Resource Assurance
Balancing the Resource Equation

Presented to
EUCOM/AFRICOM S&T Conference

Dr. Betsy Cantwell
Deputy Associate Laboratory Director
National Security Directorate
Oak Ridge National Laboratory
June 2009
Resource Assurance Balancing the Resource Equation

Report Date: JUN 2009
Report Type:
Dates Covered: 00-00-2009 to 00-00-2009
Title and Subtitle: Resource Assurance Balancing the Resource Equation
Performing Organization Name(s) and Address(es): Oak Ridge National Laboratory, National Security Directorate, PO Box 2008, Oak Ridge, TN, 37831

Sponsoring/Monitoring Agency Name(s) and Address(es):

Distribution/Availability Statement: Approved for public release; distribution unlimited

Supplementary Notes:
See also ADM202744. Presented at the European Command and African Command Science and Technology Conference held in Stuttgart, Germany on 8-12 Jun 2009

Abstract:

Subject Terms:

Security Classification of:

- **a. Report:** Unclassified
- **b. Abstract:** Unclassified
- **c. This Page:** Unclassified

Limitation of Abstract: Same as Report (SAR)

Number of Pages: 45

Name of Responsible Person:

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18
Today, ORNL is DOE’s largest science and energy laboratory

- $1.5B budget
- 4,550 employees
- 3,900 research guests annually
- $350 million invested in modernization
- World’s most powerful open scientific computing facility
- Nation’s largest concentration of open source materials research
- Nation’s most diverse energy portfolio
- Operating the world’s most intense pulsed neutron source
- Managing the billion-dollar U.S. ITER project
The Department of Energy’s national laboratories: A comprehensive research system.
Energy

- The world’s largest industry
- The number one challenge facing humanity
- A key element of the resource challenge
- A principal driver for global stability
 - Climate change
 - National security
 - Economic competitiveness
 - Quality of life
- Compels nation-state behavior
- Creates Environmental concerns
- Stresses Trade Relationships
- There will be an “Energy Trip-wire”
Water

- Essential for human life
- Essential for agriculture
- Essential for energy production
- Historical ingredient of political stability
 - Availability
 - Security
 - Economic competitiveness
 - Quality of life

- “Water wars and confrontations”
- Waste is an environmental concern
Resource Assurance

Balancing the Resource Equation
Energy + Water + Waste + Land-Use

How mankind manages the resources challenge will determine the quality and sustainability of the human-habitat interface.

Interface interrelationships must be understood in detail, in particular the impacts and trade-offs of Energy vs Water vs Waste vs Land-Use.
The Resource Assurance Approach

Tools for scenario-based “Systems-of-systems” analyses to understand the complex linkages, challenges, and temporal interdependencies of:
The Resource Assurance Approach

Tools for scenario-based “Systems-of-systems” analyses to understand the complex linkages, challenges, and temporal interdependencies of:

- Present and Future Energy Needs
- Water Availability
- Waste, Land-Use & Human Footprints on the Environment
- Climate Change Impacts
- Demographic Factors
- Natural Disasters
The Resource Assurance Approach

Tools for scenario-based “Systems-of-systems” analyses to understand the complex linkages, challenges, and temporal interdependencies of:

- Present and Future Energy Needs
- Water Availability
- Waste, Land-Use & Human Footprints on the Environment
- Climate Change Impacts
- Demographic Factors
- Natural Disasters
 - Resources
 - Environment
 - Economic development
 - Security concerns
 - Policy & regulation
 - Technology
The Resource Assurance Approach

- The energy crisis is also an opportunity
- Energy is a significant component of the resource challenge:
 - Energy + Water + Waste + Land-Use
- Gaps in understanding can result in poor decisions
- Decisions affect infrastructure - expensive to correct
- Modern computers, methods, and advancing science now enable evaluation of multiple conflicting scenarios through modeling & simulation, knowledge extraction and data assimilation
The Resource Assurance Construct

Good Decisions

• Avoid or mitigate resource instigated conflicts
The Resource Assurance Construct

Good Decisions

• Avoid or mitigate resource instigated conflicts
• Uses capital productively and efficiently
The Resource Assurance Construct

Good Decisions

• **Avoids or mitigates resource instigated conflicts**
• **Uses capital productively and efficiently**
• **Build future prosperity with business models that yield a healthy environment and new business sectors that support its maintenance**
The Resource Assurance Construct

- Avoids or mitigates resource instigated conflicts
- Uses capital productively and efficiently
- Underpinning future prosperity with a healthy environment and new businesses for its maintenance
- Solutions from test cases can be applied worldwide
The Resource Assurance Construct

