized to aveD , then the results 

for these two scenarios are the same! From this similarity, we can understand why in Fig. 3.6 

and for a fixed physical channel length, r  saturates as the optical thickness value increases. 

This is due to the fact that for a given phase function and optical thickness, normalized r  is a 

constant no matter what scatk  or aveD  are. However, since over a fixed physical channel, aveD  

decreases as the optical thickness increases, r  saturates at large optical thickness values. The 

results for the delay spread and normalized delay spread are the same as for spatial dispersion. 

In other words, while delay spread in units of second is different for these two scenarios and 

we observe the saturation of delay spread for the case of fixed physical channel length, the 

normalized delay spread is the same in different optical thickness values. Fig. 3.8 and Fig. 3.9 

illustrate the results for delay spread in units of seconds and normalized delay spread, 

respectively. One can observe a similar trend for delay spread and temporal dispersion.  

Now, we turn our attention to angular dispersion. We define the average cosine of 

incidence angle, cos , as a measure of angular dispersion. We expect this value to be the 

same for both “fixed” and “proportional to optical thickness” physical channel lengths. 

Furthermore, as it is shown in Chapter 4, the beam‟s angular distribution converges to an 

isotropic one as optical thickness increases. Since, a receiver plane can catch only the forward 

part of this distribution and mapping from a 3D unit sphere to 2D unit circle needs a 

correcting factor of cos( ) , we expect cos  to converge to: 

Moreover, the variance of cos( )  is expected to converge to: 

In Chapter 4, we elaborate on angular dispersion in more details and show that (3.11) 

and (3.12) are indeed correct.  

/2

2

0

cos( ) cos( ) sin( ) 0.6667d



      (3.11) 

/2
2

2 3

cos( )

0

cos( ) sin( ) cos( ) 0.0555d



        (3.12) 
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Fig. 3.6:  Spatial Dispersion (meters) for “fixed” and “proportional to optical thickness” 

physical channel length. 

 
Fig. 3.7:  Spatial Dispersion (normalized) for “fixed” and “proportional to optical 

thickness” physical channel length. 
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3.5 Conclusions 
In this chapter, a very powerful tool for channel modeling, i.e. Monte Carlo Ray Tracing 

(MCRT), is introduced and described in details. It is shown that angular, spatial, and temporal 

dispersion increase with optical thickness. Moreover, simulation results and numbers obtained 

for one medium can be easily applied to any other medium through some normalization 

process, as dispersion is solely a function of channel‟s optical thickness and not its physical 

length. In the next chapter, we show that direct extraction of a Markov chain associated with 

angular distribution evolution from MCRT provides a new insight into the multi-scattering 

problem. Additionally, the Second Largest Eigen Modulus (SLEM) of Monte Carlo Markov 

 
Fig. 3.8:  Delay spread (seconds) for “fixed” and “proportional to optical thickness” 

physical channel length. 

 
Fig. 3.9:  Delay spread (normalized) for “fixed” and “proportional to optical thickness” 

physical channel length. 
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Chain is shown to be the same as the scattering phase function‟s asymmetric parameter. This 

reveals the reason behind the significance of the asymmetric parameter and the fact that 

Henyey-Greenstein phase function can provide the same result as that of a full Mie series 

phase function. 
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Chapter 4 

Markov Chain-based Analysis 
 

4.1 Introduction 
As a collimated laser beam propagates through clouds, it spreads and after traveling some 

optical thickness value, it reaches a steady state of being defocused and diffused. The rate of 

convergence to this steady state determines feasibility of communications or imaging through 

various clouds of different optical thickness values. 

In this chapter an analytical method is proposed to calculate angular dispersion in a 

scattering medium. First efforts to solve multiple scatterings problem analytically were based 

on the radiative transfer equation of Chandrasekhar [28], among them Dell-Imagine‟s [29] 

and Heggestad‟s [30] works were outstanding. However, the peaked nature of phase function 

in clouds and other atmospheric phenomena makes the solution of radiative transfer equation 

for free-space propagation a difficult one [31]. As a result, MCRT was used to solve this 

equation by tracking photons in a scattering medium. As mentioned before, in MCRT photons 

are viewed as packets of energy and not from a Quantum Mechanical perspective. 

Monte-Carlo Ray Tracing (MCRT) has been used to calculate the channel parameters 

[27], [31], and [32]. This method requires a high computational capacity and a long execution 

time. In [33] authors find spatial and angular distribution by a statistical approach. However, 

their results are limited to the first two moments of multiple scattering. Finding angular 

distribution is of great importance in computer graphics, as well. In [34], an impulse response 

is defined for a single scatter and then the result is generalized to multiple-scattering via 

convolution. Since this impulse response is three dimensional, convolution process is quite 

cumbersome. In this chapter, angular distribution evolution of a laser beam in a multiple 

scattering medium is characterized by extracting the corresponding simplified Markov chain 

information from the MCRT algorithm. By calculating the state transition matrix, one can find 

the probability distribution function of the scattering angle after any number of scatterings. 

We show that the simplified Markov chain model produces values that are close to MCRT 

results and other proposed analytical methods, yet need much less time to produce the results. 

Since angular, spatial and temporal distributions of received power are inter-related, useful 

information can be extracted from angular distribution about the behavior of the entire 

system. While the simplified Markov chain, extracted from Monte-Carlo Markov Chain 

(MCMC) is limited to calculation of the angular dispersion, MCRT provides the numerical 

values of angular, spatial, and temporal dispersions. However, MCRT program needs much 

longer execution time. Also, statistical fluctuations may affect the accuracy of the results. 

 

4.2 Markov chains 
A Markov chain is a discrete-time stochastic process (Markov process) that has the 

Markov property. It means that the system can occupy a finite or countably infinite number of 

states such that the future of the process, knowing its present state does not depend on the past 

[35]. In other words, a stochastic process is a Markov chain if: 

A Markov chain is time-invariant if: 

1 1 1 1 1 1 1 2Pr[ | ,..., ] Pr[ | ];   , ,..., .n n n n n n n n nX x X x X x X x X x x x x           

 
(4.1) 
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That is, the conditional probability is independent of the time index. For a time invariant 

Markov chain,  

is called the state transition probability from state i to state j. The ||||    matrix ][ ijpP   

is called the State Transition Matrix. 

 

4.3 Applying Markov Chains concept to Photon Trajectories 
When a photon is traveling in a scattering medium, it goes through multiple scattering 

until it escapes the medium‟s boundary. Knowing the direction and position of photon before 

any scattering event, we can find the probability distribution function of its direction and 

position before the next scattering. In other words, the most recent past determines the 

present, no matter what the entire history of the photon‟s trajectory is. Hence, it can be 

assumed that the trajectory of a photon is a random walk in two dimensions creating a 

Markov chain [31]. 

The MCMC, which is implemented as MCRT algorithm, specifies the k
th

 state of a 

photon, i.e. photon‟s position and directions right before the (k+1)
th

 scattering, as: 

where ( , )k k   represents the traveling direction in spherical coordinates and ),,( kkk zyx  

stands for its position in Cartesian coordinates. Note that, direction can also be expressed by 

directional cosines ( , , )x y z    in a Cartesian coordinate system [20]; however, we choose 

the former notation because it requires only two variables and fits better into our simplified 

Markov chain model. Path of each photon is determined by a series of 3-tuples ( , , )d   , 

where d  is an exponential random variable and stands for the distance between two 

successive scattering events, and   and   are the polar and azimuth angles of scattering with 

respect to previous traveling direction, respectively. MCRT calculates channel parameters 

such as angular, spatial, and temporal dispersions using statistics of the photons reaching the 

receiver plane in a post-processing stage.  

In Markov chain of MCRT, variables associated with position of a photon in three-

dimensional space are neither finite, nor countable. However, if we limit our attention to 

photons‟ direction in spherical coordinates, and quantize θ and φ, a finite state Markov chain 

is obtained. Furthermore, if it is assumed that the laser beam is traveling in a homogeneous 

medium, the phase function will not change from one state to the next. Thus, a Markov chain 

with a time-invariant state transition matrix can explain the angular distribution evolution of 

the laser beam, while it is traveling through a multiple scattering medium. 

We claim that the angular dispersion, defined as the average cosine of the incidence angle 

on the receiver plane, can be calculated by modeling the photon trajectory in a 3-D space by a 

random walk. Moreover, this method provides us with the complete angular distribution, 

rather than just the moments. Also, it is superior to MCRT since due to its analytical nature, it 

is more tractable. Furthermore, in MCRT, a large number of photons are sent into the 

scattering medium in the hope of finding the distribution of photons on the receiver plane. 

1 2 1Pr[ | ] Pr[ | ]    &  ,n nX i X j X i X j n i j         (4.2) 

]|Pr[ 1 jXiXp nnij   , (4.3) 

],,,,[ kkkkkk zyxS  , (4.4) 
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Hence, to account for all possible paths and angles, a large amount of processing is required 

that may not be feasible. While the computational complexity of MCRT is very high and the 

computer simulation programs need a large execution time, this analytical method can provide 

us with the results for angular distribution through simple matrix multiplications. 

Suppose a photon is traveling in the 1k   direction with respect to z  axis before k
th

 

scattering. If this photon collides with a cloud particle, its propagation direction changes in 

space. Fig. 4.1 illustrates the geometry of the problem. The change of direction is described 

by the phase function. However, phase function provides PDF of cosine of deflection angle 

with respect to initial traveling direction, while we are interested in a traveling direction with 

respect to the global z  axis. In other words, the phase function provides us with the 

distribution of cos( ) , while we want the distribution of k , as in Fig. 4.1. The term cos( )k  

is related to 1cos( )k   via: 

where   and   are polar and azimuth scattering angles, respectively. While   is uniformly 

distributed in [0,2 ] , the distribution of   is given by
sin( )

( )
2

P


  . To calculate the PDF of k

, first we determine its cumulative distribution function (CDF). 

Hence, we can write 

,sinsincoscoscoscos 11    kkk  (4.5) 

 
Fig. 4.1:  Relationship between θk-1,  θ  and θk. 
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Finally, the cumulative distribution can be expressed as: 

If we differentiate the last equation, we obtain the PDF of k . It is also possible to directly 

generate PDF of k , by rewriting as: 

Then, the PDF of k  can be found by adding up the probabilities associated with all values of 

θ and φ that give rise to a certain k , given 1k  .Now, we can form a matrix with its rows 

corresponding to incident angle and its column corresponding to scattering angle. This matrix 

can be used as the state transition matrix of a Markov process. (4.10) illustrates this matrix. 

If one wishes to have the distribution of photon‟s direction after k
th

 scattering, knowing that it 

was initially traveling in the z  direction, one has to calculate 

First row of the state transition matrix is P(θ)sin(θ)/2. Hence, we can find the phase 

function of k scattering events from the first row of the k
th

 power of the state transition matrix, 

simply by taking out the sin(θ)/2 factor. 

Fig.4.2 shows the state transition matrix for the cumulus cloud at a wavelength of 1.55 

μm. We have calculated the state transition matrix with the resolution of 300/ . In other 

words, P is a 300×300 matrix. We observed that by increasing the resolution to 1000/ , our 

simulations result does not change. 
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The forward scattering property of cumulus cloud is clear from Fig.4.2. That is, the state 

transition matrix is very close to an identity matrix. Fig. 4.3 shows P
15

 which clarifies 

transition probabilities at an optical thickness 15.  

Here, the optical thickness 15 is chosen since for this value, there are less line-of-sight 

(LOS) photons, and most of the photons that may reach the receiver have gone through 

multiple-scatterings, hence, this effect can be illustrated. From Fig. 4.3 one can see that after 

15 scattering events, the phase surface is very close to one shaped as sin(θ)/2. This 

corresponds to an isotropic scattering. Fig. 4.4 shows a side view of the phase surface. One 

can observe that different rows of the matrix are very close but, not as yet identical. Fig. 4.5 

shows P
50

, that is, the phase surface after 50 scattering events. This figure clearly illustrates 

isotropic radiation after 50 scattering events. Fig. 4.6 shows a side view of the phase surface. 

It can be inferred that after 50 scattering events, no matter what the initial incident angle 

value, the scattering angle is distributed as sin(θ)/2. This is consistent with Bucher‟s [27] 

observation of uniform brightness of the cloud bottom. 

 
Fig.4.2:  State transition matrix of cumulus clouds at a wavelength of 1.55 m  . 

 
Fig. 4.3:  State transition matrix of cumulus cloud, raised to 15

th
 power, at a wavelength 

of 1.55 m  . 
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Fig. 4.4:  Side view of the state transition matrix, raised to 15

th
 power. 

 
Fig. 4.5:  State transition matrix of cumulus cloud, raised to 50

th
 power, at a wavelength

1.55 m . 

 
Fig. 4.6:  Side view of the state transition matrix, raised to 50

th
 power. 
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4.4 Comparison of Results 
As mentioned earlier, application of Markov chain in MCRT cloud modeling is a shortcut 

for calculating angular distribution of energy in space in any arbitrary optical thickness. In 

this section, we compare the results of our Markov chain model with those by MCRT and 

another analytical method, which we call the moment technique [33]. 

To make a fair comparison, we note that while both MCRT and Markov chain model 

produce a complete distribution, the moment technique only comes up with the first two 

moments. Furthermore, MCRT can provide us with the distribution of photons on the receiver 

plane. However, both the Markov chain model and the moment technique generate angular 

distribution in a three-dimensional space, i.e. on a sphere. Hence, to compare the Markov 

chain model with MCRT, we should only consider the forward part of the distribution, i.e., 

0 / 2   . Moreover, we should take into account the projected area correction factor of 

cos( )  for mapping from 3-D distribution onto a sphere to 2-D distribution on the receiver 

plane [27]. Given a photon at the cloud exit plane has scattered k times over a cloud length L, 

its angular distribution would be )(kP  as in (4.11). To calculate the unconditional angular 

distribution, we note that the probability that a photon undergoes exactly k scatterings over L 

is Poisson distributed with a mean τ, where τ is the optical thickness, as defined earlier. That 

is: 

Hence, the angular distribution for this optical thickness value is: 

Using (4.13) , angular distribution is calculated for optical thickness values of 1 to 15. Fig. 4.7 

shows the cumulative distribution function (CDF) of incident angle obtained from Markov 

chain model and MCRT, where we have applied the above-mentioned measures in order to 

make the comparison fair. From Fig. 4.7, one can see that CDF curves obtained from Markov 

chain model and MCRT are quite close in numerical values. Furthermore, as optical thickness 

value increases, angular dispersion increases. 
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One important measure of angular dispersion is the average cosine of incident angle, 

)cos( . Variance of incident angle cosine is also considered as a measure of angular 

dispersion in the literature. The moment technique provides us with the first two moments of 

cos(θ) in a three-dimensional space. However, MCRT provides the complete distribution on 

the receiver plane. Then, one can find the first two moments of cos( )  using this distribution. 

The Markov chain model, in its original shape, produces the same mean and variance as those 

of the moment technique. However, as mentioned earlier, it can be truncated and modified to 

provide the distribution on the receiver plane. Fig. 4.8 and Fig. 4.9 show the mean and 

variance of cos(θ) for MCRT, truncated Markov, original Markov, and moment technique 

(labeled „Moments‟) for different optical thickness values.  

 
Fig. 4.7:  Comparison of CDF curves for angular distribution. 

 

Fig. 4.8:  Comparison of )cos(  for different methods. 
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It is clear from these figures that the variance of the cosine of incident angle increases 

with optical thickness, whereas the mean decreases. Moreover, saturated values of mean and 

variance of incident angle cosine are as predicted in chapter 3. This implies that for small 

optical thickness values, a receiver of small FOV suffices to collect the required power; 

however, for large optical thickness values, the energy is almost uniformly distributed in a 3-

D space. Saturation of variance curves in Fig. 4.8 and Fig. 4.9 suggests that density evolution 

of angular distribution merges to the steady-state and the Markov chain converges to the 

equilibrium distribution. It is also evident from these figures that our Markov chain model is 

consistent with both MCRT and moment technique. Finally, the time required for each 

method to generate the results in different optical thickness values is tabulated in Table 4.1. 

Computer programs were executed on a 3.40 GHz Pentium-4 CPU, with 2.00 GB of RAM. It 

is clear from this table that the computation time for MCRT increases with the optical 

thickness value. However, neither the Markov chain model, nor the moment techniques show 

much variability in the computation times. We also note that the execution time required for 

the Markov chain model is significantly less than MCRT but much more than moment 

technique. However, moment technique gives only the first two moments, and not the 

complete distribution. Thus, the Markov chain model is able to demonstrate a more complete 

picture. 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 4.9:  Comparison of var(cos( ))  for different methods. 
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4.5 Eigen Analysis 
State transition matrix, P  has no zero entries, and hence is regular. In other words, it is 

possible to go to all the states from any arbitrary state. It is a well known fact that for a regular 

Markov chain, as n approaches to infinity, P
n
 →П, where П is a matrix of the form [ν, ν, …, 

ν], with ν being a constant vector. From the previous section, we see that this is true about the 

state transition matrix of our Markov chain P, and as n increases, all the rows of the state 

transition become identical and proportional to sin(θ)/2. Now, the question is whether it is 

possible to predict  , and thus П, without using the limits and the answer is affirmative. In 

fact, П satisfies the equation: 

 

Notice that, from Perron-Frobenius theorem , ν is the first left eigenvector of P, 

corresponding to the unique largest eigenvalue, λ0=1. By examining the first left eigenvector 

of matrix P, we realize that it is proportional to sin( ) / 2 . Hence, we could have predicted the 

diffuse behavior of light at the bottom of the cloud, just by looking at the left eigen vector of 

the state transition matrix, from the beginning. 

Convergence of P
k
 elements means that it becomes more and more difficult to guess k, 

from pij
k
 (the element in the i

th
 row and the j

th
 column of P

k
). That is, the chain forgets the 

length of its history [36]. The fact that limit of P
k
 has identical rows suggests that the Markov 

chain forgets the initial position. 

When a Markov chain converges to this steady-state, traveling direction of photons 

becomes rather isotropic, as opposed to forward-scatter condition in initial steps. This 

suggests that the laser beam is spatially diffused and no matter what the initial traveling 

direction is, photons escape almost uniformly from all boundaries of cloud. In this case, 

spatial confinement of transmitted energy is no longer preserved and space loss (mostly 

attributed to scattering) is rather large. 

In some applications, due to eye safety regulations, there is restriction on increasing the 

transmit power level beyond a certain maximum. Under such circumstances, receiver may not 

see much forward scatter (snake) photons and must resort to only the LOS (ballistic) photons, 

that is, the non-diffused part of the intensity, which is attenuated according to Beer-Lambert 

law as: 

Table 4.1:  Time required for each method to generate the results in different optical 

thickness values. 

Optical 

Thickness 
MCRT Markov Moments 

1 656 s 33 s 0.06 s 

5 767 s 33 s 0.06 s 

10 948 s 33 s 0.06 s 

15 1212 s 33 s 0.06 s 
 

P  (4.14) 

 eII coh 0  (4.15) 
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Needless to say, by using ultra-short laser pulses and cascade amplifiers, this component can 

be amplified, significantly. In (4.15), τ is the optical thickness of cloud, as defined earlier. 

The number of steps required for the Markov chain to converge to the equilibrium state is 

of great importance since it determines the depth up to which the laser beam can penetrate 

before becoming spatially diffused. From (4.5), one can see that: 

 

In other words, the asymmetric parameter, g determines the convergence rate of Markov 

chain. On the other hand, from Markov chain theory [37], we know that the Second Largest 

Eigenvalue Modulus (SLEM) determines the “Mixing Rate” of a Markov chain. In other 

words, the smaller the SLEM is, the faster the spatial Memory-loss happens. Hence, “Mixing-

Time” of a Markov chain is given by: 

 

where T is the number of steps over which deviation from equilibrium state decreases by a 

factor e, and *  is the SLEM. By examining the eigenvalues of P (state transition matrix of 

cumulus cloud) we realize that the second largest eigenvalue is indeed the asymmetric 

parameter g. 

Table 4.2 lists the SLEM for Markov chains associated with HG phase functions of 

different asymmetric parameters as well as full Mie series phase function for different types 

of clouds. This table also contains the mixing time and the average distance between two 

successive scattering events for each cloud. Average distance, aveD , between two successive 

scattering events is used to convert optical thickness of a specific scattering medium to its 

physical thickness and vice versa. It also corresponds to the inverse of scattering coefficient, 

expressed in km
-1

, which can be obtained from substituting clouds particle size distribution in 

equations extracted from Mie theory for poly-dispersed extinction coefficient [15], [38]. From 

Table 4.2 we see that the second largest eigenvalue is equal to g for all of these phase 

functions. That is why asymmetric parameter is so important in calculating the moments of 

multiple scattering and channel parameters [33], [27]. Since angular, spatial and temporal 

distributions of energy are inter-related, isotropic angular distribution suggests that spatial 

distribution in transverse coordinates (x and y directions) is Gaussian. Furthermore, spatial 

memory-loss of Markov chain associated with angular distribution after several scattering 

events implies that the entire Monte-Carlo Markov chain (MCMC) has converged to the 

equilibrium state. This suggests that the pulse is so broadened in space and time that use of 

equalization on the pulse might be difficult, unless there is no constraint on the optical 

transmitted peak power level.  

Examining parameters of Table 4.2, we realize that mixing time is rather short for clouds 

and haze and a large link margin is necessary, in order to have reliable imaging through 

clouds of optical thickness values much larger than 10 to 15. However, this rather small 

optical thickness may translate into a long physical thickness for clouds such as thin Cirrus 

due to the long average distance between two successive scatterings for these clouds [15]. 
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Note that, all the results presented in this paper assume a homogeneous body of clouds. In 

reality, as a waveform moves through clouds, the dynamics are far more rapidly varying. 

Hence, the predictions in this chapter are on the conservative side. 

4.6 Conclusions 
To answer the fundamental question of feasibility of active optical imaging in a scattering 

medium, one has to accurately model atmospheric optical channel and estimate parameters 

such as angular, spatial, and temporal dispersion. As a collimated laser beam propagates 

through aerosols and cloud particles, it spreads and after traveling some optical thickness 

reaches the steady-state of being nearly diffused. The rate of convergence to this steady-state 

determines the feasibility of imaging through various types of clouds and aerosols with 

different optical thickness values. Average distance between two successive scattering events 

is used to convert optical thickness of a specific scattering medium into its physical thickness 

and vice versa. 

By directly applying Markov chain model to angular distribution evolution of laser beam 

in a scattering medium, and considering the fact that angular, spatial and temporal 

distributions of energy are inter-related, the mixing rate of Monte-Carlo Markov Chain 

(MCMC) is found for different types of scattering media. Mixing time is referred to the 

number of steps over which deviation from equilibrium state decreases by a factor e . This 

indicates the rate by which the energy distribution approaches being spatially isotropic. 

Table 4.2:  Asymmetric parameter and SLEM for different clouds at a wavelength of 1.55 

μm 

Cloud SLEM g Mixing Time Dave 

Thin Cirrus 0.82 0.82 5 11.3 km 

Cirrus 0.87 0.87 7 984 m 

Alto Stratus 0.83 0.83 5.4 10.5 m 

Nimbo Stratus 0.85 0.85 6.2 12.3  m 

Stratu Columbus 0.82 0.82 5 26.5 m 

Stratus 0.83 0.83 5.4 17.5 m 

Cumulus 0.85 0.85 6.2 7.5 m 

HG( g=0.85) 0.85 0.85 6.2 N/A 

HG (g=0.95) 0.95 0.95 19.5 N/A 

Low Altitude Haze 0.73 0.73 3.2 817.8 m 

Medium Altitude 

Haze 
0.78 0.78 4 238.8 m 
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However, it may take many more scatterings for the temporal coherence of the laser beam to 

be lost. 

Examining parameters of Table 4.2, we realize that mixing time is rather short for clouds 

and haze. That is, when coherent light is traveling through clouds, its spatial coherence 

rapidly degrades. However, this may still translate into a long physical thickness for clouds 

such as thin Cirrus due to the rather long average distance between two successive scatterings 

in these clouds [15]. Also, all these results assume a homogeneous body of clouds that do not 

exist in the atmosphere. Therefore, experimentally, one may succeed transmitting over longer 

lengths of various clouds. 
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Chapter 5 

Atmospheric Turbulence and Scintillation 
 

5.1 Introduction 
Optical wave propagation through atmosphere is affected by temperature fluctuations 

related to the sun‟s heating of the earth and the turbulent motion of the air pockets due to 

winds and convection [39]. Hence, all the optical systems, that encounter atmosphere as a 

propagation medium, experience major performance degradations. In Free Space Optical 

(FSO) communications systems, turbulence manifests itself through beam-wander, 

scintillation, and flat fading. In optical imaging systems on the other hand, depending on the 

exposure time, turbulence gives rise to Point Spread Function (PSF) broadening and speckled 

appearance, limiting the ability to measure high resolution information [6].  

In imaging through atmosphere one should consider the dispersive effect of scattering, 

the turbulence-induced beam spreading, intensity fluctuations, and wave-front distortion. All 

these phenomena broaden and distort the Point Spread Function (PSF) which serves as the 

impulse response of the imaging system. In this monthly report, distortion of the PSF is 

investigated and different methods of simulating the wave-front distortion are presented. 

More specifically, a phase screen is used to simulate the phase perturbations introduced into 

the wave-front as a result of scintillation.  

Turbulence induced fluctuations can distort both amplitude and phase of the wave-

front incident on the receiving aperture. Fig. 5.1 shows the diffraction pattern of a plane wave 

generated in the pupil plane of a circular aperture, assuming no turbulence. We can see that 

the diffraction pattern is the same as Airy pattern. In Fig. 5.2, we see the diffraction pattern of 

a plane wave in presence of weak turbulence in pupil plane of the same lens. One can observe 

the broadening of the diffraction pattern in presence of turbulence. In the case of moderate 

turbulence the diffraction pattern may also shift from the center of the pupil plane. Fig. 5.3 

shows the diffraction pattern for moderate turbulence. 

