AR_TR-09'03 63

AFRL-SR-
REPORT DOCUMENTATION PAGE

The public reporting burden for this collection of informetion is estimeted to everege 1 hour per response, including the time fc

gethering end meinteining the data needed, end completing and reviewing the collection of information. Send comments regerding t

informetion, including suggestions for reducing the burden, to Depertment of Defense, Weshington Headquerters Services, Directo v- o wru 1 BY),
1215 Jefferson Devis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any ., «w purson shall be subject to eny
penalty for feiling to comply with a collection of information if it does not displey a currently velid OM8 control number.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To)
29-12-2008 STTR--Final Technical Report 30-09-2005-29-09-2008

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

Simulation and Analysis Toolset for an Industry Standard Embedded Systems FA9550-05-C-0187

Specification Language: Final Technical Report 55 GRANT NUMBER

5¢c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER
Duncan Clarke
Fremont Associates, LLC; Camden, SC

5e. TASK NUMBER
Oleg Sokolsky

University of Pensylvania; Philadelphia, PA 57, WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) B. PERFORMING ORGANIZATION
. REPORT NUMBER

Fremont Associates, LLC

813 Market Street

Camden, SC 29020

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’'S ACRONYM(S)
Air Force Office of Scientific Research
875 North Randolph Street

Arlington, VA 22203-1768 11. SPONSOR/MONITOR'S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Distribution Statement A. Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

The Architecture Analysis and Design Language (AADL) is an SAE standard language for describing the software and hardware
architecture of performance-critical real-time systems. In addition, the AADL standard allows the definition of annexes, i.e.,

formal extensions to the standard language to enhance the design specifications of hardware or software components.

Our work has leveraged the AADL language and tool development efforts to create a new toolset that incorporates simulation and
analysis technologies for embedded real-time systems developed within the Charon and ACSR/VERSA projects at the University of
Pennsylvania. Our integration of AADL with Charon and VERSA has extended the capabilities of AADL to allow analysis and
simulation at the architecture level, detailed analysis at the module level, and provided support for implementation. This document
constitutes the final technical report for our Phase T AFOSR STTR (FY 2004, Topic 23, "Modeling Languages and Analysis Tools

15. SUBJECT TERMS

' 20091218091

16. SECURITY CLASSIFICATION OF: Ao s e =
a. REPORT |b. ABSTRACT | c. THIS PAGE ABSTRACT g;c;es Duncan Clarke
U U U SAR 15 19b. TELEPHONE NUMBER (inciude area code)
(803) 432-8272

Standard Form 29B (Rev. B/9B)
Prescribed by ANSI Std. Z39.18

Final Technical Report—December 2008

Simulation and Analysis Toolset for an Industry Standard
Embedded Systems Specification Language

Contract FA9550-05-C-0187

STTR Phase Il Topic AF04-T023: Modeling Languages and
Analysis Tools for Complex Distributed Systems

Program Manager

Robert Herklotz
Air Force Office of Scientific Research

Principal Investigator

Duncan Clarke

Fremont Associates, LLC

813 Market Street

Camden, SC 29020

(803) 432-8272
dclarke@fremontassociates.com

Academic Partner

Oleg Sokolsky

Department of Computer and Information Science
University of Pennsylvania

3330 Walnut Street

Philadelphia, PA 19104

(215) 898-4448

sokolsky@saul.cis.upenn.edu

2. Introduction

The Architecture Analysis and Design Language (AADL) is an SAE standard
language for describing the software and hardware architecture of performance-
critical real-time systems. In addition, the AADL standard allows the definition of
annexes, i.e., formal extensions to the standard language to enhance the design
specifications of hardware or software components.

The goal of this project was to leverage the AADL language and tool
development efforts to create a new toolset incorporating simulation and analysis
technologies for embedded real-time systems developed within the Charon and
ACSR/VERSA projects at the University of Pennsylvania. Our integration of
AADL with Charon and VERSA extended the capabilities of AADL to allow
analysis and simulation at the architecture level, detailed analysis at the module
level, and support for implementation.

