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2. Introduction

The Architecture Analysis and Design Language (AADL) is an SAE standard
language for describing the software and hardware architecture of performance-
critical real-time systems. In addition, the AADL standard allows the definition of
annexes, i.e., formal extensions to the standard language to enhance the design
specifications of hardware or software components.

The goal of this project was to leverage the AADL language and tool
development efforts to create a new toolset incorporating simulation and analysis
technologies for embedded real-time systems developed within the Charon and
ACSR/VERSA projects at the University of Pennsylvania. Our integration of
AADL with Charon and VERSA extended the capabilities of AADL to allow
analysis and simulation at the architecture level, detailed analysis at the module
level, and support for implementation.

This toolset is marketed for use by DoD and private-sector embedded systems
developers as part of an architecture-driven development methodology for
safety-critical embedded systems.

3. Objectives

Our effort was focused on (1) creating an end-to-end systems development
methodology for embedded real-time systems, (2) developing commercial quality
tools to support this methodology based on the OSATE plug-in for Eclipse, and
the Charon and ACSR formalisms; and (3) preliminary marketing of professional
services based on the methodology and tools so developed.

The technical objectives for Phase 2 were as follows:

Develop tools to support a methodology that enumerates steps for the design,
development and implementation of distributed real-time systems. Emphasize
verification and validation activities that are unique to safety-critical embedded
systems. Manage abstraction/complexity so that models can be analyzed
effectively.

Front-End

e Develop quality assurance processes to insure the marketability of
OSATE tools as the core of our tools offering. Though the OSATE
development is outside our scope, their position as the front-end for our
analysis tools will impact the perceived quality of our effort. Therefore we
intend to implement a quality control process to verify conformance of
front-end tools to the AADL standard, and evaluate overall quality.

e Develop a unified look-and-feel for all tools that emphasizes their role in
support of the methodology. The Eclipse workbench presents a large




number of controls and sub-windows to the user. It is necessary to plan
from the outset to insure that our tools provide a useful, usable interface to
the user.

Analysis

Develop a Charon plug-in for Eclipse allowing direct manipulation of
Charon objects and access to Charon analysis back-end. The prototype
tool development effort leveraged existing stand-alone tools to perform
analysis of AADL specifications. We intend to invest effort to properly
integrate the Charon and VERSA tools into the Eclipse framework.

Develop an ACSR plug-in for Eclipse allowing direct manipulation of
ACSR objects and access to ACSR analysis back-end.

Complete the mapping of all AADL concepts to ACSR language elements,
building on the prototype effort, which focused on proof-of-concept.

Define and implement a translation algorithm from AADL concepts to
ACSR language elements that foresees the need to translate analysis
results back to AADL concepts.

Exploit ACSR analysis tools to analyze and report on AADL specifications.

Exploit Charon analysis tools to analyze and report on AADL
specifications incorporating continuous behaviors described using Charon.

Simulation

Develop simulation tools to demonstrate the dynamic behavior of AADL
models. We plan to exploit the AADL to ACSR translation and existing
tools for interactive execution of ACSR processes.

Integrate existing simulation tools for Charon to allow simulation of models
incorporating continuous behaviors.

Implementation Support

Develop code generation framework for AADL specifications. Care will be
taken to insure that the code generation effort can be both practical (i.e.,
targeted toward an existing real-time programming language) and
extensible (i.e., easily retargeted toward other existing or future
technologies).

Exploit existing Charon code generation modules to incorporate code for
continuous behaviors. Within the Eclipse framework, integrate custom




AADL code generation and Charon code generation with commercial tools
for real-time systems implementation. The system will be architected to
enable third-party extension without modification of the core Furness
toolset source code.

Test

e Develop test generation techniques for AADL specifications. Research
will be carried out to determine appropriate coverage criteria and testing
techniques for AADL models.

e Develop test generation techniques for user-specified system properties.
Practical, testing-based system verification will be central to the
methodology. As such, it will be important to incorporate tests as first-
class entities in the tools framework.

¢ Integrate analysis, test generation and implementation features to provide
a user-friendly verification and validation workbench within the Eclipse
framework. In the spirit of the current Eclipse tools development effort,
our system will be architected to enable third-party extension without
modification of the core Furness toolset source code.