Attributes of turbulent atmosphere are usually simulated using thin phase screens 

which perturb the phase of a propagating wave-front in accordance with either Kolmogorov or 

von Kàrmàn model. FFT-based methods are among the most popular methods of generating 

phase screens. However, these techniques are limited in that they do not accurately reproduce 

the low spatial frequency characteristics of Kolmogorov turbulence such as wave-front tilt. 

There are several techniques to extend the FFT based phase screens to include the low 

spectral frequency components, namely; sub-harmonics and random mid-point displacement 

methods.  
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Fig. 5.1 Airy pattern formed in pupil plane of a circular lens in absence of turbulence. 

 

 
 

Fig. 5.2 Diffraction pattern in pupil plane of a circular lens in presence of weak turbulence. 
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Fig. 5.3  Diffraction pattern in pupil plane of a circular lens in presence of moderate 

turbulence. 

 

In order to analyze, formulate, and simulate the complex nature of atmospheric 

turbulence, we need simplifying models and approximations. In the subsequent sections, we 

talk about Kolmogorov theory of turbulence and Rytov approximation, which model the 

wave-front distortions. Then we elaborate on the thin phase screen as a tool for simulating the 

wave-front distortion. Next, different methods of generating phase screens, such as random 

mid-point displacement algorithm, sub-harmonics method, and Zernike polynomials 

technique are described. In the next chapters, these tools are used to model the propagation 

medium and the resulting degradations in system performance. 

 

5.2 Kolmogorov Theory of Turbulence and Rytov Approximation 
Temperature variations and wind give rise to spatial and temporal variations in the 

refractive index of the atmosphere. As a result of these variations, a propagating wave 

experiences random spatial and temporal fluctuations in the optical path length (OPL), 

through a continuum of altitudes, h . These OPL variations are denoted by 1( , )n x h h


, where 

1( , )n x h


 represents the fluctuation of the index of refraction about the mean value, h  is the 

thickness of a thin layer of the atmosphere, and x


 is a two dimensional vector location [6]. 

Hence, the phase change due to such propagation through a thin layer of atmosphere is  

 

where 


2
k  is the wave number of light with wavelength,  . Though all atmospheric 

turbulence-induced wave-front aberrations start as phase distortion, propagation of the 

distorted wave-front along with refraction can cause different portions of wave to interfere 

with one another and give rise to amplitude variations over long distances.  

hhxknhx  ),(),( 1


 , (5.1) 
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Optical turbulence can be characterized by three parameters: inner scale 0l  of turbulent 

eddies, outer scale 0L  of turbulent eddies, and the structure parameter of the refractive index 

fluctuations 2

nC  [39]. The well-known Hufnagle-Valley equation models the profile of 2

nC  as: 

 

where h is the altitude in meters (m), v is the rms wind speed in meters per second (m/s), and 

A is the nominal value of 2 (0)nC . Fig. 5.4 demonstrates the profile of refractive index 

fluctuations structure parameter. 2

nC  is a measure of the strength of turbulence. Variations in 

the refractive index, give rise to deformation of the wave-front (iso-phase plane), which cause 

phase perturbations in the receiver plane. Hence, under near field conditions, we only expect 

to observe phase perturbations. Under far field conditions, bending of the optical rays caused 

by refraction, along with the subsequent propagations to the pupil plane make different 

portions of the wave interfere with one another. The amplitude variations are caused by these 

interference elements. In other words, phase perturbations evolve into both amplitude and 

phase fluctuations as a result of propagation [6]. 

 

According to Rytov approximation, atmospheric turbulence can be modeled as a 

complex multiplicative factor at each point on the wave-front [39]. For example, the optical 

field at a distance L from the transmitter is given by: 

 

where ( , )X r L  represents amplitude fluctuations and ( , )S r L  represents phase variations. 

Using central limit theorem, for long propagation distance through turbulence, it can be 

),100/exp()1500/exp(107.2

)1000/exp()10()27/(00594.0)(

6

10522

hAh

hhvhCn


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



 (5.2) 

 
Fig. 5.4:  )(2 hCn  profile associated with H-V model as a function of altitude. 
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shown that X and S are homogeneous, isotropic and independent Gaussian random variables 

[5]. According to (5.3) both amplitude and intensity are log-normally distributed at each point 

on pupil plane. Under weak turbulence conditions, the log-irradiance variance 2 2

ln 4I x   ( 2

x  

is the log-amplitude variance) is approximately equal to the normalized variance of irradiance 

or the scintillation index, i.e., 2 2

lnI I  . The scintillation indices of plane and spherical waves 

are given by: 

Furthermore, to make sure that the average optical field amplitude is neither attenuated 

nor amplified, the mean value of log-irradiance is set to 2 / 2I . Hence, the PDF of 

irradiance can be expressed as: 

Phase perturbation is usually approximated by a thin phase screen, the power spectrum 

of which is given by the Kolmogorov or von Kàrmàn model. According to the Kolmogorov 

theory, assuming isotropic and homogenous turbulence, the power spectral density of 

refractive index fluctuations can be expressed as: 

where  is the spatial wave number. Fig. 5.5 illustrates the normalized Kolmogorov spectrum 

along with von Kármán spectrum, which is developed to consider the inner and outer scale 

effects, as well as a more precise model based on analytic approximation to the Hill spectrum 

[39]. 
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Given the Kolmogorov spectrum for refractive index variations, the power spectrum 

of phase fluctuations is represented as: 

 

where 0r  is the atmospheric coherence length (Fried parameter) and is approximated as: 

This parameter is a measure of coherence radius of the optical field. As turbulence becomes 

stronger, 0r  decreases. Since coherence length of the field is proportional to 0r , if two 

receivers are 0r  apart, they observe virtually independent versions of the signal. The phase 

structure function can be defined as: 

The effects of the turbulent atmosphere are usually simulated using thin phase screens 

which perturb the phase of a propagating wave-front in accordance with Kolmogorov theory . 

Although there are several techniques for generating phase screens, the most popular methods 

are based on filtering white Gaussian noise in the spectral domain and then transforming to 

the spatial domain using the Fast Fourier Transform (FFT). Hence, a discrete phase screen can 

be generated according to 

 

 
Fig. 5.5:  Spectral models of refractive-index fluctuations. 
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The discrete spatial domain points x  and y  are given by x m x   and y n y  , where 

x  and y  are the desired sample intervals, and m and n are integer indices. The discrete 

wave number domain sample points xk  and 
yk  are given by x xk m k   and 

y yk n k  , 

where xk  and 
yk are the sample intervals, and m  and n  are integer indices. The discrete 

white noise process is given by  

where ( , )g m n   is a discrete Gaussian noise process defined as: 

and ( , )realg m n   and ( , )imagg m n   are zero-mean Gaussian deviates with a standard deviation 

of 1/ 2 . Because ( , )h m n   is Hermitian, *( , ) ( , )g m n g n m      . The scaling by 
x yk k   

is required to make the correlation of the discrete noise process approximately a continuous 

2D spatial delta function. To implement (5.11) with an FFT, we convert from wave number 

space to the spatial frequency domain ( 2k f ). Suppose that we define the x and y sizes of 

the screen by Gx and Gy, each with Nx and Ny points, respectively (Nx and Ny are both powers 

of two, as required by the FFT). The corresponding sample intervals are /x xx G N   and 

/y yy G N  . The spatial frequencies are defined by x xf m f   and
y yf n f  , where 

1/x xf G   and 1/y yf G  . Substituting the discrete variables in (5.11) we obtain the 

following for discrete phase screen 

where 

is the turbulence spatial filter and ( , )h m n   is the white noise process. We see that the phase 

screen ( , )m n  is simply the inverse FFT of the product of filter function and a white noise 

realization.  

Although simple to implement, the FFT-based method do not span all the spectral 

frequency ranges corresponding to inner and outer scales of turbulence eddies. For the FFT-

based phase screen to include the entire spectral range, a huge grid with extremely large 

sampling rate is required. Ideally, the phase screen must be as large as the outer scale of 

turbulence 0L , with sample-spacing as small as 0l . However, 0L  is several orders of 
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magnitude larger than 0l , and hence a large number of samples is required for this method to 

work properly. If the number of samples is not sufficient, due to abrupt change of power 

spectrum in the vicinity of origin, low frequencies can not be properly represented in the 

phase screen. One remedy to this problem is the non-uniform sampling of the frequency 

spectrum [40][41][42]. New techniques, such as sub-harmonics method, or random mid-point 

displacement algorithm have been proposed to overcome these limitations 

[40][41][42][43][44]. Another method, which is popular for circular apertures and is based on 

orthogonal expansion of phase screen using Zernike polynomials is also widely used in the 

literature [6][45]. Next, phase screen generation methods are described and compared to one 

another based on their compliance with the Kolmogorov spectrum and structure function, as 

well as their computational complexity. 

 

5.3 Sub-Harmonics Method 
Kolmogorov spectrum changes very rapidly near the origin and hence a single sample 

at the origin does not properly model the Fourier transform. To solve this problem, sub-

harmonic method replaces the sample at the origin with nine samples at (-1/3, -1/3), (-1/3, 0), 

(-1/3, 1/3), (0, -1/3), etc. However, the sub-patches corresponding to these nine samples have 

1/9 of the area of original path size. Sample points are placed in eight outer sub-patches, and 

the process can be continued by replacing the remaining central sub-patch with the secondary 

sub-patches. Hence, we can generate several low-frequency phase screens and add them to the 

high frequency grid. Fig. 5.6 shows the relationship between the high and low frequency 

spectra. 

Assuming pN  sub-harmonics level, the low frequency screen is expressed as: 

where 

 
Fig. 5.6:  The relationship between the high and low frequency spectra in the sub-

harmonic method [41]. 
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The values of modified screen are obtained by the summation of the high and low 

frequency grids, i.e.  

The sub-harmonics method has different versions depending on the number of sub-patches 

at each stage, but the idea is basically the same. Fig. 5.7 shows an FFT-based phase screen, 

while Fig. 5.8 shows the same phase screen after addition of 12 sub-harmonics to represent 

the lower frequencies. One can easily observe the tilt added to phase screen in Fig. 5.8.  

12/11226/5

0 )(00058.0
32

)','( 


 yx

yx

p

ffr
GG

nmf


 (5.17) 

),(),(),(mod nmnmnm LF   (5.18) 

 
Fig. 5.7:  FFT-based phase screen. 

 
Fig. 5.8:  FFT-based phase screen after addition of sub-harmonics.  
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Fig. 5.9 shows how by increasing the number of sub-harmonics, structure function of 

phase screens becomes closer to the structure function given by Kolmogorov theory.  

 

5.4 Random Mid-Point Displacement Algorithm 
The sub-harmonics method presented in the previous section modifies the original 

phase screen by adding the contributions from low frequencies. However, the limited number 

of sub-harmonics adds just a few low-frequency oscillations in limited directions. We can 

overcome this problem by exploiting the fractal nature of the phase screens. The latter implies 

that phase screens are self-similar in 0 0l L  , regardless of the scale they are viewed in. In 

other words, unlike the conventional curves that look smoother when viewed in small scale 

and become rougher when viewed in large scale, the phase screens look the same in the 

above-mentioned range. Hence, we can generate an initial phase screen on a rectangular grid 

of a diameter in the order of 0L , but with a small number of samples. Then by interpolation of 

the central part of the initial phase screen, a new phase screen with finer sampling is 

generated. This process is continued, until the diameter of the phase screen becomes as small 

as the aperture diameter. To retain the random nature of the phase screen, in each iteration, 

random displacements should be added to the interpolated points [40][44]. 

 
Fig. 5.9:  Comparison of the sub-harmonic method structure function with theory. 
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Hence, this class of phase screen generation methods uses some version of Random 

Mid-point Displacement Algorithm (RMDA). This algorithm has been widely used in the 

literature for generating fractals [46]. There are many variations of this algorithm in the 

literature; however, in this chapter we describe only two major versions of this algorithm. 

The first variation of RMDA, called RMDA-I from now on, starts with generation of a 

large FFT-based phase screen. Then by interpolating and adding another FFT-based phase 

screen as a random displacement, a smaller grid is formed. Repeating this process for several 

steps leads to a phase screen of desired structure function. Table 5.1 summarizes the steps 

representing RMDA-I for generating a phase screen [44]. Fig. 5.10 shows a sample phase 

screen generated using RMDA-I. 

The second version of RMDA, called RMDA-II in this chapter, also starts with making a 

rough approximation to the fractal surface and then performing successive refinements in 

smaller localized portions. As described in [40] and [46], in order to simulate Kolmogorov 

turbulent layer, we start with four initial samples α, β, γ, and δ, generated randomly according 

to Kolmogorov structure function, as shown in Fig.5.11. In order to reflect the correlation 

between the starting samples, α, β, γ, and δ are generated from six random variables as:  

 

Where cR , 
cR , 

cR , and cR  are independent zero-mean Gaussian random variables of 

variance 2

c , and dR  and 
dR  are independent zero-mean Gaussian random variables of 

variance 2

d , added to represent correlation between the samples. From structure function of 

(5.10), we know that: 

 
Fig. 5.10:  Sample phase screen generated using RMDA-I. 
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Hence, one can show that: 

A central sample m is formed by interpolating the corner samples α, β, γ, and δ plus a random 

displacement, ε as: 
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Table 5.1:  Random Mid-point Displacement Algorithm, Version I. 

 Set 0L , D , 0r , and N . Usually 0L  is set to Dn2 , where n is an integer. 

 Set part=1/2, (the part to be extracted from the center of the phase screen) 

 Create an initial phase screen covering the outer scale area: 
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Interpolate the extracted screen to generate an N×N grid. The 

interpolation can be done by cubic interpolation. 
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The variance of ε is chosen with respect to the structure function. Knowing that  

variance of ε turns out to be   3/5

0

2 /6091.0 rD . Next, edge samples are generated in mid-

way of corner samples, using interpolation and random displacement. This process is 

continued to generate a large grid, as shown in Fig. 5.12. 

 

Fig. 5.13 shows a sample phase screen generated using RMDA-II. More over Fig. 5.14 

illustrates the ensemble radial average of the phase structure function of 500 sample phase 

screens generated using RMDA-I and RMDA-II. One can see that for RMDA-I, by increasing 

the number of interpolations, structure function gets closer to curve obtained from theory. 
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Fig.5.11:  Four starting samples in RMDA-II and the central sample generated by 

interpolation and random displacement [40]. 
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Fig. 5.12:  The interpolation sequence of RMDA-II (a) for initial samples are used to 

generate the central sample, (b) the corner samples are used to generate four interpolated 

edge samples (shown by filled-in dots) to produce a 3×3 grid. (c) and (d) show steps 

needed to generate a 5×5 grid from a 3×3 one [40]. 

 
Fig. 5.13:  Sample phase screen generated using RMDA-II. 
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5.5 Phase Screen Generation Using Zernike Polynomials 
Another widely used phase screen generation method is based on expansion of the phase 

front into a linear combination of a set of ortho-normal functions over the aperture 

[45][47][48]. Zernike polynomials are a set of polynomials defined on a unit circle and are 

represented in polar coordinate as a product of radial polynomials and angular functions. The 

phase perturbation of an optical wave-front   ,  can be expanded as: 

where ),( iZ  is the i
th

 Zernike polynomials. The approximately equal sign in (5.24) is 

due to the fact that the phase screen expansion is obtained only up to N modes, rather than an 

infinite sum. Since the Zernike polynomials are ortho-normal only on the unit circle in two 

dimensions, the radius of the aperture on which the phase perturbation is generated must be 

normalized to one as Rr , where R is the radius of the aperture. 

Mathematically, the ortho-normality condition that is satisfied by the Zernike polynomials can 

be expressed as: 

That is, the polynomials are orthogonal only over the unit circle. The function  W  is the 

aperture weighting function or pupil function defined so that   0W  outside the telescope 

pupil, and furthermore it is normalized so that   
 



1

0

1
r

Wdd





 . The coefficients  ia  

are given by the projections of the phase perturbation   ,  on the basis polynomials 

  ,iZ , i.e., 

 
Fig. 5.14:  Comparison RMDA method structure function with theory 
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A convenient scheme of ordering the polynomials proposed by Noll [45], and adopted by 

most literature, is followed here. As such, the i
th

 member of the Zernike polynomial set, 

 ,iZ  can be expressed as  

Radial functions  m

nR  are defined by, 

Azimuthal and radial orders, m and n, are non-negative integers so that nm   and 

  evenmn . Some low order Zernike modes are demonstrated in Fig. 5.15. 

Turbulence-induced phase perturbation,   ,R , can be expanded, using Zernike 

polynomials as stated in (5.24). Given central limit theorem and Gaussian nature of phase 

aberration, random variables ia  are Gaussian distributed. If the phase perturbation   ,R  

is zero-mean, then the mean value of iai ,  is: 

Similarly, the covariance values of the expansion coefficients can be found from 

Replacing phase covariance function in (5.30) and rewriting it in Fourier space we have [45]: 

where  
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and )(* kQi  and )(kQ j
  are Fourier transforms of Zernike modes. Hence, covariance values of 

the expansion coefficients turns out to be: 

for i - j=even and for i - j=odd 

where, im  and in  refer to the azimuthal and radial orders associated with the i
th

 Zernike 

polynomial, and ij  is the Kronecker delta function. Table 5.2 lists the coefficients of (5.33) 

and (5.34) [6]. 
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Fig. 5.15:  Zernike modes for tilt, defocus, astigmatism, coma, and spherical aberration.  



 

62 

Fig. 5.16 shows a sample phase screen generated using modal expansion. Moreover 

Fig. 5.17 demonstrates the radially averaged phase structure function of an ensemble of 500 

phase screen generated using Zernike polynomials.  

 

 

Table 5.2:  3/5

0 )/( rDaa ji  for the first 10 Zernike polynomials. Rows correspond to i and 

columns correspond to j. 

i / j 2 3 4 5 6 7 8q 9 10 

2 0.448 0 0 0 0 0 -0.0141 0 0 

3 0 0.448 0 0 0 -0.0141 0 0 0 

4 0 0 0.0232 0 0 0 0 0 0 

5 0 0 0 0.0232 0 0 0 0 0 

6 0 0 0 0 0.0232 0 0 0 0 

7 0 -0.0141 0 0 0 0.00618 0 0 0 

8 -0.0141 0 0 0 0 0 0.00618 0 0 

9 0 0 0 0 0 0 0 0.00618 0 

10 0 0 0 0 0 0 0 0 0.00618 
 

 
Fig. 5.16:  Sample phase screen generated using Zernike polynomials, D=1.28, r0=10 

cm. 
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Table 5.2 show a small amount of correlation between coefficients of Zernike 

polynomials, used to generate phase screens, suggesting that there may be a more efficient set 

of orthonormal basis function with uncorrelated coefficients. In fact Fried has solved this 

problem in [49], where Karhunen-Loeve integral equation is solved. It is also possible to 

obtain this expansion from linear combinations of Zernike polynomials, providing basis 

functions which are optimal in the sense that the coefficients of the expansion are 

uncorrelated. To this end, the eigen-decomposition of the covariance matrix of the Zernike 

coefficients is calculated as: 

where U is the matrix with columns corresponding to the eigenvectors, and  is a diagonal 

matrix containing eigen values of the Hermitian covariance matrix. 

The ortho-normal polynomials (with the first order polynomial corresponding to piston 

removed) are obtained by forming the sum of the Zernike polynomials weighted by each 

element of the columns of U, as: 

Thus, phase perturbation can be expanded as: 

where the ib ‟s are uncorrelated Gaussian random variables with variances given by the 

diagonal elements of . Some low order orthonormal polynomials using eigendecomposition 

of covariance of Zernike coefficients upto 300 terms is illustrated in Fig. 5.18. 

 

 
Fig. 5.17:  Radially averaged structure function for an ensemble of 200 phase screens, 

using modal expansion, D=1.28, r0=10 cm. 
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Given the order N of expansion and the corresponding covariance matrix of the Zernike 

coefficients for a specified 0rD  ratio, Gaussian-distributed random realizations of the 

 

 

 

 

 

 

 

 

 

 

Fig. 5.18:  Some Low Order Ortho-normal polynomials using eigen decomposition of 

covariance matrix of Zernike coefficients up to 300 terms.  
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coefficients 1, iai  can be generated for the piston-free phase screen. We can obtain the 

Cholesky decomposition of the covariance matrix a , aF  as, 

 

Then the Gaussian-distributed vector a with the required covariance of (5.33) can be obtained 

as, 

where g is a (N – 1)1 vector with uncorrelated random variables each having a Gaussian 

distribution with zero-mean and unit-variance. The one less term is due to removal of piston. 

Similarly, the KL ortho-normal polynomial expansion can also be used to obtain realizations 

of phase screens after generating a coefficient vector b as follows, 
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Fig. 5.19: Phase Screen Realizations for different 0rD  ratios. 

 

where  is the diagonal matrix from (5.35), and g, as before is a (N – 1)1 vector with 

uncorrelated random variables each having a Gaussian distribution with zero-mean and unit-

variance. Then, a random realization of the phase screen is obtained similar to (5.37). 
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The phase screens obtained by both expansions are almost equivalent, apart from some 

mixing of higher order Zernike modes in the orthonormal expansion. Some random 

realizations for different 0rD  ratios are demonstrated in Fig. 5.19. 

 

5.6 Comparison of Phase Screen Generation Techniques 
Different techniques for generating phase screens are discussed in this chapter. Each 

of these techniques is suitable for a different optical system and channel setup. For example, 

Zernike modal expansion method is useful for circular apertures and structure functions of 

Sub-Harmonics and RMDA methods approaches to theoretical curves, by increasing the 

number of sub-harmonics and interpolations. However, it is worthwhile to compare these 

techniques from computational complexity point of view. To this end, time required for 

generating a sample 128×128 phase screen, over an aperture of 1.28 m diameter, for an 

accumulated Fried‟s parameter of 10 cm, is measured. Table 5.3 lists the running times. 

 

As one can see from Table 5.3, RMDA-I and RMDA-II, and specifically RMDA-II 

are much faster than other phase screen generation techniques. In other words, if a simulation 

needs a large ensemble of phase screens, using RMDA-II method is much more efficient. 

Note that the codes used to generate these phase functions are not professionally optimized to 

minimize the execution time. In the next chapters, phase screen generation methods are 

widely used to simulate atmospheric turbulence and measure performance of optical imaging 

systems‟ in different atmospheric conditions.  

 

5.7 Conclusions 
In this chapter, atmospheric turbulence models are described and the impact of 

refractive index variations across the optical path on the received wave-front is investigated. It 

is shown that turbulence can be modeled by one or several thin phase screens which are 

generated according to Kolmogorov spectrum and different methods of generating such phase 

screens are discussed and compared based on accuracy and computational complexity. 

Having investigated both the MCRT algorithm and phase-screen generation methods, now we 

have a comprehensive channel model that can be exploited in design and evaluation of optical 

communications and imaging systems. In the next chapters, atmospheric active imaging 

systems are discussed using this framework. 

 

  

Table 5.3:  Running Time for Different Phase screen Generation Method. 
Method Sub-Harmonics 

(6 sub-harmonics) 

RMDA-I 

(6 interpolations) 

RMDA-II Zernike expansion 

(300 modes) 

Time (seconds) 2.45 0.36 0.05 1.30 
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Chapter 6 

Spatially Multiplexed Optical MIMO Imaging System in Cloudy 

Turbulent Atmosphere 
 

6.1 Introduction 
Active optical imaging systems offer higher resolution and faster area search rate 

compared to radio frequency (RF) counterparts due to their considerably smaller wavelengths. 

Furthermore, since optical and infra-red wavelengths are closer to visible range, the image 

quality is similar to that of visible, and hence easier to interpret by a human observer. 

However, obstruction by clouds and fog is, and will continue to be, the major limitation of 

electro-optical/infrared (EO/IR) active imaging systems. Moreover, variations of refractive 

index in different layers of atmosphere, due to thermal changes and wind, introduce 

fluctuations in amplitude and phase of optical waves. In imaging through atmosphere one 

should consider dispersive effects of multiple scatterings, turbulence-induced beam spreading, 

intensity fluctuations, and wave-front distortions. All these phenomena broaden and distort 

impulse response of the imaging system, known as the Point Spread Function (PSF). 

In this chapter, a spatially multiplexed Multi-Input Multi-Output (MIMO) imaging system 

configuration is proposed which uses a photolithographic beam splitter for target illumination 

in a pixel-wised manner. This yields a uniformly distributed illumination over the target area. 

Furthermore, beam spreading is reduced by a factor of 1/N, where N is the number of 

beamlets in each direction [50] (i.e., we have an N×N array of beamlets) leading to a 

noticeable improvement in the link margin. The reflected beamlets can be detected by 

individual photo-detectors on a receiving Focal Plane Array (FPA). Hence, the problem of 

restoring a distorted image is significantly simplified and furthermore, considerable 

multiplexing gain may be achieved. 

To compensate for atmospheric phenomena such as clouds, fog, aerosols, and even 

turbulence, MIMO imaging system should be well equipped with image restoration modules. 

While time-gating is suggested to filter-out back-scattered photons and increase the contrast, 

Adaptive-Optics (AO) and Blind Deconvolution (BD) modules are exploited to enhance the 

image sharpness and resolution. 