This toolset is marketed for use by DoD and private-sector embedded systems
developers as part of an architecture-driven development methodology for
safety-critical embedded systems.

3. Objectives

Our effort was focused on (1) creating an end-to-end systems development
methodology for embedded real-time systems, (2) developing commercial quality
tools to support this methodology based on the OSATE plug-in for Eclipse, and
the Charon and ACSR formalisms; and (3) preliminary marketing of professional
services based on the methodology and tools so developed.

The technical objectives for Phase 2 were as follows:

Develop tools to support a methodology that enumerates steps for the design,
development and implementation of distributed real-time systems. Emphasize
verification and validation activities that are unique to safety-critical embedded
systems. Manage abstraction/complexity so that models can be analyzed
effectively.

Front-End

e Develop quality assurance processes to insure the marketability of
OSATE tools as the core of our tools offering. Though the OSATE
development is outside our scope, their position as the front-end for our
analysis tools will impact the perceived quality of our effort. Therefore we
intend to implement a quality control process to verify conformance of
front-end tools to the AADL standard, and evaluate overall quality.

e Develop a unified look-and-feel for all tools that emphasizes their role in
support of the methodology. The Eclipse workbench presents a large

number of controls and sub-windows to the user. It is necessary to plan
from the outset to insure that our tools provide a useful, usable interface to
the user.

Analysis

Develop a Charon plug-in for Eclipse allowing direct manipulation of
Charon objects and access to Charon analysis back-end. The prototype
tool development effort leveraged existing stand-alone tools to perform
analysis of AADL specifications. We intend to invest effort to properly
integrate the Charon and VERSA tools into the Eclipse framework.

Develop an ACSR plug-in for Eclipse allowing direct manipulation of
ACSR objects and access to ACSR analysis back-end.

Complete the mapping of all AADL concepts to ACSR language elements,
building on the prototype effort, which focused on proof-of-concept.

Define and implement a translation algorithm from AADL concepts to
ACSR language elements that foresees the need to translate analysis
results back to AADL concepts.

Exploit ACSR analysis tools to analyze and report on AADL specifications.

Exploit Charon analysis tools to analyze and report on AADL
specifications incorporating continuous behaviors described using Charon.

Simulation

Develop simulation tools to demonstrate the dynamic behavior of AADL
models. We plan to exploit the AADL to ACSR translation and existing
tools for interactive execution of ACSR processes.

Integrate existing simulation tools for Charon to allow simulation of models
incorporating continuous behaviors.

Implementation Support

Develop code generation framework for AADL specifications. Care will be
taken to insure that the code generation effort can be both practical (i.e.,
targeted toward an existing real-time programming language) and
extensible (i.e., easily retargeted toward other existing or future
technologies).

Exploit existing Charon code generation modules to incorporate code for
continuous behaviors. Within the Eclipse framework, integrate custom

AADL code generation and Charon code generation with commercial tools
for real-time systems implementation. The system will be architected to
enable third-party extension without modification of the core Furness
toolset source code.

Test

e Develop test generation techniques for AADL specifications. Research
will be carried out to determine appropriate coverage criteria and testing
techniques for AADL models.

e Develop test generation techniques for user-specified system properties.
Practical, testing-based system verification will be central to the
methodology. As such, it will be important to incorporate tests as first-
class entities in the tools framework.

¢ Integrate analysis, test generation and implementation features to provide
a user-friendly verification and validation workbench within the Eclipse
framework. In the spirit of the current Eclipse tools development effort,
our system will be architected to enable third-party extension without
modification of the core Furness toolset source code.

4. Status of Effort

The project team developed and distributed the Furness Toolset™, a set of plug-
ins for the Eclipse workbench that extends the functionality of the Open Source
AADL Tool Environment (OSATE) created at the Software Engineering Institute.
The Furness Toolset is freely available from a dedicated web site

at http://www.furnesstoolset.com.