4. Status of Effort

The project team developed and distributed the Furness Toolset™, a set of plug-
ins for the Eclipse workbench that extends the functionality of the Open Source
AADL Tool Environment (OSATE) created at the Software Engineering Institute.
The Furness Toolset is freely available from a dedicated web site

at http://www.furnesstoolset.com.

Version 1.6 of the Furness Toolset, distributed 9 July 2007, includes many of the
features outlined in the original work plan for this contract, including:

1) Quality assurance processes to insure quality of the combined OSATE
and Furness Toolset employed by end users.

2) A unified look-and-feel supporting task-oriented work.

3) The application of ACSR analysis tools to analyze and report on AADL
specifications.

4) Extensive simulation tools to demonstrate the dynamic behavior of
AADL models.

A one year, no-cost extension was requested and approved to enable the use of
residual contract funds to continue the project effort at Fremont Associates and
the University of Pennsylvania. The main technical objectives that we continue
to pursue are:




1) Creation of an ACSR plug-in for Eclipse allowing direct manipulation of
ACSR objects and access to ACSR analysis back-end.

2) Creation of a code generation framework for AADL specifications
targeted at the LynxOS-178 operating system for DO-178B level-A
certified systems.

The Furness Toolset is supported primarily through contract FA9550-05-C-0187.
A permanent revenue stream for support of the toolset was initiated during the
first project year with the sale of support licenses, renewable annually.

5. Work Carried Out

Eight people were employed in planning, design, implementation, testing,
distribution and support of the Furness Toolset. During the period of
performance of this grant their effort produced several public releases of the
software.

The Furness Toolset collects the leading open-source AADL tools into a single,
professionally supported release. The tools are integrated into the open-source
Eclipse IDE and installed and updated through the Eclipse online update site
feature.

Furness™ Perspective
Integration and Advanced Analysis Capabilities

Schedulability Analysis and Interactive Simulation

TOPCASED
Graphical AADL modeling

The present release of the Furness Toolset includes:

e The Open Source AADL Tools Environment (OSATE) produced by
the Software Engineering Institute of Carnegie Mellon University.

e The TOPCASED graphical meta-modeling framework provided by
the TOPCASED Consortium with a graphical AADL profile for
creating and manipulating AADL diagrams.

¢ The Furness Perspective, integrating features from OSATE and
TOPCASED with advanced analysis capabilities provided directly




by the Furness Toolset, provided by a joint venture of Fremont
Associates and University of Pennsylvania researchers.

The Furness Perspective

The Furness Perspective organizes the views, action and editors of OSATE,
TOPCASED and the Furness Toolset into a simplified interface that mimics
existing Eclipse perspectives.
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Figure 1: Furness Perspective Overview

Figure 1 depicts the general layout of the Furness Perspective. The AADL
Navigator, outline view and editors appear in their typical Eclipse IDE locations.
Operations/actions on AADL models are organized into two toolbar entries—
Analysis (for model analysis task) and Parsing (for low-level manipulation of XML
files and markers). Key actions also have toolbar buttons, including buttons to
create new projects, files, etc., and projects to create simulation launches using
the standard Eclipse debug launch button.
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Figure 2: Schedulability Analysis Overview—System Not Schedulable

The schedulability analysis feature will analyze a subset of AADL system
instance models to determine whether the thread scheduling constraints are
satisfiable. If a system instance model is not schedulable, a failing trace will be
displayed in the form of a timed system trace as shown in Figure 2. If a system
instance model is schedulable, an analysis of best-case and worst-case
response time can be viewed using the “Thread Time Bounds” view as shown in
Figure 3.
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Figure 3: Schedulability Analysis Overview—System Schedulable
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Figure 4: Simulation/Debug View—Breakpoints and Trace

The Simulation feature allows the thread behavior of synchronous AADL models
to be analyzed interactively using the standard Eclipse debug perspective.
Figure 4 shows the simulation view active for a two-processor, six thread system
undergoing simulation. The simulation has advanced to time t=20 with the
various thread activities indicated in the trace graph in the lower right hand
corner. Users interact with the simulation using the standard Eclipse debugger
controls, as shown in the debug view in the upper-left pane.