 

6.2 Atmospheric Channel Modeling 
In active optical imaging systems, a laser beam is pointed towards a target and rays 

reflected back from the target are received and processed to retrieve an image. In the presence 

of scattering particles such as clouds and aerosols along the path of a pulsed laser, beams start 

to broaden in space and time and, hence, received power is attenuated. Furthermore, 

depending on the cloud optical depth, some photons are backscattered towards the receiver 

and contribute to a steady background noise. As a result, scattering media distort PSF of an 

imaging system due to pulse spreading and dispersion and also give rise to clutter due to 

backscattering. This clutter must be removed to increase the contrast or Signal-to-Noise Ratio 

(SNR). Turbulence on the other hand, induces fluctuations into the signal amplitude, which in 

turn causes fading of the received image. Furthermore, one should also consider the phase 

variations which distort the wave-front (Iso-phase plane) and PSF. This phenomenon is 

responsible for the speckle patterns formation. 
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We make a simplifying assumption that turbid and turbulent essences of atmosphere 

independently contribute to the PSF of an imaging system and hence can be modeled, 

separately. Later on, we show that given the proposed imaging system design, this is a valid 

assumption, since multiple scatterings can be modeled by a pure attenuation factor. While a 

Monte-Carlo Ray Tracing (MCRT) algorithm, developed at Pennsylvania State University, 

Center for Information and Communications Research (CICTR), is used to account for 

propagation through scattering media, turbulence is modeled by phase screens resulting from 

Rytov approximation and Kolmogorov theory of turbulence. Fig. 6.1 shows the geometry of 

an MCRT simulation for a mono-static imaging system. 

 

The flowchart for the mono-static Monte Carlo Ray Tracing Imaging simulation is given 

in Table 6.1 

  

 
Fig. 6.1:  Geometry of MCRT for a mono-static imaging system. 
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Table 6.1: Flowchart of the mono-static Monte Carlo Ray Tracing for Imaging 

 
  

Start 

Enough photons 
reached receiver 

aperture? 

Define: 
Global axis with origin at center of image. 

Transmitter & receiver local axes with 
origins & tilts given in global coordinates. 

arrived_photons=0, lost_photons=0 

Launch point: 
Randomly pick photon launch point 

on transmitter plane. 
Randomly pick initial launch angle & 

rotation. 
count=1 

First Scatter: 
Randomly pick traveled distance, d, 

to next scatter site. 

Set image_reached & 
image_photon flags to 1. 

Calculate reflection angle. 
Save current global location & 

scattering states. 

Crossed Image 
Plane? 

Reflected from 
image? 

Absorbed at 
scatter site? 

Calculate location of photon in 
global coordinates. 

lost_photons++ 
Set end_trace flag 

Save current global location & 
scattering states 

NO 

Exit Function 
Output saved info 

YES 

YES 

NO 

NO YES 

YES NO 

B 

A 
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Table 6.1 (contd.): Flowchart of the mono-static Monte Carlo Ray Tracing for Imaging 

 
  

A 

end_trace=0? 

image_reached=
1? 

Received? 

count++ 
Save previous location 

Generate new scatter 
parameters, (d, θ, φ). 
(θ=reflection angle) 

Find new photon location w. r. 
t. receiver axis. 

Set end_trace flag 
arrived_photons++. 

Save current & previous 
locations, total traveled 

distance, total number of 
scattering, & image_photon 

flag. 

lost_photons++ 
Set end_trace flag 

Crossed 
Receiver plane? 

YES 

YES 

YES 

YES 

NO 

Absorbed at 
scatter site? 

NO 

YES 

Save current global location & 
scattering states. 

Reset image_reached flag to 0. 

NO 

B 
NO 

A 

image_reached=
0? 

C 
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Table 6.1 (contd.): Flowchart of the mono-static Monte Carlo Ray Tracing for Imaging 

 
 

Since backscattered photons are of interest for clutter removal, they can be traced together 

with photons reflected from the target. Afterwards, the spatial and temporal distributions of 

both may be estimated in a post-processing stage. Our MCRT simulates a simplistic imaging 

Generate new scatter parameters, (d, θ, φ). 
(θ from given PDF) 

Find new photon location w. r. t. receiver axis. 
Find new photon location w. r. t. global axis. 

C 

Set image_reached & 
image_photon flags to 1 
Calculate reflection angle 
Save current global location & 
scattering states 

Crossed Image 
Plane? 

Reflected 
from image? 

Absorbed at 
scatter site? 

Save current global 
location & scattering 
states 

Received? 

Set end_trace flag 
arrived_photons++ 
Save current & previous 
locations, total traveled 
distance, total number of 
scattering, & image_photon 
flag 

lost_photons++ 
Set end_trace flag 

Crossed 
Receiver plane? 

YES 

YES 

NO 

A 

NO 

NO 

YES 

YES 

NO 

NO 

lost_photons++ 
Set end_trace flag 

YES 
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scenario, in which a 2-D mirror resembling the letter „H‟ is placed at distance L from the 

pulsed laser source, i.e., transmitter. Assuming that both target and imaging system are inside 

the scattering medium, physical length of the channel, L, can be translated to its optical 

thickness, τ, as: 

where 
ext  is the extinction coefficient of scattering medium and aveD  is the average distance 

between two successive scattering events. Hence, the round-trip optical thickness is equal to 

2 . We simulate this imaging scenario, assuming that laser beam path from transmitter to 

imaging plane and back to receiver goes through a scattering medium of the specified optical 

thickness. As a result of these scattering events, some of the energy is backscattered towards 

the transceiver. This backscattered energy appears as a clutter and hence, obscures the target. 

To remove the clutter space from the image space and improve the contrast, proper spatial and 

temporal processing have to be carried out. Fortunately, Back-scattered and image photons 

can be separated using time-gating due to the fact that back-scattered photons arrive much 

earlier than image photons, which have to travel the round trip path from the transceiver to the 

target and back. Using this time-gating approach, contrast is improved, significantly. 

Using the setup shown in Fig. 6.1, an MCRT algorithm is developed, in which a large 

body of photons are traced until one million photons are either backscattered or reflected back 

from the target to the receiver. Fig. 6.2 shows spatial distribution of image and back-scattered 

photons at the receiving aperture for a channel of optical thickness 1 (2 round-trip). For a 

channel of this trivial optical thickness, number of image photons are much more than back-

scattered ones. Fig. 6.3 shows the temporal distribution of image and back-scattered photons. 

It is clear that temporal filtering is capable of removing the clutter sub-space. 

 

 

ave

ext
D

L
L   , (6.1) 

 
Fig. 6.2:  Spatial distribution of (a) image photons and (b) backscattered photons at the 

receiver plane for a channel of optical thickness 1 (2 round-trip). 
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Fig. 6.4 and Fig. 6.5 show spatial and temporal distributions of photons for a channel of 

optical thickness 4 (8 round-trip). In this case, number of image photons is reduced, 

drastically. This is due to the fact that most information bearing photons are the so-called 

“ballistic” photons which are attenuated according to the Beer-Lambert law as: 

 

where cohI  is the coherent part of the received radiance (Intensity) and 0I  is the transmitted 

pulse radiance (intensity). Photons that travel a close to Line-Of-Sight (LOS) path, i.e. 

“snake” photons, can also contribute to imaging and improve the link budget equation. 

However, special measures should be taken to employ these photons while maintaining the 

diffraction-limited resolution. It is worth noting that in [51] authors have used small-angle 

approximation to find the PSF of multiple-scattering medium. Back-scattering is not 

considered in their work; however, it was shown that for a receiver of large Field-Of-View 

(FOV), contrast and resolution are reduced, significantly. This is simply due to the fact that 

more diffuse photons are received and no spatial filtering is exploited.  

 

 

 
Fig. 6.3:  Temporal distribution of image photons (red) and backscattered photons (black) 

at the receiver plane for a channel of optical thickness 1 (2 round-trip). 

0

2 IeI coh

  (6.2) 
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6.2.1 Bi-static Monte Carlo Imaging 
A variant of the Monte Carlo Imaging technique discussed above is the bi-static case, 

where the transmitter and receiver are not collocated, rather they are separated by a certain 

amount. This type of imaging is convenient from the point of view of rejecting backscattered 

photons. The backscattered photons are projected more towards the transmitter and do not 

interfere with the photons reflected back from the target image. Fig. 6.6 and Fig. 6.7 indicate 

that the portion of backscatter photons reduce from 3% in the case of mono-static imaging 

with round trip optical thickness of 2, to 0.6%, which is a significant reduction. The 

transmitter and receiver, however, have to be tilted with appropriate angles to obtain proper 

alignment to capture the target image. 

 

 
Fig. 6.4:  Spatial distribution of (a) image photons and (b) backscattered photons at the 

receiver plane for a channel of optical thickness 1 (2 round-trip). 

 
Fig. 6.5:  Temporal distribution of image photons (red) and backscattered photons (black) 

at the receiver plane for a channel of optical thickness 1 (2 round-trip). 
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6.2.2 MIMO Monte Carlo Imaging 
The major conclusion from the two different approaches for Monte Carlo imaging is that, 

by using a fast shutter and proper timing, we can mitigate the effect of the backscattered 

photons which are the primary source of noise in imaging through cloud and other scattering 

media. In this section, we present possible configurations for a MIMO imaging system 

through cloud and present the results for a 2×2 MIMO imaging system.  

In a MIMO imaging system multiple beams are used to illuminate the target and multiple 

apertures are used to receive the reflections. The transmitters possibly need to be tilted so that 

they all point towards the target. Hence, the corresponding receivers must be placed where the 

 
Fig. 6.6:  Spatial distribution of (a) image photons and (b) backscattered photons at the 

receiver plane for a channel of optical thickness 1 (2 round-trip) for a bistatic system. 

 
Fig. 6.7:  Temporal distribution of (a) image photons and (b) backscattered photons at the 

receiver plane for a channel of optical thickness 1 (2 round-trip) for a bistatic system. 
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return rays are expected to arrive. There can be different possible geometric placements of 

transmitters and receivers. Also, due to the spatial confinement of the laser beams in clear 

weather conditions, parallel independent imaging system can be implemented by proper 

placement of transmitters and receivers. Even in the presence of an obscurant medium with a 

small optical thickness, such as a thin cloud, the line-of-sight component is always much 

larger than the diffuse component and hence the correlation between apertures is very small. 

One might expect high correlations between the received reflections in the case of optically 

thick obscurants; however, the power loss is so severe that even the intended receiver will not 

get much power under these circumstances. Fig. 6.8 shows an example of the possible 

geometry for the MIMO imaging system. The central transceiver is a mono-static imaging 

system, i.e. the same aperture is used for both sending the beam and receiving the reflections. 

The beams sent from other transmitters are supposed to be received by the reciprocal 

receivers. 

 

A 2×2 MIMO imaging system composed of a mono-static and a bi-static SISO imaging 

systems is developed. The physical length of the channel is 1 km (2 km round trip) and the 

optical thickness is varied in each run of the simulation. Fig. 6.9 shows the received 

backscattered and image photons when the optical thickness of the medium is 2 (4 round trip). 

We see that the number of back-scattered photons is much smaller than the image photons. 

Furthermore, the backscattered photons are less for the bi-static imaging system, i.e. the 

second receiver. Another observation is that the density of the photons is not uniform all over 

the image. This phenomenon is more conspicuous when operating in a medium with a higher 

optical thickness. This is due to the randomness of the photons‟ trajectories. Due to this 

phenomenon, the signal-to-noise ratio (SNR) per pixel is not uniform all over the image and 

the quality in different portions of the image is not the same. By combining the images of 

different receivers, SNR per pixel improves and becomes more uniform all over the image. 

Both spatial and temporal characteristics of the received optical signals on different branches 

contribute to the possible image quality enhancement.  

In Fig. 6.10, the arrival times of imaging and back-scattered photons (temporal impulse 

response) are plotted. It is clear from this figure that backscattered photons arrive much earlier 

than image photons. Fig. 6.11 and Fig. 6.12 show the simulation results for an optical 

thickness 5 (10 round trip). In this case, most of the received photons are the backscattered 

ones. However, since there is a difference in the arrival time of image and back-scattered 

photons, there is still hope for seeing through cloud if we have enough power. 

 
Fig. 6.8:  An example of a possible geometry for a MIMO Imaging system. 
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As an example, a femtosecond pulsed laser that operates with 50fs pulses at 800nm 

wavelength and a repetition rate of 3 gigapulses per second with an average power of 1W, 

gives a peak power of 6.67kW transmitted. This translates to a transmitted energy of 0.3nJ per 

pulse. For an optical thickness of 1, Beer-Lambert‟s law dictates that the attenuation 

experienced by the line-of-sight (LOS) laser beam on its way to the target and back to the 

image plane will be e
-2

, which is 0.1353, and the received LOS pulse will have an energy of 

0.0406nJ, which is too small to be detected by current state-of-the-art optical receivers in the 

presence of background noise. However, decreasing the repetition rate to 3 megapulses per 

second, with the other parameters kept fixed, would increase the received pulse energy to 

0.0406J, a 1000-fold improvement over the previous repetition rate. For an optical thickness 

of 5, the aggregate roundtrip thickness experienced by the beam is 10, and the attenuation is 

4.54×10
-5

. Then the received energy per pulse for 3 gigapulses per second becomes 1.362×10
-

5
 nJ, and for 3 megapulses per second it becomes 1.362×10

-5
 J. An examination of these 

values indicates that we may not expect a laser imaging system to operate above the noise 

floor for clouds having high optical thicknesses. For a MIMO system to yield some form of 

diversity in clouds without scintillation, we would need higher optical thicknesses so that the 

light energy is dispersed and then captured by receivers corresponding to transmitters other 

than the intended. But going to such high thicknesses seems impractical in terms of 

detectability, and we must bank on scintillation only for obtaining the performance benefits 

inherent in MIMO. 

 

 

 
Fig. 6.9:  Imaging and back-scattered photons for a 2x2 MIMO imaging system working 

in a medium of optical thickness 2. 
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Fig. 6.10:  Arrival times of imaging and back-scattered photons for a 2x2 imaging system 

operating in a medium of optical thickness 2. 

 
Fig. 6.11:  Imaging and back-scattered photons for a 2x2 MIMO imaging system working 

in a medium of optical thickness 5. 
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6.3 Transmitter Design 
For imaging purposes, we can resort to two widely used methods of obtaining reflections 

from a target: (1) “flood” or completely illuminating the target with a broad laser beam, and 

(2) scanning the target by a high-power spatially-concentrated beam, which is also known as 

“raster scanning”. Both of these methods have their own shortcomings. 

A Gaussian laser beam does not uniformly illuminate the target. As a result, the Signal-to-

Noise Ratio (SNR) per pixel would not be the same for all portions of the image. Moreover, 

the spreading of the laser beam will significantly reduce the intensity even in clear weather 

condition. This attenuation is more severe in presence of cloud and turbulence. Furthermore, 

distorted point spread function introduces random interferences between neighboring pixels, 

and affects resolution and contrast performances.  

Raster scanning, on the other hand, suffers less from attenuation because the laser beam is 

confined in space. However, since the entire target needed to be scanned to form the image, 

the area search rate is low for this approach. This method is widely used in LIDAR 

applications in clear weather conditions. 

One intermediate approach is to split the Gaussian laser beam into an array of beams of 

smaller waists or beamlets. Photolithographic beam-splitters can convert a transmitted 

Gaussian laser beam into an array of NN quasi-uniform intensity spots in the far field. There 

are two key parameters in designing the beam splitters: uniform distribution of intensity or 

power between the beamlets, and efficiency of converting Gaussian beam into multiple 

beams. Fig. 6.13 shows a 10 × 10 array of uniform intensity spots, produced by a 

photolithographic beam-splitter [7]. These beamlets are separated in space by a suitable 

distance to be substantially non-interfering and are pointed to different portions of the target 

for uniform illumination. This method is preferred over floodlit illumination due to better 

geometric coupling, reduced background radiation, and increased angular resolution [50]. In 

 
Fig. 6.12:  Arrival times of imaging and back-scattered photons for a 2x2 imaging system 

operating in a medium of optical thickness 5. 
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other words, we would like to have a transmitter that produces multiple beams with prescribed 

intensities covering the target area. 

 

Imaging photolithographic optical elements have been used at the transmitter to generate 

multiple beams from a single laser diode [7][52][53][54]. Holograms generated by means of a 

computer can produce wave-fronts with any prescribed amplitude and phase distribution. 

Computer generated holograms (CGH) [53] have many useful properties. An ideal wave-front 

can be computed on the basis of diffraction theory and encoded into a tangible hologram. A 

multilevel phase CGH can have diffraction efficiency close to 100%. Holographic Optical 

Elements have insignificant physical weight and are low-cost when mass produced; hence, 

being specially suited for on-board of aircrafts and spacecrafts. In principle, the more the 

diffusing spots are, the more optical power can be transmitted in compliance with the eye 

 
Fig. 6.13:  Array of 10 x 10 uniform intensity spots produced using a photolithographic 

beam-splitter. 

 
Fig. 6.14: Simplified view of the imaging system. 
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safety regulations. In addition, a more uniform distribution and a higher predictability of the 

channel parameters can be achieved. The beams emerging from a hologram are almost 

collimated. Increasing the number of diffusing spots will allow increasing the intensity of 

each spot and of the total transmitted optical power. This is a very important aspect of 

photolithographic beam-splitters as increasing the total transmitted power enables the system 

to operate in larger optical depths. To maximize the signal optical power received by each of 

the branches, each diffusing spot should contain as much energy as possible. Let us assume 

that for an array of N×N beamlets, the central spot contains 1% of total transmitted optical 

power, Pt, i.e., Pc=Pt /100, and the CGH is designed so that the central spot is one of the spots 

in the array. Then Pt= (N×N-1) Pd +Pc= 100Pc, where Pd is the power contained in each of 

diffusing spots, and N×N is the total number of spots. Each of the collimated beams emerging 

from the hologram should contain no more energy than kAEL, where AEL is the Accessible 

Emission Limit for a point source, established by the International Standard IEC 825 [55], and 

k=(Dbeam / Daperture)
2
, Dbeam being the beam diameter and Daperture being the aperture diameter 

applicable to measuring laser irradiance and radiant exposure [55]. Thus, maximum total 

power is transmitted when the central spot energy equals the accessible emission 

limit:Pc=kAEL. Then, the power contained in each of the other diffusing spots is 

kAELkAEL
NN

Pd 



1

99
. The maximum for Pd, i.e., Pd= kAEL, is achieved for a number of 

spots N×N=100. In our case study we consider a square image, i.e., a spot array of 10×10 

spots would be the optimum. Fig. 6.15 shows a sample photolithographic 4×4 beam splitter 

that we have produced. One can infer the small size and the light weight of this beam splitter 

from Fig. 6.15. Using a 532 nm low power laser light (<5 mW) through the sample, we 

captured the spots on a camera as demonstrated in Fig. 6.16. 

 

 

 
Fig. 6.15:  Sample plastic 4x4 photolithographic beam splitter on the left of a quarter. 
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The initial spreading angle of beamlets is set such that they do not interfere with one 

another on the target plane. For a Gaussian beam of initial spreading angle 0 , the initial 

beam waist is 
0

0 
  , where   is the beam wavelength. Beam waist at a distance R  from 

the source, )(R , is related to 0  as: 

For an imaging system operating at a wavelength of 55.1  μm, and a target in 1R  

km, spatial resolution is limited by beam waist at the target, )(R . For example if a spatial 

resolution of 20 cm is required, )(R  should be less than 20 cm, which means an initial 

spreading angle of less than 200 μrad. 

 

6.4 Receiver Design 
An N×N array of photo-detectors is used to receive the reflections from the target. Fig. 

6.17 shows a schematic of the proposed system. Typically, the optical front-end of the 

receiver consists of an optical concentrator to increase the received optical signal power, and 

an optical band pass filter to reject the ambient light. We have investigated the characteristics 

and performance of optical interference filters. Typically, interference filters with a 

narrowband spectral response have a low transmittance and reduce the signal by 3 dBo. These 

filters work well with collimated radiation which is not an option in our application. The 

narrowband interference filters are sensitive to incident angle of radiation and the peak 

wavelength shifts towards shorter wavelengths with increasing the incident angle. The filter 

can be designed with a shift towards longer wavelengths in order to accommodate the spectral 

shift by an incident angle. 

 
Fig. 6.16:  Captured multi-spots image. 
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Given a diffuse radiation pattern, however, performance further deteriorates because of 

non-collimated radiation, i.e., the incident angle varies from normal incidence to the 

maximum angle determined by the receiver lens FOV. When the spectral response of the filter 

is averaged over all incident angles, the full-width-half-maximum (FWHM) is broadened and 

the signal is further attenuated. The maximum transmittance is further reduced for non-

polarized light; the case in imaging through cloud/fog. Since the laser diode and the filter 

wavelengths are specified by the manufacturer within given tolerances, and there is also a 

wavelength drift due to temperature changes, a narrow-band interference filter does not seem 

to be practical. Using the unique properties of holographic optical elements (HOE), a novel 

design is proposed for the receiver optical subsystem used in the proposed imaging system. 

With a holographic curved mirror as an optical front-end, the receiver would achieve several 

dBs of improvement in the electrical signal-to-noise ratio compared to a bare photo-detector. 

The main advantages of HOEs over conventional systems that consist of a lens concentrator 

and an optical filter are multi-functionality, independence of their physical configuration, 

insignificant weight, and low cost. 

The filtered and concentrated beamlets are then concentrated onto an N×N array of high-

speed photo-detectors. Examples of high-speed photo-detectors suitable for precise multi-

 
Fig. 6.17:  Simplified schematic of the proposed imaging system. 
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channel ranging and imaging include segmented anode photomultiplier tubes (PMT), and 

avalanche photodiodes (APD). Fig. 6.18 shows a sample 32×32 APD array [8][9][10]. 

 

Assuming that each photo-detector has a diameter of 100 μ m (30 μm active area 

diameter) [50] and lens has a focal length f , the angular resolution of the system would be 

f/100  μ rad. This translates into a spatial resolution of fR /10 4 , where R  is the target 

range. Moreover, the receiver FOV turns out to be 100/ fN  μrad. As an example, suppose 

that we have a 10×10 array of beamlets imaging an object which is 1 km away. Furthermore, 

suppose we have a receiving aperture of D=50 cm diameter with f=D=50 cm. The angular 

resolution of this system would be 2 m rad, which translates to spatial resolution of 20 cm. 

Hence, a rectangle of 4 m
2
 can be imaged by this system. Fig. 6.14 demonstrates a simplified 

geometry of the imaging system. In practical systems, the same aperture is used for both 

reception and transmission. While beamlets are transmitted from central part of the aperture, 

return beams are received by peripheral area of the lens. 

 

6.5 Power-Energy Analysis 
The power requirements of an optical imaging system depend on the path loss, receiver 

aperture area, and the photo-detector sensitivity. As an example we assume a 250 ps pulsed 

laser with 3 μJ energy per pulse and a repetition rate of 1 kHz, operating in 532 nm 

wavelength [8][9][10]. While the peak power of this laser is about 12250/3 psJ  k watts 

or 40.8 dB, the average power is about msJ 1/3 =3 m watts or 5.8 dBm.  

The energy of each photon is given by  hE 3.73 ×10
-19

. This means that each pulse 

approximately contains 8×10
12

 photons. Assuming a channel of optical thickness 5, the round 

trip attenuation of each pulse is 42.431054.4 510  e  dB. Hence, the received power is 

about 27.4 dBm. Furthermore, the number of received photons is 3.6×10
8
.  

 
Fig. 6.18:  Photomicrograph of a bridge-bonded APD/CMOS device showing the 32 × 32 

array. 
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If one considers all the degrading factors in the link budget, the received signal measured 

in the number of detections or photoelectrons, Ndet is given by [50]: 

 

where: 

pE : Energy Per Pulse, 

h : Energy Per Photon, 

to : Transmission of transmit optics, 

ro : Transmission of receive optics, 
  eatm : Transmission of atmosphere, 

pixN : Number of pixels, 

CAA : Collecting Area, 

R : Range to the target, 

det : Quantum efficiency of detector, 

trf : Overlap of Tx beam and Rx FOV, 

llf : Efficiency of optical coupling. 

The state of the art technology provides us with photon-counting receivers with 0.5 

photons per bit sensitivity. There are also Low Light Level Charge-Coupled Devices 

(L3CCDs) with ability of accurate estimation of signals as faint as 1 photon per pixel per 

frame [56]. Imaging through foliage and trees has been reported using these arrays of APD 

photo detectors [8], which basically measure the arrival times of the photons rather than the 

photon count. Given the above analysis and literature review, it can be stated that the state of 

the art technology may enable imaging through clouds. 

 

6.6 MIMO Imaging in Turbulent Atmosphere 
Under cloudless, turbulence-free atmospheric conditions, an NN   array of Gaussian 

beamlets is launched towards the target. Since there is no scattering and scintillation in such a 

scenario, beamlets arrive at the target with no distortion and interference with one another. At 

target plane, beamlets are amplitude modulated with reflection coefficients of the 

corresponding areas and reflected back to the receiving aperture. Received beamlets are then 

concentrated on photo-detectors. Most prior works have investigated the MIMO imaging 

performance for relatively short link lengths and under such an ideal atmospheric condition 

[50][8].  

In Section 6.2, it is clarified that the effects of clouds and other scattering media can be 

summarized in an attenuation factor, since after time-gating, only the coherent component of 

the scattering impulse response contributes to the total channel impulse response. In this 

section, attributes of turbulence on the imaging system performance is investigated. Under 

turbulent atmospheric condition, transmitted beamlets distort and may interfere with one 

another on their way to target. The same problem exists in return path from target to receiver. 

Using a computer-generated hologram (CGH) [53], it is possible to pre-distort the transmitted 

beamlets to overcome atmospheric turbulence in “down-link” path. To compensate for 
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atmospheric turbulence in “uplink”, one has to first model scintillation. In chapter 5, we 

described different methods of generating phase-screens which are used to approximate phase 

perturbations. These phase perturbations distort and broaden the Point Spread Function (PSF), 

which plays the role of impulse response in imaging systems. In other words, PSF is 

convolved with focal-plane signal and the result is direct-detected by photo-detectors. Due to 

PSF broadening and distortion, information from neighboring pixels may mix and Inter-Pixel-

Interference (IPI) is observed. Leakage of information into neighboring pixels gives rise to 

IPI. In other words, PSF becomes so broad that mixes the intensity of neighboring elements. 