Version 1.6 of the Furness Toolset, distributed 9 July 2007, includes many of the
features outlined in the original work plan for this contract, including:

1) Quality assurance processes to insure quality of the combined OSATE
and Furness Toolset employed by end users.

2) A unified look-and-feel supporting task-oriented work.

3) The application of ACSR analysis tools to analyze and report on AADL
specifications.

4) Extensive simulation tools to demonstrate the dynamic behavior of
AADL models.

A one year, no-cost extension was requested and approved to enable the use of
residual contract funds to continue the project effort at Fremont Associates and
the University of Pennsylvania. The main technical objectives that we continue
to pursue are:

1) Creation of an ACSR plug-in for Eclipse allowing direct manipulation of
ACSR objects and access to ACSR analysis back-end.

2) Creation of a code generation framework for AADL specifications
targeted at the LynxOS-178 operating system for DO-178B level-A
certified systems.

The Furness Toolset is supported primarily through contract FA9550-05-C-0187.
A permanent revenue stream for support of the toolset was initiated during the
first project year with the sale of support licenses, renewable annually.

5. Work Carried Out

Eight people were employed in planning, design, implementation, testing,
distribution and support of the Furness Toolset. During the period of
performance of this grant their effort produced several public releases of the
software.

The Furness Toolset collects the leading open-source AADL tools into a single,
professionally supported release. The tools are integrated into the open-source
Eclipse IDE and installed and updated through the Eclipse online update site
feature.

Furness™ Perspective
Integration and Advanced Analysis Capabilities

Schedulability Analysis and Interactive Simulation

TOPCASED
Graphical AADL modeling

The present release of the Furness Toolset includes:

e The Open Source AADL Tools Environment (OSATE) produced by
the Software Engineering Institute of Carnegie Mellon University.

e The TOPCASED graphical meta-modeling framework provided by
the TOPCASED Consortium with a graphical AADL profile for
creating and manipulating AADL diagrams.

¢ The Furness Perspective, integrating features from OSATE and
TOPCASED with advanced analysis capabilities provided directly

by the Furness Toolset, provided by a joint venture of Fremont
Associates and University of Pennsylvania researchers.

The Furness Perspective

The Furness Perspective organizes the views, action and editors of OSATE,
TOPCASED and the Furness Toolset into a simplified interface that mimics
existing Eclipse perspectives.

£ S EOSEE 90 Q- (FiG- Iy L wa- 1 ® Topcama.. WAADL ® Datug % Fumess
) < B8 7518 avse controlasd B cruise_controlaad T ! =/t T) R F =
» &1 CrubseContyol B platform_ frevaaoy/CrutseControl/smd/avise_control amd = ¢ Asdi Spec creise_control -
¢ »nd o O Throad Imgl Sutton_Penel Gl = - © Deta Type Bool_Type
- padages @ 2 Threed Type Drivermodeiogic © Duta Type Float_Type
o <7 Thread Imgl Drtvermodelogic Simulnk < Theaad Type Bution_Penel
8 ovise_rostrol sad = Theaad Type Nefspd Thead impd Button_Panel (a
- and = & Threod Impl Refopd. Srmulink Thewa Type Drtvermodisiogs:
o packBges & < Thread Type Instrementpanel = Theead imgl Drivermodelogic Smlink
.‘H © T Thread lmpl Instrementpenel Gul Thoaud Tipe Relupe
@ O Process Type Ho_Process Thread imgl Refepd Siemubink
W cruise_control and « O Process Impt H_Process Model Thrend Type Instrumentpaned
£ tests, o O Syshern Type Ho * Thwad bmgd Irtrumestpanel. Gus
« wa Standard Property Sets o O System Imgl M Modst O oces Type Ha_Proces.
o 7 Thwead Type Crulsel O Process imnot HA_Process. Model
< Thread lmpl Crulse} Simwlink O Systom Type Mo
o <7 Theead Type Chume2 © System Impl Hd.Model
* & Thread impl Cruise2 Smsink ? Theoad Type Cretiel
o 2 Process Type Crulseconiyol_Pracess 7 Theaad Imgé Cruise | Samulink
* O Procsss [mpi Cruisecontrol_Process Mode! = Thewad Type Crae2
s © System Type Croiseconiroliaws Thvaad impl Crae?, Smulioh.
a O System Impl Crulsecontroliaws Model O Wocess Type Crusacontrol_Process
= s Type Lan_Type & Socms lngl Cruisecontrol_Process.Modet
= Bys Il Lan_Type. Genesic © Systam Type Crulsecontraliovws.
© €3 Processor Type Pewerpc © System ol Cruisecontrolisws Modsl
s O Procwssor Inpl Powerpc Generi = us Type Lan_Type
a O System Type Orutseconiral « Bus Impl Lim_Type.Ganerk.
+ O Sptem Crutsecantrol Generic © Procesar Type Powerpc
~ '._d = . - - O Praceassr Inpl Powerpe.Ganesic -
| Problems. Properties Emor Log == Theead Time Bounds - Schedulabty Anelysis. Schedule Trooe > e
1 -~
£ ML P_rcl_Precess T_Refad
100 | Proceeos Ma_procssser |
o Stheduling Pretocot s |
Cospatch Protocol
Frequency 50 |c-wm1m I oM
Dusd Cime Exscstion Time M
3 ‘Mmmm 13
Dmacfine 0M
1) e el 0
i [02) 24} [48) [68) (8100 [1012) (12,14) [14.18) [16.0) [28,20]
] Execution Time (Ms)
b 2 PNTET WIVN SWeEE 3 W e