Good Decisions

- Avoids or mitigates resource instigated conflicts
- Uses capital productively and efficiently
- Underpinning future prosperity with a healthy environment and new businesses for its maintenance
- Solutions from test cases are reproducible worldwide
- Derive from multiple functional partnerships to capture, combine and deliver capabilities
Producing Resource Assurance Analyses

- DOE-scale Modeling and Simulation
 - High Performance Computing
Producing Resource Assurance Analyses

- DOE-scale Modeling and Simulation
 - High Performance Computing

- Energy, environment, and biosciences technologies, capabilities and expertise
 - Examples include
 - Climate change analyses
 - Bioenergy centers
 - Human population distribution changes due to climate changes or new energy technologies
Producing Resource Assurance Analyses

- Energy, environment, and biosciences technologies, capabilities, and expertise

- Ability to build productive partnerships and sustain collaborative projects
Producing Resource Assurance Analyses

- High Performance Computing
- Energy, environment, and biosciences technologies, capabilities, and expertise
- Ability to build productive partnerships and sustain projects
- Scalable Outcomes

Outcomes must be scalable, and our approach is the development of a SOA.
Producing Resource Assurance Analyses

- DOE-scale Modeling and Simulation
 - High Performance Computing
- Energy, environment, and biosciences technologies, capabilities and expertise
- Ability to build productive partnerships and sustain collaborative projects
- Scalable Outcomes
- Exportable tools and networked connectivity enabling worldwide use, both classified and unclassified
The Resource Assurance Construct

- A long view - ten to fifty years global view – with near-term deliverables
The Resource Assurance Construct

- A long view - ten to fifty years global view – with near-term deliverables
- Technology – Policy assessment
The Resource Assurance Construct

- A long view - ten to fifty years global view – with near-term deliverables
- Technology – Policy assessment
- Systems thinking and interaction
The Resource Assurance Construct

- A long view - ten to fifty years global view – with near-term deliverables
- Technology – Policy assessment
- Systems thinking and interaction
- Capitalize on many technology futures
 - Renewable energy
 (hydro, solar, wind, bio, land-use)
 - Resources efficiency
 (zero energy homes, electric transportation, low-water-use technologies, waste-to-energy, remanufacturing)
 - Energy Base Load (Fossil fuels + nuclear)
 - Efficient, reliable distribution (Grid)
Resource Assurance Construct

Characterization of the Resource Equation
Resource Assurance Construct

Characterization of the Resource Equation

Creates and sustains Geospatially Enabled Unclassified and Classified “Resource Globes”

- Allows development of accurate region specific assessments
- Evaluation of the dynamics of energy-water-waste cycles
- Supports course of action analysis and decision making
Resource Assurance Construct

Characterization of the Resource Equation

Collaborative team builds the foundation models…

- Energy Systems
- Water
- Pollution
- Climate Change
- Population
- Natural Disasters

Creates and sustains Geospatially Enabled Unclassified and Classified “Resource Globes”

- Allows development of accurate region specific assessments
- Evaluation of the dynamics of energy-water-waste cycles
- Supports course of action analysis decision making
Resource Assurance Construct

Characterization of the Resource Equation

Collaborative team builds the foundation models... for the customer set striving to understand the resource equation

- Energy Systems
- Water
- Pollution
- Climate Change
- Population
- Natural Disasters

Creates and sustains Geospatially Enabled Unclassified and Classified “Resource Globes”

- Allows development of accurate region specific assessments
- Evaluation of the dynamics of energy-water-waste cycles
- Supports course of action analysis decision making

• DOD-COCOMS
 • DOE
 • DHS
 • CDC
 • NSF
 • Universities

Managed by UT-Battelle for the Department of Energy
Resource Assurance Construct

Characterization of the Resource Equation

Collaborative team builds the foundation models…

• Energy Systems
• Water
• Pollution
• Climate Change
• Population
• Natural Disasters

…for the customer set striving to understand the resource equation

• DOD-COCOMS
• DOE
• DHS
• CDC
• NSF
• Universities

Creates and sustains Geospatially Enabled Unclassified and Classified “Resource Globes”

• Allows development of accurate region specific assessments
• Evaluation of the dynamics of energy-water-waste cycles
• Supports course of action analysis decision making
Resource Assurance Value to the COCOMs

- Develops and establishes standards, technology assessments and linkage tools on an open architecture
Resource Assurance Value to the COCOMs

- Develops and establishes standards, technology assessments and linkage tools on an open architecture

- Outlines a "resource framework", to provide a standard process for technology and policy assessment
Resource Assurance Value to the COCOMs