The mathematical formulation for a linear degradation caused by blurring and additive noise 

is given by: 

where )(xf , )(xg , )(xh , and )(xn represent the original image, the observed image, the 

blur or PSF, and the observation noise, respectively, 
2fS  is the image support, and 

2hS is the PSF support. Support refers to the smallest rectangle within which the true 

object is contained. In the case of coherent, monochromatic illumination, the following simple 

relationship exists between the object field, )(xou , and the image field, )(xiu ; 

where )(xh  is the impulse response of the imaging system and is given by: 

where ( )iW f d is the pupil function of the imaging system,  is the optical wavelength, and 

id is the distance between the exit pupil and the image plane. Furthermore,   represents the 

phase front distortion caused by atmospheric turbulence. From (6.6) one can see that (6.5) 

clearly describes the image recovery problem in the case of coherent imaging. For incoherent 

imaging, however, the irradiance observed in the image plane is given by the squared 

modulus of (6.6) as: 

Expanding (6.8) gives: 

Due to atmospheric effects, we can assume that the object field )(xou  is inherently a 

random quantity, which in turn implies the irradiance is also random. Hence, the average 

irradiance observed in the imaging plane becomes: 
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where )(xo  is the average intensity of the object. The brackets can be dropped for 

notational simplicity. The impulse response characterizing the input/output relationship 

between the two irradiances is called the point spread function and is given by: 

 

It is interesting to note that, in the case of incoherent illumination, the imaging system 

responds linearly to the object irradiance distribution, where as for coherent illumination, the 

system responds linearly to the object field distribution [6].  

The Full Width Half Maximum (FWHM) of PSF is usually used as a measure of 

resolution in most imaging systems. When PSF is an ideal airy pattern, diffraction-limited 

imaging is possible. As turbulence level increases, PSF becomes broader and more distorted 

and resolution decreases, regardless of the number of beamlets and their compact placement.  

Fig. 6.19 shows the focal plane image for an 8×8 MIMO imaging system under 

turbulence-free conditions, where the object to be imaged is letter “H”. Fig. 6.20 shows the 

results under moderate turbulence. These figures have been obtained assuming a channel 

length of L=5 km (one way), 2 12(0) 1.7 10nC   , 0 1.4 r  cm, and a receiving aperture of 50 

cm diameter.  

 

2|)(|)( xx hs   (6.11) 

 
Fig. 6.19:  Focal plane wave for turbulence-free condition, where the object is letter “H”. 
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Fig. 6.21 and Fig. 6.22 show the photo-detected images corresponding to turbulence-free 

and moderate turbulence, respectively. 

 

 

 
Fig. 6.20:  Focal plane wave for moderate turbulence, where the object is letter “H”. 

 
Fig. 6.21:  Photo-detected image under turbulence-free condition. 
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6.7 A More Accurate Channel Model 
In this section details of a more realistic channel model is described, which exploits 

multiple phase screens in the path of laser beamlets [43]. Fig. 6.23 demonstrates the channel 

model configuration. In Fig. 6.23, three equidistant ( L ) phase screens are used throughout a 

channel of length L to simulate the effects of turbulence. Note that only the forward path is 

shown in this figure. A laser beamlet is launched by the transceiver and is Fourier-propagated 

to the first phase screen. Assuming the initial beamlets to have a spatial form of ),(0 yxt , the 

wave impinging on the first phase screen is obtained using Fourier optics as: 

where ),(1 yxt  is the spatial domain expression for the beamlet impinging on the first phase 

screen, ),(0 yx ffT  is the Fourier transform of ),(0 yxt , and ),,( LffH yx   is the transfer 

function of free space propagation and is given by: 

Note that (6.13) is the exact expression for free space transfer function assuming scalar 

diffraction theory. It is also possible to apply paraxial (small angle) or far field 

approximations and simplify this equation based on Fresnel or Fraunhofer diffraction theories 

[57].  

When beamlet impinges on the first phase screen, wave-front is perturbed and then 

beamlet is Fourier-propagated to the second phase screen. The wave impinging on the second 

phase screen is obtained using Fourier optics as: 

 

Fig. 6.22:  Photo-detected image under moderate turbulence. 

  ),,(),(

),,(),(),(

0

1

)(2

01

LffHyxtFF

dfdfeLffHffTyxt

yx

yx

yfxfj

yxyx
xx

















 


 (6.12) 














 22

2

1
2exp),,( yxyx ffjLffH


  (6.13) 



 

91 

where 1( , )x y is the first phase screen, and 1( , )t x y is the spatial domain expression for the 

beamlet impinging on the first phase screen. Using a similar approach, beamlet propagation 

from the transceiver to the target and back is simulated. Note that beamlets pass through the 

same set of phase screens on both downlink and uplink. 

Fig. 6.24 (a), (b), and (c) show the focal plane image of an “H”-shaped target for weak, 

moderate, and strong turbulence conditions, where the one way channel length is 3 km and 

five phase screens are placed through the channel. Furthermore, wind speed is set to 21 m/s 

and the structure parameter of refractive index variations, )0(2

nC , is set to 13107.1  , 13106 

, and 12107.1   for relatively weak, moderate and strong turbulence conditions, respectively. 

This channel model can produce more accurate results, but at the same time it is more 

complicated to analyze. In other words, in contrast to the single phase screen channel which 

distorts all the beamlets almost the same, this model induces different aberrations on beamlets 

depending on their direction and appears to be linear but shift variant. Moreover, due to 

constructive and destructive interference of beamlets with themselves, one can observe 

scintillation effects.  
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Fig. 6.23:  Optical channel model configuration. 
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6.8 Conclusions 
In this chapter, the overall design of a spatially multiplexed MIMO imaging system is 

described. Moreover, attributes of turbidity and turbulence in the propagation media and their 

impact on imaging system are briefly investigated. While scattering media give rise to steady 

background noise via backscattering and severely attenuates the information-bearing coherent 

component of the received wave, according to beer-Lambert law, turbulence contributes to 

amplitude and phase fluctuations, and hence, causes PSF broadening and signal fading. In 

order to restore the received image to its ideal form, the imaging system should be well-

equipped with Adaptive Optics (AO), proper spatial and temporal filtering and powerful post-

processing modules such as Blind Deconvolution (BD) blocks. In the next chapter, we will 

discus performance improvements obtained via embedding these blocks and modules.   

 

  

 
(a) 

 
(b) 

 
(c) 

Fig. 6.24:  Focal plane image for (a) weak, (b) moderate, and (c) strong turbulence 

conditions. 
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Chapter 7 

Compensation and Restoration Techniques & Performance 

Improvements 
 

7.1 Introduction 
In chapter 6, a spatially multiplexed optical MIMO imaging system is introduced and 

transceiver design is illustrated. This system is proved to work properly under ideal 

atmospheric conditions, where effects of scattering and turbulence are minimal [50][8][9][10]. 

However, as shown in chapter 6, in imaging through atmosphere one should consider 

dispersive effects of scattering particles, turbulence-induced beam spreading, intensity 

fluctuations, and wave-front distortion. While scattering media give rise to steady background 

noise via backscattering and severely attenuate the information-bearing coherent component 

of the received wave, according to Beer-Lambert law, turbulence contributes to amplitude and 

phase fluctuations, and hence, causes PSF broadening and signal fading.  

In order to overcome the deleterious effects of scattering and remove the clutter sub-space 

(steady background noise due to backscattering) from image sub-space, one can resort to 

some kind of spatio-temporal filtering, and take advantage of the fact that spatial and temporal 

distribution of image and backscattered photons are approximately non-overlapping. In other 

words, one can expect the image photons to arrive at the receiving aperture in a predictable 

time interval, and within a limited FOV. In this chapter, we use time-gating to filter-out the 

backscattered photons. It is shown that SNR or Contrast can be improved drastically, 

depending on the length of the time-gate and the optical thickness of scattering medium. 

Restoring the effects of turbulent atmosphere is complicated by the fact that imaging 

system does not have any information about either the true image or the distorting PSF. 

Solutions to this problem fall into two major categories; Adaptive Optics corrections and 

deconvolution Algorithms. While Adaptive Optics systems estimate the wave-front phase 

aberrations and compensate for PSF broadening in real-time, blind deconvolution algorithms 

serve as a post processing module and try to recover both PSF and true image from the 

received distorted image.  

In the following sections, we elaborate on image restoration techniques and the resulting 

performance improvements in terms of Signal-to-Noise Ratio Improvement (SNRI), Signal-

to-Noise-and-Interference Ratio (SNIR) or Contrast, Resolution, and Mean-Square Error 

(MSE) percentage. 

 

7.2 Clutter Space Removal via Time-Gating 
In this section, we revisit chapter 6, where it is shown that time gating can improve SNIR 

or contrast by filtering out backscattered photons from image information bearing photons. 

Knowing that received energy is proportional to the number of photons, Signal to Noise and 

Interference Ratio (SNIR) can be defined as: 

 


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



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


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I
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where IN  is the number of image photons, bN  is the number of backscattered photons, nN  is 

the number of noise photons, h  is Planck‟s constant,   is the wavelength of imaging system 

carrier, and   is the average wavelength of noise photons. Assuming that backscattered 

photons are dominant in the steady background noise, the second term in denominator of log 

in (7.1) can be omitted, and hence the term in the log can be simplified to the ratio of number 

of image and backscattered photons. We run the MCRT imaging code developed at Penn 

State CICTR for various optical thickness values and record the number of received image 

and backscattered photons. The ratio of these two numbers determines the SNIR or contrast 

before time gating. Then by applying time gating, the number of photons arrived at the 

receiver in a specified time-frame about the round-trip time is measured. Table 7.1 shows the 

results of this analysis for different optical thickness values (one way) and different time-gate 

lengths. 

 

From Table 7.1, one can see that SNIR decreases with optical thickness in all cases. This 

is due to the fact that as optical thickness increases, fewer number of image photons can make 

it to the receiver. Moreover, probability of backscattering increases as more scattering events 

take place in the medium. By placing a time-gate of 10 μs length with its center on the round-

trip time, SNIR improves, significantly. This improvement is even more considerable for 

larger optical lengths. By shortening the time-gate to 1 μs, we observe more improvement, 

especially in larger optical thickness values. If we further decrease this length to 0.1 μs, the 

SNIR improves only for a channel of optical thickness 6 (12 round-trip). These final SNIR 

improvements with a gate of 0.1 μs length appear to be very promising, as we observe a total 

of 50 dB improvement for a channel of optical thickness 6. In order to continue this analysis 

for larger optical thickness values, MCRT needs a very long processing time. This is due to 

the fact that signal attenuation increases exponentially with optical thickness, and hence a 

larger number of photons need to be tracked, in order for the receiver to get some information 

bearing photons.  

 

7.3 Combining Multiple Images 
In this section, it is shown how combining multiple shots of the same object may help us 

to overcome PSF distortions. Note that, this method is useful when receiver has no knowledge 

of PSF and IPI is not severe. In this case, by averaging multiple images, one can compensate 

for beam wandering over the surface of photo-detector. However, if information from the 

neighboring pixels mix completely and spatial “eye closure” happens, this method is no 

longer helpful.  

Under weak turbulence conditions, PSF is distorted and broadened; however, this 

broadening is not severe enough to cause IPI. As a result, one can obtain an image of good 

quality by averaging several distorted images. Fig. 7.1 shows a photo-detected image under 

weak turbulence condition and Fig. 7.2 shows an image obtained by averaging 20 distorted 

Table 7.1:  Contrast Improvement using time-gates of different lengths. 

Optical Thickness /SNIR 1 2 3 4 5 6 

before Time-Gating 26.3 dB 14.5 dB 4.0 dB -5.5 dB -15 dB -25.2 dB 

10 μs Time-Gating 49.9 dB 41.3 dB 33.2 dB 26.1 dB 15.4 dB 6.3 dB 

1 μs Time-Gating 49.9 dB 49.8 dB 42.5 dB 43.3 dB 34.6 dB 16.2 dB 

0.1 μs Time-Gating 49.9 dB 49.8 dB 48.5 dB 43.3 dB 34.6 dB 24.6 dB 
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images under the same condition. One can observe that averaging can virtually reverse the 

turbulence effects. 

In moderate turbulence conditions, similar to that of Fig. 7.3, PSF is completely distorted 

but the mixing between neighboring pixels is still tolerable. In this case, if multiple images are 

obtained in some uncorrelated time intervals and added up with equal weights, we expect the 

resulting image to show less variation. Fig. 7.4 shows the image resulted from averaging 20 

distorted images in moderate turbulence conditions similar to Fig. 7.4. It is clear that image 

has improved, significantly. Furthermore average contrast is increased compared to Fig. 7.3. 

However, comparing Fig. 7.2 and Fig. 7.4, we realize that by increasing the turbulence level, 

the averaging method becomes less effective. 

 
Fig. 7.1:  Photo-detected image under weak turbulence. 

 

 
Fig. 7.2:  Image resulted from averaging 20 distorted images under weak turbulence 
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7.4 Deconvolution Techniques 
In order to overcome the blurring distortion caused by the non-ideal PSF induced by 

turbulence, the distorted PSF must be deconvolved from the image. However, this is a very 

complicated problem, since we have to estimate both target and PSF from a distorted image. 

If PSF is available, image may be recovered using a variety of well known techniques, such as 

inverse filtering, Wiener filtering, least square (LS) filtering, recursive Kalman filtering, and 

constrained iterative deconvolution methods [3]. Otherwise multiple images from a same 

 
Fig. 7.3:  Photo-detected image under moderate turbulence. 

 
Fig. 7.4:  Image resulted from averaging 20 distorted images under moderate turbulence 
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object must be combined to remove random distortions. Next we will describe these retrieving 

methods.  

 

7.4.1 Inverse Filtering 
 

If perfect Channel Side Information (CSI) is available, original image can be recovered 

easily. Using MIMO formulation, distorted image can be written as: 

 

where R  is the channel matrix, x = vec(ideal image), and y =vec(distorted image), and 

the operator vec simply stacks all elements of a matrix in a vector. Fig. 7.5, Fig. 7.6 and Fig. 

7.7 show x , y , and R , respectively. Note that target is the letter “H”. For an ideal channel, 

matrix R  is diagonal, meaning that each beamlet is mapped exactly to the corresponding 

photo-detector. However, in the presence of turbulence, each beamlet leaks to neighboring 

photo-detectors as well and gives rise to IPI. As we can see from Fig. 7.7, under turbulent 

atmosphere conditions, R  is no longer diagonal and received image is severely distorted. 

If we have perfect knowledge of R  matrix, we can multiply the received image vector by 
1

R  and invert the effects of channel. Fig. 7.8 shows restored image obtained using this 

inverse filtering. This approach is very similar to post-coding method used in MIMO 

communications, where Cholesky decomposition of channel transfer matrix is used to pre-

code and post-code the transmitted and received signal vectors and hence, provide parallel 

channels in space. This approach can also be interpreted as classical de-convolution and 

inverse filtering. In other words, it is the same as case where PSF is known and can be de-

convolved from the distorted observation to provide us with the original image. In the 

presence of noise, however, inverse filtering may cause noise enhancement and Wiener 

Filtering should be used which minimizes mean square error of estimation. 

In the absence of such channel information (knowledge of PSF), Blind De-convolution 

(BD) techniques are required to estimate both PSF and original image from distorted 

observation.  

 

Rxy   (7.2) 

 
Fig. 7.5:  Ideal image of letter "H". 
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Fig. 7.6:   Distorted image of letter "H". 

 
Fig. 7.7:  Covariance Matrix of Channel. 
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7.4.2 Adaptive Deconvolution 
In this section, we are interested in estimating a two-dimensional target from the distorted 

received image. In reality, we do not have information about the target and scintillation 

characteristics of atmosphere change slowly with time. As a result, we have to resort to some 

form of blind deconvolution. Here, we present a simple outline of an adaptive deconvolution 

system, with the assumptions that the target is known, and the channel is constant over the 

time images being taken. This is similar to adaptive equalization process in RF 

communications systems, where a learning sequence, which is known to both transmitter and 

receiver, is sent through the channel and the received signal is used to estimate channel 

coefficients.  

The undistorted target image can be represented, for example, by a 10×10 matrix P with 

each pixel/element representing the reflected intensity from a spatial coordinate (x, y) of the 

target. The effect of scintillation may be represented by a 100×100 matrix H, which has the 

diagonal elements representing the fading experienced by individual pixels and the off-

diagonal elements representing the leakage from one of the pixels to the others. The elements 

of H can be modeled as log-normal random variables with covariance matrix HR  denoting 

the covariance matrix of normal variables. This is the full correlation matrix representing the 

joint covariance between the elements of H. Assuming that the correlation between the 

received intensities of two photo-detector elements is dependent only on their separation 

distance, and similar on the transmitter side, a Kronecker product model can be assumed to 

obtain the full correlation matrix. Therefore, RxTxH RRR  , where the transmit and receive 

side correlation matrices TxR  and RxR  can be obtained by experiments or analytical means. 

With HR  given, H can be synthesized from a matrix G containing i.i.d. Gaussian 

elements as    1 2unvec exp 2 vecHH  R G , where the  vec  and  unvec  operators 

indicate stacking of the columns of a matrix to form a column vector, and the reverse 

operation, respectively, and the square root indicates a matrix square root. H also has to be 

 
Fig. 7.8:  Restored Image Using Inverse Filtering. 
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properly normalized so that it neither attenuates nor amplifies the received signals, on the 

average. This can be done by forcing the expectation of the Froebenius norm of H to 1. 

The resulting receiving image at the photodetectors can be written as, 

 

where n represents the additive noise, modeled as a Gaussian random vector  nN Σ0, . 

Let Ak be the linear mean square (LMS) estimator at the k
th

 instant in the channel tracking 

phase. Then the mean square error (MSE) at the k
th

 instant is, 

 

For adaptive equalization, the expectation operator is ignored when taking the gradient of 

the MSE with respect to the elements of the LMSE estimator. As such, the gradient during K-

th interval is: 

Therefore, the estimator can be updated according to the recursion, 

where  is a step parameter suitably chosen to ensure convergence. 

With the given assumptions, and the adaptive update of the LMS estimator as explained 

above, the results obtained for an arbitrary image P are shown in Fig. 7. (a) through (d). 

  

  nPHV  vecunvec  (7.3) 
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It is noted that the estimator coefficients converge suitably within 100~150 iterations with 

reasonable MSE. However, the simplistic assumptions must be kept in mind, and realistic 

modifications must be made to the reconstruction algorithm for robustness. 

 

7.4.3 Blind Deconvolution by Simulated Annealing 
The problem of imaging in turbulent atmosphere is complicated by the fact that the 

imaging system does not have any information about either the true image of the object or the 

distorting PSF. The adaptive de-convolution algorithm is applicable only if one component of 

convolution is known, or can be estimated through a different mechanism up to a certain 

degree of accuracy. This leads us to resort to a blind mechanism which requires explicit 

knowledge of neither component of the convolution, but requires some information, and some 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 7.9:  (a) Original Image Pixels, arbitrarily chosen and known to receiver, with 

channel kept fixed but unknown to receiver; (b) Image pixels as detected on the photo-

detector array; (c) Compensated image pixels after convergence of the adaptive 

deconvolution; (d) Convergence properties of the MSE with iterations. 
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constraints have to be met. In section 6.6, we reviewed mathematical formulation of BD and 

showed that this formulation is applicable in both coherent and incoherent imaging systems.  

A 2-D blind de-convolution problem can be formulated as:  

 

where the true image is  ,f x y , the blurring PSF is  ,h x y and  ,n x y  is the additive 

noise. The problem is to simultaneously estimate components  ,f x y  and  ,h x y  from

 ,g x y . In general, it is only possible to solve the blind de-convolution problem if  ,f x y  

and  ,h x y  are both of finite size. 

One of the popular non-parametric blind de-convolution techniques is the Simulated 

Annealing (SA) algorithm [58], which is a Monte-Carlo global minimization technique that 

tries to minimize a given cost function. It has the following features: 

1. The supports of the image and the blurring point spread function are known, i.e. 

 ,f x y  and  ,h x y  have finite supports  ,fS x y  and  ,hS x y  which are both 

known, beyond which  ,f x y  and  ,h x y  are zero or can be assumed very close 

to zero. The support refers to the smallest rectangle within which the true object is 

contained. Therefore, the imaging must be performed such that the object is entirely 

encompassed by a uniformly black, grey or white background. 

2. The image and PSF pixels are non-negative. 

3. Both image and PSF pixels are guessed pseudo-randomly at the beginning of the 

iterations, and updated simultaneously during the iterations. 

4. A cost function is calculated during each iteration, which is: 

 

Random pixel perturbations resulting in decrease of the cost function are accepted, 

while perturbations that increase can be accepted based on a random probability. 

5. The general requirement for blind de-convolution that neither the image nor the 

PSF is reducible to a convolution of two or more functions holds, i.e., 

     , , ,f x y a x y b x y  , for any  ,a x y  or  ,b x y . 

A flow-chart of the algorithm is given in Fig. 10. The support of the true image and the 

PSF are known to be M1×N1 and M2×N2, respectively. 

       , , , ,g x y f x y h x y n x y    (7.7) 
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To demonstrate the functionality of the SA-BD algorithm, we take a known image, f(x, y), 

of the letter H, contained in a 6×6 pixel rectangle, and convolve it with a known 5×5 PSF, h(x, 

y), which decays exponentially from the center point. These are shown in Fig. 7.1 (a,b).  

The resulting convolution of the image and the PSF is degraded by additive noise  ,n x y , 

where the ratio of the energy of the noise to the energy of the convolved image is assumed to 

be 10
-4

. The resulting noisy received image  ,g x y  is shown in Fig. 7.1(c). The image is 

similar to the case when moderate turbulence is present. 

 
Fig. 7.10:  Restored Image Using Inverse Filtering. 
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SA-BD de-convolution was performed on  ,g x y  with number of cycles and scans set to 

100 and 500, respectively. The estimates of the image and the PSF are given in Fig. 7.1(a, b). 

It is apparent that the blind de-convolution algorithm was successful in separating the image 

and PSF. The resulting normalized squared error for the image/PSF is defined by; 

The error, in this case, was 0.1453 for the image of letter H and 0.0489 for the blurring 

PSF. The convergence of the algorithm is seen in Fig. 7.12 (a, b). The temperature parameter, 

T, is reduced logarithmically throughout the cycles, which controls the perturbation of the 

pixel values. The cost function diminishes to about 510 , after about 80 cycles. 
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(a) 

 
(b) 

 
(c)  

(d) 

 
(e) 

Fig. 7.11:  (a) Original image to be detected; (b) Blurring Point-Spread Function; (c) 

Convolution of Image and PSF degraded by Additive Noise; (d) Estimated PSF, (e) 
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(a) 

 
(b) 

Fig. 7.12 (a) Change of Temperature Parameter with Cycles; (b) Convergence of 

the Cost Function. 

 

Two performance measures, namely Mean Square Error (MSE) and Signal to Noise Ratio 

Improvement (SNRI) are used to quantify this improvement.  MSE is defined as 

where recovered image is shown by ),(ˆ yxf  and original image is shown by ),( yxf . 

Furthermore, to account for scaling of images, parameter a  is used to minimize the MSE and 

is given by: 

Fig. 7.13, Fig. 7.14 and Fig. 7.15 present three different cases of image recovery under 

weak, moderate, and strong turbulence conditions and investigate the convergence and 
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performance of SABD in each of these situations. Fig. 7.13 through Fig. 7.15 show distorted 

image, recovered image, and MSE percentage at each iteration. We see that SABD operates 

properly at all turbulence levels. However, note that convergence of SABD depends on the 

initial guess of image, which is random. As a result, the recovered image would not be the 

same every time. Here, we chose to show the best results obtained using this algorithm. 

  

 
(a) 

 
(b) 

 
(c) 

Fig. 7.13: (a) Distorted Image, (b) Recovered Image, (c) MSE % per iteration. 

Weak turbulence condition. 
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(a) 

 
(b) 

 
(c) 

Fig. 7.14: (a) Distorted Image, (b) Recovered Image, (c) MSE % per iteration. Moderate 

turbulence condition 
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(a) 

 
(b) 

 
(c) 

Fig. 7.15: (a) Distorted Image, (b) Recovered Image, (c) MSE % per iteration. Strong 

turbulence condition. 

 

One can observe that MSE percentage decreases fast. Furthermore, in the examples above, 

SABD provides 13.7 dB, 18.8 dB, and 18.6 dB SNR improvements for weak, moderate, and 

strong turbulence conditions, respectively. Again, note that SABD performance highly 

depends on the initial guess of original image and the above figures are examples of SABD 

performance with a “good” initial state. 

 

7.4.4 Non-Negativity and Support-constrained Recursive Inverse Filtering 

(NAS-RIF) 
The NAS-RIF algorithm is developed to solve a version of BD problem, defined as 

follows:  
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Given a gray-scale image g(x,y)  degraded by a linear shift invariant PSF h(x,y) , 

find a reliable estimate of the true image f(x,y) , given partial or no information about 

the PSF and true image.  