> CrulaeC e_contral_Cry _Generic_Instance sad

Figure 1: Furness Perspective Overview

Figure 1 depicts the general layout of the Furness Perspective. The AADL
Navigator, outline view and editors appear in their typical Eclipse IDE locations.
Operations/actions on AADL models are organized into two toolbar entries—
Analysis (for model analysis task) and Parsing (for low-level manipulation of XML
files and markers). Key actions also have toolbar buttons, including buttons to
create new projects, files, etc., and projects to create simulation launches using
the standard Eclipse debug launch button.

AADL System Instance Schedulability Analysis
W

AR - 0-&- G- 1Y L -wmO. £3 @ Yopcase_. 8 AADL © Debug % Fumess
WAADL Navioator 1 B 8" 729 cwe controlaed B cusse_controlamd 1] s Sl 1 TN “e
» 34 CrulseCombrot I plast YCQrutseC familfs _controtasd = o Aad Spec cwis_ control -
l @ nd + < Tiread Type Gruse2 - 5 Dets Type S00l_Type
o packages o 2 Thread Imgl Cruise2 Sibok © Data Type Fost_Type
> propestysets + O Proons Type Crasecontrol_Process < Theead Type Bulbon _Punel
B Gune_rontral sedt + 07 Prooms impl Onuiseconyol_Process Model ~ Theead Impl Button_Panel.Gut
notscheduisbie ssd « O Syshem Type Crdsecantroliaws 7 Thread Type Drivermodelogic
o » © Systern Imgl Craiseconirolvs Mode! = Thread ol Ortvermodeloghc Simadiok
packages » Bus Type Lan_Type <7 Thread Type Retwpd
B preperiviet = s bl Lan_Type.Gorrc ? Thread gl Retipd. Sirwalink
75 crvise_control_Cruisecontrol_Generic_inslz. . o Processor Type Rowerpc 7 Tiwend Type instrumentpanel
f @ owse_contyot + O Proceseor Impl Povesrpc. Generic Thread Imgl Inctrumentpansé Gut
1 notschedulable_Crdsecontral_Generic_inst ;O System Type Outsecontral O Process Type Hd_Process
15 notscheduiabie. st « O System gt Crutseconirel. Generic o O Process el HA_Process Model -
- tosts e e e s e = o). Sstom T s,
||+ b Stanrd Property Sets Problems Proparties ErTor Log Tovesd Time Gounds) e, 5
. Fodiing scenarte
Tne
85 2 s 10 ws a8 ws ms ms Ws Wo ws e
59 [rrm—————
" |
(-
o) R
»
R