The AADL debugger includes the ability to set breakpoints at specific instants in
time, or on recurring intervals, as shown in the upper right pane of Figure 4. The
standard Eclipse debug view (upper left pane) shows the current state of all
threads, the reason execution is suspended, and all buttons related to execution
of suspended threads are enabled to allow single stepping or continuous running.
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Figure 5: Simuiation/Debug View—Thread Property Associations and CPU Utilization

Figure 5 illustrates two additional views available for simulations. The debug
view (upper left pane) shows the property associations of a thread selected, and
the Eclipse Variables view (upper right pane) lists the property associations for
the selected thread. In the lower right pane the utilization of each system CPU is
shown in a pie-graph form, broken down by thread active and sleeping states.




Ehe £ tavigate
e all e @- K- (@I R1Y wi WO T ® Topowes.. I8 AADL & Debug '# Fumess
* Debug ] o

S S T L S A 8
& ™= CrubaControl [AADL Threed Simulation] Interactive Resobver
& 3 AAD Simulation [ Cruisecontrol.Genark: ] (Waning on Step Selection) ! )
o & S_HA.P_Hd_Process.T_Refepd (preernpted) {°*
o & S_HA.P_Hd_Process.T_Sultonpanel {preempted) f $_Cruiseconiroliews.?_Crelsvconirol_Process. T_Cruise] excstes
@ & 5_Cruiseconiroliows.P_Cruisecontrol_Process.T_Cruiel (prasmpted) | $_Nd.P_Hd_Process.T_Drivermodsiogh: eweastes
& # S _Hd.P_HG_Process.T_instrumentpenet (deeping) | & Time advances to 21
| o £ 5_Hd.P_Hd_Process.T_Drivermodelogic (preempted) 1 S_Crulseconirolleves.?_Cruiseconirol_Proces.T_Cruise2 ewostes
' s # 5_Cruisecontrolsws. P_Crulsscontrol_Process. T_Cruiee ! (preempted) 1 S_Hd.P_Hd_Process.T_Dvivermodelogic emecutes
i Make Random Selection || Clear siaction
|9 auise_control sed 5l cruise_control.eaxd : B Outine o)
data Bool Type - dats Bool_Type -
propesties data Flast_Type
Source_Data _Size > 15 8 thewad Bulion_Panel
end Bool_Type Hyead implementation fufton Panel Cus
thraad [rtvermadeiogic
data Tioer_Type et implementation (rfvermadsiogic Smulml
Source Date Size »> 312 B Ehrwad Rt
ond rlost_Type hrea impiemantanion sebga e s
Hriwad Ity urneripmel
Zomposita 1 BC® Syste: Eread imphementation |[rtrumentnand G
thread Button_Pens process Ha_Proces
foatures procen Implementation Ho_Process Model
Activete : eut data pert Bool Type: L e

|c«-ﬁr—h,=mm—ahnx Ervor Log I A I R Tk

= Cruisecontrol. Generic S5_Crasecontroliews. P_Crusecontrol_Process. T_Cratesl

S_Hd.P_Hd_Process.T_Refspd

S_HA.P_na_Process. T _Butionpanel Compuling |

S_HaP_tid_Process.T _lnstrumentpensl Presmpted |

S_#d.P_Wd_Process.T_Drivermodelogic Seeging |
= Cd_Procsssor. Powerpc.Generlc L J

| §_Crusecontroliaws.P_Cruisecontrol_Process. T_Crelsel

A ;-
| o ! -
L

Figure 6: Simulation/Debug View—Interactive Non-Determinism and Thread States

Finally, Figure 6 illustrates two additional views. In the upper-right pane is the
user interface to allow selection of specific transitions where non-deterministic
choices arise in the modeled system. The lower-right pane illustrates thread
states on a per-thread basis, broken down by proportion of time spent in the
computing, preempted and sleeping states.

6. Results Obtained

During the period of performance of this contract accomplishments have been
concentrated in the area of developing tools and techniques for model-driven
design and analysis of embedded real-time systems. The tools effort has been
focused on expanding the simulation functionality of the Furness Toolset. A
minimal implementation first released during project year one was expanded to
cover a much larger portion of the syntactic and semantic features of the AADL
language during project year two and the no-cost extension year.