 

Non-negativity and support information can extrapolate high spatial frequency 

components lost by a band-limiting distortion. Hence, non-negativity and support constraints 

are used as partial information to define a cost-function. The true image is estimated subject 

to minimization of this error criterion or cost function, which is defined as: 

where 
supD  is the set of all pixel locations of ˆ( , )f x y  within the region of support and 

negD  is 

the set of all pixel location within 
supD , for which ˆ( , )f x y  is negative. Furthermore, ˆ( , )f x y  

is the estimated true image and BL
 is the average pixel value of the background. This cost-

function is proved to be convex, and thus having a global minima [59]. To recover the true 

image, ( , )f x y , the received blurred image is filtered by a variable FIR filter ( , )u x y  to 

produce an estimate of the image ˆ( , )f x y . This estimate is passed through a nonlinear filter, 

which projects the estimate onto the convex set corresponding to the non-negativity and 

support constraints of the true image. The difference between this projected image 
ˆ ( , )NLf x y

 

and ˆ( , )f x y , i.e. the cost function or the error signal, is used to update the variable filter 

coefficients. Block diagram of the proposed algorithm is shown in Fig. 7.16 [59]. 

 

In order to minimize the convex cost-function of NAS-RIF, Conjugate-Gradient 

optimization is used, which finds a direction that minimizes the cost function at each iteration. 

The summary of NAS-RIF algorithm that uses conjugate gradient algorithm for optimization 

is shown in Table 7.2 [59].  

  
 
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2
2

sup

),(ˆ),(ˆ  (7.12) 

 
Fig. 7.16:  Block Diagram of NAS-RIF algorithm 
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7.4.5 Zero Sheet Separation Method 
Though it seems impossible at first glance, it has been shown that components of a 

convolution in a space of dimensions more than unity can be recovered simply from the 

convolution itself. This argument is based on the fact that the roots of the spectrum (either 

Fourier-transform or Z-transform) of an N-dimensional image (2-D in our case) lie on a (2N – 

2)-dimensional hyper surface in a 2N-dimensional space (N-dimensional complex) [60]. This 

hyper surface is called the “Zero Sheet” of an image. The spectrum of a composite image is 

the product of the original image and PSF spectra and hence its roots are given by the union 

of PSF and original image zero sheets. Suppose that the distorted image is given by: 

 

This translates to the following in transform domain (either Fourier or Z transform): 

 

Hence, roots of ),( vuG  are the union of ),( vuF  and ),( vuh  roots. Now, we elaborate the 

concept of zero sheets in more details. We know that the transform domain representation of a 

pixilated image, ),( nmf  is given by: 

Table 7.2:  Summary of the NAS-RIF method using the conjugate gradient algorithm for 

optimization. 

 Set initial conditions (k=0) 

              )],(...2/)1(,2/)1(...)1,1([ yuxukyuxukk

T

k NNuNNuuu   

                  = [0,…,1,…,0] 

            set .0  

 At iteration (k): k = 0, 1, 2, … 

1) If )( kuJ , stop. 

2) If 0k , )( kk uJd  . Otherwise, 11)(  kkkk duJd  . 

3) Perform a line minimization to find kt  such that  

                            )()( kkkkk tduJdtuJ   for t . 

4) kkkk dtuu 1  

where yuxu NN

k Ru


  is the current estimate of the inverse filter , 

 

















sup),(

),(
,

)1,1(]),(ˆ[2

)1,1(),(ˆ2
),(

)(
)(

Dyx

B

Dyx

k

jik

jyixgLyxf

jyixgyxf
jiu

uJ
uJ

neg , and 

2

11

)(

)(),()(

k

kkk

k

uJ

uJuJuJ







 . 

 

)(*)()( xxx hfg   (7.13) 
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For a fixedu , (7.15) can be written as: 

where 

Hence, ),( vuF  can be written as a 1-D polynomial whose coefficients depend on the data 

),( nmf  and the complex variable u  [61]. For any value ofu , this polynomial has 1M  

roots that depend on u . Zero sheets are formed by starting from an initial 0uu  , successively 

increasingu  and evaluating the roots of the polynomial in (7.15). The increments in u  are 

small enough that the displacement of each point zero can be clearly determined from one 

increment to the next. The same steps can be followed by the role of u  and v  being reversed.  

If one follows these steps for ),( vuG , zero sheets of ),( vuF  and ),( vuh , being necessarily 

continuous, are unambiguously and separately mapped out. In the presence of noise, however, 

we have: 

As a result, ),( vuG  can no longer be factorized and disjoint hyper-surfaces merge into a 

single hyper-surface. Hence it would not be possible to discriminate between roots of PSF and 

original image. Fig. 7.17 (a) through (d) show the zero sheets of original image, PSF, 

distorted image , and distorted noisy image, respectively. It is clear that points in Fig. 7.17(c) 

are the union of points in Fig. 7.17(a) and Fig. 7.17(b). Furthermore, due to continuity of zero 

sheets, it is theoretically possible to find the components of a composite image. However, 

when noise is added to distorted image, disjoint, continuous and closed traces of the PSF and 

original image zeros merge and can not be discriminated any more.  

Fig. 7.1 (a) through (d) show original image, PSF, distorted image, and distorted noisy 

image, respectively. We observe that the received image is severely distorted. However, from 

the above argument, it is still possible to recover the original image. In the presence of noise, 

however, zero sheets patterns have changed, significantly. This is due to the fact that the 

coefficients of polynomials have been perturbed and hence, zeros are displaced. Note that, the 

Signal-to-Noise Ratio (SNR) level is quit high (40 dB) and the effect of noise is not clear 

from Fig. 7.1 (d).  

In the subsequent section, we investigate the possibility of restoring the original 

polynomial of composite image spectra from the perturbed polynomial. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 7.17:  (a) Zero sheets of original image; (b) Zero sheets of PSF; (c) Zero sheets of 

distorted image; (d) Zero sheets of distorted & noisy image 
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7.4.6 Blind Deconvolution Based on Approximate Factorization of 

Bivariate Polynomials (AFBP) 
 

As in (7.17), the z-transform of the blurred image, ),( 21 zzG , is a bivariate polynomial in 

variables 1z  and 2z ; hence, the problem of deconvolution becomes the problem of factorizing 

the polynomial in 1z  and 2z . Unfortunately, in practice, the coefficients of the polynomial are 

not perfect, and are corrupted either by additive noise in the imaging system or due to finite 

precision error in the detectors. Therefore, an algorithm is required to be devised that allows 

for approximate factorization of this bivariate polynomial. The references [62][63] provide 

the mathematical bases for factorizing polynomials, and the criterion for approximate 

factorization is to find the “nearest” factorizable polynomial having a total degree less than or 

equal to the given polynomial, in the least square sense.  

Letting ),)((),( 2121 zzzzG iQ  be an irreducible polynomial over the set of complex 

numbers C , where irreducibility is caused by perturbations on the coefficients of G. Then the 

algorithm presented in [62] finds [min]G , a factorizable polynomial over C  with

  )deg(deg [min] GG  , such that the normalized error 
22

[min] / GGG   is minimized.  

The algorithm is based on Ruppert‟s criterion of irreducibility of polynomials. If 

),(),( 2121 zzzzG C  with bi-degree ),( NM , i.e., MGz 
1

deg , MGz 
2

deg , then Ruppert‟s 

criterion states that f is absolutely irreducible if and only if the equation 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 7.18:  (a) Image; (b) PSF; (c) Distorted image; (d) Distorted & noisy image  
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has no nonzero solution ],[, 21 zzCHF   with ),1(deg NMF  , )2,(deg  NMH . 

Since (7.18) is linear over C , it gives a linear system for the coefficients of F and H, 

whose coefficient matrix is called the Ruppert matrix )(GR . The matrix )(GR  is full rank if 

and only if G is absolutely irreducible. Furthermore, a basis of the solution space can be found 

from the Ruppert matrix which could be used, in conjunction with a multivariate GCD finding 

algorithm, to find out the approximate factorization of G. 

Letting ),)((),( 2121 zzzzG iQ  be an irreducible polynomial over the set of complex 

numbers C , where irreducibility is caused by perturbations on the coefficients of G. Then the 

algorithm presented in [62] finds [min]G , a factorizable polynomial over C  with

  )deg(deg [min] GG  , such that the normalized error 
22

[min] / GGG   is minimized.  

The following polynomial, presented as a benchmark first in [62], 

 

is formed by perturbing the product of the following two polynomials by 10.2z , 

The algorithm described in [62] performs the approximate bivariate factorization on 

the polynomial with perturbed coefficients, and yields, 

with the constant multiplier, 6.676951989c   , so that, 
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   2 2 3 3 1 2 2 2 2 3

1 2 1 1 2 2 1 2 2 1 2 1 2 1 2, 2 1 2F z z z z z z z z z z z z z z z               (7.20) 
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1 2 1 1 2 2 1 2 2 1 1 2 1 2, 7 7H z z z z z z z z z z z z z z              (7.21) 
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The normalized error of the approximate factorization is, 

 

By least squares, the scaling factors of the individual functions are found out, and the 

reconstructed image and blurring functions are given by, 

 

The normalized error for each of these are found out similarly as in (7.24), 

 

The normalized error for each of these are found out similarly as in (7.24). These 

results are summarized in Fig. 7.19(a-j), as 2-D images.  

The above example only deals with a large additive noise value in one pixel. Further 

investigations are required to find out the performance of the algorithm when additive noise 

perturbs all the pixels independently, or in a correlated manner.  

The approximate multivariate factorization algorithm may have several advantages 

over conventional blind deconvolution mechanisms which are based on Bussgang methods or 

the simulated annealing method described in the previous monthly report. The last two 

methods are iterative and require tremendous computing power. While it is not still clear how 

much complexity the AFBP (Approximate Factorization Bivariate Polynomials) algorithm 

would impose on current processors, but it is a completely different approach to deal with the 

blind deconvolution problem. We intend to investigate the computational complexity of the 

algorithm, as well as its performance, and compare them with previously presented 

approaches, in our future works. 

 

  

       min

1 2 1 2 1 2, , ,G z z c F z z H z z     (7.23) 

 min

2 2
0.01084227541G G G   (7.24) 

   1 2 1 2, 3.431574113610501 ,factoredF z z F z z     (7.25) 

   1 2 1 2, 1.941112961 ,factoredH z z H z z    (7.26) 

1 20.010845341474554,    0.011829151573117err err   (7.27) 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 
(g) 

 
(h) 

 
(i) 

 
(j) 

Fig. 7.19: Summary of polynomial factorization results: (a) Original Image; (b) 

Rescaled Factored Image, f,factored.; (c) Blur function, h; (d) Rescaled blur function, 

h,factore.; (e) Convolved Image, goriginal; (f) Convolved image with perturbation, 

gperturbed; (g) Reconstructed convolved image from factored polynomials, freconstructed; 

(h) Error between reconstructed and perturbed original image; (i) Error between 

original image and factored image; (j) Error between original blur function and 

factored blur function 

 

We present a more detailed set of results with the 88 image of the letter „H‟, which 

we have been using as a standard. It is subjected to blurring by seven sample PSF‟s, namely: 

(a) PSF1: Horizontal blur, physically corresponding to horizontal motion, 

(b) PSF2: Vertical blur, corresponding to vertical motion of camera or object, 

(c) PSF3: Diagonal blur, corresponding to diagonal motion of camera or object, 
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(d) PSF4: PSF due to turbulence with wind speed of 21 m/s and A = 1.710
-14

,  

(e) PSF5: PSF due to turbulence with wind speed of 21 m/s and A = 1.710
-13

,  

(f) PSF6: PSF due to turbulence with wind speed of 21 m/s and A = 1.710
-12

,  

(g) PSF7: PSF due to turbulence with wind speed of 21 m/s and A = 510
-12

. 

 The first three PSF‟s (PSF1-3) represent the simplest types of blurring possible, and 

hence can be used as benchmarks to qualify the severity of degradations imposed on the true 

image by the PSF‟s due to turbulence (PSF4-7), and the performance of the proposed 

algorithm. 

 We present performances for two different cases: 

(a) Noiseless environment: This is the ideal case where additive noise is absent. However, 

due to quantization in the digital electronics, the true coefficients are mapped to a set 

of discrete values, and the factorization or deconvolution still has to be performed with 

approximate coefficients. The deconvolution results presented in this case are obtained 

with the default floating point precision of Matlab/Maple. 

(b) Noisy environment: In this case, i.i.d.Gaussian noise is added to the blurred image 

pixels, and the measure of the noise is given by the blurred SNR or BSNR, defined as,  

where  yxg ,  is the blurred image pixel values at locations (x, y), Eg is the energy 

contained in the blurred image, n(x, y) is the additive Gaussian noise at each pixel, 

with mean 0 and variance 2

n , and MN is the total number of pixels, where M is the 

number of rows in the photo-detector array, and N is the number of columns. 

 Fig. 7. through Fig. 7.2 present the blind deconvolution results obtained with the 

standard „H‟ image with the PSF‟s mentioned in the last section, for the noiseless case. Fig. 

7.28 through Fig. 7.34 are for the noisy case when the BSNR is set at 150dB, according to the 

definition given in the last section. 

 

 
Fig. 7.20. True Image 
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(a) Blurring PSF 

 
(b) Blurred Image 

 
(c) Reconstructed 

PSF 

 
(d) Reconstructed 

Image 

Fig. 7.21. Blurring PSF, Blurred Image, Reconstructed PSF and image for PSF1, noiseless case 

 
(a) Blurring PSF 

 
(b) Blurred Image 

 
(c) Reconstructed 

PSF 

 
(d) Reconstructed 

Image 

Fig. 7.22. Blurring PSF, Blurred Image, Reconstructed PSF and image for PSF2, noiseless case 

    

 
(a) Blurring PSF 

 
(b) Blurred Image 

 
(c) Reconstructed 

PSF 

 
(d) Reconstructed 

Image 

Fig. 7.23. Blurring PSF, Blurred Image, Reconstructed PSF and image for PSF3, noiseless case 

    

 
(a) Blurring PSF 

 
(b) Blurred Image 

 
(c) Reconstructed 

PSF 

 
(d) Reconstructed 

Image 

Fig. 7.24. Blurring PSF, Blurred Image, Reconstructed PSF and image for PSF4, noiseless case 
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(a) Blurring PSF 

 
(b) Blurred Image 

 
(c) Reconstructed 

PSF 

 
(d) Reconstructed 

Image 

Fig. 7.25. Blurring PSF, Blurred Image, Reconstructed PSF and image for PSF5, noiseless case 

    

 
(a) Blurring PSF  

(b) Blurred Image 

 
(c) Reconstructed 

PSF 

 
(d) Reconstructed 

Image 

Fig. 7.26. Blurring PSF, Blurred Image, Reconstructed PSF and image for PSF6, noiseless case 

    

 
(a) Blurring PSF  

(b) Blurred Image 
 

(c) Reconstructed 

PSF 

 
(d) Reconstructed 

Image 

Fig. 7.27. Blurring PSF, Blurred Image, Reconstructed PSF and image for PSF7, noiseless case 

    

 
(a) Blurring PSF 

 
(b) Noisy Blurred 

Image 
 

(c) Reconstructed 

PSF 

 
(d) Reconstructed 

Image 

Fig. 7.28. Blurring PSF, Noisy Blurred Image, Reconstructed PSF and image for PSF1, 

BSNR=150dB 
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(a) Blurring PSF 

 
(b) Noisy Blurred 

Image 

 
(c) Reconstructed 

PSF 

 
(d) Reconstructed 

Image 

Fig. 7.29. Blurring PSF, Noisy Blurred Image, Reconstructed PSF and image for PSF2, 

BSNR=150dB 

    

 
(a) Blurring PSF 

 
(b) Noisy Blurred 

Image 

 
(c) Reconstructed 

PSF 

 
(d) Reconstructed 

Image 

Fig. 7.30. Blurring PSF, Noisy Blurred Image, Reconstructed PSF and image for PSF3, 

BSNR=150dB 

    

 
(a) Blurring PSF 

 
(b) Noisy Blurred 

Image 

 
(c) Reconstructed 

PSF 

 
(d) Reconstructed 

Image 

Fig. 7.31. Blurring PSF, Noisy Blurred Image, Reconstructed PSF and image for PSF4, 

BSNR=150dB 
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(a) Blurring PSF 

 
(b) Noisy Blurred 

Image 

 
(c) Reconstructed 

PSF 

 
(d) Reconstructed 

Image 

Fig. 7.32. Blurring PSF, Noisy Blurred Image, Reconstructed PSF and image for PSF5, 

BSNR=150dB 

    

 
(a) Blurring PSF 

 
(b) Noisy Blurred 

Image 

 
(c) Reconstructed 

PSF 

 
(d) Reconstructed 

Image 

Fig. 7.33. Blurring PSF, Blurred Image, Reconstructed PSF and image for PSF6, 

BSNR=150dB 

    

 
(a) Blurring PSF 

 

 
(b) Blurred Image 

 
(c) Reconstructed 

PSF 

 
(d) Reconstructed 

Image 

Fig. 7.34. Blurring PSF, Blurred Image, Reconstructed PSF and image for PSF7, 

BSNR=150dB. 

 

 The performance of the blind deconvolution algorithm can be quantified in terms of 

percentage MSE, defined as, 

x

y

PSF5

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

2 4 6 8 10 12

2

4

6

8

10

12

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

x

y

PSF5

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

2 4 6 8 10 12

2

4

6

8

10

12

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

x

y

PSF5

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

x

y

Distorted Image 5

2 4 6 8 10 12

2

4

6

8

10

12

2 4 6 8 10 12 14

2

4

6

8

10

12

14

Reconstructed Image 7

x

y

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

    

 
2

,

,

2

,

,,ˆ

100%



 



yx

yx

yxf

yxfyxfa

MSE  (7.29) 



 

123 

where  yxf ,ˆ  is the recovered image/PSF,  yxf , is the true image/PSF, and the scaling term 

a is chosen such that MSE is minimized. Another performance measure is the SNR 

improvement (SNR) with respect to the blurred image, which is defined as, 

 

where g(x, y) is the blurred and possibly noisy image. 

 Table 7.3 summarizes the SNRI and %MSE values for the noiseless case, while the 

same values for BSNR values of 150dB and 140dB are tabulated in Table 7.4 and Table 7.5. 

 

Table 7.3. Performances of the proposed Blind Deconvolution in noiseless scenario. 

Noiseless 

Reconstruc-

tion 

SNRI, dB % MSE of 

Reconstructed 

Image 

% MSE of PSF % MSE of 

Observed 

Image 

PSF1 132.7666 8.215210
-13

 6.320110
-13

 1.387810
-13

 

PSF2 132.4715 6.521210
-13

 5.5456e10
-14

 4.302510
-13

 

PSF3 134.3180 6.836210
-13

 1.024610
-11

 1.754510
-12

 

PSF4 85.7649 1.062010
-7

 1.438610
-8

 9.087210
-11

 

PSF5* - 49.3455 7.5340 6.667110
-5

 

PSF6 68.8632 3.307510
-6

 1.716510
-6

 4.820610
-10

 

PSF7* - 49.3583 32.1110 1.056010
-6

 

* indicates that the deconvolution did not yield the true image. 

 

Table 7.4. Performances of the proposed Blind Deconvolution algorithm for BSNR = 150dB 

Noisy 

Reconstruction 

(BSNR = 150dB) 

SNRI, dB % MSE of 

Reconstructed 

Image 

% MSE of PSF % MSE of 

Observed 

Image 

PSF1 101.7536 1.037410
-9

 1.439410
-9

 2.061910
-10

 

PSF2 111.0314 9.085310
-11

 1.147510
-10

 3.848810
-11

 

PSF3 123.4641 8.321610
-12

 1.551210
-10

 4.036610
-11

 

PSF4 93.7879 1.674210
-8

 2.839810
-9

 1.416510
-11

 

PSF5* - 49.3502 7.5318 5.823510
-5

 

PSF6* - 49.3713 9.4677 1.135510
-8

 

PSF7 25.9326 0.0192 0.0237 3.655410
-6

 

* indicates that the deconvolution did not yield the true image. 
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Table 7.5. Performances of the proposed Blind Deconvolution algorithm for BSNR = 140dB 

Noisy 

Reconstruction 

(BSNR = 140dB) 

SNRI, dB % MSE of 

Reconstructed 

Image 

% MSE of PSF % MSE of 

Observed 

Image 

PSF1 112.7325 8.280110
-11

 1.879710
-10

 1.701610
-11

 

PSF2 94.9802 3.659810
-9

 1.376910
-8

 1.242910
-9

 

PSF3 105.4036 5.324210
-10

 2.499210
-9

 2.223910
-10

 

PSF4* - 49.3003 7.7710 8.932010
-3

 

PSF5* - 49.3344 7.5529 7.615410
-6

 

PSF6* - 49.3697 9.4657 1.099510
-8

 

PSF7* - 49.4023 32.0138 1.004110
-4

 

* indicates that the deconvolution did not yield the true image. 

 

Examining the results shows that the approximate factorization of bivariate polynomials is 

not always successful in deconvolving the true image from the blur, even in the noiseless 

case. This is due to the fact that the constraint is imposed only on the distorted received 

image/polynomial, and the algorithm tries to find the “nearest” factorizable polynomial, in the 

least square sense. Moreover, the algorithm seems to break down for lower BSNR values. 

Further limitations that were observed with the algorithm are as follows: 

a. The true image to be recovered must be on a uniformly black or white or grayscale 

background, so that a „full-field‟ deconvolution is possible. A „full-field‟ 

deconvolution means that the true image support is completely within the blurred 

image support. The algorithm fails to achieve appropriate results if pixels values 

are not zero beyond the support of the blurred image. This is a limitation 

encountered with all non-parametric blind deconvolution algorithms [59][64]. This 

scenario is valid for astronomical speckle imaging, and medical imaging [59]. 

b. If the blurred image has more than two factors, there is an ambiguity about the true 

image, and some a priori information or pattern matching criterion has to be used to 

obtain the true image. This is a general limitation of all blind deconvolution 

techniques [64]. 

c. The algorithm is very sensitive to additive noise. As we can see even with a BSNR 

of 140dB, the algorithm fails to perform proper deconvolution and recovery of the 

true image, with the PSF‟s corresponding to atmospheric turbulence. However, it 

still performs well with the three simpler blurring functions at this BSNR value. 

Since the image restoration problem is ill conditioned [64], a small perturbation of 

the given data produces a large deviation in the solution. 

To improve the performance of the algorithm, performance under the following 

modifications can be investigated: 

a. Take multiple frames of the object to be imaged, and use overlap-and-add technique 

to obtain a new blurred image. Each exposure would be degraded by independent 

noise samples, and also possibly convolved with uncorrelated blurring functions. If 

the exposures are taken fast enough, i.e. within the coherence time of turbulence, 

the induced blur may not change significantly. The resulting polynomial 

representation of the image can then be given by, 
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 The shifts can be determined from the 2-D cross-correlation peaks from one frame to 

the next. Furthermore, if the additive noise is i.i.d between frames, the resulting 

added noise will have lower variance; as a result, the BSNR, and hence the 

performance of the proposed deconvolution technique, may be expected to improve. 

b. In addition to the „least-square‟ error constraint imposed on the distorted image, 

further constraints may be imposed on the recovered true image. This algorithm 

currently does not use any a priori information about the true image. If constraints 

are imposed on the deconvolved image, such as known support, non-negativity, 

continuity over a certain range, statistical distribution, entropy, known parametric 

model of either the PSF or the object, etc. [64], we may expect to see some 

performance improvement of this algorithm. 

c. When imaging through turbulent atmosphere, we could use some adaptive optics 

compensation technique to compensate for lower Zernike orders. The resulting 

image would then be post-processed using the factorization algorithm. 

 

7.5 Comparison of NAS-RIF and AFBP 
We investigate the performance improvements obtained using the Non-Negativity and 

Support constraints Recursive Inverse Filtering (NAS-RIF) algorithm [64], as well as our 

Approximate Factorization of Bivariate Polynomials (AFBP) method and demonstrate Mean 

Square Error (MSE) percentage and Signal-to-Noise Ratio Improvements (SNRI) achieved 

via post-processing. Note that in [64], SNRI is defined, even for the noise-free conditions, as 

the ratio of MSE before and after processing. Hence, it would be more appropriate to call it 

Signal-to-Noise plus Interference Ratio Improvements.  

Fig. 7.35 (a), (b), and (c) show the simulation results for focal plane image of an 8×8 

MIMO imaging system under ideal, as well as weak and moderate turbulence conditions, 

respectively, where object to be imaged is the letter “H”. Fig. 7.3 (a), (b), and (c) show the 

simulation results for the photo-detected images under ideal, weak, and moderate turbulence 

conditions, respectively. It is clear from Fig. 7.3 that as turbulence strength increases, the 

photo-detected image becomes blurrier.  

To recover the original image, receiver should be well-equipped with an Adaptive-Optics 

(AO) system. Moreover, proper post-processing techniques can be exploited to enhance the 

image quality. In this section, we assume a simple AO system that only corrects for the tip-tilt 

component of phase distortion and leaves the major burden of image recovery to the post-

processing or BD module.  

Fig. 7.3 (a) and (b) show the reconstructed image under weak turbulence conditions using 

NAS-RIF and AFBP methods, respectively. Furthermore, Fig. 7.3 (c) shows the recovered 

PSF using AFBP under a weak turbulence condition. Note that NAS-RIF is based on inverse 

filtering and only generates the inverse of PSF. Fig. 7.3 (d) and (e) show the reconstructed 

image under strong turbulence conditions using NAS-RIF and AFBP methods, respectively. 

Furthermore, Fig. 7.3 (f) shows the recovered PSF using AFBP under a strong turbulence 
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condition. From Fig. 7.3, one can see that under a weak turbulence condition, both NAS-RIF 

and AFBP have a good performance. However, under a strong turbulence condition, NAS-

RIF is not as efficient as AFBP method. Nonetheless, NAS-RIF is much more robust to noise, 

compared to AFBP. Table 7.6 and Table 7.7 provide quantitative comparison of NAS-RIF 

and AFBP using SNRI and MSE percentage as a performance criterion, respectively.  