" | — i — E——
= S
[vewas sttem acormen]

l l. . E
Figure 2: Schedulability Analysis Overview—System Not Schedulable

The schedulability analysis feature will analyze a subset of AADL system
instance models to determine whether the thread scheduling constraints are
satisfiable. If a system instance model is not schedulable, a failing trace will be
displayed in the form of a timed system trace as shown in Figure 2. If a system
instance model is schedulable, an analysis of best-case and worst-case
response time can be viewed using the “Thread Time Bounds” view as shown in
Figure 3.

Ee S [|

ALl 'S RBOEX (8- 0-Q- LG oS 1 @ Topcase... M AADL © Debug Fumess
W AADL Nawgator s BRTT5]8 owen contolead B ntrol sex i i FALEA L L T LR R T R s -
« i CruiseControl plath WCruiseC d/cruise_conrol amd =+ Aadl Spec crulse,_control -

o md
- packages
o propertysets
cruise_control sed
 notschedulabile sed

.
= " ~|
S_MALP el Mrocess. T Refpd 1
100 Processor Ha_Processor
7% Schadung Protocol RS
Ohpatch $rotocol Pertodic
Frequency 50 Cornpute Execution Time 3My 6 Ms
Dest Came Exacution ¥ She
1 b3 Worst Cane Exeastion Time 13M
Dveacling 0m
Py Period 20M
{ ©2) (2.9 [#8) (68 (810 110,12) [1219) (14.10) [16,18) [18,20]
Excation Time (Ms)
i L] b B Ak B 2. b

Figure 3: Schedulability Analysis Overview—System Schedulable

AADL System Instance Simulation/Debug

Dresi- 04 (@i ® 1 @ Tapcesn. @ AADL ® Debug ‘# Fumess
: % m B 3B AP 1T “Ciyaabies % Oresigoints - Step Choicel T ARB - @ BES B°°C
@ = CruiseControl {AADL Theend Siemulation] 2 & AADL Time Broakpoint set 2t 20
= T AADL Swstation | Crulsecontrof Genersc Dy breskpoint) 71 © AADL Tirne Broakpoint set &t 50 (Recurs evary 25 forever)
LR 4
o & SN0 P_Hd_Proces.T_Bultonpend (deeving)

| « & S_Cnésecontrolisws.P_Crubsecontyol_Proces.T_Cruite2 (seeping)
I * & S_HAP_pid_Pracest.T_jastrumentpenst (seeping)

o £ S_NMaP_Ha_Procen T_Driveemodeiogi (seepmg)
+ & S_Crubvecontroliaws P_Cruhecontrol_Process. T_Crudse! (sheeping)

1 ® Cruse_contro sad > i crulss_control aied 1) % Outtne e
data Bool Type - data Bool_Type -
dat Float_Type
| Source_Data_Sije <> 18 8: thread Bulton Panel
| w=a Bo0l Type Thread mplementation Bufton Panel.Gur
" et Drver rredeboge;
data Float Type thrmad implsmentation Drivesmodesogic Smlinl
properties
i Scurce_Deta_faze => 12 B¢ thread Refipd :
ond Float Type : thread implermentabon Retepd Semulink
Thrmad Ity et el
.- CMpOsSITion of NI Systes thread implementabon |nstyumentpanel Cui
thread Button_Panel orooes o _Process
| features DrOCESY implemantaBon Ha_Process Moas
ACTivats : out data pest Boo. TVDe! 1 ot s
L] . »
Conaole Tasks = AADL Thread Trace Evor Log -g
| 4 Crukeconor. Ganenc ¢ 2 f— = o+ ~ ¥y
- Powerpc. Generic
§_Hd.P_ra_Process. T_Refspd () SR N T
S_HaP_Hd_Process.T_Butonoane! []}
S _dl.P_Hd_Process.T_lastrumentpanel LK
S_H.P_Ha_procew. T_Drvermodeiogh.) —— ETETEETEY T
Cd_Processor: Powerpec..
EX P_Crvisecontrol_Process.T_Cruise2) R S S
5. Cruisecontyoitaws. P_Croeconirol_Process. T_Onuice} [E——)