- Develops and establishes standards, technology assessments and linkage tools on an open architecture
- Outlines a "resource framework", to provide a standard process for technology and policy assessment
- Provides system network architectures that define data-storage-mining-processing and visualization science techniques
Resource Assurance Value to the COCOMs

- Develops and establishes standards, technology assessments and linkage tools on an open architecture

- Outlines a "resource framework", to provide a standard process for technology and policy assessment

- Provides system network architectures that define data-storage-mining-processing and visualization science techniques

- Provides a modeling and simulations backbone to examine alternative policy and technology strategies
Resource Assurance will Help Guide Technology Selection and Strategy

- The power of Resource Assurance is the ability to see the synergistic impact of multiple technology combinations and development decisions.
Resource Assurance will Help Guide Technology Selection and Strategy

• Identify a broad number of resource capabilities that will drive technology selection with the power to see the synergic impact of multiple technology combinations and development decisions.

• Expand the ability of communities and organizations to determine the technology alternatives that can best satisfy resource needs within a dynamic updated framework.
Resource Assurance will Help Guide Technology Selection and Strategy

• Identify a broad number of resource capabilities that will drive technology selection with the power to see the synergic impact of multiple technology combinations and development decisions.

• Expand the ability of communities and organizations to determine the technology alternatives that can best satisfy resource needs within a dynamic updated framework.

• Select the best technology from multiple alternatives.
Resource Assurance will Help Guide Technology Selection and Strategy

• Identify a broad number of resource capabilities that will drive technology selection with the power to see the synergic impact of multiple technology combinations and development decisions.

• Expand the ability of communities/regions to determine the optimal combination of technology alternatives that can best satisfy resource needs within a dynamically updated framework.

• Select the best technology options from multiple alternatives.

• Generate, implement and keep updated plans to develop and deploy appropriate resource technology alternatives.
Contacts for Resource Assurance Information-

Jeremy Cohen
Resource Assurance Program Manager
Oak Ridge National Laboratory
Oak Ridge, TN 37831
Email: cohenjd@ornl.gov
Phone: (865) 576-3445

Kristy Herron
Resource Assurance Program Coordinator
Oak Ridge National Laboratory
Oak Ridge, TN 37831
Email: herronkc@ornl.gov
Phone: (865) 241-9242
Resource Assurance...

...Balancing the Resource Equation
Resource Assurance Status

Five Year Integrated Project Plan

Focused to COCOM needs
- PACOM- Resource challenges identified
- Theater Support Plan interface

National Laboratory and University Team identified & working

April 2009 Roles and Missions Session
May- June 2009 Operational Needs Statement
July 2009 Team meeting complete project plan
Translating science and technology into energy solutions

<table>
<thead>
<tr>
<th>Generation</th>
<th>Distribution</th>
<th>Consumption</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fossil Fission</td>
<td>Transmission technology Hydrogen</td>
<td>Buildings Industry Transportation</td>
</tr>
<tr>
<td>Renewables Fusion</td>
<td>Distributed energy resources</td>
<td></td>
</tr>
</tbody>
</table>

Supporting national goals for energy security and independence
The Energy-Carbon-Water Nexus

Sustainable production and use of interrelated resources on a constrained and changing Earth

<table>
<thead>
<tr>
<th>Energy</th>
<th>Carbon</th>
<th>Water</th>
</tr>
</thead>
<tbody>
<tr>
<td>Production, distribution, and use</td>
<td>• Biofuel, food, fiber</td>
<td>• Energy requires water; Water requires energy</td>
</tr>
<tr>
<td>Economic drivers</td>
<td>• Ecosystem health (e.g., biodiversity)</td>
<td>• Many critical climate change impacts are water related</td>
</tr>
<tr>
<td>Environmental drivers</td>
<td>• Managing carbon for mitigation of climate change</td>
<td></td>
</tr>
</tbody>
</table>
Technology Options for Transportation
(Source: Koonin, BP)

Transport Sector

Energy Security: Concern over Future Availability of Oil and Gas

Low

High

Capture & Storage

CTL

GTL

CNG

Heavy Oil

Ultra Deep Water

Arctic

Capture & Storage

Enhanced Recovery

Dieselisation

Carbon Free H₂ for Transport

Low

Concern relating to Threat of Climate Change

High

Hybrids

Biofuels

Vehicle Efficiency (e.g. light weighting)

Key:
- supply side options
- demand side options

Managed by UT-Battelle
for the Department of Energy
Sustainability Science: Integrating energy, economics, and environment

- Regional to global scales
 - Even molecular indicators
- Level of detail driven by needs
- Data and computing limitations are disappearing
Regional Simulation Model (RSim)

• Spatially explicit
• Forecast outcomes of management options

(Fort Benning shown here)