From Table 7.6, it is inferred that SNRI is quite the same for NAS-RIF and AFBP under a 

weak turbulence condition. However, while NAS-RIF fails to provide sufficient SNRI under a 

strong turbulence condition, AFBP shows an even larger SNRI compared to the weak 

turbulence condition. Unfortunately, single frame AFBP is not robust to noise and we are 

trying to improve this technique by exploiting multiple frames. Note that the noise is added 

such that input average SNR per pixel is 70dB [64]. NAS-RIF can also operate at average 

SNR level of 30-40 dB, but there is no guarantee that the algorithm will converge. Table 7.7 

shows the MSE percentage at the output of BD module. Again, one can observe that under 

noise-free conditions, AFBP is superior to NAS-RIF. Another interesting observation is that 

AFBP performs better under strong turbulence conditions. This is due to the fact that the two 

bivariate polynomials that are recovered by AFBP, namely the z-transform of PSF and 

original image, are of comparable degrees under strong turbulence conditions and hence are 

more distinguishable. 

  

 
(a) 

 
(b) 

 
(c) 

Fig. 7.35  Focal plane images of an 8×8 MIMO imaging system, (a) ideal, (b) weak 

turbulence, and (c) moderate turbulence. 

 
(a) 

 
(b) 

 
(c) 

Fig. 7.36  Photo-Detected images of an 8×8 MIMO imaging system, (a) ideal, (b) weak 

turbulence, and (c) moderate turbulence. 
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Table 7.6 SNRI for NAS-RIF and AFBP algorithms under weak and strong turbulence 

conditions, with and without Noise. 

SNRI Weak 

Turbulence 

Strong 

Turbulence 

Weak Turbulence+ 

Noise 

Strong Turbulence+ 

Noise 

NAS-RIF 37dB 16.5 dB 36.7 dB 16.2 dB 

AFBP 41 dB 77 dB N/A N/A 

 

Table 7.7 MSE percentage for NAS-RIF and AFBP algorithms under weak and strong 

turbulence conditions, with and without Noise. 

MSE % Weak 

Turbulence 

Strong 

Turbulence 

Weak Turbulence+ 

Noise 

Strong Turbulence+ 

Noise 

NAS-RIF 0.0007 % 0.53 % 0.0007% 0.56 % 

AFBP 2.7985×10
-4 

4.8725×10
-7 

N/A N/A 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

  
(f) 

Fig. 7.37  Reconstructed weak turbulence images using (a) NAS-RIF and (b) AFBP, and (c) 

reconstructed PSF of weak turbulence using AFBP, and reconstructed strong turbulence 

images using (d) NAS-RIF and (e) AFBP, and (f) reconstructed PSF of strong turbulence 

using AFBP 

 

7.6 Adaptive Optics 
In Section 7.6, it is assumed that a simple AO system that only corrects for tip-tilt is used 

and the major burden of image recovery is left to the post-processing or BD module. In this 

section, we investigate the performance of an imaging system that exploits an AO system of 

variable complexity. In order to simulate the AO system, different orders of Zernike 

polynomials are removed from the phase screen, using a Least Square matching approach. In 

other words, the coefficients corresponding to tilt ( 2Z  and 3Z ), defocus ( 4Z ), coma ( 5Z , 6Z ), 

astigmatism ( 7Z , 8Z ), and other higher order Zernike modes in the phase screen are recovered 
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using a least-square sense best fitting approach. Then, the estimated phase screen is subtracted 

from the simulated one to resemble AO correction.  

Consequently, the system PSF shrinks more and more as the number of removed Zernike 

modes increases. Fig. 7.38(a), (b), (c), (d), (e), (f) show the photo-detected images for a 

system without AO, with AO correction for 2Z  and 3Z , with AO corrections up to 6Z , with 

AO corrections up to 10Z , with AO corrections up to 15Z , and with AO corrections up to 500Z

, respectively. Figs. 6 (a), (b), (c), (d), (e), (f) show the corresponding PSF values.  

 

 
Fig. 7.38  Photo-detected images for a system (a) without AO, (b) with AO 

correction for 2Z  and 3Z , (c) with AO corrections upto 6Z , (d)with AO corrections 

upto 10Z , (e) with AO corrections upto 15Z , (f) and with AO corrections upto 500Z . 

 

From Fig. 7.38 and Fig. 7.39, one can see that most performance improvements are 

obtained by removing the second and third Zernike modes, that is, tilt components. This was 

expected as tilt is responsible for 86% of the total phase error in the piston-removed phase [6]. 

An AO system that removes 500 Zernike modes is very complex and close to ideal. Such an 

AO system, almost shrinks the PSF to a delta function, i.e. diffraction limited PSF.  

Table 7.8 lists SNRI, number of iterations, and MSE percentage of NAS-RIF algorithm, 

when AO systems of different complexities are used. The overall trend is that the number of 

iterations and MSE percentage decrease with the number of removed Zernike modes. At the 

same time, SNRI increases. However, there are some irregularities in this table. In other 

words, system performance is not as expected after removing 10 and 15 Zernike modes. This 
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might be due to incomplete implementation of the AO system, as interpolation is used to 

transfer from polar coordinates to Cartesian and vice versa. Moreover, since photo-detection 

process inherently samples the received intensity field, some inaccuracy is introduced into the 

system. Another reason is the fact that Zernike modes, other than tilt, have small contributions 

to the total phase distortion. As a result, removing lower order Zernike polynomials does not 

have a considerable impact on overall performance improvement. In other words, if a larger 

number of Zernike modes are removed from the received phase front at each stage, effect of 

AO corrections is more considerable and can not be suppressed by numerical inaccuracies.   

 

 
Fig. 7.39  PSF for a system (a) without AO, (b) with AO correction for 2Z  and 3Z , 

(c) with AO corrections upto 6Z , (d) with AO corrections up to 10Z , (e)  with AO 

corrections upto 15Z , (f) and with AO corrections upto 500Z . 

 

Table 7.8  BD performance improvement using  AO. 

 No AO 

AO 

correction 

up to 3Z . 

AO 

correction 

up to 6Z . 

AO 

correction 

up to 10Z . 

AO 

correction 

up to 15Z . 

AO 

correction 

up to 300Z ! 

MSE% 

before BD 
33.5% 25.3% 21.2% 19.2% 19.7% 1.7% 

SNRI 2 dB 9 dB 9 dB 19.9 dB 13.7 dB 45 dB 

Iteration # 165 237 174 2000 1167 576 

MSE% 

After BD 
21.2% 3.1% 2.6% 0.2% 0.8% 5×10

-5
% 
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To investigate this fact, Fig. 7-40 (a), (b), (c), (d), (e), (f) show the photo-detected images 

for a system without AO, with AO correction for 2Z  and 3Z , with AO corrections up to 55Z , 

with AO corrections up to 78Z , with AO corrections up to 
120Z , and with AO corrections up to 

300Z !, respectively for the same received wave-front as those of Fig. 7.41 and Fig. 7.41. 

Moreover, Fig. 7.42 (a), (b), (c), (d), (e), (f) show the corresponding PSFs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 7.9 lists MSE percentage after AO corrections, but before BD, SNRI, number of 

iterations, and MSE percentage of NAS-RIF algorithm, when AO systems of different 

complexities are used. A monotonous trend is observed in this Table. In other words, due to 

removal of a large number of modes at each stage, performance improvements are not 

covered up by simulation inaccuracies. The only point observed in this table is the fact that 

SNRI of BD module after removal of 300 Zernike modes, is less than what can be obtained 

after removing 120 modes. As mentioned earlier, SNRI depends on the difference between 

MSE before and after post-processing. An AO system, capable of removing 300 Zernike 

modes, has already reduced the MSE percentage to 1.7 %, as a result, there is not much that 

can be done in the post processing stage, as image quality is very close to ideal. 

 

Fig. 7.40:  PSF for a system (a) without AO, (b) with AO correction for 2Z  and 3Z
, 

(c) with AO corrections upto 6Z
, (d)with AO corrections upto 10Z

, (e) with AO 

corrections upto 15Z
, (f) and with AO corrections upto 300Z !. 
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Fig. 7.41:  Photo-detected images for a system (a) without AO, (b) with AO correction 

for 2Z  and 3Z
, (c) with AO corrections upto 55Z , (d)with AO corrections upto 78Z , (e) 

with AO corrections upto 120Z , (f) and with AO corrections upto 300Z !. 
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7.7 Conclusion 
In Chapter 6, a spatially-multiplexed MIMO imaging system is introduced, which is 

inspired by MIMO multi-spot diffuse communications, first addressed by Yun and Kavehrad 

[7]. Though having great potential under clear weather conditions, this optical imaging system 

faces major limitation due to wave propagation through atmosphere, as effects of multi-

scattering and turbulence cause sever degradation in the received image quality. To 

understand the consequences of atmospheric propagation, various simulation tools are 

developed at Pennsylvania State University, CICTR lab. Using these tools, an accurate 

 

Fig. 7.42:  PSF for a system (a) without AO, (b) with AO correction for 2Z  and 3Z
, (c) 

with AO corrections upto 55Z , (d)with AO corrections upto 78Z , (e) with AO corrections 

upto 120Z , (f) and with AO corrections upto 300Z !. 

Table 7.9:  BD performance improvement with AO correction, using  order Zernikes. 

 No AO 

AO 

correction 

up to 3Z . 

AO 

correction 

up to 55Z . 

AO 

correction 

up to 78Z . 

AO 

correction 

up to 120Z . 

AO 

correction 

up to 300Z ! 

MSE% 

before BD 
33.5 % 25.3% 14% 10.8% 8.1% 1.7% 

SNRI 2 dB 9 dB 29.57 dB 44.8 dB 51 dB 45 dB 

Iteration # 165 237 2000 1247 1173 576 

MSE% 

After BD 
21.2% 3.14% 0.015% 3.5×10

-4 
6.5×10

-5 
5×10

-5 
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channel model is achieved; which can be used to investigate the performance of different 

image recovery tools. 

In this chapter, several image restoration modules are explored and image quality 

improvements obtained using these tools are investigated assuming a simulated channel. 

While time-gating is used to eliminate the steady background noise caused by back-scattering, 

a combination of Adaptive Optics corrections and Blind Deconvolution algorithms are used to 

enhance the image sharpness and resolution. All these tools are proved to be very effective 

based on quantitative measures of image quality, such as MSE percentage and SNRI. In 

conclusion, the proposed spatially-multiplexed MIMO imaging system, being well equipped 

with image restoration modules, can provide high quality images at a faster area search rate 

and higher resolution compared to RF counterparts.  
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Chapter 8 

Enabling Technologies 
 

8.1 Introduction 
Multi-Spot Diffuse Configuration (MSDC) for wireless optical communications, utilizing 

multi-beam transmitter and angle diversity detection, is one of the most promising ways of 

achieving very high capacities for use in high-bandwidth islands. Typically, the optical front-

end of the receiver consists of an optical concentrator to increase the received optical signal 

power, and an optical bandpass filter to reject the ambient light. Using the unique properties 

of holographic optical elements (HOE), a novel design is proposed for the receiver optical 

subsystem used in MSDC. With a holographic curved mirror as an optical front-end, the 

receiver would achieve several dBs of improvement in the electrical signal-to-noise ratio 

compared to a bare photo-detector. Features as multi-functionality of the HOE, its small size, 

light weight, and low-cost make it a promising candidate for portable equipment in broadband 

free space optical links. 

A parabolic holographic mirror has been recorded in silver halide at visible wavelength 

and its replay wavelength has been shifted to the near infrared. Employment of swelling 

technology resulted in permanent replay-wavelength shift without the need of hologram 

sealing. Despite the relatively low diffraction efficiency of holograms recorded in silver 

halide in principle, an improvement in the receiver signal-to-shot noise ratio of more than 20 

dB has been measured. The results of the conducted experiments proved undoubtedly the 

great potentials of curved holographic mirrors as a key element of the receiver optical front-

end in free space optical links. 

 

8.2 Transmit Optics 
For our application, we would like to have a transmitter that produces multiple beams with 

prescribed intensities covering the target image, which may have an asymmetric form.  

There are many ways to produce multiple beams. The most straightforward approach is to 

have several light sources aiming at different directions. The beams can have the desired 

intensities and an area of any shape can be covered. However, practically, we can not have a 

large number of beams. 

As we already mentioned, imaging photolithographic optical elements have been used at 

the transmitter to generate multiple beams from a single laser diode [7]. In holograms 

fabricated by conventional optical means, utilizing a multiple-exposure technique, an exact 

prescribed ratio among the intensity levels of beams can not be achieved [65]. This leads to a 

non-homogeneous distribution of optical power over a target image. Furthermore, this 

technique can not be used for very large spot arrays and for asymmetrical spot arrays. 

Alternatively, holograms generated by means of a computer can produce wave-fronts with 

any prescribed amplitude and phase distribution. Computer generated holograms (CGH) [54], 

see Fig. 8.1, have many useful properties. An ideal wave-front can be computed on the basis 

of diffraction theory and encoded into a tangible hologram.  A multilevel phase CGH can 

have diffraction efficiency close to 100%. Holographic optical elements have insignificant 

physical weight and are low-cost when mass produced, specially suited for on-board of 

aircrafts and spacecrafts. 
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For our application, the holographic optical element should be capable of producing 

multiple beams with prescribed intensities thus distributing the optical power as uniformly as 

possible in a given area. If the hologram consists of a great number of periodic replications of 

a single elementary cell (see Fig. 8.2) and is illuminated by a collimated laser beam, the far 

field diffraction pattern is a lattice of spots, the lattice spacing S  being determined by the 

size of the cell L [66][67] (see Fig. 8.1(b)): F/LS  , where λ is the wavelength of the 

illumination, and F is the distance between the hologram and the observation plane. Since the 

area that has to be covered by the spot array is very large, the size of the elementary hologram 

cell has to be extremely small. The amplitudes and phases of every spot are determined by the 

elementary cell pattern and are given by its Fourier transform modes. We are not interested in 

the relative phases of the generated spots. This provides more freedom in the design process 

and allows higher diffraction efficiency levels. To design the required photolithographic 

beam-splitter, the hologram elementary cell is broken up into a square array of pixels, each of 

 
(a) 

 
 

Fig. 8.1:   CGH for generation of intensity-weighted spot array. (a) Fabrication. (b) 

Optical arrangement for far-field pattern observation. 
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them imparting a specified phase delay to the incident wave-front. We employed the iterative 

encoding design method [66] in which the hologram cell is built up through gradual selections 

of changes, pixel-by-pixel, from a random initial cell pattern. The technique of simulated 

annealing [68] was used to minimize the cost function, defined from the difference between 

the desired spot pattern and the actual output pattern. 

 

In Fig. 8.2(a), a bi-level hologram pattern is shown. The hologram is designed to 

produce an array of 8x8 spots with 80% diffraction efficiency. The intensity variation 

between the spots is less than 3.5%. An example for an 8-level CGH producing 10x10 beams 

with 87% diffraction efficiency and beam intensity variation less than 1.5% is shown in Fig. 

8.2(b).  

The number N of the phase levels of the hologram determines the number n of the 

masks that have to be made: n2N  . The more phase levels, the more complexity in the 

fabrication of the hologram. The fabrication process of a bi-level hologram is shown in Fig. 

8.1(a). From the binary computer generated amplitude mask, a surface relief binary phase 

hologram is produced through etching in a substrate. In the case of a multilevel hologram, this 

process is repeated for each of the masks. Each etch step is produced with half the depth of 

the previous etch step. Thus, the combination of the three etchings with the three binary 

amplitude masks, shown in Fig. 8.2(b), generates 8 phase levels in the final hologram. Though 

the bi-level hologram is easier for fabrication, it has a lower diffraction efficiency compared 

to the multi-level holograms, restricts the shape of the spot array to a symmetrical one, and is 

not capable of producing spots with prescribed but unequal intensities. If the area that has to 

be illuminated is, for example, L-shaped, a multilevel hologram has to be used. 

 
Fig. 8.2:  (a) Bi-level CGH producing 8x8 beams with 80% diffraction efficiency, spot 

intensity variation < 3.5% . (b) Eight level CGH producing 10x10 beams with 87% 

diffraction efficiency, spot intensity variation < 1.55% . 
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The choice of the number of spots depends on the detection method. If wide field-of-

view (FoV) receivers are to be used, the uniform illumination of the image would be best. 

This can be achieved with the use of a photolithographic beam-splitter that produces as many 

collimated beams with equal intensity as possible, thus producing a uniformly illuminated 

area. Such illumination will distribute the optical power uniformly over the image and will 

prevent the first order reflections from the surrounding reflecting objects.  

If angle diversity detection is used, joint optimization of receiver FoV and the number 

of diffusing spots will be imperative. In principle, the more the diffusing spots are, the more 

optical power can be transmitted in compliance with the eye safety regulations. In addition, a 

more uniform distribution and a higher predictability of the channel parameters can be 

achieved. Since the beams emerging from the hologram are almost collimated, the eye safety 

limits for a point source should be observed for each one of the beams. Increasing the number 

of the diffusing spots up to 100 will allow increasing the intensity of each spot and of the total 

transmitted optical power. For larger numbers of spots, the total permissible power will 

remain the same, while the intensity of a single spot will decrease. 

Fig. 6.15 shows a sample photolithographic 4x4 beam splitter that we have produced. 

The functionality was tested and demonstrated to Dr. Larry Stotts, DARPA‟s Deputy Director 

of Strategic Technology Office. The sample produced on a plastic is almost weightless. 

For our application, the holographic optical element should be capable of producing 

multiple beams with prescribed intensities thus distributing the optical power as uniformly as 

possible in a given area.  

Regardless of what type of detection is used, joint optimization of receiver FoV and 

the number of diffusing spots will be imperative. In principle, the more the diffusing spots 

are, the more optical power can be transmitted in compliance with the eye safety regulations. 

In addition, a more uniform distribution and a higher predictability of the channel parameters 

can be achieved. The beams emerging from the hologram are almost collimated. Increasing 

the number of the diffusing spots will allow increasing the intensity of each spot and of the 

total transmitted optical power.   

For a LIDAR link employing a detector-array detection, we consider a composite 

receiver consisting of “N
2
” branches oriented at different directions, each of them having its 

own photo-detector with a photosensitive area of X cm
2
. All the branches are assumed to have 

the same field-of-view (FOV). The central branch is aimed directly towards the target image. 

The angle between the orientation directions of the central branch and each of the other 

branches is twice the field-of-view of a single branch. 

As we mentioned earlier, a joint optimization of the branch field-of-view and the 

number of the diffusing spots on the image is necessary which has been already discussed in 

Section 6.3. Measured relative intensities of the hologram beam-splitter are shown in Figure 

11. The measured diffraction efficiency of the sample relative to the incident light exceeded 

60%. 
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 Beams emerging from the hologram are almost collimated. Increasing the number of 

the diffusing spots will allow increasing the intensity of each spot and of the total transmitted 

optical power. For a LIDAR link employing detector-array detection, we consider a 

composite receiver consisting of “N
2
” branches oriented at different directions, each of them 

having its own photo-detector with a photosensitive area of X cm
2
. All the branches are 

assumed to have the same field-of-view (FOV). The central branch is aimed directly towards 

the target image. The angle between the orientation directions of the central branch and each 

of the other branches is twice the field-of-view of a single branch. 

 

8.3 Receive Optics Design 
Typically, the optical front-end of the receiver consists of an optical concentrator to 

increase the received optical signal power, and an optical bandpass filter to reject the ambient 

light. In our approach, these two elements are replaced by a single holographic optical 

element of reflection type, called a holographic mirror. To simulate a holographic receiver 

optical front-end, a software package has been developed using ray tracing techniques. Three 

different types of holographic mirrors have been considered: spherical mirror on a spherical 

substrate, spherical mirror on a flat substrate, and parabolic mirror on a flat substrate. 

We have investigated the characteristics and performance of optical interference 

filters. Typically, interference filters with a narrowband spectral response have a low 

transmittance and reduce the signal by 3 dBo. These filters work well with collimated 

radiation which is not an option in our application. The narrowband interference filters are 

sensitive to incident angle of radiation and the peak wavelength shifts toward shorter 

wavelengths with increasing the incident angle. The filter can be designed with a shift toward 

longer wavelengths in order to accommodate the spectral shift by an incident angle. Given a 

diffuse radiation pattern, however, performance further deteriorates because of non-collimated 

radiation, i.e., the incident angle varies from normal incidence to the maximum angle 

determined by the field-of-view (FOV) of the receiver lens. When the spectral response of the 

filter is averaged over all incident angles, the full-width-half-maximum (FWHM) is 

broadened and the signal is further attenuated. The maximum transmittance is further reduced 

for non-polarized light; the case in imaging through cloud/fog configuration. Since the laser 

diode and the filter wavelengths are specified by the manufacturer within given tolerances, 

and there is also a wavelength drift due to temperature changes, a narrow-band interference 

filter does not seem to be practical. In our measurements, we used an interference filter with a 

 
Fig. 8.3:   Relative beam intensities of the multi-spot diffuser. 
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FWHM equal to    = 70 nm with an internal transmittance T = 0.60 that can accommodate 

the shift to shorter wavelengths and has insignificant changes in its performance over a wide 

range of incident angles. We also used a colored glass filter that is independent of the incident 

angle and of the polarization with a   = 300 nm and a high internal transmittance of T= 

0.95. 

Practically, the FOV of the receiver lens is determined by those marginal rays incident 

at an angle θmax that pass through the lens and hit the edge of the detector, where θmax 

depends on the refractive index of the lens material and on the ratio of the “lens and the 

detector radii”. The FOV is restricted by: (i) total internal reflection that occurs on boundaries 

from a medium of a higher refractive index to a medium with a lower index and (ii) by a small 

ratio of the lens and detector radii. We need to avoid a large detector area to avoid 

background noise and excessively-delayed photons. As a design example, assume the 

detectors used in the link have a radius rdet = 2 mm or 5 mm. At the same time, as predicted by 

our theoretical evaluations and confirmed by the measurements, the performance of optical 

filter deteriorates when a large cone of rays pass through it. Therefore, a lens with a smaller 

FOV works better in combination with an interference filter. With a plano-convex lens of a 

focal length f = 24 mm and a diameter d = 24 mm and  
lens

det

r

r
 = 2.4 with the colored glass filter 

and a FOV≈50 degrees, we measured an improvement in the path loss of about 8 dBo over a 

distance of 2 m, compared to the case of a stand-alone detector. When used indoors, the 

fluorescent light has very little effect on the SNR and the desk-top light deteriorates it by no 

more than 2 dBo. We also used an aspheric lens of a focal length f = 79mm and d = 80mm. 

This lens, although bulky, has a FOV ≈ 35 degrees and works well with the interference filter. 

We measured an overall improvement in the detected power of 3 dBo. With this combination, 

the fluorescent and the desk-top lights have no effect even as close as 30 cm away from and 

10 cm above the detector. The aspheric lenses are suitable for short focal lengths and reduced 

spherical aberrations and allow more energy to be concentrated on the small detector area. 

These are advantageous for high power-throughput applications.  We used index-matching 

liquid between the optical components in the receiver to reduce Fresnel reflection losses due 

to refractive-index mismatch. According to our theoretical evaluations, up to 2.9 dBo of the 

optical power reaching the detector can be lost because of Fresnel reflection. Therefore, anti-

reflection coatings on all components including the detector become a necessity for an 

optimized system. 

As stated earlier, the light reaching the entrance aperture of the optical front-end is 

filtered in order to reduce the optical noise and is concentrated in order to increase the 

irradiance onto the photodiode. Using the unique properties of holographic optical elements 

(HOE), a novel design is proposed for the receiver optical subsystem used in the proposed 

imaging system. With a holographic curved mirror as an optical front-end, the receiver would 

achieve several dBs of improvement in the electrical signal-to-noise ratio compared to a bare 

photo-detector.  The main advantages of HOEs over conventional systems that consist of a 

lens concentrator and an optical filter are multi-functionality, independence of their physical 

configuration, insignificant weight, low cost, etc. 

Hence, these two elements, i.e., the filter and concentrator are replaced by a single 

holographic optical element of reflection type, called a holographic mirror. 
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8.3.1 Holographic Mirrors 
 

The holographic optical elements have several unique properties. They are spectrally 

selective. Their optical configuration is independent of their substrate configuration. For 

example, a flat reflection holographic optical element can be made to function as a plane, 

spherical, hiperboloidal, paraboloidal or ellipsoidal mirror. A single hologram can perform 

multiple functions. The diffraction efficiency of a volume phase hologram can be close to 

100%. The physical weight of a holographic optical element is insignificant compared to 

conventional optics. These are low-cost in mass production. 

The higher spectral selectivity and the lower angular selectivity of reflection 

holograms compared to transmission holograms make these more suitable for implementing 

the functions needed for receiver optical front-end.  

Volume reflection holograms are called holographic mirrors, though they do not 

reflect light as conventional mirrors. They diffract light obeying Bragg law, which establishes 

a relation between the spacing of the planes of diffraction Λ, the wavelength of light λ and the 

half-angle θ between the incident and the diffracted beams: 

 

where n is the refractive index of the material. 

If 1  and 2  are values of the angles of incidence and diffraction which satisfy Bragg 

condition for a wavelength λ, the diffraction efficiency of a lossless reflection hologram is 

[69]: 

where   

SRcc

dk 
 ,  




Δn π
k ,   1R cosc  ,   2S cosc  .  

n  is the amplitude of the refractive index grating,  d is the thickness of the 

hologram, 
Sc 2

Ω d
  is the off-Bragg parameter that accounts for the deviations from the 

Bragg condition,  






n  2
 is the magnitude of the wave vectors satisfying the Bragg condition and   

is the deviation from that value due to a change in the reconstruction beam wavelength, and 

  is the deviation from the Bragg angle   at the reconstruction.  

It can be seen from (8.3) that changes in the angle of incidence and wavelength from 

the recording conditions may be mutually compensatory and at the reconstruction, Bragg 

condition may be satisfied for angles and wavelengths that differ from those at the recording. 