Figure 4: Simulation/Debug View—Breakpoints and Trace

The Simulation feature allows the thread behavior of synchronous AADL models
to be analyzed interactively using the standard Eclipse debug perspective.
Figure 4 shows the simulation view active for a two-processor, six thread system
undergoing simulation. The simulation has advanced to time t=20 with the
various thread activities indicated in the trace graph in the lower right hand
corner. Users interact with the simulation using the standard Eclipse debugger
controls, as shown in the debug view in the upper-left pane.

The AADL debugger includes the ability to set breakpoints at specific instants in
time, or on recurring intervals, as shown in the upper right pane of Figure 4. The
standard Eclipse debug view (upper left pane) shows the current state of all
threads, the reason execution is suspended, and all buttons related to execution
of suspended threads are enabled to allow single stepping or continuous running.

= Deb OSAT,

e ER Refacor Navigsle Serch Projet Bun fndow Help
[Precie-o-a-iwain- "o

® Debugy E A/ B A AR

@ == OuiseContyol [AADL Thread Simwistion]
B AADL Simwtation [Cruisecontral.Ganenc | (Suspended by breakpoint)
» & S_HJ.P_Hd_Procem.T_Retpd (seeping)
® Thread Praperty Assodations
* & S0P _Ha_Procwss.T_Suttonpanel (sieeping)
» & S_Cruisecontroliews.P_Crulsecontrol_Process. T_CruiseZ (sheeping)
{sheeping)

sianping)
« & 5_Cruisecontrollaews »_Cruisecomtrol_Procwss. T_Crulsel (sleeping)
B cuise_control asd

data Bool Type
ties

1 crubse_control sed

Source Data Size «> 16 8;
end BOOL_Type

data Flost_Type
properties
Source Dats Sire »> 37 8!
end Cloat _Type
“caposition of NCT Systes
theead Button_Pane
features

Activaze . eut data pert Bool Type;

Consola Tasks > AADL Thvead Trace = - Ervor Log,

(<l 4

7 ® Topcase... I AADL ' ® Dedug ‘W Fumess

Rl A fread X [TAE s xu""E
Nore Value
+ Dhspatch_Protocol Pertodic

200

3Me.6Me |

Ces_Processor: Powerpc Generc

S_Cruseconiroliaws. P_Crusecenirol_Process. T_Craeal
S_Cnsvaconiroliews.P_Cruiseconirol_Process T_Cruives |
Seeprg

dl_Procesar: Pewerx Generc

0
AW [§ ez s
al - Lo At B 32 P i N0 SRt nd

Figure 5: Simuiation/Debug View—Thread Property Associations and CPU Utilization

Figure 5 illustrates two additional views available for simulations. The debug
view (upper left pane) shows the property associations of a thread selected, and
the Eclipse Variables view (upper right pane) lists the property associations for
the selected thread. In the lower right pane the utilization of each system CPU is
shown in a pie-graph form, broken down by thread active and sleeping states.

Ehe £ tavigate
e all e @- K- (@I R1Y wi WO T ® Topowes.. I8 AADL & Debug '# Fumess
* Debug] o