New findings focused on developing the conceptual framework to allow AADL
models to be translated into the ACSR formalism, for which we have extensive
techniques and tools for performing analysis of real-time system models. This bi-
directional translation from ACSR and AADL (and back) enabled the creation of
tools for analysis of high-level architecture specifications including schedulability
analysis for key scheduling protocols, and dynamic simulation of system models.




The accomplishments/new findings described here represent the realization of
the research and development plan presented in the project’s original proposal.
As described in that proposal, the fruit of our efforts is directly applicable to Air
Force, broader DoD, and civilian technology challenges wherever safety critical
embedded real-time systems are designed, analyzed, implemented and
deployed. This includes (but is certainly not limited to) military and civilian
avionics systems, airborne and ground-based weapons systems, automotive
applications, medical devices for military and civilian applications, etc.

Over the period of performance Clarke and Sokolsky have become active
participants in the Society of Automotive Engineers AS-2C subcommittee
responsible for creating and refining the AADL language standard. They have
made presentations on the Furness Toolset and on basic principles for
refining/extending the AADL at numerous quarterly meetings. During project
year two Sokolsky was nominated and approved for the post of standards
committee co-chair by the SAE AS-2C standards committee charged with
defining the AADL.

Clarke and Sokolsky have made presentations on the Furness Toolset at each
quarterly meeting. They have also made presentations on basic principles for
refining/extending the AADL at numerous quarterly meetings, topics including
net-centric systems modeling, indexing/replication of specification elements,
protocol modeling and connection patterns.

Fremont Associates took a leadership role in defining/refining a tools strategy for
the AADL through a tools working group. This includes holding teleconferences
among interested parties, and reporting on tools working group activities at the
quarterly AS-2C subcommittee meetings.

Clarke and Sokolsky have had numerous contacts with Bruce Lewis of the

Army’s Software Engineering Directorate at the Redstone Arsenal in Huntsville,
Alabama. One specific instance includes email and telephone interactions with
Bruce Lewis regarding the relative scopes, merits and capabilities of the AADL vs.
SysML that occurred on and about August 7, 2006.

7. Estimates of Technical Feasibility

The creation and release of the Furness Toolset has demonstrated the technical
feasibility of the approach that was proposed. Ongoing issues related to current
and future viability of the toolset include the following:

1. Maturity of the AADL standard. The effort expended during the period of
performance was focused on tools to support the Version 1 AADL
language specification. In late 2008 a new language standard, commonly
referred to as AADL Version 2, was published by the SAE.




Work on AADL Version 2 began immediately upon release of the Version
1 standard, and was perceived to be an impediment to early adoption of
tools. Enthusiasm for the Version 1 language suffered as users focused
on key features to be contributed to the Version 2 language.

2. Commercial potential of the OSATE implementation. OSATE was
planned and executed largely as a proof-of-concept for the AADL
language and preliminary tools concepts. As the Furness Toolset
developed and users considered the use of Furness Toolset (based on
OSATE) for production models, the prototype nature of the tools became
an impediment to application.

OSATE's handling of workspaces, concurrent development, large models,
configuration management, etc., will all have to be addressed if the tools
are to be more widely adopted in military and industrial settings. The
choice to implement the tools in Java and integrate them with the Eclipse
tool bench may also have to be reconsidered if large models and models
with large underlying state spaces are to be handled efficiently.

3. Integration with existing, proprietary tools. A monolithic AADL-focused
tools suite is unlikely to succeed without complimentary support from
existing proprietary tools vendors. To date, these vendors have taken a
wait-and-see approach, watching the language develop and attempting to
assess its potential for widespread adoption.

8. Personnel Supported

Duncan Clarke, Fremont Associates, LLC

Oleg Sokolsky, University of Pennsylvania

Insup Lee, consultant to Fremont Associates, LLC

Judy Baxley, project manager, Fremont Associates, LLC

Daryl Prickett, developer, Fremont Associates, LLC

Andrew Weaver, developer, Fremont Associates, LLC

Valentina Sokolskaya, subcontractor to Fremont Associates, LLC
Jesung Kim, University of Pennsylvania
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