This is illustrated in Fig.-4, where the diffraction efficiency dependence on the angle and 

wavelength is shown for a reflection hologram recorded at 850nm by two counter-propagating 

   sin n  2  (8.1) 
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plane waves at normal incidence, i.e., 01   and 2 . The influence of the amplitude n  

of the refractive index grating and the hologram thickness d on the peak diffraction efficiency, 

angular and spectral selectivity of the hologram is illustrated on Fig. 8.4, Fig. 8.5 and Fig. 8.6.  

 

 
(a) 

 
(b) 

Fig. 8.4. (a) Reflection hologram recorded by two plane waves. (b) Angular-spectral selectivity 

for 01  , 2 , nm850λ  , 5.1n  , .010n  , μm60d  . 

 

 
(a) 

 
(b) 

Fig. 8.5. (a) Angular and (b) spectral selectivity of a reflection hologram ( 01 θ , 2 , 

nm850λ  , 5.1n  , μm60d  ) for different amplitudes of the refractive index grating. 
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(a) 

 
(b) 

Fig. 8.6. (a) Angular and (b) spectral selectivity of a reflection hologram ( 01  , 2 , 

nm850λ  , 5.1n  , .010n  ) for different thickness of the recording medium. 

 

If at recording, one or both plane waves are replaced by a spherical wave, the recorded 

reflection hologram will exhibit concentrating features like conventional curved mirrors 

regardless of the geometry of the substrate. In this section, we consider a spherical 

holographic mirror recorded by two spherical waves with nm850λ  on a spherical substrate 

in Fig. 8.7. The recording medium is assumed to be 100 μm thick and to have a refractive 

index of 1.5 (for example, dichromated gelatin). The amplitude of the refractive index grating 

is assumed to be .0250n  . 

 
(a) 

 
(b) 

Fig. 8.7. (a) Recording of a spherical holographic mirror on a spherical substrate. (b) A 

holographic spherical mirror as a receiver optical front-end. 

 

8.3.2 Holographic Spherical Mirror as a Receiver Optical Front-End 
 

Angle diversity detection is based on signal reception by several narrow field-of-view 

receiver components. Each component could be a separate branch consisting of photo-

detector with its own optics [72], or a pixel from an array of photo-detectors sharing common 

optics [7][73][74]. Holographic optical elements can be employed with both approaches. In 
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this report, we investigate a holographic curved mirror to be used on the branches of a 

composite receiver. Our previous investigation [52] showed promising results for the system 

performance when the receiver consists of 7 branches, each of them with a  5.11FOV . 

Since in [52] bare photo-detectors were considered, we expect further improvements in the 

system performance when an optical concentrator and a narrow-band filter are used. 

Let us consider a holographic spherical mirror (HSM) combined with a photo-detector 

(Fig. 8.7 b) in a single system. The HSM will perform concentrating function as a 

conventional spherical mirror. Furthermore, due to its nature, it will diffract light from a very 

narrow spectral range toward the detector, thus performing filtering function, as well. The 

characteristics of the system, such as field-of-view (FOV), concentration ratio, spectral 

bandwidth, etc., can not be derived directly from the hologram characteristics. The 

performance of the system depends also on the geometric configuration, i.e., size and 

curvature of the HSM, size and position of the photo-detector.  

 

8.3.3 Field-of-view and spectral bandwidth 
Since the considered receiver optics design is intended to be used with a multi-spot 

diffusing configuration, we assume the optical signal is directional, not isotropic. In fact, if 

the diffusing spot covers an area of 2cm25  on the image, it will subtend an angle of about 1  

at a distance of 3m. So, we assume that the signal power reception depends only on the angle 

of incidence and not on the receiver FOV. Also, we assume ambient light is isotropic within 

the receiver FOV, i.e., its reception depends on the FOV and not on the angle of incidence. 

With these assumptions, the detected signal radiant flux is: 

 

where ][W/cm E 2
s  is the signal irradiance and   ][cm ,A 2

effs,   is the signal 

effective area of the receiver. The diffraction efficiency of the HSM is given by (8.2) and 

depends not only on the angle of incidence   and the wavelength λ, but also on the particular 

point ),( r  of the hologram, since the deviation from the Bragg angle would be different at 

different points of the hologram. 

The received ambient light radiant flux is: 

 

where /sr/nm][W/cm L 2
bg  is the spectral background radiance and 

]sr[cm )((AS) 2
effbg,   is the effective area-solid angle product of the receiver which accounts 
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for the receiver effective area for the ambient light and the effective solid angle within which 

the ambient light is received. 

It is clear that the receiver would have different angular response at different 

wavelengths due to the specific nature of the HSM (see Fig. Fig. 8.4(b)). We define the field-

of-view of the receiver to be the angle at which the signal effective area, i.e., the effective area 

at the signal wavelength, becomes a half of its maximum value. Using ray tracing, we 

calculated the signal effective area at different angles of incidence for different geometric 

configurations of the receiver. The results are plotted in Fig. 8.8. It can be seen that the 

maximum value and the angular dependence of the signal effective area is strongly influenced 

by each of the geometrical factors, i.e., the aperture radius r of the HSM, the radius R of its 

curvature, the radius ρ of the photo-detector and the distance h between the HSM and the 

detector. 

Similarly, the receiver would have different spectral response at different angles of 

incidence (Fig. 8.4(b)). Thus, in the case of non-isotropic ambient light, the receiver band 

strongly depends on the directionality of the ambient light sources. We define the spectral 

bandwidth of the receiver to be the full width at half maximum of the spectral dependence of 

its effective area-solid angle product  )((AS) effbg,  (see Eq.-5). This value determines the 

ambient light reception in the case of isotropic background. In Fig. 8.9, the spectral 

dependence of  )((AS) effbg,   is shown for the same geometrical configurations of the 

receiver as in Fig. 8.8. 

In Fig. 8.10(a), the effective area of the receiver is plotted against the angle of 

incidence for different signal wavelengths for a fixed geometrical configuration. This system 

achieves a field-of-view of about 5.11 . The bandwidth of the same system for an isotropic 

ambient light is about 24nm, see Fig. 8.10(b). 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 8.8. Angular dependence of the receiver effective area at the wavelength for which 

effbg,(AS)  takes maximum value. (a) R=5cm, ρ=5mm, h=R/2; (b) r=1.5, ρ=5mm, h=R/2; 

(c) R=5cm, r=1.5, h=R/2;  (d) R=5cm, r=R/2, ρ=5mm. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 8.9. Spectral dependence of the receiver effective area-solid angle product for different 

geometrical configurations. An isotropic distribution of the optical power is assumed. (a) 

R=5cm, ρ=5mm, h=R/2; (b) r=1.5, ρ=5mm, h=R/2; (c) R=5cm, r=1.5, h=R/2;  (d) R=5cm, 

r=R/2, ρ=5mm. 
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(a) 

 
(b) 

Fig. 8.10. (a) Signal effective area for different signal wavelengths and (b) spectral 

response of a holographic spherical mirror for an isotropic ambient light (r=1.5cm, 

R=4.8cm, ρ=5mm, h=2.4cm). 

 

8.3.4 Signal gain and figure-of-merit 
Let us consider an ideal optical concentrator (IC) combined with an interference filter 

(IF). An ideal concentrator would collect at its exit aperture all the rays that strike its entrance 

aperture within its field-of-view. Provided that the interference filter bandwidth Δλ is wide 

enough to ensure maximum signal transmission all over the concentrator field-of-view, in the 

case of a directional optical signal, the received signal radiant flux would be: 

 

where T is the peak transmittance of the interference filter and inA  is the area of the 

entrance aperture.  For isotropic ambient light, the received background radiant flux would be: 

The optical signal-to-noise ratio (SNR) of the concentrator-filter system depends only 

on the field-of-view and the spectral bandwidth of the system: 

while the electrical SNR depends on the size of the entrance aperture and the filter 

transmittance, as well: 
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Thus, a concentrator-filter system may exhibit a worse optical SNR but a better 

electrical SNR compared to other similar systems. For this application, we are interested in 

electrical signal-to-noise ratio, so we will refer to it simply as signal-to-noise ratio and we 

define a figure-of-merit for the IC-IF system as 

In the case of a HSM, the signal-to-noise ratio and the figure-of-merit are: 

and 

To be able to judge the quality of the receiver optical front-end, let us compare the 

performance of a receiver equipped with optics to the performance of a bare photo-detector. 

We assume the photo-detector has the same field-of-view as the concentrator, its 

photosensitive area is equal to the concentrator exit aperture area outA , and its responsivity is 

constant over 200nm spectral interval centered around the signal wavelength and is zero out 

of this range.  

We define the signal gain to be the increase of the received signal radiant flux 

compared to the radiant flux received by the bare photo-detector. For a receiver front-end 

consisting of an ideal concentrator and an interference filter, the signal gain is: 

 

and for a HSM serving as receiver optics: 

Similarly, we define the figure-of-merit gain as the figure-of-merit improvement 

compared to bare photo-detector. In the case of IC-IF it is: 
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In the case of a HSM the figure-of-merit gain is: 

Fig. 8.11 shows the signal gain and the figure-of-merit gain of the same HSM-photo-

detector system compared to two combinations IC-IF.  

 

 
(a) 

 
(b) 

Fig. 8.11. (a) Signal gain and (b) figure-of-merit gain for a holographic spherical mirror and 

an ideal concentrator combined with different interference filters. 

 

The ideal concentrator is assumed to have the same FOV and entrance aperture as the 

HSM, and its exit aperture is matched to the same photo-detector as in the case of a HSM. 

The interference filter in the first IC-IF combination has a peak transmittance T=45% and a 

bandwidth Δλ = 10nm. A spectral bandwidth of 10nm would be enough to ensure that the 

optical signal is always received at the maximum transmittance of the filter for a 

 5.11FOV , and the typical peak transmittance of the commercially available interference 

filters is about 45%. The second IC-IF combination employs an interference filter with a 

higher transmittance (T=80%) but larger bandwidth (Δλ=30nm). It was chosen to show that 

the effect of the better signal reception (due to a higher transmittance) can be totally 

suppressed by the worse ambient light rejection (due to a larger bandwidth). This can be 

clearly seen in Fig. 8.8. Naturally, the optical system consisting of an ideal concentrator and 

an interference filter with a high peak transmittance achieves the highest signal gain. 

However, with respect to SNR, i.e., the figure-of-merit gain, the same system has the worst 

performance for almost over the entire field-of-view range of values. 
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At normal incidence, the HSM is performing better than both combinations IC-IF, 

achieving figure-of-merit gain of more than 19dB. The degradation of its performance near 

the edge of the field-of-view is in principle due to the non-ideal nature of the spherical mirror 

as an optical concentrator [71]. Nevertheless, HSM still provides more than 11dB 

improvement in the electrical signal-to-noise ratio compared to a bare photodiode.  

Apparently, the receiver can achieve a better performance if the optical front-end 

consists of an ideal concentrator and an appropriate interference filter than if a HSM is 

employed. However, when designing the receiver optical front-end, one should not just 

consider the system performance. For portable applications, issues as the system volume, 

weight and cost, as well, must be taken into account. There exists real optical concentrators 

exhibiting nearly ideal characteristics and the compound parabolic concentrator (CPC) is one 

of them. A research group at Berkeley investigated the possibility of employing such 

concentrators for the receiver [72][75]. Unfortunately, a CPC has its own drawbacks. First, 

the concentrator is very long. For example, for an entrance aperture radius of 1.5cm and a

 5.11FOV , the length of a hollow CPC is 8.85cm. Also, since the CPC is a conventional 

optical concentrator, it has to be equipped with an interference filter, increasing the total price 

of the receiver optics. On the contrary, the holographic optical elements have a small size and 

weight compared to the conventional optical elements. Also, these are low-cost when mass-

produced. 

As stated earlier, a parabolic holographic mirror is being recorded in silver halide at 

visible wavelength and its replay wavelength is being shifted to the near infrared. Swelling 

technology results in a permanent replay-wavelength shift without the need for hologram 

sealing. It is expected to achieve a significant improvement in the receiver signal-to-shot 

noise ratio in the order of tens of dBs. With respect to ambient light, even a weak diffused 

background light is much stronger than the optical signal. To improve the signal-to-noise 

ratio, an optical filter that would efficiently reject the optical noise is needed. Thus, 

functionally, receiver branch optical front-end consists of an optical concentrator, an optical 

band-pass filter and a photodiode (Fig. 7a). The light reaching the entrance aperture of the 

optical front-end is filtered in order to reduce the optical noise and is concentrated in order to 

increase the irradiance onto the photodiode. Physically, these two functions can be performed 

by a single holographic optical element (Fig. 8.12(b)). The main advantages of holographic 

optical elements (HOE‟s) over conventional systems that consist of a lens concentrator and an 

optical filter are multi-functionality, independence of their physical configuration, 

insignificant weight, low cost, etc. 

 

Fig. 8.12. (a) Refractive and (b) holographic receiver optical front-ends. 

 

photodiode

refracted

light

incident light

interference filter

lens

holographic curved mirror

photodiode

incident light

diffracted
light

photodiode

refracted

light

incident light

interference filter

lens

photodiode

refracted

light

incident light

interference filter

lens

holographic curved mirror

photodiode

incident light

diffracted
light

holographic curved mirror

photodiode

incident light

diffracted
light



 

151 

 

The higher spectral selectivity and the lower angular selectivity of reflection 

holograms compared to transmission holograms make these more suitable for implementing 

the functions needed for receiver optical front-end [69]. If at the recording, one or both 

recording waves are spherical, the recorded reflection hologram (holographic mirror) will 

exhibit concentrating features like conventional curved mirrors regardless of the geometry of 

the substrate. Furthermore, due to its inherent spectral selectivity, the holographic mirror will 

diffract light from a very narrow spectral range, thus performing filtering function, as well. In 

our application, holographic optical elements have additional advantage of having a light 

weight. 

In our previous works, we have theoretically investigated in details the performance of 

holographic spherical mirrors (HSM) as receiver optical front-end, and we have presented a 

theoretical comparative study of HSM and holographic parabolic mirrors (HPM). The results 

of this study suggest that HPM is a better choice for small field-of-view receiving elements 

[76]. 

 

8.3.5 Holographic Parabolic Mirror Fabrication 
 

There are no materials sensitive to the near infrared and suitable for volume reflection 

holography. Since the holographic optical element is to be used at near infrared wavelengths, 

the hologram has to be recorded at visible wavelength and then the medium properties have to 

be altered in order to shift the replay wavelength to the near infrared. 

Two holographic mirrors with a 30mm diameter were recorded. The first one is an on-axis 

parabolic mirror with a focal length of 22 mm and the second one is an off-axis parabolic 

mirror with the focal point positioned 65 mm from the hologram center on an axis tilted at 

about 60 degrees with respect to the hologram surface. The second holographic optical 

element has the advantage that its focal point is outside its entrance aperture and a photodiode 

positioned there would not shadow the hologram. Fig. 8.13 (a) and (b) depict the experimental 

arrangement used for holographic mirrors recording. 

The two holograms were recorded in silver halide film HP-650, production of CLOSPI 

[77], with a He-Ne laser at 632.8 nm. The holograms are of a mixed amplitude/phase type, 

thus having relatively low diffraction efficiency. After recording, the holographic emulsion 

has to be swelled in order to shift the replay wavelength to the near infrared. The researchers 

at CLOSPI have developed such technology in the 80-ties [78][79]. Recently, however, this 

technology has been further developed so that the swelled holograms are practically 

insensitive to humidity and there is no need for hologram sealing. Only a weak shrinkage of 

the swelled hologram follows in the first few weeks after the swelling. No further change of 

the holographic emulsion properties occurs afterward. The off-axis HPM combined with a 

photodiode with a 6 mm diameter provided a receiver acceptance angle of 4 degrees, as 

shown in Fig. 8.14, which is adequate in this application. In our upcoming report, we will 

present the measured characteristics of the on-axis HPM as well as experimental results on its 

performance as a receiver optical front-end. Fig. 8.15 shows a photograph of the on-axis 

holographic mirror. 
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(a) 

 
(b) 

Fig. 8.13. Optical set-up for recording of (a) an on-axis parabolic holographic mirror, and (b) an 

off-axis parabolic holographic mirror. 

 

 
Fig. 8.14. Angular dependence of the optical power concentrated onto a photodiode positioned at 

the focal plane of an off-axis parabolic holographic mirror. 
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Fig. 8.15. Photograph of the recorded on-axis holographic parabolic mirror. 

 

8.3.6 Holographic Mirror and receiver Optical Subsystem Characteristics 
 

The holographic mirror characteristics (replay wavelength, spectral bandwidth, and 

diffraction efficiency) changed somewhat due to weak shrinkage after the initial swelling and 

stayed stable after that at their new values. No further change of these parameters has been 

observed until now (more than a month after the recording). The replay wavelength of the 

hologram shifted from 810 nm to 780 nm. Measurements using a laser diode with emission at 

808 nm showed diffraction efficiency of only 2%, while a diffraction efficiency of 37% was 

measured using a laser diode with emission at 780 nm. The shift of the replay wavelength was 

confirmed by a measurement of the transmission spectrum of the hologram (Fig. 8.16). The 

spectral bandwidth of the mirror is 32 nm.  

 

 
Fig. 8.16. Transmission spectrum of the on-axis HPM measured one year after recording. 
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optical element. A hologram with very high diffraction efficiency can still be a bad 
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(responsivity, spectral bandwidth, etc.) as well as the size and the mutual position of the 

hologram and the photodiode have their impact on the receiver optical front-end 

characteristics, too. In our measurements a Si PIN photodiode was used with a sensitive area 

diameter of 6 mm and spectral responsivity bandwidth of about 500 nm (530 nm to 1030 nm). 

The photodiode was positioned in the focal plane of the holographic parabolic mirror and the 

angular response of the system mirror/photodiode was measured. The result is presented in 

Fig. 8.17. 
 

 
Fig. 8.17. Angular dependence of the optical power concentrated onto a photodiode 

positioned at the focal plane of an on-axis parabolic holographic mirror. 
 

The angular characteristic of the holographic mirror is not symmetric with respect to 

the normal incidence. This may be caused by non-uniform swelling of the holographic 

emulsion. The full angle of acceptance at half height is 13 deg (FOV = 6.5 deg). Such a field-

of-view can be classified as case 2, according to [80], in which at most one diffusing spot lies 

within a receiver branch field-of-view and practically unlimited channel frequency bandwidth 

is insured. 

 

8.3.7 Receiver Holographic Optical Front-End Performance 
 

The performance of the holographic mirror as a receiver optical front-end was 

evaluated. The receiver was placed about 88 cm away from a diffusely reflecting white 

screen, as shown in Fig. 8.18. An identical bare photodiode with unrestricted field-of-view 

was used as a reference receiver. A single diffusing spot on the screen within the field-of-

view of the receiver was produced by a laser diode emitting 1.25 mW at 780 nm. A strong 

diffuse ambient light was simulated using the emission of a halogen lamp (Philips, 50 W).  
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Fig. 8.18. A set-up to measure performance of the holographic mirror as a receiver 

optical front-end. 

 

The measured signal gain, GS, in comparison to a bare photodiode, was 6.5 dB at 

normal incidence. The measurement was performed with the laser diode on and the halogen 

lamp off. Significantly higher values can be obtained with a pure phase hologram (a bleached 

hologram or a hologram recorded in dichromated gelatin) having higher diffraction efficiency.  

With the laser off and the lamp on, a very strong reduction in the ambient light 

reception was measured. The photodiode has maximum responsivity of 0.68 A/W at 940 nm 

and spectral bandwidth (responsivity at half height) of about 500 nm (530 nm to 1030 nm). 

The experimental background light gain, Gbg, (received ambient light compared to the amount 

of ambient light received by the reference bare photodiode) was –7.6 dB. 

The signal gain, GS, and the ambient light gain, Gbg, determine the improvement in the 

electrical signal-to-shot noise ratio (SNR) [3 - 4]; 
bg

2
s

SNR
G

G
G  . Mainly, due to the very low 

value of Gbg, a tremendous improvement of 20.7 dB in the SNR was measured.  

 

8.4 Conclusions 
In conclusion, we can obtain transmit optics for the proposed active laser imaging 

system by employing efficient, low-cost photolithographic techniques to design holographic 

optical elements for beam-splitting. These can ensure the necessary transmit power and 

interference decoupling for the arrayed beamlet laser transmission that has been discussed in 

previous chapters.  

On the receive side, an optical concentrator and ambient light rejection filter is 

implemented in the reflector-type holographic element. The presented study clearly shows 

that holographic mirrors are indeed very promising candidates as a receiver optical subsystem 

for infrared wireless communications. Particularly, an improvement in the diffraction 

efficiency of the hologram (e.g., employing a phase hologram) would increase the signal gain 

and the background light gain at the same time. However, the SNR is proportional to the 

square of the signal gain, and inversely proportional to only the first order of the background 

light gain. Thus, higher diffraction efficiency would improve the power efficiency of the 

receiver, as well as the signal-to-noise ratio.  
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Chapter 9 

Conclusions 
 

In this report, the problem of active optical imaging through cloudy turbulent atmosphere 

is investigated in depth and several mitigation techniques are explored. To this end, a 

comprehensive channel model is developed that takes the effect of both scattering and 

turbulence into account. A semi-analytical approach (Monte Carlo Ray Tracing) and a 

simplified Markov chain extracted from Monte Carlo are developed to model imaging 

through cloud, in conjunction with investigation of scintillation caused by atmospheric 

turbulence. Simulations were performed for active laser imaging with SISO sensing, with 

comparatively low optical thickness values. These initial investigations show that there is a 

possibility to perform active imaging in scattering and turbulent media, if shutter duration and 

field-of-view can be optimized. Furthermore, different geometric configurations (SISO mono-

static and bi-static, and MIMO) have been tested. To realize optical imaging, a novel 

spatially-multiplexed MIMO optical imaging system, inspired by multi-spot diffuse indoor 

wireless optical communications is proposed to increase the area search rate, beam space loss, 

and hardware expenses. Using the framework developed in Chapters 2 to 5, performance of 

such a system under turbulent cloudy atmosphere is studied in Chapter 6 and a combination of 

several restoration modules used to reconstruct the distorted image is proposed in Chapter 7.  

The preferred geometry is the MIMO configuration which uses a holographic beam 

splitter to illuminate the target in a pixel-wise manner. In this way, a uniform illumination of 

target is achieved. Furthermore, beam spreading is reduced by a factor of N/1 , where N  is 

the number of beamlets in each direction (i.e. we have an NN   array of beamlets). 

Moreover, due to smaller waists of these beamlets, the turbulence effects are significantly 

reduced. However, in design procedure of the photolithographic beam splitter, one should 

consider the following criteria: (a) Power efficiency of converting the Gaussian beam into 

array of beamlets, (b) Uniform distribution of intensity between the beamlets, (c) 

Minimization of interference (cross talk) between beamlets in far-field region. By using this 

multiplex MIMO configuration, the imaging problem is reduced to a point-to-point 

communications, i.e. a “to be, or not to be”, scenario. In other words, performance metric is 

simplified to SNR per pixel. The viable resolution of this imaging system depends on the 

beam-splitter and focal plane array sizes and the atmospheric conditions. Atmospheric 

turbulence can cause interference between beamlets in far-field, and hence, gives rise to Inter-

Pixel-Interference (IPI), which in turn reduces the resolution. As a result, the 

photolithographic beam-splitter must be designed properly.  

To address the problem of backscatter, time-gating was investigated for the cloud 

dispersion model based on Monte-Carlo Ray Tracing. This method, though very simple, is 

shown to enhance the SNIR of the distorted image, thus improving the contrast of the image. 

A photo-detector system with fast shutters can be employed to implement the time-gating 

approach. We see improvements of 25 to 50dB over a non-time-gated method for different 

optical thickness values. An optimum value of the open shutter point and duration should be 

chosen so that most of the image information-bearing photons return at the same time as the 

least number of back-scattered photons. Good contrast may be achieved with the help of a 

post-processing method that applies an offline or near real-time time-gating on the laser 

reflected from the target. 
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Of particular interest will be to adaptively, in real time, steer the multiple transmitted 

beams (group beam forming) to achieve a better resolution of the image at the receive end. 

Since the transmitter and receiver are co-located, this very promising idea can be 

implemented. 

Different methods of generating phase screens to emulate the effects of turbulence and 

scintillation are developed. Using this frame work, performance degradations in optical 

communications and imaging are clearly demonstrated and candidate solutions are proposed 

and evaluated both qualitatively and quantitatively. It was shown that RMDA family was 

more time-efficient, when it comes to generating a large ensemble of phase screens for 

atmospheric simulations. It is possible to extend these phase generation techniques to account 

for temporal variations in the atmospheric turbulence, based on “frozen” atmosphere 

assumption. 

A combination of Adaptive Optics corrections and Blind Deconvolution is utilized to 

enhance the sharpness and resolution of the images. Three techniques of blind de-convolution 

were successfully implemented, under simulated conditions. Although this technique contains 

assumptions that may not be fulfilled by air-to-ground imaging systems, this lays the 

groundwork to obtain deconvolution of a true image from turbulence-induced PSF. In real-

time, however, the algorithms are very much computationally demanding. The strength of 

additive noise also affects the convergence of the algorithm, and strong noise may hinder 

proper functioning. The supports of the true image and the blurring PSF are also required to 

be known, which are usually known or can be assumed. Acceleration of BD algorithm 

convergence after AO corrections is analyzed. With the help of these modules and provided 

that sufficient power resources are available, optical imaging through a turbulent, scattering 

medium is feasible.  