S S T L S A 8
& ™= CrubaControl [AADL Threed Simulation] Interactive Resobver
& 3 AAD Simulation [Cruisecontrol.Genark:] (Waning on Step Selection) !)
o & S_HA.P_Hd_Process.T_Refepd (preernpted) {°*
o & S_HA.P_Hd_Process.T_Sultonpanel {preempted) f $_Cruiseconiroliews.?_Crelsvconirol_Process. T_Cruise] excstes
@ & 5_Cruiseconiroliows.P_Cruisecontrol_Process.T_Cruiel (prasmpted) | $_Nd.P_Hd_Process.T_Drivermodsiogh: eweastes
& # S _Hd.P_HG_Process.T_instrumentpenet (deeping) | & Time advances to 21
| o £ 5_Hd.P_Hd_Process.T_Drivermodelogic (preempted) 1 S_Crulseconirolleves.?_Cruiseconirol_Proces.T_Cruise2 ewostes
' s # 5_Cruisecontrolsws. P_Crulsscontrol_Process. T_Cruiee ! (preempted) 1 S_Hd.P_Hd_Process.T_Dvivermodelogic emecutes
i Make Random Selection || Clear siaction
|9 auise_control sed 5l cruise_control.eaxd : B Outine o)
data Bool Type - dats Bool_Type -
propesties data Flast_Type
Source_Data _Size > 15 8 thewad Bulion_Panel
end Bool_Type Hyead implementation fufton Panel Cus
thraad [rtvermadeiogic
data Tioer_Type et implementation (rfvermadsiogic Smulml
Source Date Size »> 312 B Ehrwad Rt
ond rlost_Type hrea impiemantanion sebga e s
Hriwad Ity urneripmel
Zomposita 1 BC® Syste: Eread imphementation |[rtrumentnand G
thread Button_Pens process Ha_Proces
foatures procen Implementation Ho_Process Model
Activete : eut data pert Bool Type: L e

|c«-ﬁr—h,=mm—ahnx Ervor Log I A I R Tk

= Cruisecontrol. Generic S5_Crasecontroliews. P_Crusecontrol_Process. T_Cratesl

S_Hd.P_Hd_Process.T_Refspd

S_HA.P_na_Process. T _Butionpanel Compuling |

S_HaP_tid_Process.T _lnstrumentpensl Presmpted |

S_#d.P_Wd_Process.T_Drivermodelogic Seeging |
= Cd_Procsssor. Powerpc.Generlc L J

| §_Crusecontroliaws.P_Cruisecontrol_Process. T_Crelsel

A ;-
| o ! -
L

Figure 6: Simulation/Debug View—Interactive Non-Determinism and Thread States

Finally, Figure 6 illustrates two additional views. In the upper-right pane is the
user interface to allow selection of specific transitions where non-deterministic
choices arise in the modeled system. The lower-right pane illustrates thread
states on a per-thread basis, broken down by proportion of time spent in the
computing, preempted and sleeping states.

6. Results Obtained

During the period of performance of this contract accomplishments have been
concentrated in the area of developing tools and techniques for model-driven
design and analysis of embedded real-time systems. The tools effort has been
focused on expanding the simulation functionality of the Furness Toolset. A
minimal implementation first released during project year one was expanded to
cover a much larger portion of the syntactic and semantic features of the AADL
language during project year two and the no-cost extension year.

New findings focused on developing the conceptual framework to allow AADL
models to be translated into the ACSR formalism, for which we have extensive
techniques and tools for performing analysis of real-time system models. This bi-
directional translation from ACSR and AADL (and back) enabled the creation of
tools for analysis of high-level architecture specifications including schedulability
analysis for key scheduling protocols, and dynamic simulation of system models.

The accomplishments/new findings described here represent the realization of
the research and development plan presented in the project’s original proposal.
As described in that proposal, the fruit of our efforts is directly applicable to Air
Force, broader DoD, and civilian technology challenges wherever safety critical
embedded real-time systems are designed, analyzed, implemented and
deployed. This includes (but is certainly not limited to) military and civilian
avionics systems, airborne and ground-based weapons systems, automotive
applications, medical devices for military and civilian applications, etc.

Over the period of performance Clarke and Sokolsky have become active
participants in the Society of Automotive Engineers AS-2C subcommittee
responsible for creating and refining the AADL language standard. They have
made presentations on the Furness Toolset and on basic principles for
refining/extending the AADL at numerous quarterly meetings. During project
year two Sokolsky was nominated and approved for the post of standards
committee co-chair by the SAE AS-2C standards committee charged with
defining the AADL.