The different fabrication technologies to obtain required transmit and receive optics are 

explored in Chapter 7. We reported on the fabrication of a 4x4 beam-splitter and its 

demonstration. A joint optimization of the branch field-of-view and the number of the 

diffusing spots on the image is necessary.  Increasing the value of field-of-view means, 

increasing the level of ambient light detected by the receiver. Our investigations show that a 

photolithographic spherical mirror is a promising candidate as an optical front-end for the 

narrow field-of-view branches of a composite receiver used in a multi-spot configuration for 

optical imaging. Compared to a bare photo-detector, a holographic spherical mirror achieves 

19.2dB improvement in the signal-to-noise ratio for normal incidence and 11.2dB 

improvement at the edge of the receiver branch field-of-view. Though other optical elements 

can exhibit a better performance, especially at oblique incidence, photolithographic spherical 

mirror has several important advantages: (a) multi-functionality (it combines concentrating 

and filtering functions), (b) insignificant physical weight, (c) small size, (d) low-cost when 

mass-produced. These factors play a significant role in optical imaging applications and can 

make the holographic curved mirror a preferable choice as a receiver optical subsystem. 

Despite the relatively low diffraction efficiency of holograms recorded in silver halide in 

principle, an improvement in the SNR of more than 20 dB has been measured. The use of 

photosensitive material within which a pure phase grating forms would significantly improve 

the signal gain of the receiver. Nevertheless, the results of the conducted experiments proved 

undoubtedly the great potential of curved photolithographic mirrors as a key element of the 

receiver optical front-end in laser imaging systems. 
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Appendix A 

Assessment of Diversity on MIMO FSO links 
 

This appendix summarizes the study that was undertaken to investigate the performance 

improvement on a MIMO lognormal FSO link, which is a simpler version of the imaging 

scenario discussed in the main body of the document. Although not directly related to imaging 

through turbulent atmosphere, the study sheds light on certain benefits that we can achieve on 

a MIMO free-space optic communication channel. 

 

A.1 MIMO System Model for FSO links 
In order to assess the performance of a multi-aperture setup for imaging, we first 

constructed a simplistic communications scenario. We assume one or multiple laser 

transmitters emitting towards multiple receivers. The transmitters may illuminate all of the 

receive apertures, or at least one of the receivers on its LOS path, and also illuminates the 

other neighboring receivers partially. The complete MIMO channel transfer matrix can be 

represented by 

where there are M transmitters, N receivers, and the channel response between the j-th 

transmitter and the i-th receiver is represented by  ijh . 

In a cloud-obscured optical channel, it can be expected that multiple scattering due to 

higher optical thickness increases the off-diagonal components, as a result of the spreading of 

the transmitted beams through cloud. However, the effect of clouds on the laser beam is 

deterministic at a macroscopic level, and the only randomness that will be manifested on the 

entries of  H  is due to turbulence-induced fading. The fading coefficients are dependent on 

the receive aperture spacing and geometric configuration, and their variance could be reduced 

by having a large aperture so that aperture averaging holds, while not contributing as much 

MIMO gain. 

In this section, we demonstrate through both analytical approximations and simulations, 

how a MIMO configuration could potentially improve the receive SNR of a diversity 

communications system. For now, we disregard the impulse responses due to cloud, and 

concentrate on finding possible performance improvements due to scintillation only, that may 

be relevant to imaging. The communications scenario is not directly related to imaging 

performance, but since the received total signal power would directly affect imaging 

performance (considering post-processing techniques), we can assess whether having a multi-

aperture configuration benefits us significantly. 

The limitation of these assessments is that we are not evaluating the distribution and 

variability of the received signal power on the detector surface points, such as evaluating SNR 

per pixel. This requires incorporation of point spread functions, mutual coherence functions, 

and optical transfer functions under scintillation, which will be discussed in later sections. 

We consider a FSO link with M transmit and N receive apertures. We assume high SNR 

regime, where we can use Gaussian noise model. Assuming intensity-modulation/direct-
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detection (IM/DD) and on-off keying (OOK) transmission [81], the received signal at the i-th 

receive aperture is given by 

where  tPs ,0  is the transmitted information bit, η is the optical-to-electrical conversion 

coefficient, Ar is the receive aperture area, and i  is additive white Gaussian noise with zero 

mean and variance 22

oN . The fading channel coefficient which models the channel 

from the j-th transmit aperture to i-th receive aperture can be given based on the Rytov 

approximation,  

 

where ijh ,0  is the signal light intensity without turbulence that shines from the j-th transmit 

aperture on the i-th receive aperture and ij  are identically distributed, but not necessarily 

independent, normal random variables with mean   and variance 
2

 . Therefore, ijh  

follows a lognormal distribution 

To ensure that the fading does not attenuate or amplify the average power, we normalize 

the fading coefficients such that   1,0 ijij hhE . Doing so requires the choice of 
2

   . 

Assuming weak turbulence conditions, the variances of log-amplitude fluctuation of plane and 

spherical waves are given by [39], 

where 2k  is the wavenumber, and L is the link distance in meters, 2

nC  is the refractive 

index structure coefficient and is altitude-dependent. The most commonly used 2

nC  profile 

model is the Hufnagle-Valley model [39], 

where h is the altitude in meters, v is the rms wind speed in meters per second, and A is a 

nominal value of  02

nC  at the ground in m
-2/3

. For FSO links near the ground, 2

nC  can be 

taken approximately 1.7×10
-14

 m
-2/3

 during daytime and 8.4×10
-15

 m
-2/3

 at night. In general, 
2

nC  varies from 10
-13

 m
-2/3

 for strong turbulence to 10
-17

 m
-2/3

 for weak turbulence with 10
-15

 

m
-2/3

 often defined as a typical average value. 
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Assuming 00 LLl   , where l0 and L0 are inner and outer scales, d0, the correlation 

length of intensity fluctuations can be approximated by Ld 0 . When the aperture size, 

00 dD  , the detrimental effect of turbulence-induced fading is reduced due to aperture 

averaging. However, it is not always possible to make the aperture large enough, justifying 

the deployment of multiple photodetectors at the receiver side for scenarios with 00 dD  . 

The spatial correlation matrix R to model the correlations among receive apertures is given by 

where dij is the separation between i-th and j-th receiver apertures.  db  represents the 

normalized log-amplitude covariance function between two points in a receiving plane 

perpendicular to the direction of propagation and is defined by 

where 
21PPd  is the distance between P1 and P2. Then the spatial covariance matrix Γ is given 

by RΓ
2

 . Similarly a correlation matrix of size M×M and corresponding covariance 

matrix can be defined for modeling the spatial correlations at the transmitter side. 

 

A.2 Analysis & Simulation of Diversity Reception systems 
In this section, we formulate SNR expressions for different diversity reception systems 

using multiple transmit and receive apertures. Closed-form approximations can be obtained 

for maximal ratio combining (MRC) and equal gain combining (EGC), using Schwarz and 

Yeh method of approximating sum of log-normal random variables. Simulations are also 

conducted and compared with analytical approximations. 

 

A.2.1 Single Branch 
With the assumptions given in Section 3, the received signal for a SISO system can be 

given by 

where  22 ,~   N  and 
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
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Therefore the SISO SNR is also a log-normal variable given by (A.10) where 

 22 16,4~ˆ
  N  and 0SNR  is the SNR when no turbulence-induced fading is present.  

 

A.2.2 MIMO with MRC 
Next we consider a MIMO system with M transmit apertures and N receive apertures. For 

a fair comparison with the SISO system, the total transmitted intensity is assumed divided 

equally among the M transmitters (but can be divided unequally, given the total power 

constraint is met) and the total receiver aperture area is also kept the same by making each of 

the N receive apertures have an area of NAr . As a result, considering background noise 

limited receivers, the background noise for each receiver is also reduced by a factor of N. 

Therefore, the signal received at the i-th receive aperture is given by 

 

where  NNN oi 2,0~ . 

After maximal ratio combining, the decision metric can be written as 

It must be noted that MRC requires proper channel tracking to know the fading 

coefficients. 

The resulting SNR after MRC is 

For the above formulation, the transmitted intensity is assumed equally divided among 

different transmitters, i.e. 
M

h
h ij

0

,0  . But the calculation can be redone with different channel 

gains on the different transmission paths. 

 

A.2.2.1 Approximation of Sum of Correlated Log-normal Variables 
We can use Schwarz and Yeh method to find the mean and variance of the lognormal 

variable that approximates the sum of squares of a sum of lognormal variables in the above 

equation. This is based on the following approximation technique for the summation of 
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(correlated) log-normal random variables. Specifically, we want to approximate  


K

k

ku
1

exp  

with a single log-normal random variable ze  where z is a Gaussian random variable with a 

mean of z  and a variance of 2

z . Defining   kllk vuu ,cov ,   kkuE   and using results 

derived by Schwarz and Yeh, we have 

 

Here α and β are defined as 

Note that, due to power normalization (i.e.         1exp2exp0  kk uEEIIE  ), we 

have   2

 kE  and 2kkk v . Further, under the assumption of weak turbulence (i.e., 

1kkv ), and small correlation values (i.e., 1klv ), z  and 2

z  can be simplified as 

where we assume that log-normal parameters are equal for all channels, i.e., 
2

11 4  vvkk . 

 

A.2.3 MIMO with EGC 
With similar MIMO setup as for MRC, the output of an equal gain combiner can be 

written as 

The SNR at the output of the combiner, then, is represented as 

 221log  z  ,  222 1log  z  (A.14) 
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A.3 Diversity Combining Results and Conclusions 
Based on the formulations in Sections A.1 and A.2, two different turbulence conditions 

with 1.0x  (weak) and 3.0x  (strong) were considered. The plots in Fig. A.1 and Fig. 

A.2 show simulated and analytical (approximated) probability density functions of the output 

SNRs of the different combining schemes for both uncorrelated fading and correlated fading 

with correlation coefficients of  9.0,3.0,1.0,0 . 

 

 

(a) 0  
 

(b) 1.0  

 

(c) 3.0   

(d) 4.0  

Fig. A.1 (a-d). PDF of post-detection SNR for a 2-Tx 2-Rx MIMO FSO system with

10 SNR , and log-normal fading variance, 01.02  , correlation coefficient, 

 9.0,3.0,1.0,0 . All in linear scale. 
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(a) 0  

 

(b) 1.0  

 

(c) 3.0  
 

(d) 4.0  

Fig. A.2 (a-d). PDF of post-detection SNR for a 2-Tx 2-Rx MIMO FSO system with

10 SNR , and log-normal fading variance, 


 2 0.09 , correlation coefficient, 

 9.0,3.0,1.0,0 . All in log scale. 

 

It is evident that in all cases MIMO shifts the SNR PDFs further to the right from the 

SISO case, and reduces the variability of the SNR. This means that, in a diversity-based 

multiple-aperture system, under the given turbulence conditions with given correlations, will 

perform better on the average than a SISO system. 

It is also observed that a large correlation coefficient performs at an intermediate point 

between fully uncorrelated MIMO diversity system and a SISO system. The covariance 

values of x = 0.1, 0.3 and correlation coefficients  = 0 through 0.9, are based on the work 

by [5][86]. 

One interesting observation is that MRC does not perform better than EGC. This is 

counter-intuitive to results from RF communication systems. However, here we have 

considered intensity-modulation and direct detection, due to which the current output of the 

photodetector is proportional to the power, and maximal ratio combining results in noise 

being enhanced, and thus SNR reduced, while EGC results in equal-gain addition and noise is 

not amplified. The results indicate this as a fact for IM/DD.  
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In the context of an imaging system, this diversity mechanism corresponds to the scenario 

when the multiple transmitters shine the laser beam on the same object with identical 

footprints, and the multiple receive apertures are all directed at the same cross-section of the 

object. This does not provide multiple viewing directions on the object, but would provide 

better signal to noise ratios per pixel, according to the results plotted in Fig. A.1 and Fig. A.2. 

The assumptions to arrive at these results, however, should be kept in mind, considering 

practicality issues. The two principal assumptions in arriving at these results are (1) 

Ld 0 , the correlation length can be approximated by the first Fresnel zone, which is 

~4cm for a 1.55-m laser for a propagation distance of 1km, and (2) 00 dD  , the aperture 

size is smaller than the correlation length. Furthermore, the Rytov approximation and adaptive 

optics, as necessary for spatial phase conjugation, is assumed. The link is assumed horizontal 

in contrast to a vertical link that is relevant for imaging. These assumptions, therefore, have to 

be investigated or modified for an imaging scenario. In reality, these assumptions may be too 

stringent, or may result in other complications related to imaging, such as, possible 

degradation of image resolution with increasing lens diameter, which warrants further 

investigations into the statistical profiles of point spread functions, which are discussed in 

later sections. 

 

A.4 MIMO Diversity Order Assessment for FSO links 
The benefit of using multi-aperture configuration in a log-normal fading environment can 

be twofold. Either we can achieve a diversity gain, as seen in Sections A.2 through A.3, 

whereby we improve the received SNR and obtain better probability of outage for a given 

data rate; or, we can achieve a multiplexing gain, through which we can increase the data 

transmission capacity of a communication link or the area search rate in an imaging system, 

while keeping the SNR and outage probabilities similar to a SISO link. 

We concentrate on the diversity scenario to quantify how a MIMO configuration can 

improve system performance parameters, such as SNR and outage probability. In terms of an 

optical imaging system, this quantification is not entirely appropriate; however, since the total 

image power and the availability are the parameters that will most directly limit the 

performance of an optical imaging system, this assessment would indicate whether a multiple 

transmit/receive aperture system would be beneficial for imaging systems. Diversity system 

essentially means that the same cross-section of a target object is illuminated by the array of 

imaging transmitters and the same cross-section is focused on by the receiving array. 

Spatial diversity is an effective tool to mitigate the degrading effects of fading and has 

been extensively studied by several authors [81][82][83][84] within the context of FSO 

communication. The turbulence-induced fading model commonly adopted in FSO 

communications is log-normal distribution. In this study, we adopt relative diversity order 

(RDO) [81], as a performance measure for benchmarking MIMO FSO channels against SISO 

channels. For a MIMO diversity system, there are several means of combining 

power/information received by multiple receivers, namely (i) Selection Combining, (ii) 

Maximal Ratio Combining, (iii) Equal Gain Combining, etc. The last two are of our main 

interest in this study, since MRC is the optimal scheme, and EGC is a sub-optimal scheme, 

which sometimes approaches MRC under certain conditions, as seen in Section A.2. Both of 

these schemes can be implemented for a FSO system, even though they may not be as simple 

as a SC diversity system. 
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The assumptions for the RDO assessment study are as follows [81][85]. A FSO IM-DD 

system employing binary pulse position modulation is considered, where the optical 

transmitter is “on” during half duration of the bit interval and is “off” during the other half. 

The receivers integrate both the signal and non-signal slots of the pulse and we obtain the 

resulting signal vector given by  

 

Here, r
s
 and r

n
 are the received electrical signals which correspond to the signal and non-

signal slots of the BPPM pulse. Ps and Pb are the optical signal power and the background 

power incident on the photo-detector, T is the bit duration,  is the responsivity of the photo-

detector(s), and n
s
 and n

n
 are the additive white Gaussian noise terms in “on” and “off” slots 

with zero-mean and variance 2 2n oN  . The receivers are also assumed background noise-

limited [5][86]. 

In the MIMO FSO system, the source transmits an intensity-modulated signal through M 

transmit apertures and the destination node receives the faded signal using direct detection 

through N receive apertures. The destination node combines the outputs of the receive 

apertures before decision-making. 

Incorporating distance-dependent path loss and turbulence-induced fading, the channel 

gain of a link of length d can be given as,  
2

g PL d , where  exp   is the log-normally 

distributed channel fading amplitude which is commonly used to model weak turbulence 

conditions. The fading log-amplitude  is normally distributed with mean , and variance 


2
. To ensure that fading does not attenuate or amplify the average power, the fading 

amplitude is normalized so that 
2

1E   
 

, which is possible by making 2

    . The term 

PL(d)=l(d)/l(ds,d) denotes the normalized path loss with respect to the distance of the direct 

link between the source and the destination, ds,d. For a long transmission link, a suitable 

assumption is that the distances between individual transmitters and receivers are 

approximately equal to ds,d; and thus the normalized path loss term can be assumed to be 1 

[82]. 

Let us denote an instantaneous electrical SNR  corresponding to an instantaneous channel 

realization   . The outage probability at the transmission rate R0 is given by 

    0 0ProutP R C R  , where C() is the instantaneous capacity corresponding to the 

instantaneous SNR . Since C() is a monotonically increasing function of , the outage 

probability can also be expressed in terms of SNR as [81],  

where  1

0th C R   is the threshold SNR. If SNR exceeds 
th , no outage happens and signal 

can be decoded with arbitrarily low error probability at the receiver. 

Based on the above model SNR and outage probability functions can be formulated as 

follows for different diversity schemes, including SISO. 

 

 

 
T T

s n s n

s b br r T P P n TP n           r  (A.19) 

   0 Prout thP R     (A.20) 
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A.4.1 SISO 
The optical signal power incident on the photodetector at the destination can be expressed 

as 
2

, ,s t s d t s dP Pg P   , where
,s dg  and 

,s d  are the gain and fading amplitude of the channel 

linking the source and destination nodes and 
tP  is the total average transmit power. Thus, the 

received electrical SNR at the destination node can be obtained as 

 

The outage probability given by (6) is then, 

 

where PM denotes the power margin and is defined as 
M t thP P P .

thP  denotes a threshold 

transmit power required to guarantee that no outage happens in a direct fading-free 

transmission from the source to the destination. Thus, the power margin can be expressed as 
2 2 2

M t o thP P T N  . The outage probability of (A.22) can also be expressed in terms of the 

log-normal Cumulative Distribution Function (CDF) as follows, 

 

where  

 
2

2

ln

2
2

log-norm

0

1
, ,

2

t

x
e

CDF x dt
t





 
 

 

  . 

For simulation purposes, a long series of lognormal random variables  are generated with 

mean 2

    and variance of 2

 , from which the random variables 
,s d  are determined, and 

then the outage probability is calculated by evaluating the probability given in (A.22) for 

different values of PM. 

 

A.4.2 MIMO MRC 
The optical signal power incident on the photodetector at i-th receive aperture of the 

destination node can be expressed as      
2

, ,1 1

M M

s i j i jj j
P i P N g P N 

 
     , where 

tP P M  

is the average transmitted optical power per transmit aperture. To make a fair comparison, we 

assume that the sum of the N receive aperture areas is the same as the area of the receive 

aperture for a SISO link. For maximal ratio combining the received electrical signals on 

individual receiving apertures are multiplied by their conjugates and added together before 

decoding. Since this is an IM-DD system, the received power does not have any phase, and 

the received electrical current, which is proportional to optical power, is simply squared, 

42 2 22 2 2
,s s ds

o o

T PT P

N N

 
    (A.21) 
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 (A.22) 

   2 2

, log-norm 1 , 2 ,4out SISO M MP P CDF P      (A.23) 
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before addition. Furthermore, the background noise at the receiving apertures is also reduced 

by a factor of N. Therefore, the received SNR for the MIMO-MRC scheme can be written as 

 

The outage probability defined by (A.22) for MIMO-MRC then becomes, 

 

where similar definitions as before hold. 

Nothing has been mentioned so far about the correlations between the fading log-normal 

variables. The correlation among the log-normal fading coefficients is described by the 

transmit-side and receive-side correlation matrices 
TxR and

RxR [82]. The i,j-th entry of these 

matrices, 
,Tx ij  or 

,Rx ij , indicate the normalized correlation coefficient between the i-th and j-th 

transmitters or receivers. For simplicity, it is assumed that the geometric configurations of the 

transmitter arrays are such that 
, ,Tx ij Tx i j    and 

, 1,Tx ii i   , and similar for the receiver 

arrays. The normalized full correlation matrix describing correlation statistics among all 

transmitters and receivers is obtained from the Kronecker product of 
TxR  and 

RxR , i.e., 

Tx RxR R R  . The normalization can be removed by multiplying R by 2

  . 

By employing approximation methods based on works by Schwartz and Yeh [82], the sum 

of log-normal variables 
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N M
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log-normal variable with mean and variance given by,  2

2 2

2 2 2log 1u      and 

 
2

2 2 2

2 2log 1u    , where  22
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 . 

Thus, the outage probability of (A.25) can also be expressed in terms of the log-normal 

Cumulative Distribution Function (CDF) as follows, 

 

For simulation purposes, a long series of lognormal random variables  are generated with 

mean 2

    and variance of 2

 , and they are filtered by R
1/2

, the matrix square root of the 

full correlation matrix (unnormalized). Afterwards, their mean is shifted to the one desired 

before the random variables 
,i j  are determined. Then, the above outage probability is 

calculated by evaluating the probability given in (A.25), for different values of PM. 

 

A.4.3 MIMO EGC 
Similar as for MIMO-MRC, the optical signal power incident on the photodetector at i-th 

receive aperture of the destination node can be expressed as 

 
2
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M M

s i j i jj j
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     , where 

tP P M  is the average transmitted optical power 

per transmit aperture. To make a fair comparison, we again assume that the sum of the N 

receive aperture areas is the same as the area of the receive aperture for a SISO link [5]. 

For equal gain combining, the received electrical signals on individual receiving apertures 

are phase-conjugated and added together before decoding. Since this is an IM-DD system, the 

received power does not have any phase, and the electrical current, which is proportional to 

optical power, is simply added. Therefore, the received SNR for the MIMO-EGC scheme can 

be written as 

The outage probability of (A.22) then can be given by, 

where similar definitions as before hold. 
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The correlation among the log-normal fading coefficients is similarly defined as for 

MIMO-MRC. 

Again, by employing approximation methods for sum of log-normal random variables, the 

inner sum 
2

,

1

M

i j

j




  of (A.28) can be represented as a single log-normal variable u1,i, i.e. 
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2
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   . Variable u1,i will be log-normal with mean and variance given by, 
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Thus, the outage probability of (A.28) can also be expressed in terms of the log-normal 

Cumulative Distribution Function (CDF) as follows, 

 

For simulation purposes, multiple log-normal variables are generated similarly as for 

MIMO-MRC case, and filtered to introduce correlation. Then the probability of outage is 

evaluated according to (A.28). 

 

A.5 Results for Diversity Order Assessment and Conclusions 
Diversity order is defined as the negative of the asymptotic slope of the error rate 

performance (e.g. bit error rate or outage probability) versus SNR. With this convention, the 

diversity order of a SISO transmission is given by 

 

where Pout is the outage probability, and PM is the power margin. 

Using expressions of outage probability obtained by [81], it can be shown that the 

conventional diversity order tends to infinity for log-normally faded FSO channels. It is due to 

this reason that relative diversity order measure is necessary. The single-branch diversity 

system is taken as the benchmark, and then the relative diversity order (RDO) is quantified as 

[81], 
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Furthermore, the asymptotic relative diversity order (ARDO) can be given by 

 

The RDO and ARDO quantities can be determined by numerically differentiating the 

probability of outage, Pout, as calculated in Section A.4, with respect to PM, the power margin. 

This section presents simulation and analytical approximation results for the RDO and 

ARDO of different MIMO systems. Overall, two conditions are considered, (i) weak 

scintillation represented by log-normal variance, 2 0.01  , and (ii) strong scintillation 

represented by log-normal variance, 2 0.09  . The correlation coefficients on transmit and 

receive sides are kept the same, and the values considered are,  0,0.1,0.3,0.9Tx Rx   . 
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Fig.  A.3  Relative Diversity Order versus Power Margin in dB for 

 2 0.01, 0,0.1,0.3,0.9Tx Rx      

 

Fig.  A.3 shows the relative diversity order values plotted for the above-mentioned 

correlation coefficient values for a log-normal variance of 
2 0.01  . The diversity order 

achieved by MIMO increases with increasing number of transmitters and receivers. The 
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Asymptotic Diversity Order can be approximated by the value of the flattening line towards 

infinity, and the ARDO is seen to vary significantly with correlation values, from a maximum 

of MN (for full correlation, 0Tx Rx   ) to a minimum of 1 (for full correlation, 1Tx Rx  

). The analytical approximations seem to fit quite well with the simulated values. Neither the 

simulated results, nor the analytical approximations show any difference between the 

diversity order obtained by employing MRC and EGC. The oscillations caused at the tail of 

the simulated values should be discarded, since about 10
8
 realizations were used for the 

simulations, and this value was not adequate to get enough points to have a smooth tail 

probability. 

 

 

0Tx Rx    

 

0.1Tx Rx    

 

0.3Tx Rx    

 

0.9Tx Rx    

Fig.  A.4 Relative Diversity Order versus Power Margin in dB for 

 2 0.09, 0,0.1,0.3,0.9Tx Rx      

 

Fig.  A.4 shows the RDO values plotted for the above-mentioned correlation coefficient 

values for a log-normal variance of 
2 0.09  . The most outstanding finding is that the 

analytical approximation fails to hold for this large variance value. Both the EGC and MRC 

analytical approximations break down and diverge from the simulated values. So, caution 

must be exercised when employing analytical approximations for log-normal variables. The 
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approximation would only hold well for small values of M and N, and moderate values of 
2

 . 

This was obviously overlooked in the work by Safari and Uysal for 0.3   [81]. 

However, the simulated results still show that the ARDO varies from a maximum of MN 

(for full correlation, 0Tx Rx   ) to a minimum of 1 (for full correlation, 1Tx Rx   ). 

Furthermore, there is no difference between the diversity order for MRC and EGC. 

The conclusions drawn from this study are threefold: (1) for turbulence conditions 

exceeding a certain threshold, analytical approximation is not a good tool for closed-form 

analyses, (2) spatial correlation must be reduced to as practically low values as possible, by 

employing geometric configurations, so as to achieve the maximum benefit from multiple 

aperture systems, both for communications and imaging, and (3) MRC and EGC perform 

similarly in IM-DD systems. But we must also keep in mind that for a MIMO system, it is not 

practical to increase the number of transmitters and receivers beyond certain values, and these 

limits must be established and analytical approximations for these numbers must be matched 

up against simulation results to validate whether closed form expressions are adequately 

realistic. 
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