Clarke and Sokolsky have made presentations on the Furness Toolset at each
quarterly meeting. They have also made presentations on basic principles for
refining/extending the AADL at numerous quarterly meetings, topics including
net-centric systems modeling, indexing/replication of specification elements,
protocol modeling and connection patterns.

Fremont Associates took a leadership role in defining/refining a tools strategy for
the AADL through a tools working group. This includes holding teleconferences
among interested parties, and reporting on tools working group activities at the
quarterly AS-2C subcommittee meetings.

Clarke and Sokolsky have had numerous contacts with Bruce Lewis of the

Army’s Software Engineering Directorate at the Redstone Arsenal in Huntsville,
Alabama. One specific instance includes email and telephone interactions with
Bruce Lewis regarding the relative scopes, merits and capabilities of the AADL vs.
SysML that occurred on and about August 7, 2006.

7. Estimates of Technical Feasibility

The creation and release of the Furness Toolset has demonstrated the technical
feasibility of the approach that was proposed. Ongoing issues related to current
and future viability of the toolset include the following:

1. Maturity of the AADL standard. The effort expended during the period of
performance was focused on tools to support the Version 1 AADL
language specification. In late 2008 a new language standard, commonly
referred to as AADL Version 2, was published by the SAE.

Work on AADL Version 2 began immediately upon release of the Version
1 standard, and was perceived to be an impediment to early adoption of
tools. Enthusiasm for the Version 1 language suffered as users focused
on key features to be contributed to the Version 2 language.

2. Commercial potential of the OSATE implementation. OSATE was
planned and executed largely as a proof-of-concept for the AADL
language and preliminary tools concepts. As the Furness Toolset
developed and users considered the use of Furness Toolset (based on
OSATE) for production models, the prototype nature of the tools became
an impediment to application.

OSATE's handling of workspaces, concurrent development, large models,
configuration management, etc., will all have to be addressed if the tools
are to be more widely adopted in military and industrial settings. The
choice to implement the tools in Java and integrate them with the Eclipse
tool bench may also have to be reconsidered if large models and models
with large underlying state spaces are to be handled efficiently.

3. Integration with existing, proprietary tools. A monolithic AADL-focused
tools suite is unlikely to succeed without complimentary support from
existing proprietary tools vendors. To date, these vendors have taken a
wait-and-see approach, watching the language develop and attempting to
assess its potential for widespread adoption.

8. Personnel Supported

Duncan Clarke, Fremont Associates, LLC

Oleg Sokolsky, University of Pennsylvania

Insup Lee, consultant to Fremont Associates, LLC

Judy Baxley, project manager, Fremont Associates, LLC

Daryl Prickett, developer, Fremont Associates, LLC

Andrew Weaver, developer, Fremont Associates, LLC

Valentina Sokolskaya, subcontractor to Fremont Associates, LLC
Jesung Kim, University of Pennsylvania

9. Publications

Sokolsky, O., Lee, |., and Clarke, D., “Schedulability Analysis of AADL Models,”
The 14" International Workshop on Parallel and Distributed Real-Time Systems,
a workshop of the 2006 IEEE International Parallel and Distributed Processing
Symposium, Island of Rhodes, Greece, April, 2006.

I. Lee, A. Philippou, and O. Sokolsky, "Resources in Process Algebra,”
Journal of Logic and Algebraic Programming, Vol. 72, pp. 98--122, May/June
2007.

A. Philippou and O. Sokolsky, "Process-Algebraic Analysis of Timing and
Schedulability Properties," Handbook of Real-Time and Embedded Systems,
Chapman and Hall/CRC, 2007.

O. Sokolsky, |. Lee, and D. Clarke, “Process-Algebraic Interpretation of AADL
Models,” The 14th International Conference on Reliable Software Technologies -
Ada-Europe 2009, Brest, France, June 2009 (to appear).

